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ABSTRACT. We discuss the justification of the Ginzburg—Landau equation with
real coefficients as an amplitude equation for the weakly unstable one-dimensional
Swift—-Hohenberg equation. In contrast to classical justification approaches we em-
ploy the method of evolutionary I'-convergence by reformulating both equations as
gradient systems. Using a suitable linear transformation we show I'-convergence of
the associated energies in suitable function spaces.

The limit passage of the time-dependent problem relies on the recent theory of
evolutionary variational inequalities for families of uniformly convex functionals as
developed by Daneri and Savaré 2010. In the case of a cubic energy it suffices
that the initial conditions converge strongly in L2, while for the case of a quadratic
nonlinearity we need to impose weak convergence in H'. However, we do not need
wellpreparedness of the initial conditions.

1 Introduction

We propose a new method for deriving amplitude equations in the case that the original
model is a gradient system (X, F., R.), i.e. the evolution is defined by the abstract balance
between the viscous force and the potential restoring force:

0=DyR.(u,u) + DF.(u) € X"

Here we will assume that the state space X is a Hilbert space and F. : X — R :=
RU{oo} denotes the energy functional. In general, the dissipation potential is such that
Re(u,-) : X — [0,00] is a lower semicontinuous convex function satisfying R.(u,0) = 0.
However, in this work we will restrict to the simplified setting that R. is independent of
u and quadratic in @, viz. R.(u, @) = 3(G.1i, @).

Here ¢ is a small parameter characterizing the ratio between the microscopic and the
macroscopic length scale. The main question in evolutionary I'-convergence is to identify
conditions for the convergence of the pair (F., R.) to a limit (F, R) such that the solutions
u. : [0,T] — X of (X, F.,R.) converge to the solutions @ : [0,7] — X of (X, F,R). This
work uses the theory of evolutionary variational inequalities and the I'-convergence theory
developed in [DaS10, Sav11]. For other approaches we refer to the survey [Miel4].

The abstract theory is devised to treat the Swift—-Hohenberg equation (SHe)

vy = —(1+A)*0 + fiv + y0° — v°. (1.1)

We will consider the one-dimensional case under the assumption that we are in the weakly
unstable regime, i.e. i = pe? for small positive €. It was shown formally in [Eck65]
that the typical solutions can be approximated by a modulated role pattern in the form
v(t,y) = eRe (A(e?r,ey)e?) and that the amplitude function A(t,z) € C satisfies the
Ginzburg-Landau equation (GLe)

Ay =4A,, + pA — p|APA  with p =2 — 1242, (1.2)

see [MiS96, Eqn. (2.6)] where our p occurs as ¢/4 because of a differing factor 2 in the
normalization of A. While 7 and y denote the microscopic time and space scale, the
variables t = €27 and = = ey denote the macroscopic time and space scale. First mathe-
matical justification of this approximation where given in [CoE90, vHa91, Eck93, Sch94].
We refer to [Mie02] for a survey and to [KSM92] for a 4-page proof of the result in the



case of cubic nonlinearities, i.e. ¥ = 0. We also will see that the case v # 0 is substantially
different. The comparison of the global attractors and the inertial manifolds of (1.1) and
(1.2) are done in [MiS96] and [MSZ00], respectively.

The traditional methodology for justifying the amplitude equations is most easily
explained in [KSM92]: First, one considers a fixed and sufficiently smooth solution A of
the amplitude equation. Then, using formal asymptotic expansions one constructs an
approximate solution v% for the original system, where depending on the needed order of
accuracy in € one needs a suitable number of derivatives of A. Finally. one inserts the
ansatz v = v§ + ¢’ R into the original equation and derives an e-independent bound for
the scaled error R.

The method we propose in this work is quite different, because it uses the abstract
method of evolutionary I'-convergence as introduced in [SaS04], see also [Ser11, Miel4] for
surveys. The main point of the present work is that we rely on the gradient structure of
the SHe and study the convergence in the class of gradient systems. Of course, the theory
of amplitude equation applies to general, non-gradient or non-Hamiltonian system, and
the theories mentioned above apply to these more general classes. However, the restriction
to gradient system is compensated for by much finer tools that allow us to reduce the
assumption of the convergence theorem to an absolute minimum.

To be more specific, we consider (1.1) with i = €241 on the real line with the periodicity
in y € R with period ¢/e, viz. v(r,y+{/e) = v(r,y). Upon the rescaling u(t,z) =
v(t/e? x/e) /e we arrive at

1
= =5 (14e°0;) u + pu + guz —u’ = -DFM(u), u(t,x+l) =ut,z),  (1.3)

where the energy functional reads FoU(u) := f(f oz (ute?u”)? — Lu? + LuP 4 fut dz. This
form is not suitable for the limit passage due to the dominating harmonic oscillations which
are expected because of the approximate solutions in the form u(¢,z) = Re (A(t, r)e®/ 5).
In particular, we assume € = ¢/(2rN) with N > 1 such that A is a periodic function on
S¢ = R/(ezy. The case ¢ = ((2n(N+0)) with N € N and 6 € ]0, 1] fixed can be handled as
in [MSZ00] leading to a family of limit equations depending on 0 € S;.

Using a suitable linear bijection A = W u € L2 := L2(S;; C) we obtain an equivalent
evolutionary problem for A in the form

A=LA+F.(A) <= G.A=-DF.(A), (1.4)

where the energy F.(A) and the dissipation potential R.(A) = %(GEA, A) are obtained
by simply transforming the corresponding structures for the 1| - [|7. and F2" via U,. The
aim is to show that solutions A, of (1.4) converge to solutions of the GLe (1.2).

The first main step is to show that the functionals F. converge to the Ginzburg—Landau
functional Fqy, in a suitable sense of I'-convergence. For the easy case v = 0 we have Mosco
convergence (=weak and strong I'-convergence) of F. to Fqr, in HE := H'(S;;C). The
case v # 0 is considerably more difficult and needs, as for the classical way of justifying
the amplitude equation (cf. [Sch94, MiS96]), a special normal-form theory to handle the
quadratic term. This is reflected in a much more complicated proof of the I'-convergence
of F. to Far, in the weak topology of Hi.. Moreover, the dissipation potentials R. converge
to Rar, : V — 1[|V|72 in the sense that V. — V in Lg implies R.(Vz) — Rer(V).

