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Abstract

We consider the corrector equation from the stochastic homogenization of uniformly el-
liptic finite-difference equations with random, possibly non-symmetric coefficients. Under
the assumption that the coefficients are stationary and ergodic in the quantitative form
of a Logarithmic Sobolev inequality (LSI), we obtain optimal bounds on the corrector
and its gradient in dimensions d ≥ 2. Similar estimates have recently been obtained in
the special case of diagonal coefficients making extensive use of the maximum principle
and scalar techniques. Our new method only invokes arguments that are also available
for elliptic systems and does not use the maximum principle. In particular, our proof
relies on the LSI to quantify ergodicity and on regularity estimates on the derivative of
the discrete Green’s function in weighted spaces. In the critical case d = 2 our argument
for the estimate on the gradient of the elliptic Green’s function uses a Calderón-Zygmund
estimate in discrete weighted spaces, which we state and prove.

Contents

1 Introduction 1

2 Main results and sketch of proof 6
2.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Sketch of proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Sketch of proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Auxiliary results and proofs 11
3.1 Well-posedness of the modified corrector . . . . . . . . . . . . . . . . . . 11
3.2 Oscillations and Green’s function estimates . . . . . . . . . . . . . . . . . 14
3.3 Logarithmic Sobolev inequality and spectral gap revisited . . . . . . . . . 22
3.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 A weighted Calderón-Zygmund estimate 26

A Proof of Lemma 1 38

1 Introduction

We study the modified corrector equation

1

T
φT +∇∗(a∇φT ) = −∇∗(aξ) in Zd, d ≥ 2, (1)

which is a discrete elliptic finite-difference equation for the real valued function φT , called
the modified corrector. As we explain below, it arises in stochastic homogenization.
The symbols ∇ and ∇∗ denote the discrete (finite-difference) gradient and the negative
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divergence, see Section 2 below for the precise definition. In the modified corrector
equation T denotes a positive “cut-off” parameter (which we think of to be very large),
and ξ ∈ Rd is a vector, fixed throughout this paper. We consider (1) with a random,
uniformly elliptic field of coefficients a : Zd → Rd×d. To be precise, for a fixed constant
of ellipticity λ > 0 we denote by Ω0 those matrices a0 ∈ Rd×d that are uniformly elliptic
in the sense that

∀v ∈ Rd : v · a0v ≥ λ|v|2 and |a0v| ≤ |v|, (2)

and define the set of admissible coefficient fields

Ω := ΩZd
0 = { a : Zd → Ω0 }.

In this paper we derive optimal bounds for finite moments of the modified corrector
and its gradient, under the assumption that the coefficients are distributed according
to a stationary and ergodic law on Ω, where ergodicity holds in the quantitative form
of a Logarithmic Sobolev Inequality (LSI), see Definition 1 below. Our main results are
presented in Theorems 1 and 2 below. For easy reference, let us state them already
here, somewhat informally. Throughout the paper, we write 〈·〉 for the expected value
associated to the law on Ω.

The first result concerns a bound on all moments of the gradient of the corrector.
Under the assumptions of stationarity and LSI, we have for all 1 ≤ p < ∞ and T ≥ 2
that

〈|∇φT (0) + ξ|2p〉 ≤ C|ξ|2p,
where the constant C is independent of T . (Note that here and throughout the paper
the constant “2” in “T ≥ 2” has no special meaning. In fact, since we are interested in
the behavior T ↑ ∞, we could replace “2” with any number greater than 1).

The second result is a bound on the corrector itself. Under the same assumptions
(even under a slightly weaker assumption than LSI, see Theorem 2 below), we have that

〈|φT (0)|2p〉 ≤ C
〈
|∇φT (0) + ξ|2p

〉
×

{
(log T )p for d = 2,

1 for d > 2.

These estimates are optimal, even in dimension d = 2 where we recover the optimal
logarithmic rate of divergence of the moment of φT . Let us emphasize that the coefficients
in (1) are not assumed to be symmetric or even diagonal. Thus, equation (1) in general
does not enjoy a maximum principle; this constitutes a major difference to previous works
where the maximum principle played a major role and exclusively the case of diagonal
coefficients was studied, see e.g. [22, 23, 19]. In fact, the method presented in this paper
only relies on arguments that are also available in the case of elliptic systems. The
extension of our findings to discrete systems, in particular a discrete version of linear
elasticity, is work in progress.

Relation to stochastic homogenization. The modified corrector equation (1) appears
in stochastic homogenization: For ε > 0 and a ∈ Ω distributed according to 〈·〉, we
consider the equation

∇∗(a∇uε) = ε2f(ε·) in Zd. (3)
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For simplicity we suppose that the right-hand side f : Rd → R is smooth, compactly sup-
ported, deterministic and has zero spatial average, so that (3) admits a unique, decaying
solution uε(a; ·) : Zd → R. As shown in [36, 26, 27, 29], in the homogenization limit ε ↓ 0
the rescaled solution uε(a; ·

ε
) converges for almost every a ∈ Ω to the unique decaying

solution u0 : Rd → R of the homogenized equation

− div(ahom∇uhom) = f in Rd.

Here ahom ∈ Ω0 is deterministic and determined by the formula

ei · ahomej = lim
T↑∞
〈(ei +∇φT,i(0)) · a(0)(ej +∇φT,j(0))〉 , (4)

where φT,j is the solution to (1) with ξ = ej. Let us comment on the appearance of the
limit as T ↑ ∞ in this formula. Formally, and in analogy to periodic homogenization, we
expect that

ei · ahomej = 〈(ei +∇φi(0)) · a(0)(ej +∇φj(0))〉 ,

where φi is a solution to the corrector equation

∇∗(a(∇φi + ei)) = 0 in Zd, (5)

that is stationary in the sense of

φi(a;x+ z) = φi(a(·+ z);x) 〈·〉-almost every a ∈ Ω and all x, z ∈ Zd. (6)

Furthermore, a formal calculation suggests the two-scale expansion

uε ≈ uhom(ε·) + ε
d∑
j=1

φj∂juhom(ε·). (7)

In the case of deterministic, periodic homogenization, it suffices to solve (5) on the ref-
erence torus of periodicity and existence essentially follows from Poincaré’s inequality
on the torus. In the stochastic case, the corrector equation (5) has to be solved on the
infinite space Zd subject to the stationarity condition (6). Since this is not possible in
general, the corrector equation (5) is typically regularized by adding the zeroth-order
term 1

T
φi with parameter T � 1. In fact this was already done in the pioneering work of

Papanicolaou and Varadhan [36] and leads to the modified corrector equation (1), which
in contrast to (5), admits for all a ∈ Ω a unique bounded solution φT (a; ·) ∈ `∞(Zd) that
automatically is stationary, see Lemma 2 below. While simple energy bounds, cf. (50),
make it relatively easy to pass to the regularization-limit T ↑ ∞ on the level of ∇φT (and
thus in the homogenization formula (4)), it is difficult, and in general even impossible,
to do the same on the level of φT itself. For similar reasons (and in contrast to the
periodic case), it is difficult to quantify errors in stochastic homogenization, such as the
homogenization error uε − uhom or the expansion (7).

Previous quantitative results and novelty of the paper. For periodic homogeniza-
tion the quantitative behavior of (3) and the expansion (7) is reasonably well understood
(e.g. see [5, 2, 16]). In the stochastic case, due to the lack of compactness, the quantita-
tive understanding of (3) is less developed and in most cases only suboptimal estimates
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are obtained, see [39, 35, 11, 12, 10, 8, 4]. In particular, the first quantitative result is
due to Yurinskii [39] who proved an algebraic rate of convergence (with an suboptimal
exponent) for the homogenization error uε − uhom in dimensions d > 2 for algebraically
mixing coefficients. For refinements and extensions to dimensions d ≥ 2 we refer to the
inspiring work by Naddaf and Spencer [35], and the recent works by Conlon and Naddaf
[11] and Conlon and Spencer [12]. Most recently, Armstrong and Smart [4] obtained
the first result on the homogenization error for the stochastic homogenization of convex
minimization problems. Their approach, which substantially differs from what has been
done before for divergence form equations, in particular applies to the continuum ver-
sion of (3) with symmetric coefficients, and potentially extends to the case of systems
(at least under sufficiently strong ellipticity assumptions). For results on non-divergence
form elliptic equations see [9, 3].

While qualitative stochastic homogenization only requires 〈·〉 to be stationary and ergodic,
the derivation of error estimates requires a quantification of ergodicity. Persuing optimal
error bounds, in a series of papers [22, 23, 24, 19, 21, 32, 30, 34] (initiated by Gloria and
Otto) a quantitative theory for (3) is developed based on Spectral Gap (SG) and LSI as
tools to quantify ergodicity. In contrast to earlier results, the estimates in the papers
mentioned above are optimal: E.g. [19] contains a complete and optimal analysis of the
approximation of ahom via periodic representative volume elements and [21] establishes
optimal estimates for the homogenization error and the expansion in (7). A fundamental
step in the derivation of these results are optimal moment bounds for the corrector, see
[22, 23, 19]. The extension to the continuum case is work in progress, see [24].

In the present contribution we continue the theme of quantitative stochastic homoge-
nization and present a new approach that relies on methods, that – we believe – extend
with only few modifications to the case of systems satisfying sufficiently strong elliptic-
ity assumptions. In the works discussed above, arguments restricted to scalar equations
are used at central places. Most significantly, Green’s function estimates are required
and derived via De Giorgi-Nash-Moser regularity theory (e.g. see [19, Theorem 3]). This
method is based on the maximum principle, which holds for diagonal coefficients, but not
for general symmetric or possibly non-symmetric coefficients as considered here. In fact,
in our case the Green’s function is not in general positive everywhere. We derive the re-
quired estimates on the gradient of the Green’s function from the corresponding estimate
on the constant coefficient Green’s function by a perturbation argument that invokes a
Helmholtz projection; this is inspired by [13]. Secondly, previous works rely on a gain of
stochastic integrability obtained by a nonlinear Caccioppoli inequality (see Lemma 2.7
in [22]). In the present contribution we appeal to an alternative argument that invokes
the LSI instead. While SG, which is weaker than LSI (see [17]), has been introduced
into the field of stochastic homogenization by Naddaf and Spencer [35, Theorem 1] (in
form of the Brascamp-Lieb inequality), the LSI has been used in [32] in the context of
stochastic homogenization to obtain optimal annealed estimates on the gradient of the
Green’s function and bounds on the random part of the homogenization error uε − 〈uε〉.

Note that in the special case of diagonal coefficients (i.e. when the maximum principle
and the De Giorgi-Nash-Moser regularity theory is available) our results are not new: The
T -independent results on φT and ∇φT in d > 2 dimensions have already been established
in [22, 19] under the slightly weaker assumption SG on the statistics (see (10) below), and
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the estimate on the corrector in the optimal form of 〈|φT |2p〉 ≤ C(log T )p with a constant
independent of T is obtained in [19].

Relation to random walks in random environments. There is a strong link between
stochastic homogenization and random walks in random environments (see [6] and [28]
for recent surveys). Suppose for a moment that 〈·〉 concentrates on diagonal matrices.
Then for each diagonal-matrix-valued field a : Zd →∈ Rd×d, we may interpret (3) as a
conductance network, where each edge [x, x + ei] (x ∈ Zd, i = 1, . . . , d) is endowed with
the conductance aii(x). The elliptic operator ∇∗(a∇) generates a stochastic process,
called the variable speed random walk X = (Xa(t))t≥0 in a random environment with law
〈·〉. Using arguments from stochastic homogenization, Kipnis and Varadhan [25] (see also
[29] for an earlier result) show that the law of the rescaled process

√
εX(εt) converges

weakly to that of a Brownian motion with covariance 2ahom. This annealed invariance
principle for X has been upgraded to a quenched result by Sidoravicious and Sznitman
[37]. The key ingredient in their argument is to prove that the “anchored corrector”
(i.e. the function ϕ introduced in Corollary 1 (a) below) satisfies a quenched sublinear
growth property. The quantitative analysis derived in the present paper is stronger.
Indeed, our estimate on ∇φT almost immediately implies that the anchored corrector
grows sublinearly. On top of that in dimensions d > 2 the moment bound on φT implies
that the anchored corrector is almost bounded, in the sense that it grows slower than any
rate, see Corollary 1 and the subsequent remark.

If the coefficients are not diagonal, then (3) is not any longer related to a random conduc-
tance model. As mentioned before, for non-symmetric a (and even for certain symmetric
coefficients) the maximum principle for ∇∗(a∇) generally fails to hold. In that case the
semigroup generated by ∇∗(a∇) is not a Markov process and there is no natural proba-
bilistic interpretation for (3). This may also be seen in terms of Dirichlet forms. While
the (non-symmetric) elliptic operator − div(ahom∇) acting on functions on Rd generates
a Dirichlet form

´
Rd∇u · ahom∇vdx in the sense of [31, Definition I.4.5] and a corre-

sponding Markov process, the discrete operator ∇∗(a∇) with associated bilinear form∑
Zd∇u ·a∇v defined on `2(Zd)× `2(Zd) does not. Indeed, the contraction property (4.4)

in [31] (which encodes a maximum principle) generally fails to hold in the non-diagonal
discrete case. However, the limiting process can be approximated by (non-symmetric)
Markov processes, see [15] for a recent construction.

Let us finally remark that we do not use any ingredients from probability theory except
for the quantification of ergodicity via SG and LSI in this paper. Furthermore, since
we view our present contribution as a first step towards systems (which certainly are
unrelated to probability theory), we do not further investigate the connection to random
walks in the present paper.

Outline of the paper. In Section 2, we present the main results of our paper and give a
brief sketch of our proof. The proof of the main result and auxiliary lemmas are contained
in Section 3. Let us mention that in the critical dimension d = 2, we invoke a Calderón-
Zygmund estimate on weighted `p-spaces on Zd. We give a proof of this estimate, which
may be of independent interest, in Section 4.