The second main step is to derive uniform A-convexity for the functionals, i.e. we need
to find a A € R such that for all ¢ € ]0,1] the functionals & — AR. are convex. This
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again is trivial for v = 0, but for v # 0 it only holds in a weakened sense, where we
have to restrict the analysis to large balls in Hi. The abstract theory of evolutionary
[-convergence for uniformly A-convex families was developed in [AGS05, DaS10, Sav11],
and we present the main arguments in Section 3. The main tool is the reformulation of the
gradient system in terms of the Integrated Evolutionary Variational Inequality (IEVI),,
i.e. A. is a solution of (1.4) if and only if

(IEVIY IR (A()—B) — R(A(s5)—B) <[5 " eMdr (F.(B) — F.(A(t)))

* forallsandtwith0<s<tandall BeL.
The limit passage ¢ — 0 in this formulation is surprisingly simply, see [DaS10, Thm. 2.17]
or our Theorem 3.2.

For 7 = 0 we obtain the following clear result: If A. denote the solutions of the SHe
in the form (1.4) and A a solution of the GLe (1.2), then

LA A0) = Vi>0: A() ™ A) and FL(A (1) — Far(A(t)).

Note that this result allows for solutions with arbitrary initial data A.(0) € L&. Thus,
the energies F.(A.(t)) may have singularities at ¢ = 0. This improves the assumption
A(0) € C4(Sy; C) in [KSM92] considerably.

For general v, we rely on a uniform equi-coercivity of the functionals F., which only
can hold if |y| is not too large, since Fgy, is equi-coercive if and only if p in (1.2) is
positive. The latter condition is equivalent to 42 < 42 := 27/38. In Proposition 2.2 we
find a o € ]0,7.] such that equi-coercivity of F. holds whenever v < 72. We conjecture
that 79 = 74, but don’t know how to prove this. The convergence result roughly reads

1

W<l A(0) B A0) = VE>0: A(t) ™ A®t) and F.(A(t) — Fer(A()).

In Section 5 we discuss the obtained results and possible generalizations. In particular,
we address the question of adding spatially inhomogeneous perturbations to the SHe and
show that our approach of evolutionary I'-convergence can easily handle such situation.

2 Gradient structures and convergence results

We consider first a general approach to derive generalized versions of the SHe by starting
from general gradient systems. For a bounded domain 2 C R? we define the underlying
Hilbert space X := L?(Q2). As a dissipation potential we choose the L% -norm

R() = 30l = 5 [ @R .

The energy functional is given in terms of a general nonlinear function G(v, Vo) as
F(v) = /Q %(U+Av)2 + G(v, Vv) dz.
Now the generalized SHe is obtained as the gradient flow © = —DF(v), namely
b = —(1+A)*v — 8,G(v, Vo) + div (9v,G (v, Vv))
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plus suitable boundary conditions, either periodic or natural ones. Choosing G (v, Vv) =
2+ 203 + Jv* we obtain (1.1).

To study the amplitude equation we need to look at a microscopically very large
domain, which still is large on the macroscopic scale. Thus, we consider y € [0, ¢/e] for
large, but fixed . By S; we denote the macroscopic interval [0, {]per = Sy := Ry(¢z) with
periodic boundary conditions and use X = L3 := L*(S,;R) as the basic Hilbert space.

Since we rescaled space and time we take the functional 5! in the form

FEH (u) ::/S ! (u(z)+eu" (z ))2+éGS(Eu(x),EQU’(x))dx.

, 2e?
For simplicity, we restrict our attention to G.(a,b) = —'“;—2a2 — 1a® + 1a giving the
rescaled SHe 1
U= —;(1—1—5285)211 + pu + gu2 — P, (2.1)

The solutions u. of (2.1) behave to leading order like Re (A(t, z)e*/¢), so we cannot
do the limiting procedure on w itself, but we need to define a variable converging to the
limit A. For this we write E.(z) := ¢%/¢ and assume

—(/(2xN) with Ne N — E. e H*(S;;C) c H. := H(S;; C).

Subsequently we will use € or N, whatever is more convenient, but we always assume the
identity 2me N = /.

We will often use Fourier series expansion which we will denote by f,(A) = a, if
A=Y, a,E" where E(z) := €*?"/*, and hence E. = EV. We now set

Xy :={A€L*Sy;C)|fu(A)=0forn < —N and f_y(A) € R} C L2 := L*(S,; C)
and define the bijection U, : L% — Xy via

2uniN = 2fpin(u) forn>—N,
A=V.u with a,=f.(A) = up = fo(u) forn = —N, (2.2)
0 forn < =N

The important observation is that W, is a right-inverse of the mapping A — u = Re (AEE),
viz. u = Re ((\Ilau)Ee) for all w € L%. Moreover, the mappings are almost norm-
preserving, namely

[eull3 = 2[jull; — fo(w)?, 2l Re (AE:)[I3 = [|A]l3 + lf-n (A)]*. (2.3)

We now define the transformed version of the SHe (2.1) by mapping the gradient
system (L2, 21 1] - ]|3) via W, to the gradient system (L%, F., R.) with

FN(Re(AE.)) for A € Xy,

00 otherwise.

£ ={

In particular, for A € Xy we have the explicit form

1

F.(A) = /SIQIA/—F&A”F AP— (Re(AE)) Z(Re(AEE)) dx+£( )| F-n (A)*



The new dissipation potential R. has to be defined via the transformation W, as well, i.e.
we need R.(V) = R (Re(VE.)). Outside of Xy we may define R. arbitrary. Hence,
using R (v) = 1]|v]|3 and (2.3) we let

L — [0, o0,

RE(V):{ Vo VIRt (V)2 (24

The desired limiting gradient system (L2, Far, Raw) is defined via

Far(A) = !A'IZ—H\AIQ M

1
Al*de  and Rau(V) = =||V]3,
5 1 e A LV) = IVI3

because it generates the GLe (1.2) in the form %A = —DFaL(A). The first and elementary
convergence result concerns the dissipation potentials.

Lemma 2.1 (Convergence of dissipation potentials) Fuvery sequence V. with V. —
V in L2 satisfies R.(V.) — Rar(V).

Proof: Since |[V.||2 — |[V]]2, it remains to show that f_ ( V.) — 0. However, E. =
EYN — 0 while V. — V in LZ. Hence f_n(V.) = & fs r)dz — 0 as desired. m

The following equi-coercivity result will be crucial to derive the subsequent evolution-
ary I-convergence. We conjecture that 73 = % but are unable to improve the crucial
interpolation estimate in Theorem A.1.

Proposition 2.2 (Equi-coercivity of F.) There exists vy with 7§ € =2, 32] such that
for all v with |y| < 7o there exist constants ¢,C' > 0 such that

Veel0, ] VAELXS) : Fo(A) > cl|Al% + | AllL - C. (2.5)

Proof: We start the estimate in terms of the functional F5%(u) where the formulas
are simpler. By the bijection we obtain the corresponding estimate for F.(A). Using a
rescaling we can restrict to the case £ = 27. The proof relies on the interpolation estimate
(A.1) which allows us to estimate the cubic term ~vu3/(3¢), namely

o 0 o] < rollut Asal ol < erovE(sllut sl + Hulld), (26
where we used ab/(v/2¢) < a?/(2¢?) + b?/4. This yields
FSU0) 2 ¢ (allurt I3+ Hald) — Sl with e, = 1= vahlo/3. (27)

Note that the constant ¢, is positive if and only if v < 73 := 9/(2k0). The bounds for 7,
follow from those for kg at the end of the proof of Theorem A.1 and in Remark A.2.

We now return to A = ¥.u or u = Re(AE.). According to (2.3) we have |lul]3 <
|A|I2 < 2||lul|3, while |u(z)| < |A(z)| and relation (A.2) yield [julls < ||Alls < Cyllulls.

Finally, a direct expansion in Fourier coefficients shows % |lu+e?u”||3 > ||A||3, sce e.g.
(A.3). Thus, we obtain

Fo(A) = F2(Re(AE:)) > o, (1415 + Zr | AllD) — §IAIE = c(1A15+1AI+IAllT) —
where we used ||A||{ > 1||A||1 + B||A[j3 — Cp for any B > 0. "
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We now present our two convergence results, the more elegant one is obtained in the
case 7 = 0, where we can use a uniform global A-convexity, see below. It was already
noticed in [KSM92] that the case v = 0 is especially simple. Our present result simplifies
the assumption of the convergence result to its absolute minimum. The results for the case
0 < |y|] < 7o are weaker and need considerably more effort for the proof. We formulate
both results for solutions u(t,-) € L3 of the original Swift-Hohenberg equation (2.1) as
gradient system (L3, 21 1] -]13), whereas the proofs in Section 4.3 will be formulated in
terms of the transformed equation (L%, F., R.). These formulations are connected by the
bijection U, defined in (2.2).

Theorem 2.3 (Convergence for v = 0) For v =0 consider solutions u. : [0,T] — L2
for the Swift-Hohenberg equation (2.1) and a solution A : [0,T] — L2 for the associated
Ginzburg—Landau equation (1.2). Then, we have the evolutionary I'-convergence:

W (0) 2 A,(0)
— V>0 Do) B A®) and FI0(ul(t)) — FIZO(A()).

We emphasize that in the above result we do not make the assumption that the initial
energies are bounded, i.e. we may assume A(0) € L2 is such a way that Fap (A(0)) = oco.
In particular, we do not assume any type of wellpreparedness of the initial conditions, see
[Miel4] for a discussion on this. In contrast, we need for v # 0 a uniform bound on the
initial energies.

Theorem 2.4 (Evolutionary I'-convergence for v # 0) Assume 0 < |y| < v and
consider solutions u. : [0,T] — L% for the Swift-Hohenberg equation (2.1) and a solution
A [0,T] — L& for the associated Ginzburg-Landau equation (1.2). Then, we have the
evolutionary I'-convergence:
L2
Wou(0) = Ag(0) and sup FoH(u.(0)) < oo

O<e<1

—  Vt>0: T () D A®) and F(u(t)) — Far(A()).

In this result we need boundedness of the initial energies, which by Proposition 2.2 im-
plies boundedness of W.u.(0) in H}C and such turns the convergence of the initial data
into weak convergence in Hi. However, it is still weaker than the wellpreparedness con-
dition Fo%(u.(0)) — Far(A(0)) needed for the convergence results based on the energy-
dissipation balance, see [SaS04, Ser11, Miel4].

The proofs of these two results are given via the proofs of Theorems 4.6 and 4.7.

3 Evolutionary ['-convergence via uniform A-convexity

Here we present the main abstract arguments for the limit passage which rely on the
reformulation of the parabolic equations as gradient systems in the the form of an evolu-
tionary variational inequality. We give a brief account of the much more general theory
in [DaS10], by restricting ourselves to the case of Hilbert spaces which is relevant for our
application in amplitude equations.



We start from a general separable Hilbert space H, an energy functional £ and a
quadratic dissipation potential

1
R(v) = 5{Gv, v) with collvl* < R(v) < erlvll?,

where G is a bounded, positive definite symmetric operator. Note that v — (2R(U))1/2
generates an equivalent Hilbert space norm, but be prefer to keep R and || - || distinct,
because later on R will depend on e. The functional £ : H — R, := RU{oo} is assumed
to be lower semicontinuous (in the strong topology) and coercive, e.g.

J¢,C>0Vue H: E(u) > clul| —C. (3.1)

The important condition is the geodesic \-convexity, which relates to classical convexity
in Hilbert spaces, where the geodesic curves are unique and are given by straight lines:

the mapping u — £(u) — AR(u) is convex. (3.2)

(For smooth functionals this is equivalent to the local condition D?*E(u) > G for all
u € H.) For such functions the Fréchet subdifferential '€ : H = H* exists (cf.
[MRS13]) and for all (u, &) with £ € 9"E(u) we have

E(w) > E(u) + (£, w—u) + A\R(w—u) for all w € H. (3.3)

As a consequence of the last estimate we immediately see that for solutions w : [0,7] —
H of evolution equation in form of the subdifferential inclusion

0 € Gu(t) + 0" E(u(t)) for a.a. t € [0,T] (3.4)
we obtain the differential form of Evolutionary Variational Inequality (EVI),

%R(u(zﬁ)—w) = (Gu,u—w) = ({,w—u) < E(w) — E(u) — AR(u—w) for all w,
(cf. [AGS05]) which corresponds to the Hilbert space version of Benilan’s weak formulation
[Bén72] in the case A = 0. Note that existence and uniqueness of solution follows in
the present Hilbert space setting from classical semigroup theory of maximal monotone
operators with Lipschitz perturbation, see [Bré73, Ch. 3].