Acknowledgements. The authors gratefully acknowledge Felix Otto for suggesting the
problem and for helpful discussions. J. B.-A. and S. N. thank the Max-Planck-Institute
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for Mathematics in the Sciences, Leipzig, for its hospitality. S. N. was partially supported
by ERC-2010-AdG no.267802 AnaMultiScale.

2 Main results and sketch of proof

2.1 General framework

Discrete functions and derivatives. Let {ei}di=1 denote the canonical basis of Rd.
For a scalar function u : Zd → R and a vector field g : Zd → Rd with components
g = (g1, . . . , gd) we define the discrete gradient ∇u : Zd → Rd and negative divergence
∇∗g : Zd → R as follows:

∇u := (∇1u, . . . ,∇du), ∇∗g :=
d∑
i=1

∇∗i gi, where

∇iu(x) := u(x+ ei)− u(x), ∇∗iu(x) := u(x− ei)− u(x).

We denote by `p(Zd), 1 ≤ p ≤ ∞, the space of functions u : Zd → R with ‖u‖`p < ∞,

where ‖u‖`p :=
(∑

x∈Zd |u(x)|p
) 1
p for p < ∞ and ‖u‖`∞ := supx∈Zd |u(x)|. Note that ∇

and ∇∗ are adjoint: We have the discrete integration by parts formula∑
x∈Zd
∇u(x) · g(x) =

∑
x∈Zd

u(x)∇∗g(x)

for all exponents 1 ≤ p, q ≤ ∞ such that 1 = 1
p

+ 1
q

and all functions u ∈ `p(Zd) and

g ∈ `q(Zd,Rd).
Random coefficients and quantitative ergodicity. In order to describe random
coefficients, we endow Ω with the product topology induced by Rd×d and denote by
Cb(Ω) the set of continuous functions ζ : Ω→ R that are uniformly bounded in the sense
that

‖ζ‖∞ := sup
a∈Ω
|ζ(a)| <∞.

Throughout this work, we consider a probability measure on Ω with respect to the Borel-
σ-algebra. Following the convention in statistical mechanics, we call this probability
measure an ensemble and write 〈·〉 for the associated expected value, the ensemble aver-
age. We assume that 〈·〉 is stationary w. r. t. translation on Zd, i.e. for all x ∈ Zd, the
mapping τx : Ω→ Ω, a 7→ a(·+ x) is measurable and measure preserving:

∀ζ : Ω→ R : 〈ζ(τx·)〉 = 〈ζ(·)〉.

Our key assumption is that 〈·〉 is quantitatively ergodic where the ergodicity is quantified
through either LSI or SG. To be precise, we make the following definitions:

Definition 1 (Definition 1 in [32]). We say that 〈·〉 satisfies the LSI with constant ρ > 0
if 〈

ζ2 log
ζ2

〈ζ2〉

〉
≤ 1

2ρ

〈∑
x∈Zd

(
osc
a(x)

ζ
)2
〉
. (8)

for all ζ ∈ Cb(Ω).
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Here the oscillation of a function ζ ∈ Cb(Ω) is defined by taking the oscillation over all
ã ∈ Ω that coincide with a outside of x ∈ Zd, i.e.

osc
a(x)

ζ(a) := sup{ζ(ã) | ã ∈ Ω s.t. ã(y) = a(y) ∀y 6= x}

− inf{ζ(ã) | ã ∈ Ω s.t. ã(y) = a(y) ∀y 6= x}. (9)

The continuity assumption on ζ ensures that the oscillation is well-defined. A weaker
form of quantitative ergodicity is the SG which is defined as follows.

Definition 2. We say that 〈·〉 satisfies the SG with constant ρ > 0 if

〈
(ϕ− 〈ϕ〉)2

〉
≤ 1

ρ

〈∑
x∈Zd

(
osc
a(x)

ϕ
)2
〉

(10)

for all ϕ ∈ Cb(Ω).

The SG (10) is automatically satisfied if LSI (8) holds, which may be seen by expanding
ζ = 1+εϕ in powers of ε. Moreover, LSI and SG are satisfied in the case of independently
and identically distributed coefficients, i.e. when 〈·〉 is the Zd-fold product of a probability
measure on Ω0, cf. [32, Lemma 1]. We refer to [17] for a recent exposition on LSI and
to [19] for a systematic application of SG to stochastic homogenization.

2.2 Main results

Throughout this paper the modified corrector φT is defined as the unique bounded so-
lution to (1), see Lemma 2 below for details. Our first result yields boundedness of the
finite moments of ∇φT .

Theorem 1. Assume that 〈·〉 is stationary and satisfies LSI (8) with constant ρ > 0.
Then the modified corrector defined via (1) satisfies

〈|∇φT (x) + ξ|2p〉 ≤ C(d, λ, p, ρ)|ξ|2p (11)

for all x ∈ Zd, p <∞ and T ≥ 2. Here and throughout this work, C(d, λ, p, ρ) stands for
a constant which may change from line to line and that only depends on the exponent p,
the LSI-constant ρ, the ellipticity ratio λ and the dimension d.

As already mentioned earlier, the lower bound “2” for T is arbitrary and may be replaced
by any other constant greater than 1. The second result establishes moment bounds on
the corrector itself. More precisely, we establish control of moments of φT by moments
of ∇φT . As opposed to Theorem 1, we just need to assume that the ensemble satisfies
SG, i.e. Definition 2.

Theorem 2. Assume that 〈·〉 is stationary and satisfies SG (10) with constant ρ > 0.
There exists p0 = p0(d, λ) such that the the modified corrector defined via (1) satisfies

〈|φT (x)|2p〉 ≤ C(d, λ, p, ρ)
〈
|∇φT (x) + ξ|2p

〉
×

{
(log T )p for d = 2,

1 for d > 2,
(12)

for all x ∈ Zd, p ≥ p0 and T ≥ 2.
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By letting T ↑ ∞, we obtain the following estimate for the (unmodified) corrector.

Corollary 1. Assume that 〈·〉 is stationary and satisfies LSI (8) with constant ρ > 0.
Then:

(a) In dimensions d ≥ 2 there exists a unique measurable function ϕ : Ω× Zd → R that
solves (5) for 〈·〉-almost every a ∈ Ω and

(a1) ϕ satisfies the anchoring condition ϕ(a, 0) = 0 for 〈·〉-almost every a ∈ Ω,

(a2) ∇ϕ is stationary in the sense of (6) and 〈∇ϕ(x)〉 = 0 for all x ∈ Zd,
(a3) 〈|∇ϕ(x)|p〉 <∞ for all x ∈ Zd and p <∞.

(b) In dimensions d > 2 there exists a unique measurable function φ : Ω× Zd → R that
solves (5) for 〈·〉-almost every a ∈ Ω, and

(b1) φ is stationary in the sense of (6),

(b2) 〈|φ(x)|p〉 <∞ for all x ∈ Zd and p <∞.

Remark 1. • The “anchored corrector” ϕ defined in Corollary 1 (a) has already been
considered in the seminal works by Papanicolaou and Varadhan [36] and Kozlov [26].
In fact, for existence and uniqueness – which can be proved by soft arguments – only
(a1) and (a2) are required. The new estimate (a3) follows from Theorem 1 in the
limit T ↑ ∞. Note that (a3) implies (by a short ergodicity argument) sublinearity
of the anchored corrector in the sense that

lim
R↑∞

max
|x|≤R

|ϕ(a, x)|
R

= 0

for 〈·〉-almost every a ∈ Ω.

• Existence, uniqueness and moment bounds of the “stationary corrector” φ defined
in Corollary 1 (b) have been obtained in the case of diagonal coefficients in [22], see
also [19]. Note that the anchored corrector ϕ can be obtained from φ via ϕ(x, a) :=
φ(a, x) − φ(a, 0), and, as explained in the discussion below [30, Corollary 1], the
moment bound (b2) implies that

∀θ ∈ (0, 1] : lim
R↑∞

max
|x|≤R

|ϕ(a, x)|
Rθ

= 0

for 〈·〉-almost every a ∈ Ω.

Remark 2. Instead of the modified corrector, one might consider the periodic corrector
which in the stochastic context is defined as follows: For L ∈ N let

ΩL := { a ∈ Ω : a(·+ Lz) = a for all z ∈ Zd }

denote the set of L-periodic coefficient fields. In the L-periodic case, one considers the
corrector equation (5) together with an L-periodic ensemble, i. e. a stationary prob-
ability measure on ΩL. In that case, equation (5) admits a unique solution φL with∑

x∈([0,L)∩Z)d φL(x) = 0 for all a ∈ ΩL. The L-periodic versions of LSI and SG are
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obtained by replacing the sum
∑

x∈Zd in (8) and (10) by
∑

x∈([0,L)∩Z)d. With these mod-

ifications, Theorem 1 and Theorem 2 extend to the L-periodic case (with L =
√
T since

the cut-off term involving T effectively restricts the equation to a domain of side length√
T ). In particular, if the L-periodic ensemble satisfies an L-periodic LSI with constant

ρ > 0, then the L-periodic corrector satisfies for all p <∞

〈
φ2p
L

〉 1
2p .

{
(logL)

1
2 for d = 2,

1 otherwise.

The proof follows along the same lines and can easily be adapted. For estimates on the
periodic corrector φL in the case of diagonal coefficients, see [19].

2.3 Sketch of proof of Theorem 1

Theorem 1 is relatively straight-forward to prove. We simply follow the approach devel-
oped in [32] and use the LSI (8) of Definition 1 to upgrade a lower order L2

〈·〉(Ω)-bound

to a bound in L2p
〈·〉(Ω). Note that by stationarity of 〈·〉 and φT , see (6), it suffices to prove

the estimates (11) at x = 0. The lower order bound

〈|∇φT (0) + ξ|2〉 ≤ C(d, λ)|ξ|2, cf. (50),

follows from a simple energy argument, i.e. an L2-estimate obtained by testing the equa-
tion for φT with φT itself. The integral here is the ensemble average and not the sum
over Zd; this is possible thanks to stationarity of φT . For details, we refer to Step 1 in
the proof of Theorem 1. This bound is then upgraded via the following consequence of
LSI (8):

〈|∇φT (0) + ξ|2p〉 ≤ C(d, p, ρ, δ)〈|∇φT (0) + ξ|2〉p + δ

〈(∑
x∈Zd

∣∣∣ osc
a(x)
∇φ(0)

∣∣∣2)〉

for all δ > 0, where we have implicitly taken the oscillation of the vector ∇φT component-
wise. This reverse Jensen inequality is the content of Lemma 5 below. Next, we need an
expression for osca(x)∇φT . In Lemma 3 we will show that the response to a variation at
x in the coefficient field is given via the Green’s function GT as:

osc
a(x)

(∇jφT (a; 0) + ξj) ≤ C(d, λ)|∇∇GT (a; 0, x)||∇φT (a;x) + ξ|,

where GT is the Green’s function associated to (1), see Definition 3. Throughout this
work, ∇∇GT (x, y) = ∇x∇yGT (x, y) ∈ Rd×d denotes the mixed derivative and we use the
spectral norm on Rd×d. The above estimate on the oscillation then yields〈(∑

x∈Zd

∣∣∣ osc
a(x)
∇φ(0)

∣∣∣2)〉 ≤ C(d, λ, p)

〈(∑
x∈Zd
|∇∇GT (a; 0, x)|2|∇φT (a;x) + ξ|2

)〉
≤ C(d, λ, p)

〈
|∇φT (a; 0) + ξ|2

〉
,
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where in Step 2 of the proof of Theorem 1, we will obtain the last inequality from
stationarity and the energy estimate (26), i.e.∑

x∈Zd
|∇∇GT (x, y)|2 ≤ C(d, λ),

which holds in any dimension d ≥ 2.

2.4 Sketch of proof of Theorem 2

By stationarity of 〈·〉 and φT , it suffices to prove (12) at x = 0. In contrast to Theorem 1,
the proof of Theorem 2 only requires the weaker ergodicity assumption SG of Definition 2,
which we will use in form of〈

|φT (0)|2p
〉
≤ C(p, ρ)

〈(∑
x∈Zd

(
osc
a(x)

φT (0)
)2
)p〉

,

see Lemma 6 below. Again, we require an estimate on the oscillation, which we shall
obtain in Lemma 3 and which yields

osc
a(x)

φT (a; 0) ≤ C(d, λ)|∇xGT (a; 0, x)||∇φT (a;x) + ξ|.

Again, this will be substituted in the above SG-type inequality. In contrast to the proof
of Theorem 1, where a simple `2-estimate of ∇∇GT sufficed, we will see that we require
a bound on ∇GT including weights: In Lemma 4, we show that∑

x∈Zd
|∇xGT (a; 0, x)|2qωq(x) ≤ C(d, λ, q)

{
log T for d = 2,

1 for d > 2

for all q ≥ 1 close enough to 1, and weight ωq given by

ωq(x) :=

{
(|x|+ 1)2(q−1) + T 1−q(|x|+ 1)4(q−1) for d = 2,

(|x|+ 1)2d(q−1) for d > 2.