Multiplying with e’ and integrating over an interval [s,t] C ]0,7] leads to an inte-
grated form of (EVI),. We call u : [0,7] — H a solution of the Integrated Evolutionary
Variational Inequality (IEVI),, if

Vs, t€[0,T)with0<s<t<T Ywe H :

IR (u(t)—w) — R(u(s)—w) < My(t—s) (E(w) — E(u(t))), &2

(IEVI), {

where M,(r) := [; ¢ dp. The great advantage of this formulation is that it is absolutely
derivative free, which makes it an ideal starting point for convergence theories involving
functionals. Moreover, this formulation is sufficiently strong to return back to the differ-
ential equation, i.e. every solution of (3.5) is a solution of (3.4), see [DaS10, Thm. 2.5].

Our result on evolutionary I'-convergence for ¢ — 0 concerns a family of gradient
systems (H,E&.,R.), ¢ € [0,1], all of which are of the type as above. We collect all
assumption to emphasize their uniformity for e € [0, 1]:
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Energy functionals

3 Banach space Z: Z € H (compact embedding), (3.6a)
de,C>0Vee|0,]]Vue H: & (u)>clullz—C, (3.6b)
dJANeRVee[0,1]: &()— AR.(-) is convex. (3.6¢)

Dissipation potentials
1
Re(v) = §<va,v> and Jcg,e1 >0Vv € H: col|v||3 < R(v) < ci|vl|3. (3.6d)
Convergence properties

X &in H (Mosco convergence), (3.6¢)
u. — up in H = R.(u:) — Ro(up). (3.6f)

In (3.6b) we set ||u||z = oo for u € H \ Z. The Mosco convergence in (3.6e) means the
two I'-convergences &, L & and & 5 & in H, see [Dal93]. The first means that (i)
ue — uo implies E(up) < liminf, o & (u.) and (ii) that for each ug € H there exists u.
such that u. — ug and &E.(u.) — &y(up). The definition of & RN &y is similar, but all “—”
are replaced by “—".

Remark 3.1 (I" vs. Mosco convergence) It is well-known (cf. [Dal93, Miel4]) that,
given the compact embedding Z € H in (3.6a) and the equi-coercivity (3.6b) in Z, the

Mosco convergence &, M &o in (3.6e) is equivalent to the I'-convergence &, RN & in Z.

The following convergence result is a variant of [DaS10, Thm. 2.17], since we allow the
distance to depend mildly on ¢ but restrict to Hilbert spaces. To emphasize the strength
of theory we remark that solutions u : [0, 7] — H of the (IEVI), do not need to have finite
energy at t = 0. Defining the domain of £ by dom(€) := {u € H | E(u) < 0o } one has a
unique solution for each u(0) € dom(&). This solution is still continuous, but may not be
absolutely continuous. Hence, it is surprising that the mere convergence u.(0) — u((0) of

the initial conditions is sufficient.

Theorem 3.2 (Evolutionary I'-convergence for EVI,) Assume that the gradient sys-
tems (H,E.,R.), ¢ € [0,1], satisfy (3.6). Then, consider any T > 0 and solutions
ue : [0,T] — H for (H,E.,R.). Then, we have the evolutionary I'-convergence
u:(0) € dom(&.) and u.(0) — ue(0) in H :
= Vte€]0,T]: ut) = up(t) in Z and E(u(t)) — Eo(uo(t)). (3.8)

Proof: We follow Section 2 of [DaS10]. The solutions u. satisfy (IEVI), in the form

VO<s<t<T Vwe H:

3.9
IR o)) — Reiwa(s) ) < M(t—s) (Ex(w) — ELu(B). )

(IEVI); {

We choose test states w. — wg in H such that & (w.) < 2&(wp) < oo, insert them
into (IEVI)5 with s = 0, and obtain

MR (ue(t)—we) + My(t)E-(ue) < Re(uz(0)—w,.) + My(t)E(w.) < Ch. (3.10)



Using M, (t) > mg > 00 for 0 < to < t < T0 gives a uniform bound on the energy and
||u8||L°°([t0,T];Z) S Cg(to) fOI' all €€ [0, ]_],

because of the equi-coercivity (3.6b). Moreover, looking at a partition t; = to + k7n with
T~ = (T'—to)/N we insert ¢t = tx, s = tx_y, and w = u.(s) into (IEVI)5 and find

eANTRa(Us(tw_“s(tk—l)) < MA(TN)(58<UE(tk—1)) - gs(ua(tk»)'

Summing from £ =1 to NV and taking the limit N — oo we find
it Reliie(s)) ds < E-(ue(to)) — E-(ue(T)) < Cs. (3.11)

Thus, for all ¢y € |0, 7] we have uniform bound in C'/2([t,, T]; H), such that by Z € H
(cf. (3.6a)) we can find a subsequence (not relabeled) such that u.(t) — U(t) in Z for all
t > 0. We set U(0) = uo(0) such that u.(t) — U(t) in H for all t € [0, 7.

To pass to the limit in (IEVI)5 we take any @ and insert w = w., where w. — @ is a
recovery sequence with &, (w.) — & (w). Using the convergences (3.6e) and (3.6f) yields

MR (1)) = Ro(U(5)—w) < My(t=s) (Eow) = &U).  (312)

Thus, U : [0,7] — H is a solution of (IEVI)5~®. To conclude that U is equal to the
unique solution uq it suffices to show continuity of U at ¢ = 0. Inserting s = 0 and any
w € dom(&) we consider the limit ¢ — 0T to obtain

tllr(g Ro(U(t)—w) — Ro(up(0)—w) < tllr(g M,\(t) (Ey(w) — inf &) =0,
because M, (t) = O(t). Thus, we have lim; o+ ||U(t)—w|| g < |Jug(0)—w]|| g for all w €
dom(&). Using uo(0) € dom(&y) we conclude U(t) — uo(0) for t — 07 as desired.
It remains to show that the energies converge as well. This theory is more advanced

(cf. [DaS10, Sav11]), and we give only the main idea, which relies on the notion of metric
slope, which reads in our Hilbert-space setting as follows

|0E | (u) := lim sup max{&(u)—&(w), 0}
e [u—w|[z

, where ||v||z = (272(1}))1/2.