The case d > 2 is relatively straight-forward and follows by testing the equation with
weights and applying Hardy’s inequality. The case d = 2 is critical for this estimate and
we will prove it by reducing the problem via a perturbation argument to the constant-
coefficient case; this approach involves a Helmholtz projection and is inspired by the
work [13]. To make it rigorous, we require a Calderón-Zygmund estimate in discrete
weighted spaces which may be of independent interest and which is proved in Section 4.
With this estimate at hand, we may smuggle in the weight ωq and apply Hölder’s in-
equality with q ≈ 1 and large dual exponent p to obtain〈(∑

x∈Zd
|∇xGT (a; 0, x)|2|∇φT (a;x) + ξ|2

)〉

≤ C(d, λ, q)
〈
|∇φT (a;x) + ξ|2p

〉{log T for d = 2,

1 for d > 2

as long as p is large enough such that
∑

x ω
1−p
q (x) <∞.
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3 Auxiliary results and proofs

In this section we first present and prove some auxiliary results and then turn to the
actual proof of our main results. We start in Section 3.1 with the definition of the
modified corrector and prove its existence and some continuity properties. This invokes
the elliptic Green’s function, which we introduce in the same section. Section 3.2 and
Section 3.3 contain the two key ingredients of our approach: In Section 3.2, we prove
estimates on the oscillation of the corrector and estimates on the gradient of the Green’s
function; in Section 3.3, we revisit LSI and SG, which quantify ergodicity and are the
only ingredients from probability theory in our approach. Finally in Sections 3.4 and 3.5,
we present the proofs of Theorems 1 and 2.

3.1 Well-posedness of the modified corrector

We define the modified corrector φT : Ω × Zd → R as the unique bounded solution to
(1), i.e. for each a ∈ Ω, we require φT (a, ·) : Zd → R to solve (1) and to be bounded,
see Lemma 2 for details. Note that this definition is pointwise in a ∈ Ω and does not
invoke any probability measure on Ω. This is in contrast to what is typically done
in stochastic homogenization (e.g. in the seminal work [36], where φT is unambigously
defined through an equation on the probability space L2

〈·〉(Ω)). We opt for the “non-
probabilistic” definition, since later we need to estimate the oscillation in a of φT , which
is most conveniently done when φT is defined for all a ∈ Ω and not only 〈·〉-almost surely.
However, since the right-hand side of (1) is only in `∞(Zd), it is not clear a-priori whether
(1) admits a bounded solution. To settle this question we consider the elliptic Green’s
function GT : Ω × Zd × Zd → R and prove integrability of GT in Lemma 1 below. The
latter then implies existence of φT together with some continuity properties, see Lemma 2
below.

Definition 3 (Green’s function). Given a ∈ Ω and y ∈ Zd, the Green’s function
GT (a;x, y) associated to equation (1) is the unique solution in `2(Zd) to

1

T
GT (a; ·, y) +∇∗(a∇GT (a; ·, y)) = δ(· − y) in Zd, (13)

where δ : Zd → {0, 1} denotes the Dirac function centered at 0.

Equation (13) can also be expressed in its “weak” formulation: For all w ∈ `2(Zd) we
have that

1

T

∑
x∈Zd

GT (a;x, y)w(x) +
∑
x∈Zd
∇w(x) · a(x)∇xGT (a;x, y) = w(y). (14)

It immediately follows from the unique characterization of GT through (13) that the
Green’s function is stationary:

∇∇GT (a, x+ z, y + z) = ∇∇GT (a(·+ z), x, y). (15)

Furthermore it is symmetric in the sense that

∇∇GT (a; y′, y) = ∇∇GT (at; y, y′), (16)

11



where at denotes the transpose of a in Rd×d. This can be seen from applying (14) to
w(x) = GT (at;x, y′), yielding the representation

GT (at; y, y′) =
1

T

∑
x

GT (at;x, y′)GT (a;x, y) +
∑
x

∇xGT (at;x, y′) · a(x)∇xGT (a;x, y).

On the other hand, choosing w(x) = GT (a;x, y) in the definition for GT (at; ·, ·) shows

GT (a; y′, y) =
1

T

∑
x

GT (a;x, y)GT (at;x, y′) +
∑
x

∇xGT (a;x, y) · at(x)∇xGT (at;x, y′).

By definition of the transpose at, this shows GT (a; y, y′) = GT (at; y′, y) and hence (16).
The Green’s function is useful since by linearity it encodes all the information for the
solution u to the equation

1

T
u+∇∗(a∇u) = f in Zd. (17)

Indeed, testing (1) with GT (a; ·, y) and integrating by parts formally yields

u(a;x) =
∑
y∈Zd

GT (a;x, y)f(y). (18)

Of course, to make sense of this for f = ∇∗(aξ) ∈ `∞(Zd), we need GT in `1(Zd). On
the other hand, the definition of the Green’s function only yields GT (·, y) ∈ `2(Zd) but
this is not enough to establish well-posedness of (1). It is not difficult to establish that∑

xGT (x, y) = T for all y ∈ Zd and a ∈ Ω but without the maximum principle, GT

may be negative and it does not follow that GT is in `1(Zd). Therefore we need another
argument to establish well-posedness of (1). This is provided by the following lemma,
which shows exponential decay of GT and in particular that GT is in `1(Zd).
Lemma 1. There exist a large constant C = C(d, λ, T ) < ∞ and a small constant
δ = δ(d, λ, T ) > 0, both only depending on d, λ and T , such that∑

x∈Zd

(
|GT (a;x, y)|2 + |∇xGT (a;x, y)|2

)
eδ(d,λ,T )|x−y| ≤ C(d, λ, T )

for all a ∈ Ω and y ∈ Zd.
Since we could not find a suitable reference for this estimate in the discrete, non-symmetric
case, we present a proof in the appendix. The proof uses Agmon’s positivity method [1]
and in the discrete setting is inspired by [18, Proof of Lemma 3]. With this result at
hand, we can provide well-posedness of the modified corrector φT . In addition to well-
posedness, Lemma 1 allows us to deduce φT (0) = φT (a; 0) ∈ Cb(Ω), which is necessary
for the application of LSI (8) and SG (10) to φT .

Lemma 2 (Modified corrector). For all a ∈ Ω the modified corrector equation (1) admits
a unique bounded solution φT (a; ·) ∈ `∞(Zd). The so defined modified corrector φT :
Ω× Zd → R satisfies φT (·, x) ∈ Cb(Ω) for all x ∈ Zd, and

|φT (a;x)| ≤ C(T, λ, d)|ξ| for all a ∈ Ω and all x ∈ Zd. (19)

Furthermore, φT is stationary, i.e.

φT (a;x+ z) = φT (a(·+ z);x) for all a ∈ Ω and all x, z ∈ Zd. (20)
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Proof. Step 1. Existence and uniqueness of φT : In this step, we argue that for arbitrary
f ∈ `∞(Zd) equation (17) admits a unique solution u and u can be represented as in
(18). The existence and uniqueness of φT then follows by setting f := −∇∗(aξ). For
the argument, note that by Lemma 1 we have GT (a; ·, y) ∈ `1(Zd). Hence, for every
f ∈ `∞(Zd), equation (18) defines a function u(a; ·) ∈ `∞(Zd) that solves (17). For the
uniqueness, let ũ ∈ `∞(Zd) solve (17). Testing (17) with GT (at; ·, x) yields∑

y∈Zd
GT (at; y, x)f(y) =

∑
y∈Zd

GT (at; y, x)
( 1

T
+∇∗(a∇))

)
ũ(y)

=
∑
y∈Zd

( 1

T
+∇∗(at∇)

)
GT (at; y, x)ũ(y)

=
∑
y∈Zd

δ(x− y)ũ(y) = ũ(x).

By symmetry the left-hand side is equal to
∑

y∈Zd GT (a;x, y)f(y) = u(a;x) and thus
u(a; ·) = ũ(·) follows.

Step 2. Argument for (19) and (20): The stationarity property (20) directly follows
from uniqueness and the stationarity of the operator and the right-hand side −∇∗(aξ).
We turn to estimate (19). By the Green’s representation (18), which is valid by Step 1,
and an integration by parts (possible since GT (x, ·) ∈ `1(Zd)), we have

φT (a;x) =
∑
y∈Zd
∇yGT (a;x, y) · a(y)ξ.

We smuggle in the exponential weight from Lemma 1, use uniform ellipticity and the
Cauchy-Schwarz inequality to get

|φT (a;x)| ≤
∑
y∈Zd

(
|∇yGT (a;x, y)|e

δ
2
|y|
)(
|a(y)ξ|e−

δ
2
|y|
)

≤

∑
y∈Zd
|∇yGT (a;x, y)|2eδ|y|

 1
2
∑
y∈Zd

e−δ|y|

 1
2

|ξ|,

where δ > 0 is given in Lemma 1. By symmetry, cf. (16), and Lemma 1, the right-hand
side is bounded by C(d, λ, T )|ξ| and (19) follows.
Step 3. Argument for φT (·;x) ∈ Cb(Ω): Thanks to (19), we only need to show that
φT (a;x) is continuous in a. Furthermore, by stationarity, cf. (20), it suffices to consider
φT (a; 0). Now, consider a sequence an ∈ Ω that converges to some a ∈ Ω in the product
topology. We need to show that φT (an; 0)→ φT (a; 0). To that end, consider the function

ψn(x) := φT (an;x)− φT (a;x),

which can be characterized as the unique bounded solution to

1

T
ψn +∇∗(an∇ψn) = ∇∗((a− an)(∇φT (a, ·) + ξ)) in Zd.
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Hence, by Step 1 we have

ψn(0) =
∑
y∈Zd
∇yGT (an; 0, y) · (a(y)− an(y))(∇φT (a, y) + ξ),

and thus Lemma 1 and the result of Step 2 yield

|ψn(0)| ≤

(
sup
y∈Zd

sup
a∈Ω
|∇φT (a, y) + ξ|

)

×

∑
y∈Zd
|∇yGT (an; 0, y)|2eδ|y|

 1
2
∑
y∈Zd

e−δ|y||a(y)− an(y)|2
 1

2

≤ C(T, λ, d)

∑
y∈Zd

e−δ|y||a(y)− an(y)|2
 1

2

.

Since an → a in the product topology, i.e. an(y) → a(y) for all y ∈ Zd, the right-hand
side vanishes as n→∞ by dominated convergence.

3.2 Oscillations and Green’s function estimates

In this section, we estimate the oscillation of the corrector and its gradient, see Lemma 3
below, and establish estimates on the gradient of the elliptic Green’s functions, see
Lemma 4 below. These bounds are at the core of our analysis. Indeed, the proofs of
Theorem 1 and Theorem 2 start with an application of quantitative ergodicity: In Theo-
rem 1, the LSI (8) in form of Lemma 5 is applied to ζ = ∇jφT (0)+ξj, while in Theorem 2,
the SG (10) in form of Lemma 6 is applied to ζ = φT (0). Hence we require estimates for
osca(x)(∇jφT (a; 0) + ξj) and osca(x) φT (a; 0). Following [22], these expressions are related
to the elliptic Green’s function:

Lemma 3. For all T > 0, a ∈ Ω, x ∈ Zd and j = 1, . . . , d we have

osc
a(x)

φT (a; 0) ≤ C(d, λ)|∇xGT (a; 0, x)||∇φT (a;x) + ξ|, (21a)

osc
a(x)

(∇jφT (a; 0) + ξj) ≤ C(d, λ)|∇∇GT (a; 0, x)||∇φT (a;x) + ξ|. (21b)

Proof. Let a ∈ Ω and x ∈ Zd be fixed. As in the definition of the oscillation, let ã ∈ Ω
denote an arbitrary coefficient field that differs from a only at x, i.e. ã(y) = a(y) for all
y 6= x. We consider the difference φT (ã;x)− φT (a;x). Equation (1) yields

1

T
(φT (ã; ·)− φT (a; ·)) +∇∗

(
ã(·)(∇φT (ã; ·)−∇φT (a; ·)

)
= ∇∗

(
(a− ã)(·)(∇φT (a; ·) + ξ)

)
and consequently the Green’s function representation (14) yields

φT (ã; y)− φT (a; y) = ∇xGT (ã; y, x) · (a(x)− ã(x))(∇φT (a;x) + ξ) (22)
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for all y ∈ Zd. In particular, taking the gradient w. r. t. yj and then setting y = x yields

|∇jφT (ã;x)−∇jφT (a;x)| ≤ 2|∇j∇GT (ã;x, x)||∇φT (a;x) + ξ|

since a, ã ∈ Ω are uniformly bounded.
In view of (26), the mixed derivative of GT is bounded by λ−1 and we obtain

|∇jφT (ã;x)−∇jφT (a;x)| ≤ 2λ−1|∇φT (a;x) + ξ|. (23)

Exchanging a and ã in (22) yields

φT (a; y)− φT (ã; y) = ∇xGT (a; y, x) · (ã(x)− a(x))(∇φT (ã;x) + ξ). (24)

We take the absolute value to obtain

|φT (a; 0)− φT (ã; 0)| ≤ 2|∇xGT (a; 0, x)||∇φT (ã;x) + ξ|.

On the right hand side, we plug in (23) to obtain

|φT (a; 0)− φT (ã; 0)| ≤ C(d, λ)|∇xGT (a; 0, x)||∇φT (a;x) + ξ|.

Since ã(x) was arbitrary, it follows that

osc
a(x)

φT (a; 0) ≤ C(d, λ)|∇xGT (a; 0, x)||∇φT (a;x) + ξ|,

which is precisely the claimed identity (21a). Taking the gradient with respect to yj
in (24) yields

∇jφT (a; y)−∇jφT (ã; y) = ∇y,j∇xGT (a; y, x) · (ã(x)− a(x))(∇φT (ã;x) + ξ).

We take the absolute value and insert (23) to obtain

|∇jφT (a; y)−∇jφT (ã; y)| ≤ C(d, λ)|∇y,j∇xGT (a; y, x)||∇φT (a;x) + ξ|.

and (21b) follows.