In the A-convex Hilbert-space case the slope can be expressed via the Fréchet subdiffer-
ential OYE as |0€|r(v) = inf{ ||n|l.= |7 € O"E(u) }, and (3.3) yields the lower bound

E(w) > E(u) — |0€|r(u)[[w—ul|gr + AR(w—u) for all u,w € H. (3.13)

The main observation (see [DaS10, eqn. (2.9)]) is that the a priori estimate (3.10) can
be improved to an a priori bound including the slope as well, namely

MR (e () —w.) + My(0)E-(uz) + 2202198, (u(1)[%. < Ch. (3.14)

Hence, as above the slopes are uniformly bounded by a constant S(to) for all ¢ € [to,T]
and all ¢ € [0,1]. Fixing ¢t € [ty,T] we choose a recovery sequence u. — ug(t) with
E-(uz) — E(up(t)), then the lower bound (3.13) gives the estimate

E(Ue) > Ec(uc(t)) — S(t) [ue—ue(t) | r. + ARe(U-—uc(2)).
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Since u.(t) — uo(t) we have R.(u.—u.(t)) — 0 for ¢ — 0 by (3.6d), and the limit ¢ — 0
yields & (up(t)) = im & (u.) > limsup,_,, £ (u(t)). Since the opposite inequality follows
from the Mosco convergence we conclude the desired energy convergence. [

We will use the above result of the Swift-Hohenberg equation in the case v = 0.
However, for the case 7 # 0 we need to modify the theory. For that purpose we restrict
the A-convexity to a closed convex set B C H, i.e. instead of (3.6¢c) we assume that
E. — MR, are convex when restricted to B.

Then, (IEVI), can be derived from the subdifferential inclusion (3.4) in exactly the
same manner as above, if the solution w : [0,7] — H lies in B for all ¢ and if we restrict
the test states w to the set B. For the derivation one only relies on the lower bounds
(3.3) and (3.13), which are still valid for all u,w € B. Moreover, we can still go back from
(IEVI), to (3.4), if the solution u does not touch the boundary of B.

The approach involving B can also be understood by changing the energy functionals
and replacing &. by €8 = &. + x5, where xs(u) = 0 for u € B and +o00 otherwise. The

problem is that &, M &, doesn’t imply that €8 » EF. However, in (4.2b) we will be able
to control the size of the recovery sequences in such a way that each u € Bgn.n admits
recovery sequences U, € B, then the I'-limsup and the T-liminf of £F will coincide with &
on Bgnan. Thus, we can proceed as in the proof of Theorem 3.2 and conclude that limit
solutions lying in Byyan satisfy an (IEVI), with test states w € Bypar-

4 Evolutionary I'-convergence for the SHe

We now employ the abstract theory from above for the justification of the GLe as an
amplitude equation for the SHe. Relying on the equi-coercivity of Proposition 2.2 we
still we have to establish I'-convergence (see Section 4.1) and a suitable weakened version
of the A-convexity (see Section 4.2) that allows us to invoke the formulation based on
(IEVI)5. The final results on evolutionary I'-convergence are established in Section 4.3.

4.1 TI'-convergence of the energies F.

We first consider the case v = 0 and show the Mosco convergence of F2=0 to Foy in Hb.
The main effort concerns the case v # 0 where we only obtain weak I'-convergence of F.
to Fqr, in Hi. The essential difficulty is the treatment of the singular term ng Lu.(r)’ dz,
which relies on a careful treatment of the higher harmonics generated by the cubic term.
Since Re(AE.) is rapidly oscillating one can expect that its average is 0. In fact, we use
an integration by parts based on eE. = iE,, i.e. to eliminate the power 1/ we have to
replace one of the factors A by its derivative A’. Thus, this proof reflects the correction
terms or the normal form transformations used in the classical approach to the derivation
and justification of amplitude equations, see [Sch94, MiS96, Sch98].
To study the I'-convergence of F. to Fgr, we decompose F. into the functionals

s, 11214+ A" dz for A € Xy,
%) otherwise;

l
TA) = (P +

. 1
‘Zcublc(A) — _/ 31 RG(AEg)g dl’, kZSQuart(A) = / Z RG(AE5)4 de‘,
Se

&) Se
1972

T (A) = A, T e(A) =

3
4 quart _ v 4
1Az, T (A) = 1Al
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Obviously, we have F.(A) = J9(A) — uR.(A) + JP(A) + Jat(A) and Fqr(A) =
Tg" T (A) = pRo(A) + T(A) + T (A).

Our first proposition shows that the ['-convergence of J9 4 and J9% is easily
obtained and is in fact the better Mosco convergence. Thus, the full convergence result
for the case v = 0 is much simpler than the case v # 0, which corresponds to the fact
that the “cubic paper” [KSM92] is so much shorter that the “quadratic paper” [Sch94].

Proposition 4.1 (Case v = 0) We have the Mosco convergence F)=° M Gfo, i.€.

A.—~AinH, = FU(A) <lim inf 727°(A:) (4.1a)
VAcHLE F(Ad)eso: A — A inHL and FI7°A.) — FAL (A). (4.1b)

Proof: We write Ay instead of A. using the relation 2re N = /.

Step 1: By the compact embedding of H{: into C2 we see that Ay — A in H{ implies
Ay — Ain CQ, and thus in LY for p = 2 and p = 4. To study the convergence of
Jaart(Ay) use 16Re(AE.)! = ALE! + 4|APA2E? + 6|Al* + 4|APA’E’ + A'E. and
E™ — 0 in L% whenever m # 0. By the strong convergence of Ay in L{ we have
16 Re(ANE.)* — 6]A|*, which gives J9"(Ay) — Jg" (A).

Step 2: Similarly, we obtain R.(Ayx) — Ro(A), see Lemma 2.1.

Step 3: The only remaining term is J9'2¥. We first do the liminf estimate corre-
sponding to (4.1a) using Fatou’s lemma. Indeed, Ay — A implies f,,(Ax) — fm(A) as
N — oo for all m € Z. Hence, dropping the term éH_N(AN)P we obtain

IINHI_}OI(l)f Jawdr( Ay > hm 1nf€ Z | —2m — em? fm(AN)|
> fzm2\fm = |43 = 5" (A).
meZ

In summary, Stepl to 3 establish the liminf estimate (4.1a).