In view of (21a) and (21b) it is natural that integrability properties of GT are required.
Next to quantitative ergodicity, these Green’s function estimates are the second key
ingredient in our approach. For Theorem 1, which invokes (21b), a standard `2-energy
estimate for ∇∇GT suffices, see (26). For Theorem 2, which invokes (21a), some more
regularity of the Green’s function is required. We need a spatially weighted estimate on
the gradient ∇GT that is uniform in a ∈ Ω. To this end, as announced in Section 2.4, we
define a weight

ωq(x) :=

{
(|x|+ 1)2(q−1) + T 1−q(|x|+ 1)4(q−1) for d = 2,

(|x|+ 1)2d(q−1) for d > 2,
(25)

for every q ≥ 1 and T ≥ 1.
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Lemma 4. There exists q0 > 1 only depending on λ and d such that∑
x∈Zd
|∇x∇y,jGT (x, y)|2 ≤ λ−2, j = 1, . . . , d, (26)

∑
x∈Zd
|∇xGT (a;x, 0)|2qωq(x) ≤ C(d, λ)

{
log T for d = 2,

1 for d > 2
(27)

for all 1 ≤ q ≤ q0.

Lemma 4 establishes a weighted `2q-estimate on the gradient∇GT of the Green’s function.
For the application, it is crucial that the integrability exponent 2q is larger than 2. The
weight is chosen in such a way that the estimate remains valid for the constant coefficient
Green’s function G0

T (x) := GT (1;x, 0) (where we use the symbol 1 to denote the identity
in Rd×d) whose gradient behaves as

|∇G0
T (x)| ≤ C(d)(|x|+ 1)1−d exp

(
− c0
|x|+ 1√

T

)
(28)

for some generic constant c0 > 0, which can easily be deduced from the well-known heat
kernel bounds on the gradient of the parabolic Green’s function (for lack of a better
reference, we refer to [14, Theorem 1.1] in the special case of a measure concentrating on
a(x) = 1) along the lines of [33, Proposition 3.6]. With this bound at hand, the definition
of the weight (25) yields

∑
x∈Zd
|∇G0

T (x)|2qωq(x) ≤ C(d, q)

{
log T for d = 2,

1 for d > 2
(29)

for all q > 1. Hence, Lemma 4 says that the variable-coefficient Green’s function ex-
hibits (on a spatially averaged level) the same decay properties as the constant-coefficient
Green’s function. In the diagonal, scalar case, Lemma 4 is a consequence of [22, Lemma 2.9]
and can also be derived from the weighted estimates on the parabolic Green’s function in
[19, Theorem 3]. Although the arguments in [22, 19] rely on scalar techniques, Lemma 4
also holds in the case of systems. Indeed, our proof relies only on techniques which are
also available for systems. The proof will be split into three parts: First we will provide
a simple argument for (26) valid in all dimensions. Then we will prove (27) in d > 2
dimensions. The hardest part is the proof of (27) if d = 2 since this is the critical
dimension.

Proof of (26). An application of ∇y,j to (14) yields the following characterization for
∇y,jGT (a; ·, y)

1

T

∑
x∈Zd
∇y,jGT (a;x, y)w(x) +

∑
x∈Zd
∇w(x) · a(x)∇x∇y,jGT (a;x, y) = ∇jw(y)

for all w ∈ `2(Zd). Taking w(·) := ∇y,jGT (·, y) ∈ `2(Zd) yields

1

T

∑
x∈Zd
|∇y,jGT (x, y)|2 +

∑
x∈Zd
∇x∇y,jGT (x, y) · a(x)∇x∇y,jGT (x, y) = ∇j∇jGT (y, y),
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where ∇j∇jGT (y, y) = ∇x,j∇y,jGT (x, y)
∣∣
x=y

. The first term on the l. h. s. is positive and

ellipticity yields

λ
∑
x∈Zd
|∇x∇y,jGT (x, y)|2 ≤ |∇j∇jGT (y, y)| ≤

(∑
x∈Zd
|∇x∇y,jGT (x, y)|2

) 1
2

.

Thus (26) follows.

Proof of (27) in d > 2 dimensions. Step 1. A priori estimate: We prove

|GT (0, 0)|+
∑
x

|∇GT (x, 0)|2 ≤ C(d, λ). (30)

The weak form of (14) with ζ = GT (·, 0) and ellipticity immediately yield

0 ≤ λ
∑
x

|∇GT (x, 0)|2 ≤ GT (0, 0),

in particular GT (0, 0) ≥ 0. Now a Sobolev embedding in d > 2 with constant C(d) yields

|GT (0, 0)| ≤
(∑

x

|GT (x, 0)|
2d
d−2

) d−2
2d

≤ C(d)

(∑
x

|∇GT (x, 0)|2
) 1

2

≤ C(d, λ)|GT (0, 0)|
1
2 .

The Sobolev embedding is readily obtained from its continuum version on Rd via a linear
interpolation function on a triangulation subordinate to the lattice Zd. Hence |GT (0, 0)| ≤
C(d, λ) and (30) follows.

Step 2. A bound involving weights: In this step we show that there exists α0(d) > 0
such that ∑

x

(|x|+ 1)2α−2|GT (x, 0)|2 ≤ C(d)
∑
x

(|x|+ 1)2α|∇GT (x, 0)|2 (31)

for all 0 < α ≤ α0. (Note that both sides are well-defined for GT .) We start by recalling
Hardy’s inequality in Rd if d > 2:

ˆ
Rd

|f |2

|x|2
dx ≤

( 2

d− 2

)2
ˆ
Rd
|∇f |2 dx

for all f ∈ H1(Rd). A discrete counterpart can be derived by interpolation w. r. t. a
triangulation subordinate to the lattice and yields∑

x

(|x|+ 1)2α−2|GT (x, 0)|2 ≤ C(d)
∑
x

∣∣∇((|x|+ 1)αGT (x, 0))
∣∣2. (32)

The discrete Leibniz rule ∇i(fg)(x) = f(x+ ei)∇ig(x) + g(x)∇if(x) yields

∇i((|x|+ 1)αGT (x, 0)) = (|x+ ei|+ 1)α∇iGT (x, 0) +GT (x, 0)∇i(|x|+ 1)α.
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By the mean value theorem we obtain the simple inequality |aα−bα| ≤ α(aα−1+bα−1)|a−b|
for all a, b ≥ 0 and we trivially have that

1

2
(|x|+ 1) ≤ |x+ e|+ 1 ≤ 2(|x|+ 1).

The choice a = |x+ e|+ 1 and b = |x|+ 1 thus yields

∇i(|x|+ 1)α ≤ 3α(|x|+ 1)α−1

for all 0 ≤ α ≤ 1. Summation over i = 1, . . . , d and the discrete Leibniz rule above
consequently yield∣∣∇((|x|+ 1)αGT (x, 0)

)∣∣2 ≤ C(d)
(

(|x|+ 1)2α|∇GT (x, 0)|2 + α(|x|+ 1)2α−2|GT (x, 0)|2
)

for any 0 ≤ α ≤ 1. We substitute this estimate in Hardy’s inequality (32) and take
α = α0(d) small enough to absorb the last term into the l. h. s. to obtain (31), i.e.∑

x

(|x|+ 1)2α0−2|GT (x, 0)|2 ≤ C(d)
∑
x

(|x|+ 1)2α0|∇GT (x, 0)|2.

Step 3. Improvement of Step 1 to include weights: Now we deduce the existence of
α0 = α0(d, λ) > 0 (smaller than d and possibly smaller than α0(d) from Step 2) such that∑

x

(
|x|+ 1

)2α0|∇GT (x, 0)|2 ≤ C(d, λ). (33)

To this end, we set w(x) = (|x|+ 1)2αGT (x, 0) and note that

∇iw(x) = (|x|+ 1)2α∇iGT (x, 0) +∇i

(
(|x+ ei|+ 1)2α

)
GT (x+ ei, 0).

Hence, (14) yields (for y = 0):

1

T

∑
x

(|x|+1)2α|GT (x, 0)|2 +
∑
x

d∑
i,j=1

GT (x+ei, 0)∇i

(
(|x+ei|+1)2α

)
·aij(x)∇jGT (x, 0)

+
∑
x

(|x|+ 1)2α∇GT (x, 0) · a(x)∇GT (x, 0) = GT (0, 0). (34)

As in Step 2, we have that∣∣∇i

(
(|x|+ 1)2α

)∣∣ ≤ 4α(|x|+ 1)α−1(|x+ ei|+ 1)α.

for all 0 ≤ α ≤ 1 and i = 1, . . . , d. Thus (34), ellipticity, and Hölder’s inequality yield

λ
∑
x

(
|x|+ 1

)2α|∇GT (x, 0)|2 ≤ |GT (0, 0)|+

C(d)α

(∑
x

|GT (x, 0)|2(|x|+ 1)2α−2

) 1
2
(∑

x

|∇GT (x, 0)|2(|x|+ 1)2α

) 1
2

.
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We apply the result of Step 2 with α ≤ α0(d) and then possibly decrease α further to
absorb the second term on the r. h. s. This is possible for α ≤ α0(d, λ) for some α0(d, λ) >
0. By Step 1, we conclude (33). By the discrete `2q − `2-inequality ‖f‖`2q(Zd) ≤ ‖f‖`2(Zd),
it follows that ∑

x

(
|x|+ 1

)2qα0|∇GT (x, 0)|2q ≤ C(d, λ)

for all q > 1. Hence Lemma 4 holds for d > 2 with ωq defined in (25) as long as
2d(q − 1) ≤ 2qα0, i.e. we may take q0 = d

d−α0
.

Proof of (27) in d = 2 dimensions. Let us remark that the following proof is valid in all
dimensions d ≥ 2. However, if d > 2, we have the simpler proof above.
Fix T > 0 and a ∈ Ω. For convenience, we set

G(x) := GT (a;x, 0) and G0(x) := GT
λ

(1;x, 0), (35)

where 1 denotes the identity in Rd×d and λ denotes the constant of ellipticity from
Assumption 2. We first introduce some notation. For 1 ≤ q < ∞ and γ > 0, we denote
by `qγ the space of vector fields g : Zd → Rd with

‖g‖`qγ :=

(∑
x∈Zd
|g(x)|q(|x|+ 1)γ

) 1
q

<∞.

Likewise we denote by `2q
ωq the space of vector fields with

‖g‖`2qωq :=

(∑
x∈Zd
|g(x)|2qωq(x)

) 1
2q

<∞,

with ωq defined by (25). We write ‖H‖B(X) for the operator norm of a linear operator
H : X → X defined on a normed space X.

Step 1. Helmholtz decomposition: We claim that the gradients of the variable coefficient
Green’s function G and of the constant coefficient Green’s function G0 from (35) are
related by

(Id +Ha)∇G = λ∇G0 (36)

where a = λa − 1, H := ∇L−1∇∗ denotes the modified Helmholtz projection, L :=
λ
T

+ ∇∗∇, and Id denotes the identity operator. Here and in the following, we tacitly
identify a with the multiplication operator that maps the vector field g : Zd → Rd to
the vector field (ag)(x) := a(x)g(x). Moreover, since G is integrable in the sense of
Lemma 1, the operators L−1, and thus H and (Id +Ha) are bounded linear operators on
`2(Zd) (resp. `2(Zd,Rd)) and the weighted spaces discussed in Step 2 below.
Identity (36) may be seen by appealing to (13) satisfied by G and the equation LG0 = δ
satisfied by G0:

(Id +Ha)∇G = ∇G+ λ∇L−1∇∗a∇G−∇L−1∇∗∇G

= ∇G+ λ∇L−1

(
δ − 1

T
G

)
−∇L−1

(
L − λ

T

)
G

= λ∇L−1δ = λ∇G0.
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Step 2. Invertibility of (Id +Ha) in a weighted space: In this step, we prove that there
exists q0 = q0(d, λ) > 1 such that the operator (Id +Ha) : `2q

ωq → `2q
ωq is invertible and

‖(Id +Ha)‖B(`2qωq ) ≤ C(d, λ) (37)

for all 1 ≤ q ≤ q0 We split the proof into several sub-steps.

Step 2a. Reduction to an estimate for H: We claim that it suffices to prove the following
statement. There exists q0 = q0(λ) > 1 such that

max
{
‖H‖B(`2q2q−2), ‖H‖B(`2q4q−4)

}
≤ 2− λ

2(1− λ)
(38)

for all 1 ≤ q ≤ q0.
Our argument is as follows: We only need to show that (38) implies that

‖Ha‖B(`2qωq ) ≤
2− λ

2
, (39)

since then (Id +Ha) can be inverted by a Neumann-series. Since the ‖ · ‖B(`2qωq )-norm is

submultiplicative, inequality (39) follows from

‖H‖B(`2qωq ) ≤
2− λ

2(1− λ)
and ‖a‖B(`2qωq ) ≤ 1− λ. (40)

We start with the argument for the second inequality in (40). Thanks to (2), we have for
all a0 ∈ Ω0 and v ∈ Rd:

|(λa0 − 1)v|2 = v · ((λa0 − 1)t(λa0 − 1))v

= λ2|a0v|2 − 2v · a0 + at0
2

v + |v|2 = λ2|a0v|2 − 2v · a0v + |v|2

(2)

≤ λ2|v|2 − 2λ|v|2 + |v|2 = (1− λ)2|v|2,

which shows (40) by definition of the (spectral) operator norm.
Regarding the first inequality in (40), we note that ‖ · ‖2q

`2qωq
= ‖ · ‖2q

`2q2q−2

+ T 1−q‖ · ‖2q

`2q4q−4

, as

can been seen by recalling definition (25). Hence,

‖H‖2q

B(`2qωq )
= sup
‖g‖

`
2q
ωq
≤1

(
‖Hg‖2q

`2q2q−2

+ T 1−q‖Hg‖2q

`2q4q−4

)

≤ max

{
‖H‖2q

B(`2q2q−2)
, ‖H‖2q

B(`2q4q−4)

}
sup

‖g‖
`
2q
ωq
≤1

(
‖g‖2q

`2q2q−2

+ T 1−q‖g‖2q

`2q4q−4

)

= max

{
‖H‖2q

B(`2q2q−2)
, ‖H‖2q

B(`2q4q−4)

}
(38)
<
( 2− λ

2(1− λ)

)2q

,

and (40) follows.
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Step 2b. Proof of (38): A standard energy estimate yields