Step 4: The recovery sequence is constructed via Ay = Zlml < s~ fm(A)E™. Clearly,
Ay — Ain H{ and the convergence of J3""*(Ay) and R.(Ax) was shown in Steps 1 and
2, respectively. With o, = [mf,,(A4)|* we have f_y(An) =0, 3, 7 4 < 00, and obtain

jaomadr( N) — jCIuadr( >‘ < Z ’ 1+_ —1‘Oém+£ Z a,
m|<VN Im|>vVN
</ Z 2elm|a, + ¢ Z Ay < EZ min{e'/?|m|, 1}y, — 0 for e — 0,
jml <VF mI>VN mez

by Lebesgue’s dominated convergence theorem. This proves (4.1b). [

We now turn to the more difficult case involving the cubic term. We will see that
the convergence will only be a weak I'-convergence. The difficulty in treating the I'-
convergence for v # 0 is the prefactor 1/e in J™¢ such that it is necessary to exploit
that the average of (Re AES)3 is of order €. The main point is that the quadratic part
Jawadr forces the functions u. = Re(AyE.) to be highly oscillatory. However, higher
harmonics will contribute nontrivially in the sense of averaging.
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Proposition 4.2 Let J. = J& 4 Jewie for e > 0. Then, J. = Jy in HL, i.c.

A.—=AimH = J(A4) <lim inf J.(A.) (4.2a)
VA 6 H(%: EI (A5)5>0 . Aa — A) L78(A8) - \70(‘4)7 (4 2b>
and || Acflm < (| Al + S|y (| Allfn '
quadr

where ¢, depends only on £ > 0. In the strong topology of HE we have J. 5 S

The following result is a simple consequence of the previous two propositions, see
Remark 3.1 and the equi-coercivity in Proposition 2.2.

Corollary 4.3 (I'-convergence of F. for v # 0) For vy # 0 we have F. RN Far, in HE,
and for || < o we have F. M Fau in LZ.

In the following proof we will use that the transformation operator W, of (2.2) can be
expressed by a general operator Py defined via

"L w = ORefo(w) + 3,00 Fn(w)E™, ‘

which maps L(2c into the space Xy and gives V.u = (P /gu)Eg. For general 6 we obtain
formulas similarly to (2.3), namely for v € L3 we have

1 1
Puv=P (P Po)dr = = 2 o—— 2
weR(Pe), [0 g oer
v = Pijv+ Pyjv, ||UH§ = 2HP91)||§ + 6(1—292)]‘0(11)2.

Proof of Proposition 4.2: We first establish the liminf estimate (4.2a) in Steps 1 to 3.
Step 4 provides the recovery sequence construction (4.2b), and the strong I'-convergence
is established in Step 5.

Step 1: For the arbitrary sequence Ay with Ay — A in H: we use the decomposition
into its central part C'y and the remainder Ry as follows:

Ay = Z a,E" = Cy + Ry with Cy := Z a,E", Ry := Z a,E".

n>—N \n\S\/N \n\>\/ﬁ

Because (Ay )y is bounded in HE, we obtain || Ry|ls = O(NY2) and ||Ry || = O(N~Y/4).
With [|Cn |20 + [|Bn][F: = | An|lZn < C we conclude Cy — A and Ry — 0 in H{.
Moreover, we have JaI(Ay) = Jaadr(Cy) + Ja2d(Ry) and f_n(Cy) = 0. From
Cy — A we obtain
lim inf T () > T (4) = | A

N—o0
as in Step 1 of the previous proof.
Step 2: We transform the cubic term by an integration by parts, which gives for all
A € Xy the relation

1
/ [Re(AE.)]?dr = g/ AE? + 3|APAE. + c.c.dx
Se Se

= %(Z(LN(A))3 + 3ie /SZ (2|A|2A/+AQZ’)EE de + C.C.>,
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Here [ A°EZdx = ((f_n(A))” follows from A € Xy, which gives the representation
AE. = §f_n(A) + > o0 fr-n(A)E". Hence also the cube AE? has only one term with
E°? = 1. The other term is obtained by an integration by parts using c¢E! = iE..

The main point of the decomposition Ay = Cy + Ry in Step 1 is that we can control
the support of the Fourier series of powers C% C%;, i.e. we know f,(C%C%) = 0 if |n| >
(j—l—k:)\/ﬁ . In particular, we have sz C{;,U?VEE dxr = 0 for sufficiently large N. The
boundedness of (Ay)y in H(S,; C) also gives f_n(Ay) = O(¢), and we find

geve(a) = — ( / RIONR+CiRY) Bede + cc) +0().
Se

Note that we also omitted the terms involving Ry without derivative as || Ry || = O(g'/?).
Step 3: For the full functional 7. we use the decomposition obtain

\Z(AN) o ‘unadr(CN) — gZ;quadr(RN) + t75cubic(AN>

1. 1 14
:/ Z|21R§V+5RX/+HN|2_Z|Hn|2dx+ﬁ|f—N(RN)_aN|2_

, =
—ay — JN
S, £ 4e2 N

~ 1 — 14 .
with JN = Z_l/ (21R§V+€R/]I\;)HN +c.c.dr + @CYN — k75011]01C(14N),
Se

where the function Hy and and the constant ay € R are still arbitrary. Using the
expansion for J"¢ derived in Step 2 we have

Jn=t / (21CxPE.RY +1CVB.RY + 2(2Ry ~icRY) Hyc.c.) do
Se
(

+ 2—826!Nf_]v(RN) + 0(51/2),

In order to make Jy small we set Hy = Hj(vl) + H](\?) with

HY — 7 25 and HY = -1 B(CxP) E.

with Py from (4.3). We first find a cancellation induced by the choice of H](\}), namely
/ ~CWE-Ry + 2Ry —icR,)HY dz = % / C%E.(ieR),—RYy) dz = O(c"/?),
Se S,

because C%, E. has support in [N—2v/N, N+2v/N] where the Fourier coefficients of ic R%
equal those of Ry up to a multiplicative factor of order O(N~1/2) = O(e'/?). Second,
using Ry € Xy we find

/ 29|CnPE-RYy + 2(2R\ —ie R HY da
Se
_ 27/ PL(ICx]?) E-Ry — Py(|Cx ) E.(2Ry—icRYy) da
Se
— 2y(1-0)f_y(RY) / CxPde+ 2y [ B{ICNP) B.(RyHieRY) da
Se Se

= 29(1-6) _f_n(Bx)|Cx ] + O,
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because R)y+icR% projected to the Fourier interval [-2v/N, 2v/N]is O(N~'/2) = O(e'/?).
Combining these relations we arrive at

~ lay  ~(1-0)
In = (252 T HCNH§)f—N(RN)+O(6l/2)

and choosing ay = —ev(1—60)||C|12/(20) we conclude Jy — 0. Inserting the above
choices of Hy and ay into the above decomposition of J.(Ay) and dropping the terms
12iR)\+eRN + Hy|* > 0 and |f_y(Ry)—an|* > 0 we obtain the lower estimate

o s uadr L. 14
liminf J.(Ay) > Jm4 (A )—ZA}E%O (|\HNH§+€—2a?V).