‖H‖B(`2(Rd,Zd)) ≤ 1. (41)

Indeed, given g ∈ [`2(Zd)]d, we have that Hg = ∇u where u solves λ
T
u + ∇∗∇u =

∇∗g. Testing with u yields ‖∇u‖`2(Zd) ≤ ‖g‖`2(Zd) which is just another way of writ-
ing (41). In the following we prove the desired inequality (38) by complex interpolation
of B(`2(Rd,Zd)) = B(`2

0) with B(`pγ) for suitable p and γ. In Proposition 1 below (in
Section 4) we prove a Calderón-Zygmund-type estimate for H in weighted spaces and
obtain

‖H‖B(`pγ) <∞ for all 2 ≤ p ≤ ∞ and 0 ≤ γ < min{2(p− 1), 1
2
}. (42)

Fix such p and γ and 0 < θ < 1. A theorem due to Stein and Weiss [7, Theorem 5.5.1]
that also holds in the discrete setting yields

‖H‖B(`p
γ′ )
≤ ‖H‖1−θ

B(`pγ)
‖H‖θB(`p), if γ′ = (1− θ)γ. (43)

Likewise the classical Riesz-Thorin theorem [7, Theorem 1.1.1] yields

‖H‖
B(`p

′
γ )
≤ ‖H‖1−θ

B(`pγ)
‖H‖θB(`2γ), if

1

p′
=

1− θ
p

+
θ

2
. (44)

In particular, the map (p, γ) 7→ ‖H‖B(`pγ) is continuous at (2, 0): Given ε > 0, we use
(44) with γ = 0 to find p′ > 2 such that ‖H‖B(`p′ ) ≤ 1 + ε

2
. Then we apply (43) to find

γ′ > 0 such that max{‖H‖B(`2
γ′ )
, ‖H‖B(`p

′
γ′ )
} ≤ 1 + ε. Hence, we have ‖H‖B(`pγ) ≤ 1 + ε for

the corner points (p, γ) of the square [2, p′] × [0, γ′]. By (44) resp. (43), we may always
decrease either p′ resp. γ′ while achieving the same bound. Consequently we have that
‖H‖B(`pγ) ≤ 1 + ε for all (p, γ) ∈ [2, p′] × [0, γ′]. In particular, letting ε = 2−λ

2(1−λ)
− 1 > 0,

there exists q0 > 1 such that ‖H‖B(`
2q0
2q0−2)

≤ 2−λ
2(1−λ)

and the same bound for ‖H‖B(`
2q0
4q0−4)

.

By monotonicity in the exponent, estimate (38) follows for all 1 ≤ q ≤ q0. This completes
the argument of Step 2.

Step 3. In this last step, we fix d = 2 and derive the bound∑
x

|∇G(x)|2qωq(x) = ‖∇G‖2q

`2qωq
≤ C(λ, q) log T (45)

for q and ωq as in Step 2. The relation (36) and the estimate (37) yield

‖∇G‖`2qωq ≤ C(λ)‖∇G0‖`2qωq

so that it is enough to consider the constant coefficient Green’s function whose behaviour
is well-known and is given by (cf. (28))

|∇G0(x)| ≤ C(|x|+ 1)−1 exp

(
−
√
λ|x|

C
√
T

)
,
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where C is a universal constant. Hence by splitting ‖∇G0‖2q

`2qωq
into its contributions

coming from |x| ≤
√
T and |x| >

√
T and using the definition of the weight ωq, we have

‖∇G0‖2q

`2qωq
=
∑
x

|∇G0(x)|2q
(
(|x|+ 1)2q−2 + T 1−q(|x|+ 1)4q−4

)
≤ C

∑
x

(|x|+ 1)−2qe
− 2q

√
λ|x|

C
√
T

(
(|x|+ 1)2q−2 + T 1−q(|x|+ 1)4q−4

)
≤ C(λ, q)

∑
|x|≤
√
T

(|x|+ 1)−2 + C(λ, q)
∑
|x|>
√
T

T 1−q(|x|+ 1)2q−4e
− 2q

√
λ|x|

C
√
T

≤ C(λ, q) log T + C(λ, q)
∑
|x|>
√
T

T−1
( |x|√

T

)2q−4
e
− 2
√
λ|x|

C
√
T

≤ C(λ, q) log T + C(λ, q),

where we have used that q > 1.

3.3 Logarithmic Sobolev inequality and spectral gap revisited

The LSI only enters the proof of Theorem 1 in form of the following lemma borrowed
from [32].

Lemma 5 (Lemma 4 in [32]). Let 〈·〉 statisfy LSI (8) with constant ρ > 0. Then we have
that

〈|ζ|2p〉
1
2p ≤ C(δ, p, ρ)〈|ζ|2〉

1
2 + δ

〈(∑
x∈Zd

(
osc
a(x)

ζ
)2
)p〉 1

2p
(46)

for any δ > 0, 1 ≤ p <∞ and ζ ∈ Cb(Ω).

This inequality expresses a reverse Jensen inequality and allows to bound high moments
of ζ to the expense of some control on the oscillations of ζ. The difference to SG lies
in the fact that the improved integrability properties of LSI allow us to choose δ > 0
arbitrarily small. In the proof of Theorem 1, we will apply (46) to the random variables
ζ = ∇iφT (0) + ξi for i = 1, . . . , d. The second moment of ∇iφT (0) + ξi will be controlled
below, whereas the oscillation was already estimated Lemma 3 and involves the second
mixed derivatives of GT .

In the proof of Theorem 2, we just require the weaker statement of SG. To be precise,
we will use an L2p

〈·〉-version of SG which is the content of the following lemma.

Lemma 6 (cf. Lemma 2 in [19]). Let 〈·〉 statisfy SG (10) with constant ρ > 0. Then for
arbitrary 1 ≤ p <∞ and ζ ∈ Cb(Ω) it holds that

〈
|ζ − 〈ζ〉|2p

〉
≤ C(p, ρ)

〈(∑
x∈Zd

(
osc
a(x)

ζ
)2
)p〉

. (47)

The proof is a combination of the proofs of [19, Lemma 2] and [32, Lemma 4]. We present
it here for the convenience of the reader.
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Proof. Without loss of generality assume that ζ ∈ Cb(Ω) satisfies 〈ζ〉 = 0. The triangle
inequality and SG (10) yield〈

|ζ|2p
〉
≤ 2

〈(
|ζ|p − 〈|ζ|p〉

)2
〉

+ 2 〈|ζ|p〉2

≤ 2

ρ

〈∑
x

(
osc
a(x)
|ζ|p
)2
〉

+ 2
〈
|ζ|2p

〉 p−2
p−1
〈
|ζ|2
〉 p
p−1 .

By Young’s inequality, we may absorb 〈|ζ|2p〉 on the l. h. s. and we obtain that

〈
|ζ|2p

〉
≤ 4

ρ

〈∑
x

(
osc
a(x)
|ζ|p
)2
〉

+ C(p)
〈
|ζ|2
〉p
. (48)

We insert SG (10), note 〈ζ〉 = 0 and apply Jensen’s inequality to obtain that

〈
|ζ|2
〉p ≤ ρ−p

〈∑
x

(
osc
a(x)

ζ
)2
〉p

≤ ρ−p

〈(∑
x

(
osc
a(x)

ζ
)2
)p〉

. (49)

In order to deal with the first term in (48), we note that the elementary inequality
|tp − sp| ≤ C(p)(tp−1|t− s|+ |t− s|p) for all t, s ≥ 0 yields for every two coefficient fields
a, ã ∈ Ω: ∣∣∣|ζ(a)|p − |ζ(ã)|p

∣∣∣ ≤ C(p)
(
|ζ(a)|p−1|ζ(a)− ζ(ã)|+ |ζ(a)− ζ(ã)|p

)
,

where we have in addition used the triangle inequality in form of
∣∣∣|ζ(a)| − |ζ(ã)|

∣∣∣ ≤
|ζ(a)− ζ(ã)|. Letting ã ∈ Ω run over the coefficient fields that coincide with a outside of
x ∈ Zd yields

osc
a(x)
|ζ|p ≤ C(p)

(
|ζ|p−1 osc

a(x)
ζ +

(
osc
a(x)

ζ
)p)

Consequently we obtain〈∑
x

(
osc
a(x)
|ζ|p
)2
〉
≤ C(p)

(〈
|ζ|2(p−1)

∑
x

(
osc
a(x)

ζ
)2
〉

+ C(p)

〈∑
x

(
osc
a(x)

ζ
)2p
〉)

≤ C(p)

(〈
|ζ|2p

〉 p−1
p

〈(∑
x

(
osc
a(x)

ζ
)2
)p〉 1

p

+

〈(∑
x

(
osc
a(x)

ζ
)2
)p〉)

by Hölder’s inequality and the discrete `2 ⊂ `2p-inequality. Inserting this estimate as well
as (49) into (48) yields

〈
|ζ|2p

〉
≤ C(p, ρ)

(〈
|ζ|2p

〉 p−1
p

〈(∑
x

(
osc
a(x)

ζ
)2
)p〉 1

p

+

〈(∑
x

(
osc
a(x)

ζ
)2
)p〉)

.

Again, we may absorb the factor 〈|ζ|2p〉 on the l. h. s. using Young’s inequality and thus
conclude the proof of Lemma 6.
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3.4 Proof of Theorem 1

Step 1. We claim the following energy estimate:〈
|∇φT (0) + ξ|2

〉
≤ C(λ)|ξ|2. (50)

To see this, we multiply (1) with φT (0) and take the expectation:

1

T

〈
|φT (0)|2

〉
+ 〈φT (0)∇∗(a∇φT )(0)〉 = −〈φT (0)∇∗(aξ)(0)〉 .

Thanks to the stationarity of 〈·〉 and the stationarity of φT , cf. (20), we have that

〈φT (0)∇∗w(x)〉 =
d∑
i=1

〈φT (0)
(
wi(x− ei)− wi(x)

)
〉

=
d∑
i=1

〈
(
φT (ei)− φT (0)

)
wi(x)〉 = 〈∇φT (0) · w(x)〉

for all stationary vector fields w : Zd → Rd. This integration by parts property then
yields

1

T

〈
|φT (0)|2

〉
+ 〈∇φT (0) · a(0)∇φT (0)〉 = −〈∇φT (0) · a(0)ξ〉.

Since the first term on the left-hand side is non-negative, uniform ellipticity, cf. (2), yields〈
|∇φT (0)|2

〉
≤ λ−2|ξ|2,

and (50) follows from the triangle inequality.

Step 2. We claim that〈(∑
x

|∇∇GT (0, x)|2|∇φT (x) + ξ|2
)p〉

≤ λ−2p〈|∇φT (0) + ξ|2p〉. (51)

We start by applying Hölder’s inequality with exponent p in space:(∑
x

|∇∇GT (0, x)|2|∇φT (x) + ξ|2
)p

≤
(∑

x

|∇∇GT (0, x)|2
)p−1∑

x

|∇∇GT (0, x)|2|∇φT (x) + ξ|2p.

We now apply 〈·〉 to obtain〈(∑
x

|∇∇GT (0, x)|2|∇φT (x) + ξ|2
)p〉

≤
(

sup
a∈Ω

∑
x

|∇∇GT (0, x)|2
)p−1∑

x

〈|∇∇GT (0, x)|2|∇φT (x) + ξ|2p〉.
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At this stage, we appeal to the stationarity of GT , cf. (15), the stationarity of ∇φT ,
cf. (20), and the stationarity of 〈·〉 in form of

〈|∇∇GT (0, x)|2|∇φT (x) + ξ|2p〉 = 〈|∇∇GT (−x, 0)|2|∇φT (0) + ξ|2p〉,

which yields〈(∑
x

|∇∇GT (0, x)|2|∇φT (x) + ξ|2
)p〉

≤
(

sup
a∈Ω

∑
x

|∇∇GT (0, x)|2
)p−1〈∑

x

|∇∇GT (−x, 0)|2|∇φT (0) + ξ|2p
〉

≤
(

sup
a∈Ω

∑
x

|∇∇GT (0, x)|2
)p−1(

sup
a∈Ω

∑
x

|∇∇GT (x, 0)|2
)
〈|∇φT (0) + ξ|2p〉.

We conclude by appealing to symmetry, cf. (16), and (26). Note that the transposed
coefficient field at satisfies at ∈ Ω.

Step 3. Conclusion: The combination of (51) and (21b) yields〈(∑
x

(
osc
a(x)

(∇iφT (0) + ξi)
)2
)p〉 1

p

≤ C(d, λ)〈|∇φT (0) + ξ|2p〉
1
p (52)

for i = 1, . . . , d. We now appeal to Lemma 5 with ζ = ∇iφT (0) + ξi, i.e.

〈|∇iφT (0) + ξi|2p〉
1
2p ≤ C(δ, p, ρ)〈|∇iφT (0) + ξi|2〉

1
2 + δ

〈(∑
x∈Zd

(
osc
a(x)

(∇iφT (0) + ξi)
)2
)p〉 1

2p
.

On the r. h. s. we insert the estimates (50) and (52) and sum in i = 1, . . . , d to obtain
(after redefining δ)

d∑
i=1

〈|∇iφT (0) + ξi|2p〉
1
2p ≤ C(d, λ, δ, p, ρ)|ξ|+ δ〈|∇φT (0) + ξ|2p〉

1
2p .

By the equivalence of finite-dimensional norms, it follows (again, after redefining δ)

〈|∇φT (0) + ξ|2p〉
1
2p ≤ C(d, λ, δ, p, ρ)|ξ|+ δ〈|∇φT (0) + ξ|2p〉

1
2p .

By choosing δ = 1
2
, we may absorb the second term on the r. h. s. into the l. h. s. which

completes the proof.

3.5 Proof of Theorem 2

As a starting point, we apply SG in its p-version Lemma 6: We apply this inequality with
ζ = φT (0). Since 〈φT (0)〉 = 0 (as can be seen by taking the expectation of (1) and using
the stationarity of 〈·〉 and φT ), estimate (47) yields

〈|φT (0)|2p〉 ≤ 1

ρ

〈(∑
x

(
osc
a(x)

φT (0)
)2
)p〉

.
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The oscillation estimate (21a) yields

〈|φT (0)|2p〉 ≤ C(d, λ, ρ)
〈(∑

x

|∇GT (0, x)|2|∇φT (x) + ξ|2
)p〉

.

With the help of Hölder’s inequality we can introduce the weight ωq from Lemma 4 and
get for the r. h. s.〈(∑

x

|∇GT (0, x)|2|∇φT (x) + ξ|2
)p〉

≤
〈(∑

x

|∇GT (0, x)|2qωq(x)

)p−1∑
x

|∇φT (x) + ξ|2pωq(x)−
1
q−1

〉
≤
(

sup
a∈Ω

∑
x

|∇GT (0, x)|2qωq(x)

)p−1∑
x

〈|∇φT (x) + ξ|2p〉ω
− 1
q−1

q (x).

Due to the stationarity of ∇φT + ξ and Lemma 4 we obtain

〈|φT (0)|2p〉 ≤ C(d, λ, p)

{
(log T )p−1

〈
|∇φT + ξ)(0)|2p

〉∑
x ωq(x)−

1
q−1 for d = 2,〈

|∇φT + ξ)(0)|2p
〉∑

x ωq(x)−
1
q−1 for d > 2.

To conclude in the case of d = 2, we simply insert (25) to bound (for T ≥ 2)

∑
x

ωq(x)−
1
q−1 ≤ C(p)

( ∑
|x|≤
√
T

(|x|+ 1)2 +
∑
|x|>
√
T

T (|x|+ 1)−4

)

≤ C(p)
(

log T +
1√
T

)
≤ C(p) log T.

If d > 2, we find that ∑
x

ωq(x)−
1
q−1 =

∑
x

(|x|+ 1)−2d ≤ C(d),

which finishes the proof.

4 A weighted Calderón-Zygmund estimate

In this section we present a discrete Calderón-Zygmund estimate on `p-spaces with Muck-
enhoupt weights, which we used in Step 2b of the proof of estimate (27) in Lemma 4 in
the case d = 2, see (42). Although we require the estimate in this paper only in dimension
d = 2, we present it here for any dimension d ≥ 2 since it may be of independent interest.
The proof closely follows [20, Lemma 28]; the difference lies in the inclusion of weighted
spaces which requires a bit more effort.

Proposition 1. Let T > 0, let g : Zd → Rd be a compactly supported function and let
u ∈ `2(Zd) be the unique solution to

1

T
u+∇∗∇u = ∇∗g on Zd. (53)
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Then for all 1 < p <∞ and all 0 ≤ γ < min{d(p− 1), 1/2} we have∑
x∈Zd
|∇u(x)|p(|x|+ 1)γ ≤ C(d, p, γ)

∑
x∈Zd
|g(x)|p(|x|+ 1)γ.

This proposition is a discrete version of the well-known continuum Calderón-Zygmund
estimate with Muckenhoupt weight:

Proposition 2 (see [38]). Let T > 0, let g : Rd → Rd be smooth and compactly supported,
and let u : Rd → R be the unique smooth and decaying solution to

1

T
u−∆u = −∇ · g on Rd.

Then for all 1 < p <∞ and all −d < γ < d(p− 1) we have that
ˆ
Rd
|∇u(x)|p|x|γ dx ≤ C(d, p, γ)

ˆ
Rd
|g(x)|p|x|γ dx.

The rest of this section is devoted to the proof of Proposition 1. To simplify the upcoming
argument, fix for the remainder of this section two indices j, ` ∈ {1, . . . , d}. By linearity
it suffices to consider instead of (53) the equation

1

T
u+∇∗∇u = ∇∗`g on Zd (54)

for scalar g, and then to prove∑
x∈∩Zd

|∇ju(x)|p(1 + |x|)γ ≤ C(d, p, γ)
∑
x∈∩Zd

|g(x)|p(1 + |x|)γ. (55)

The discrete estimate (55) will be obtained from Proposition 2 by a perturbation argu-
ment. More precisely, we compare the discrete equation (54) and its continuum version
in Fourier space. We denote the Fourier transform on Rd by

(Fg)(ξ) = (2π)−d/2
ˆ
Rd
g(x)e−iξ·x dx, ξ ∈ Rd,

and for functions defined on the discrete lattice Zd we define the discrete Fourier transform
as

(Fdisg)(ξ) = (2π)−d/2
∑
x∈Zd

g(x)e−iξ·x, ξ ∈ Rd.

Note that FdisF is (−π, π)d-periodic and that we have the inversion formula

(F−1(χFdisg))(x) = g(x) for all x ∈ Zd, (56)

where χ denotes the indicator function of the Brillouin zone (−π, π)d which is the unit
cell of the Fourier transform on a lattice.
The Fourier multipliers corresponding to (54) and its continuum version are given by

Mcont
T (ξ) =

ξjξ`
1
T

+ |ξ|2
, MT (ξ) =

(e−iξj − 1)(eiξ` − 1)
1
T

+
∑d

n=1 |eiξn − 1|2
.
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In particular, (54) reads in Fourier space as

∇ju = F−1(χMTFdisg)

and (55) is equivalent to∑
x∈Zd
|(F−1(χ MTFdisg))(x)|p (|x|+ 1)γ ≤ C(d, p, γ)

∑
x∈Zd
|g(x)|p (|x|+ 1)γ. (57)

Finally, we state two auxiliary results that will be used in the subsequent argument and
which we prove at the end of this section. The first result shows that the discrete and
continuum norms for band-restricted functions are equivalent. For brevity, we set

‖g‖`pγ =

(∑
x∈Zd
|g(x)|p(|x|+ 1)γ

) 1
p

and ‖g‖Lpγ =

( ˆ
Rd
|g(x)|p|x|γ dx

) 1
p

. (58)

Furthermore, we use the notation ‖ ·‖`pω (resp. ‖ ·‖Lpω), if (|x|+1)γ (resp. |x|γ) is replaced
by a general weight function ω.

Lemma 7 (Equivalence of discrete and continuous norms). For all L large enough, the
`pγ-norm and the Lpγ-norm are equivalent for functions supported on [− 1

L
, 1
L

]d in Fourier
space, i.e.

1

C(d, p, γ)
‖g‖Lpγ ≤ ‖g‖`pγ ≤ C(d, p, γ)‖g‖Lpγ

for all functions g := F−1(F ) : Rd → C with F supported on [− 1
L
, 1
L

]d where we let
without loss generality 1

L
< π.

The second result is a generalization of Young’s convolution estimate to weighted spaces.

Lemma 8 (Young’s convolution estimate on weighted spaces). Let ω : Zd → R satisfy

ω(x) ≥ 1 and ω(x) ≤ ω(y)ω(x− y) for all x, y ∈ Zd. (59)

Then the estimate

‖f ∗dis g‖`pω ≤ ‖f‖`qω‖g‖`rω , 1 +
1

p
=

1

q
+

1

r
(60)

holds, where ∗dis denotes the discrete convolution on Zd:

(f ∗dis g)(x) :=
∑
y∈Zd

f(x− y)g(y).

The same estimate holds in the continuum case (with ∗dis and ‖ ·‖`pω replaced by the usual
convolution ∗ and ‖ · ‖p

Lpω
, respectively) as long as ω satisfies (59) for all x, y ∈ Rd.

Now, we are ready to start the proof of Proposition 1 in earnest.
Step 1. Fourier multipliers: We claim that the invoked Fourier multipliers satisfy

MT −Mcont
T = MTM

∗
T , (61)
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where we define

M∗
T := 1− 1

h(ξj)h(−ξ`)
+

|ξ|2
1
T

+ |ξ|2
d∑

k=1

|ξk|2(1− |h(ξk)|2)

|ξ|2h(ξj)h(−ξ`)
(62)

and

h(z) :=

{
eiz−1
iz

0 6= z ∈ C,
1 z = 0.

(63)

Indeed, (61) is true for ξ = 0. For ξ 6= 0 the definition of h(z) yields that

M∗
T = 1− Mcont

T

MT

= 1− ξjξ`
(eiξj − 1)(e−iξ` − 1)

− 1
1
T

+ |ξ|2
d∑

k=1

ξjξ`(
1
T

+ |ξk|2 − ( 1
T

+ |eiξk − 1|2))

(eiξj − 1)(e−iξ` − 1)

= 1− 1

h(ξj)h(−ξ`)
− |ξ|2

1
T

+ |ξ|2
d∑

k=1

1
T

+ |ξk|2 − ( 1
T

+ |ξk|2|h(ξk)|2)

|ξ|2h(ξj)h(−ξ`)

= 1− 1

h(ξj)h(−ξ`)
+

|ξ|2
1
T

+ |ξ|2
d∑

k=1

|ξk|2(1− |h(ξk)|2)

|ξ|2h(ξj)h(−ξ`)
.

In order to prove uniformity in T (recall that the assertion of Proposition 1 does not
involve T ), we may split M∗

T into two terms independent of T and a simple prefactor
involving 1

T
:

M∗
T = M∗

1 +
|ξ|2

1
T

+ |ξ|2
M∗

2, (64)

where we have set

M∗
1 = 1− 1

h(ξj)h(−ξ`)
, (65)

M∗
2 =

d∑
k=1

|ξk|2(1− |h(ξk)|2)

|ξ|2h(ξj)h(−ξ`)
. (66)

Step 2. Reduction by separating low and high frequencies: We take a smooth cutoff
function η1 that equals one in [−1, 1]d with compact support in (−π, π)d. We then rescale
it to

ηL(ξ) = η1(Lξ).

Using the triangle inequality and χηL = ηL, we separate the expression on the left hand
side of (57) into low and high frequencies:

‖F−1(χ MTFdisg)‖`pγ ≤ ‖F
−1(ηLMTFdisg)‖`pγ︸ ︷︷ ︸

I

+ ‖F−1(χ(1− ηL)MTFdisg)‖`pγ︸ ︷︷ ︸
II

.

Term I represents low frequencies (treated in Step 4) and term II represents high fre-
quencies (treated in Step 5). Hence, in order to conclude, we only need to prove the
following two statements:
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(I) For all L ≥ L0 (where L0 ≥ 1 only depends on γ, p and d) we have

‖F−1(MTηLFdisg)‖`pγ ≤ C(d, γ, p) ‖g‖`pγ . (67)

(II) For all L ≥ 1 we have

‖F−1(χ(1− ηL)MTFdisg)‖`pγ ≤ C(d, γ, p, L)‖g‖`pγ . (68)

We note that while the constants a-priori depend on the cutoff functions η1 and ζ1 (the
latter will be introduced in Step 3), both may be constructed in a canonical way only
depending on d.

Step 3. A bound on the correction M∗
T for low frequencies: This is perhaps the most

important ingredient in the proof, as it is here that we truly capture the difference between
the discrete and continuous settings. Recall that M∗

1 and M∗
2 are defined in (65) and (66).

In this step we prove that

‖F−1(M∗
jηL)‖`1γ ≤ C(d, γ)L2γ−1, j = 1, 2, (69)

for L large enough.
We start the argument with the observation that h(z), defined in (63), and h−1(z) are
both analytic in the disk {z ∈ C : |z| < 2π} and we may write

1

h(z)
= 1 + zr1(z) and h(z) = 1 + zr2(z)

with two functions r1, r2 which are analytic on the disk {z ∈ C : |z| < 2π}.
The term M∗

1. This term becomes

M∗
1 = 1− 1

h(ξj)h(−ξ`)
= ξ`r1(−ξ`)− ξjr1(ξj) + ξjξ`r1(ξj)r1(−ξ`),

which is a linear combination of terms of the form iξmφ(ξ), m = 1, . . . , d, with a (generic)
analytic function φ on the disk {z ∈ C : |z| < 2π}.
The term M∗

2. Denoting the real part of z ∈ C by Re(z), we compute that

M∗
2 =

d∑
k=1

|ξk|2(1− |h(ξk)|2)

|ξ|2h(ξj)h(−ξ`)
=

d∑
k=1

|ξk|2
(
2ξkRe(r2(ξk)) + |ξk|2|r2(ξk)|2

)
|ξ|2h(ξj)h(−ξ`)

,

which is a linear combination of terms of the form ξm
|ξn|2
|ξ|2 φ(ξ), m,n = 1, . . . , d, with a

(generic) analytic function φ on the disk {z ∈ C : |z| < 2π}.
Hence our problem reduces to showing that∥∥∥∥F−1

(
iξm
|ξn|2

|ξ|2
φ(ξ)ηL

)∥∥∥∥
`1γ

≤ C(d, γ, φ)L2γ−1 (70)

and ∥∥F−1 (iξmφ(ξ)ηL)
∥∥
`1γ
≤ C(d, γ, φ)L2γ−1 (71)
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for any generic analytic function φ on the complex disc of radius 2π. For the argument
consider the Schwartz functions

KL = F−1(φηL) and K̂L = F−1(φ( ·
L

)η1),

and note that both are related through the scaling:

KL(x) =
1

Ld
K̂L( x

L
).

For what follows it is crucial to note that the family {K̂L}L≥1 is equibounded in the space
of Schwartz space functions, i.e. for all multi-indices α, β we have

sup
x
|xα∂βx K̂L(x)| ≤ C(φ, α, β), (72)

where xα :=
∏d

i=1 x
αi
i and ∂βx :=

∏d
i=1 ∂

βi
xi

. We now turn to the argument for (70) and
(71). The latter is easily shown, in fact with a slightly better decay rate of Lγ−1. Since
γ ≥ 0 and L ≥ 1, we have that

(L|y|+ 1)γ = Lγ(|y|+ L−1)γ ≤ Lγ(|y|+ 1)γ, (73)

and the definition of KL yields∥∥F−1 (iξmφ(ξ)ηL)
∥∥
`1γ

=
∑
x∈Zd
|∂mKL(x)| (|x|+ 1)γ

≤ Lγ−1

L−d ∑
x∈ 1

L
Zd

|∂mK̂L(x)| (|x|+ 1)γ

 .