N—oo

2)

Since the Fourier supports of H](\}) and H](V are disjoint we obtain

2021

2 197
IHN I3 = 1HE 15+ 1HR 15 = —IICN||4+7 1B (1CN )15 = =gl Alli+7

due to Cy — A in C, (4.4), and ¢§o(|A]?) = ||Al|2. Now ay/c — v(1-0)||A||2/(20) gives

- 19¢?
> quadr
lim inf 7. (An) > Jg"*(A) = 77114 [ ( )AL,

where ¢(0) = 20 — 1+ 2(1—0)%. We still have the option to choose 6 to obtain the largest
lower bound. Taking 6 = 1/2 the lower bound (4.2a) is established.

Step 4: The construction of the recovery sequence Ay is guided by the constructions
used for the liminf estimate. For a given A € H we set Ay = Cy + Gy + eF,, with

Cx =2 oy (B Gy = e Pip(|Cx]?) Bz, and Fy = (R E,

where ¢g, ¢; € C will be determined later. In particular, we have Ay € Xy, [|[A—Cx|lm —
0, [[Axy — Cnll2 = O(e), and we will next show supyey || An|lar < co. Hence, we conclude
AN — Ain H(%j

For the bound of Ay in HE we observe ||Cyllm < ||A||m: and

leGll3 + leGIB < leof? (21Cw I3 + 42O BICw 2 + 1),

where we used e E. = iE,. A similar estimate holds for Fiy except for an additional factor
lc1]?. Using e € [0,1] and ||Cx||4, [|CN]loo < Co||Cnllm < Cyl|Aljmn we obtain the bound

1Al < [ICwllsn + leGllin + lleFallim < Al + V6 (Jeol+leal ) Al

which establishes the bound for A, = Ay stated in (4.2b) after ¢q and ¢; are chosen as at
the end of Step 4.

Moreover, we can evaluate J. explicitly. For the quadratic term we can use that the
three terms in Ay have disjoint support in Fourier space giving J9%(Ay) = J9%d(Cy)+
Jawed(cGy) 4+ J(eFy). Since the support of Cy lies inside [—v/N,v/N] we have
1eC Nl < eV'N||Cll2 < eV'N||A'||3 = O(/?) and conclude

Jae(c )——H210N+ Oyl — 145 = F""(A).
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For the second term we use €(2iG'y+eG%) = coPyjo(|Cn|?) (2ieE. + €2E.) + O(e) in L2.
Because of 2ieE. + ¢2E. = (2—1)E. we arrive at

|Co|2 (4.4) |Co|2

2
uad c
gemecy) —  OL ey (ap+ e agg 1ol

Similarly, the third term follows with 2ieE! + e2E” = (—2—1) E., namely

quad F ’Cl|22 12 A2 2_9’01‘2 A4
T ebn) = - CHD)TAR: = — (1 Alls

To evaluate the cubic term, we again use that the terms Cy, Gy, and Fy have their
Fourier support localized near 0, —N, and + N, respectively. Hence, evaluating

3 .__ __ scubic _ l 3
I = <AN)_/SZ 38<Re(ANE6)> de,

we see that the terms of order 1/e arising from (Re(C]\,vEg))3 are identically 0 as the
Fourier spectrum is bounded away from 0. Thus, the only contribution for the limit
stems from the term of order €°, namely

I3 = ’y/ (Re (CNE5)>2<Re ((GN+FN)E5)> dz + O(e)

Se

= % / (CJ%E§+2|CN|2+U?VE§) (COP1/2<|CN|2) +cCHE? + c,c_) da + O(e)
Se

= %/ <2|CN|2 coPyy2(|Cn|?) +6?\,ch']2\[ + c,g) dz + O(e)
Se

:%(00+Eo)/ 2|C’N|2P1/2(|C'N|2)dx—l—%(cﬁ@l)/ ICy|*dz + O(e),
) Se

Using ||Cn |7 — ||A||3 and (4.4) we have derived the convergence

T(Ay) = T (Cy) + T (Gy) + TS () = T}

— |45+ (§lcol> + 2ei]? — T Reco — T Re cl)||AHj.

We now determine ¢ and ¢; by minimization giving the minimizers ¢y = v and ¢; = /18
and the desired limit [|A']|2 — 22| A[l4 = Jo(A).

Step 5: In the strong topology of Hi. we can argue as in Step 4 of Proposition 4.1
concerning the quadratic part. So it remains to show that the cubic term converges to 0
along all sequences Ay — A in H}. For this we rewrite J"M¢(Ay) as in the beginning
of Step 2, by eliminating the denominator via integration by parts. Passing to the limit
e — 0 we have Ay — A uniformly in C° and Ay, — A’ in L%, while E¥ — 0 for k # 0.

Hence, JP¢(Ay) — 0 follows as desired. n

4.2 Geodesic A-convexity for F. on balls

Again, the case v = 0 is very simple.
Lemma 4.4 For v =0 the functionals F2=° are uniformly \-convexr with A\ = —p.
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The proof is trivial, since by the definition of =" all terms in F2=° 4+ yR. are convex.
For v # 0 the functionals F. are not uniformly A-convex. Calculating the Hessian

1 2
D2JTESH(U) FW +—2(1+5233)2w — pw — Y w + 3u* w,
€ €

we can insert the constant state u, = v/(3¢) and see that D?F>H(u,) has the smallest
eigenvalue —p —~2/(3¢), which tends to —oo for ¢ — 0. Thus, global uniform \-convexity
does not hold. However, for the limit passage it is sufficient to have this property on
sufficiently large balls. Unfortunately, we were not able to show that it is possible to use
balls in L%, and we have to use the stronger norm in H¢..