Thanks to (72) the term in the brackets on the right-hand side is bounded by C(d, γ, φ)
and (71) follows. To show (70), we notice that

F−1
( ξm
|ξ|2
)

=
(2π)

d
2

|Sd−1|
xm
|x|d

as a tempered distribution on Rd,

where |Sd−1| denotes the surface area of the d − 1-dimensional unit sphere Sd−1 ⊂ Rd.
Therefore standard properties of the Fourier transform yield

F−1

(
iξm

ξ2
n

|ξ|2
φ(ξ)ηL

)
=

(2π)
d
2

|Sd−1|
∂2
n

(
xm
|x|d
∗KL

)
. (74)

Next we introduce a spatial cutoff ζL (as opposed to the frequency cutoff ηL), defined as
follows: first define a smooth cutoff function ζ1 for {x ∈ Rd : |x| ≤ 1} in {x ∈ Rd : |x| ≤ 2}
and its rescaled version

ζL(x) = ζ1( x
L

).

By the triangle inequality and since the derivative in (74) may fall on either term in the
convolution, for (70) we only need to argue that∑

x

∣∣∣∣(ζLxm|x|d ∗ ∂2
nKL

)
(x)

∣∣∣∣ (|x|+ 1)γ ≤ C(d, γ, φ)L2γ−1 (75)
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and ∑
x

∣∣∣∣(∂2
n

(1− ζL)xm
|x|d

∗KL

)
(x)

∣∣∣∣ (|x|+ 1)γ ≤ C(d, γ, φ)L2γ−1. (76)

By definition of the (continuous) convolution, thanks to

(|x|+ 1)γ ≤ (|x− y|+ 1)γ(|y|+ 1)γ for all x, y ∈ Zd, γ ≥ 0,

by a change of variables and (73), we obtain that

[l.h.s. of (75)] =
∑
x∈Zd

∣∣∣∣ˆ
Rd

ζL(y)ym
|y|d

∂2
nKL(x− y) dy

∣∣∣∣(|x|+ 1)γ

≤
∑
x∈Zd

ˆ
Rd

∣∣∣ζL(y)ym
|y|d

∂2
nKL(x− y)

∣∣∣(|x− y|+ 1)γ(|y|+ 1)γ dy

=
∑
x∈ 1

L
Zd

ˆ
Rd

∣∣∣Lζ1(y)ym
|y|d

L−2−d∂2
nK̂L(x− y)

∣∣∣(L|x− y|+ 1)γ(L|y|+ 1)γ dy.

(77)

Hence (73) yields

[l.h.s. of (75)]

≤ L2γ−1L−d
∑
x∈ 1

L
Zd

ˆ
Rd

∣∣∣ζ1(y)ym(|y|+ 1)γ

|y|d
∣∣∣(|x− y|+ 1)γ

∣∣∂2
nK̂L(x− y)

∣∣ dy
≤ L2γ−1

ˆ
|y|≤2

|y|1−d(|y|+ 1)γ
(
L−d

∑
x∈ 1

L
Zd

(|x− y|+ 1)γ
∣∣∂2
nK̂L(x− y)

∣∣) dy.
The Schwartz property (72) yields(

L−d
∑
x∈ 1

L
Zd

(|x− y|+ 1)γ
∣∣∂2
nK̂L(x− y)

∣∣) ≤ C(d, γ, φ),

and thus

[l.h.s. of (75)] ≤ C(φ)L2γ−1

ˆ
|y|≤2

|y|1−d(|y|+ 1)γ dy ≤ C(d, γ, φ)L2γ−1,

which completes the argument for (75). The second term (76) is bounded similarly: by
the same triangle inequality and change of variables that allowed us to arrive at (77), we
obtain a bound on the l. h. s. of (76) by

L−1−d
∑
x∈ 1

L
Zd

ˆ
Rd

∣∣∣∂2
n

(1− ζ1(x− y))(xm − ym)

|x− y|d
∣∣∣(L|x− y|+ 1)γ|K̂L(y)|(L|y|+ 1)γ dy.

We insert (73) again to obtain a bound by

L2γ−1 1

Ld

∑
x∈ 1

L
Zd

ˆ
Rd

∣∣∣∂2
n

(1− ζ1(x− y))(xm − ym)

|x− y|d
∣∣∣(|x− y|+ 1)γ|K̂L(y)|(|y|+ 1)γ dy.
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This time, we use that
∣∣∣∂2
n

(
(1− ζ1(x− y))(xm − ym)|x− y|−d

)∣∣∣ (|x−y|+1)γ is integrable

for large x− y and vanishes for |x− y| ≤ 1, to obtain that

1

Ld

∑
x∈ 1

L
Zd

∣∣∣∂2
n

(1− ζ1(x− y))(xm − ym)

|x− y|d
∣∣∣(|x− y|+ 1)γ ≤ C(d, γ, φ).

Consequently, it remains to bound

L2γ−1

ˆ
Rd
|K̂L(y)|(|y|+ 1)γ dy,

which, thanks to (72), is clearly bounded by C(d, γ, φ)L2γ−1.

Step 4. Low frequencies – proof of (67): We assume that L is large enough, so that we
can apply Lemma 7 to deduce the equivalence of the norm `pγ and Lpγ. For brevity we set
F = ηLFdisg. Equation (61) yields

‖F−1(MTF )‖`pγ ≤ ‖F
−1(Mcont

T F )‖`pγ + ‖F−1(MTM
∗
TF )‖`pγ . (78)

With help of the continuum Calderòn-Zygmund estimate, cf. Proposition 2, and the
equivalence of discrete and continuous norms, see Lemma 7, we get for the first term:

‖F−1(Mcont
T F )‖Lpγ ≤ C‖g‖`pγ .

Hence, we only need to estimate the term F−1(MTM
∗
TF ). First we notice that by

definition of F and ηL, we have that F = ηL/2F . Since the Fourier transform turns
multiplication into convolution, we have

F−1(MTM
∗
TF )

(64)
= F−1

(
MT

(
M∗

1 +
|ξ|2

1
T

+ |ξ|2
M∗

2

)
ηL

2
F

)
(79)

= (2π)d/2
(
F−1

(
M∗

1ηL
2

)
∗dis F−1(MTF ) + F−1

(
M∗

2ηL
2

)
∗dis F−1

(
|ξ|2

1
T

+ |ξ|2
MTF

))
.

We estimate the right-hand side using the Young’s inequality of Lemma 8. For the first
term, we get

‖F−1(M∗
1ηL

2
) ∗dis F−1(MTF )‖`pγ ≤ ‖F

−1(M∗
1ηL

2
)‖`1γ‖F

−1(MTF )‖`pγ ,

and likewise for the second term:∥∥∥∥F−1
(
M∗

2ηL
2

)
∗dis F−1

(
|ξ|2

1
T

+ |ξ|2
MTF

)∥∥∥∥
`pγ

≤
∥∥∥F−1

(
M∗

2ηL
2

)∥∥∥
`1γ

∥∥∥∥F−1

(
|ξ|2

1
T

+ |ξ|2
MTF

)∥∥∥∥
`pγ

.

In both cases, the first term is bounded by (69), see Step 3. Hence, we have shown∥∥∥F−1
(
M∗

1ηL
2

)
∗dis F−1 (MTF )

∥∥∥
`pγ
≤ CL2γ−1

∥∥F−1 (MTF )
∥∥
`pγ
, (80)∥∥∥∥F−1

(
M∗

2ηL
2

)
∗dis F−1

(
|ξ|2

1
T

+ |ξ|2
MTF

)∥∥∥∥
`pγ

≤ CL2γ−1

∥∥∥∥F−1

(
|ξ|2

1
T

+ |ξ|2
MTF

)∥∥∥∥
`pγ

.

(81)
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We may use the equivalence of norms for band-restricted functions, cf. Lemma 7, and
then write the last term as another convolution to obtain that∥∥∥∥F−1

(
|ξ|2

1
T

+ |ξ|2
MTF

)∥∥∥∥
`pγ

≤ C

∥∥∥∥F−1

(
|ξ|2

1
T

+ |ξ|2

)
∗ F−1 (MTF )

∥∥∥∥
Lpγ

≤ C
∥∥F−1 (MTF )

∥∥
Lpγ
,

where for the second inequality we used the continuum Calderón-Zygmund estimate with
Muckenhoupt weights for the Fourier-multiplier |ξ|2/( 1

T
+ |ξ|2) which follows from Propo-

sition 2. Combining (79), (80) and (81) and using the equivalence of norms yet again, we
arrive at

‖F−1(MTM
∗
TF )‖`pγ ≤ CL2γ−1‖F−1(MTF )‖Lpγ

≤ CL2γ−1‖F−1(MTF )‖`pγ .

Hence, for L sufficiently large the right-hand side may be absorbed into the left-hand side
of (78), and (67) follows.

Step 5. High frequencies – proof of (68): By the weighted convolution estimate of
Lemma 8, we have that

‖F−1(MT (1− ηL)χFdisg)‖`pγ = ‖F−1(MT (1− ηL)χ) ∗dist F−1(χFdisg)‖`pγ
≤ ‖F−1(MT (1− ηL)χ)‖`1γ‖F

−1(χFdisg)‖`pγ .

where we haved used that χ2 = χ by definition. By the Fourier inversion formula (56),
the right-hand side equals ‖F−1(MT (1− ηL)χ)‖`1γ‖g‖`pγ whereof we just need to estimate
the first term. We have that

‖F−1(MT (1− ηL)χ)‖`1γ =
∑
x∈Zd
|F−1(MT (1− ηL)χ)(x)|(1 + |x|)γ

=
∑
x∈Zd
|F−1(MT (1− ηL)χ)(x)|(1 + |x|)γ+2d(1 + |x|)−2d

≤ C sup
x∈Zd

∣∣F−1(MT (1− ηL)χ)(x)(1 + |x|)γ+2d
∣∣.

We rewrite this result using the definition of the Fourier transform and integration by
parts. Let x ∈ Zd and let α ∈ Nd be an arbitrary multi-index such that |α| ≥ γ + 2d.
Then we have that:

x2αF−1(MT (1− ηL)χ)(x) = (2π)−d
ˆ

(−π,π)d
MT (ξ)(1− ηL)(ξ)x2αeiξ·x dξ

= (2π)−d
ˆ

(−π,π)d
MT (ξ)(1− ηL)(ξ)i2|α|∂2α

ξ e
iξ·x dξ

= (2π)−d
ˆ

(−π,π)d
i2|α|∂2α

ξ

(
MT (1− ηL)

)
(ξ)eiξ·x dξ.

For the integration by parts when passing from the second to third lines of the last
identity, we used that MT (ξ)(1− ηL(ξ)) and exp(iξ · x) are (−π, π)d-periodic function of
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ξ. It remains to argue that the latter integral is bounded by a constant C(L, α). The
main difficulty lies in checking that the estimate is uniform in T ≥ 1. Since the integral
over the Brillouin zone is finite, it suffices to show that

sup
ξ∈(−π,π)d\(− 1

L
, 1
L

)d
|∂αξMT (ξ)| ≤ C(L, α) (82)

for all multi-indices α ∈ Nd. Note that

MT (ξ) =

∑d
j=1 | exp(iξj)− 1|2

1
T

+
∑d

j=1 | exp(iξj)− 1|2
M0(ξ)

and M0 is smooth away from the origin so that

sup
ξ∈(−π,π)d\(− 1

L
, 1
L

)d
|∂αξM0(ξ)| ≤ C(L, α)

for all multi-indices α ∈ Nd. Furthermore, we have that

sup
ξ∈(−π,π)d\(− 1

L
, 1
L

)d

1
1
T

+
∑d

j=1 | exp(iξj)− 1|2
≤ C(d, L)

and

∂αξ

( ∑d
j=1 | exp(iξj)− 1|2

1
T

+
∑d

j=1 | exp(iξj)− 1|2

)
=

φ(ξ)

( 1
T

+
∑d

j=1 | exp(iξj)− 1|2)k

for some (generic) smooth function φ and some k ≥ 0, both depending only on the
multi-index α and d. Hence we have that

sup
ξ∈(−π,π)d\(− 1

L
, 1
L

)d

∣∣∣∣∂αξ
( ∑d

j=1 | exp(iξj)− 1|2
1
T

+
∑d

j=1 | exp(iξj)− 1|2

)∣∣∣∣ ≤ C(L, α).

Since α was arbitrary, estimate (82) follows from the Leibniz rule.

Proof of Lemma 8. First we write |f(x− y)g(y)| as

|f(x− y)g(y)| = |f(x− y)|
q
p |g(y)|

r
p︸ ︷︷ ︸

I

|f(x− y)|1−
q
p︸ ︷︷ ︸

II

|g(y)|1−
r
p︸ ︷︷ ︸

III

and apply a Hölder inequality to the terms I, II and III with exponents p, pq
p−q ,

pr
p−r to

obtain:∑
y∈Zd

f(x− y)g(y) ≤
(∑
y∈Zd
|f(x− y)|q|g(y)|r

) 1
p
(∑
y∈Zd
|f(x− y)|q

) 1
q
− 1
p
(∑
y∈Zd
|g(y)|r

) 1
r
− 1
p

.

Therefore∑
x∈Zd

∣∣∣ ∑
y∈Zd

f(x− y)g(y)
∣∣∣pw(x) ≤

( ∑
x,y∈Zd

|f(x− y)|q|g(y)|rw(x)

)
‖f‖p−q`q ‖g‖

p−r
`r

≤
(
‖f‖q

`qw
‖g‖r`rw

)
‖f‖p−q

`qw
‖g‖p−r`rw

= ‖f‖p`wγq‖g‖
p
`rw
,

where in the second inequality we used the assumption (59).
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Proof of Lemma 7. For convenience we set Q := (−1
2
, 1

2
)d and without loss of generality

we assume that L ≥ 1.
Step 1. We claim that for all z ∈ Zd and 1 ≤ p <∞ we have

sup
x∈(z+Q)

|g(x)| ≤ C(d, p)‖g‖Lp(z+Q), (83)

‖g‖Lp(z+Q) ≤ C(d, p)
(
|g(z)|+ L−1‖g‖Lp(z+Q)

)
. (84)

By translation invariance it suffices to consider z = 0. Thanks to the Sobolev embedding
of W n,p(Q) into L∞(Q) for n > d, we get

sup
x∈Q
|g(x)| ≤ C(d, n, p)‖g‖Lp(Q) + ‖∇ng‖Lp(Q). (85)

We argue that the band restriction implies for all n ≥ 1 that

‖∇ng‖Lp(Q) ≤ C(d, n)L−n‖g‖Lp(Q), (86)

which combined with (85) and L ≥ 1 yields (83).
Estimate (86) can be seen as follows: Recall that g = F−1F where F is supported in
[− 1

L
, 1
L

]. Let η1 denote a smooth cutoff function that is one in [−1, 1]d and compactly
supported in (−2, 2)d, say. Let φ1 := F−1η1 and note that for all L > 0 we have

(F−1ηL)(x) = φL where ηL(ξ) := η1(Lξ) and φL(x) := L−dφ1( x
L

).

In view of the band restriction of F and its definition we have g = F−1F = F−1(ηLF ) =

(2π)
d
2F−1ηL ∗ F−1F = φL ∗ g. We thus obtain the representation ∇ng = ∇n(φL ∗ g) =

(∇nφL) ∗ g with ∇nφL(x) = L−n 1
Ld
∇nφ1( x

L
), which yields the inequality

‖∇ng‖Lp ≤ ‖∇nφL‖L1‖g‖Lp = L−n‖∇nφ1‖L1‖g‖Lp ,

and thus the estimate (86), since φ1 is a Schwartz function that can be chosen only
depending on d.
Estimate (84) may be seen as follows: A simple application of the mean-value theorem
yields (ˆ

Q

|g(x)− g(0)|p dx
) 1

p

≤ C(d, p) sup
x∈Q
|∇g(x)|.

Then the Sobolev embedding (85) with g replaced by ∇g yields(ˆ
Q

|g(x)− g(0)|p dx
) 1

p

≤ C(d, n, p)‖∇g‖Lp(Q) + ‖∇n+1g‖Lp(Q).

Finally, we insert estimate (86) (with n replaced by n+ 1) to obtain that(ˆ
Q

|g(x)− g(0)|p dx
) 1

p

≤ C(d, n, p)(L−1 + L−(n+1))‖g‖Lp(Q),

which easily turns into the desired estimate (84) at z = 0.
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Step 2. We claim that there exists L0 = L0(d, p) such that for all L ≥ L0 and z ∈ Zd
we have

1

C(d, p, γ)
|g(z)|p(|z|+ 1)γ ≤

ˆ
z+Q

|g(x)|p(|x|+ 1)γ dx ≤ C(d, p, γ)|g(z)|p(|z|+ 1)γ. (87)

For the argument first note that for all z ∈ Zd and x ∈ z +Q we have

(|z|+ 1)γ ≤ C(d, γ)(|x|+ 1)γ and (|x|+ 1)γ ≤ C(d, γ)(|z|+ 1)γ. (88)

Indeed, since maxy∈Q |y|+ 1 = 1
2

√
d+ 1 we have that

(|z|+ 1)γ ≤ (|x|+ |z − x|+ 1)γ ≤ (|x|+ 1
2

√
d+ 1)γ ≤ (1

2

√
d+ 1)γ(|x|+ 1)γ,

and
(|x|+ 1)γ ≤ (|z|+ |x− z|+ 1)γ ≤ (1

2

√
d+ 1)γ(|z|+ 1)γ.

Hence the result (83) of Step 1 yields

|g(z)|p(|z|+ 1)γ ≤
(

sup
x∈z+Q

|g(x)|
)p

(|z|+ 1)γ ≤ C(d, p)

ˆ
z+Q

|g(x)|p(|z|+ 1)γ dx

Estimate (88) thus yields the desired first inequality

|g(z)|p(|z|+ 1)γ ≤ C(d, p, γ)

ˆ
z+Q

|g(x)|p(|x|+ 1)γ dx.

For the second estimate in (87), we note that, by absorption, (84) implies existence of
L0 = L0(d, p) such that ˆ

z+Q

|g(x)|p dx ≤ C(d, p)|g(z)|p

for all L ≥ L0. Hence another application of (88) yields as desired

ˆ
z+Q

|g(x)|p(|x|+ 1)γ dx ≤ C(d, γ)

ˆ
z+Q

|g(x)|p dx (|z|+ 1)γ ≤ C(d, p, γ)|g(z)|p(|z|+ 1)γ

for all L ≥ L0.

Step 3. Conclusion: The estimate ‖g‖p
Lpγ
≤ C(d, p, γ)‖g‖p

`pγ
follows from the second part

of (87) by summation in z ∈ Zd. For the opposite inequality, estimate (83) and Hölder’s
inequality yield

1

C(d, q)
|g(0)|p ≤

(ˆ
Q

|g|q dx
) p

q

≤
(ˆ

Q

|g|p|x|γ dx
)(ˆ

Q

|x|−
q
p−q γ dx

) p−q
p

for all 1 ≤ q < p. Thanks to the assumption 0 ≤ γ < d(p − 1), we can find 1 ≤ q < p
such that the second integral on the right-hand side is finite, so that

|g(0)|p ≤ C(d, p, γ)

ˆ
Q

|g(x)|p|x|γ dx. (89)
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(Note that this is the only place where the upper bound on γ is required.) We conclude
by (89) and (87) that

‖g‖p
`pγ

=
∑
z∈Zd
|g(z)|(|z|+ 1)γ = |g(0)|+

∑
z∈Zd\{0}

|g(z)|p(|z|+ 1)γ

≤ C(d, p, γ)

(ˆ
Q

|g(x)|p|x|γ dx+

ˆ
Rd\Q
|g(x)|p(|x|+ 1)γ

)
≤ C(d, p, γ)

ˆ
Rd
|g(x)|p|x|γ dx,

where in the last line we have used that |x|+ 1 ≤ 3|x| for all |x| ≥ 1
2
.

A Proof of Lemma 1

Thanks to the shift-invariance GT (a;x, y) = GT (a(·+ y);x− y, 0), it suffices to prove the
estimate for y = 0. We set for brevity

G(x) := GT (a;x, 0)

and recall that G is the unique solution in `2(Zd) to

1

T
G+∇∗(a∇G) = δ. (90)

By discreteness and the standard energy estimate, we have

1

T
|G(0)|2 ≤ 1

T

∑
x

|G(x)|2 + λ
∑
x

|∇G(x)|2 ≤ G(0).

Hence, 0 ≤ G(0) ≤ T and we have that∑
x

(
|G(x)|2 + |∇G(x)|2

)
≤ C(T, λ). (91)

Formally we may upgrade (90) to the statement of Lemma 1 by testing the equation

with e
δ
2
|x|G(x). Since that is not an admissible `2(Zd) test function, we appeal to an

approximation of the form ζG where

ζ(x) := η(x)eδg(x), (92)

and η, g : Zd → R are bounded, compactly supported and non-negative functions, and
g mimics the behavior of the linearly growing function x 7→ |x|

2
. The truncation via η

and the discrete Leibniz rule introduce error terms. In order to treat these terms in
a convenient way, we will appeal to test functions η and g that additionaly satisfy the
following property:

∇iη(x) 6= 0 ⇒ g(x) = g(x+ ei) = 0 for all i = 1, . . . , d and x ∈ Zd. (93)
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After these remarks we turn to the proof of (91). We first establish a chain rule inequality
for test functions in the form of (92) assuming (93). In Step 2 we test (90) by Gζ, and
finally in Step 3 we conclude by explicitly defining a sequence of test functions approaching
e
δ
2
|x|.

Step 1. Choice of test functions: For an arbitrary parameter R ≥ 3, say, we first
construct the appropriate test functions η and g. Let

(a) η : Rd → R be a smooth function satisfying

η(x) =

{
1 if |x| ∈ [0, R],

0 if |x| ∈ [R + 1,∞),
such that |∇η| ≤ 2,

(b) and g : Rd → R be a smooth function satisfying

g(x) =

{
x
2

if |x| ∈ [0, R
2

],

0 if |x| ∈ [R− 1,∞),
such that |∇g| ≤ 2.

Furthermore we define ζ through (92). By construction η and g satisfy (93) and there
exists a constant C = C(d) > 0 independent of R such that

‖∇η‖`∞(Zd) + ‖∇g‖`∞(Zd) ≤ C(d). (94)

Thus we have that

|∇iζ(x)| ≤ C(d)
(

min{|ζ(x)|, |ζ(x+ ei)|}δ + 1
)
, (95)

Indeed, this is seen by writing |∇iζ| in the following two equivalent forms: On the one
hand, an application of the discrete Leibniz rule

∇i(fg)(x) = ∇if(x)g(x) + f(x+ ei)∇ig(x)

yields

∇iζ(x) = η(x+ ei)e
δg(x+ei) − η(x)eδg(x)

= η(x+ ei)(e
δg(x+ei) − eδg(x)) + (η(x+ ei)− η(x))eδg(x)

= η(x+ ei)e
δg(x+ei)(1− e−δ∇ig(x)) +∇iη(x),

since (η(x+ ei)− η(x))eδg(x) = ∇iη(x) by (93). On the other hand, a similar calculation
yields

∇iζ(x) = η(x)∇i(e
δg(x)) +∇iη(x)eδg(x+ei)

= ζ(x)(eδ∇ig(x) − 1) +∇iη(x).

Therefore (95) follows from (94).

Step 2. Testing the equation with ζ: We claim that there exists δ = δ(d, λ, T ) > 0 such
that∑

x

|ζ(x)|2(|G(x)|2 + |∇G(x)|2) ≤ C(d, λ, T )
(
G(0) +

∑
x

(|G(x)|2 + |∇G(x)|2)
)
. (96)
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for all R ≥ 3, say. Our argument is as follows: The discrete Leibniz rule yields

|ζ(x)|2∇iG(x) = ∇i(ζ
2G)(x)−G(x+ ei)∇i(ζ

2(x))

= ∇i(ζ
2G)(x)−G(x+ ei)∇iζ(x)

(
ζ(x) + ζ(x+ ei)

)
= ∇i(ζ

2G)(x)−G(x+ ei)∇iζ(x)
(
2ζ(x) +∇iζ(x)

)
.

Together with ellipticity of a, cf. (2), we obtain that

1

T

∑
x

|G(x)|2|ζ(x)|2 + λ
∑
x

|ζ(x)|2|∇G(x)|2

≤ 1

T

∑
x

|G(x)|2|ζ(x)|2 +
∑
x

|ζ(x)|2∇G(x) · a(x)∇G(x)

=
1

T

∑
x

|G(x)|2|ζ(x)|2 +
∑
x

∇(ζ2G)(x) · a(x)∇G(x)

−
∑
x,i,j

G(x+ ei)∇iζ(x)
(
2ζ(x) +∇iζ(x)

)
aij(x)∇jG(x).

By the defining equation (90) for G, the second-to-last line equals G(0)|ζ(0)|2 = G(0)
(for the choice of test function in Step 1). Therefore Young’s inequality and |a| ≤ 1 yield

1

T

∑
x

|G(x)|2|ζ(x)|2 + λ
∑
x

|ζ(x)|2|∇G(x)|2

≤ G(0) +
1

2ε

∑
x,i

|G(x+ ei)|2|∇iζ(x)|2 + ε
∑
x,i

(
2|ζ(x)|2 + |∇iζ(x)|2

)
|∇iG(x)|2 (97)

for all ε > 0. The gradient estimate (95) of the test function ζ yields∑
x,i

|G(x+ ei)|2|∇iζ(x)|2 ≤ C(d)
(
δ
∑
x

|G(x)|2|ζ(x)|2 +
∑
x

|G(x)|2
)
,

as well as∑
x

|∇iζ(x)|2|∇iG(x)|2 ≤ C(d)
(
δ
∑
x

|∇G(x)|2|ζ(x)|2 +
∑
x

|∇G(x)|2
)
.

Inserting the last two estimates into (97) yields

1

T

∑
x

|G(x)|2|ζ(x)|2 + λ
∑
x

|ζ(x)|2|∇G(x)|2

≤ G(0) +
(C(d)δ

2ε
+ 2ε

)∑
x

|ζ(x)|2
(
|∇G(x)|2 + |G(x)|2

)
+ C(d)

( 1

2ε
+ ε
)∑

x

(
|∇G(x)|2 + |G(x)|2

)
for all ε, δ > 0. An appropriate choice of ε and δ, for instance ε =

√
δ with δ = δ(d, λ, T )

small enough, allows us to absorb the sums involving ζ on the left-hand side and we
obtain (96).
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Step 3. Conclusion: We substitute the definition (92) into (96) and recall the construc-
tion of η and g in Step 1 to obtain that∑
x∈Zd:|x|≤R

2

(|G(x)|2 + |∇G(x)|2)eδ(d,λ,T )|x| ≤ C(d, λ, T )
(
G(0) +

∑
x∈Zd

(|G(x)|2 + |∇G(x)|2)
)
.

for all R ≥ 3. By (91), the right-hand side is bounded by C(d, λ, T ) and therefore the
claim follows upon letting R ↑ ∞.
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