Proposition 4.5 For each radius R > 0 there exists Ag < 0 such that F. : L% — Ry
restricted to the ball Br := { A € HL | ||Allm < R} is Ag-convez, i.e.

A
V Ay, Ay € BpVe,0€]0,1[: Fo(Ag) < (1—0)F.(Ag) +0F.(A;) — 7%(1_9)”,41_,40”32,

where Ag = (1—0) Ao + 0A;.

Proof: The functional F. decomposes into a nonnegative quadratic form J9% and a
polynomial part JWi¢ 4 FJauart — yR_ which is smooth on Bg.

Estimating J9dr(A) > ||A’||3 > 0 (see Step 3 in the proof of Proposition 4.1) we
certainly reduce the convexity properties, i.e. lowers the value of Ag. Similarly, the
quartic_contribution is convex, so we can drop it. Thus, it suffices to find a good lower
bound Ag for the A-convexity of the functional

K.: B |A3 - [;, & Re(AE.)" dz

on the ball Bg. Then, the result is established with A = XR — 1.
Hence, it remains to establish the desired bound

VAeBrVBecH\(S,): (D*K.(A)B,B) > \z||B|?.

where (D*K.(A)B, B) = 2||B'|} — & Js, Re(AE.) [Re(BE.)]” dz. The major task is to
get rid of the denominator ¢, and this can be done by integration by parts. For this, we
write Re z = $(z + Z) for each of the three terms in the integral over Sy. Grouping into
terms multiplying E* with k € {—3,—1,1,3}, we can integrate E* and differentiate the
corresponding factors. This yields the estimate

1 14
-‘/ Re(AEE)[Re(BEE)]zdx’ < —/ |A||BJ? + 2|A||B||B'| da
el Js, 24 Js,

Thus, using || B||2 < Cy(|| B||2 + || B|2|| B'||2) we obtain Ag by estimating as follows:

5 5
(D°K(A)B, B) = 2||B'll; = 7 A I [1BIl: = 51 All<l 1 Bll2]| B'll2

2

5 fy / fy / 2
> - (Maa+ L @iat+2al”) 1213

Due to A € By we find a lower bound Az = —C.(|7|R+~2R?), and we are done. "
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4.3 Convergence result for SHe

The following two theorems provide the evolutionary I'-convergence results in Theorem
2.3 for v = 0 and Theorem 2.4 for 0 < |y| < 70, respectively. For v = 0 we directly apply
the theory of Section 3 to the gradient systems (L%, 727" R.) and obtain the following:

Theorem 4.6 (Evolutionary I'-convergence for v = 0) Assume v = 0 and consider
solutions A. : [0, T) — L& for the SHe given by (L&, F2=°,R.) and a solution Ay for the
GLe given by (L%,fgfo, Rar). Then, we have the evolutionary I'-convergence

A.(0) — Ap(0) in LZ
— Vt>0: A(t) — Ay(0) and FI7A(t)) — FarL(Ao(t)).

We now concentrate on the case 0 < |y| < v, where we need stronger assumptions on
the convergence of the initial conditions, namely boundedness of the initial energies. This
is still weaker than the wellpreparedness of the initial conditions as discussed in [Miel4].

Theorem 4.7 (Evolutionary I'-convergence for v # 0) Assume 0 < |y| < v and
consider solutions A. : [0,T] — L& for the SHE given by (L4, F.,R.) and a solution Ag
for the associated GLe given by (L%, For, Rar). Then, we have

A.(0) — Ag(0) in L and sup F.(A.(0)) < oo

0<e<1
= Vt>0: A(t) = A(t) in Hg and F.(A.(t)) — For(A(t)).

By the equi-coercivity (2.5) of F. the initial data have to satisfy A.(0) — A(0) in Hg.
Proof: We denote by F' < oo the supremum of F.(A.(0)). Using the decay of the energy
along solutions we find F.(A.(t)) < F for all ¢t and € > 0. By the equi-coercivity (2.5) we
find an Ry > 0 such that [|A.(¢)||g: < Ry. For later purposes we set Ry = 2Ry + ¢;|v[4R2,
cf. the estimate in (4.2b). Setting A, := Ag, with Ag from Proposition 4.5 and using the
discussion at the end of Section 3, we obtain the IEVI

v0§8<t§TVB€BR22

M IR (AL(t)—B) — Ro(Ac(s)—B) < My, (t — 8)(Fo(B) — F-(A(1))), (4.5)
where By is the ball of radius R in Hg. The solutions satisfy the a priori estimate

||A6HH1([0,T];L%) <C and ”AEHLOO([O,T];H@ < Ry,

where in contrast to (3.11) we can use ty = 0, because of F.(A.(0)) < F. Thus, for a
subsequence (not relabeled) we have pointwise convergence A.(t) — A(t) in Hg for all
t € [0,T]. To pass to the limit ¢ — 0 in (4.5), we choose any test state Be Bsr, and
use a recovery sequence B; ~ Bin H such that .7:5(3\8) — fGL(B\) and B\E € Bg,,
where we use the I'-convergence established in Corollary 4.3 and the norm bound for
the recovery sequences stated in (4.2b). Exploiting the continuous convergence of the
dissipation potentials R., see Lemma 2.1, we obtain the limit expression

VO<s<t<TVDBEe By, :
MEIRGL(A(t)—B) — Ran(A(s)—B) < My (t — s)(Fan(B) — Fan(A®t)).  (4.6)

By the arguments of Section 3 we know that this implies that A is a solution of the
GLe. Since this solution is unique, we conclude that the whole family A. converges to the
unique solution with the initial condition Ay(0) = lim._o A-(0). n
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5 Discussion

We believe that the results for the case v = 0 are optimal in the sense that the conditions
on the convergence A.(0) — A(0) in L2 of the initial conditions are most natural.

The situation for 0 < |y| < 7o is less satisfactory. It is unclear to what respect the
stronger conditions A.(0) — A(0) in H{ and F.(A.(0)) < F < oo are really necessary.
To weaken these conditions it would be good to generalize the uniform A-convexity result
in Proposition 4.5 to balls in L2 rather than balls in Hg.

Of course, for both cases it would be easily possible to improve the converge for ¢t > 0 to
higher Sobolev norms. For this one could use the explicit form of the parabolic equations
and invoke higher regularity for SHe and GLe. Another aspect concerns quantitative error
bounds as they are obtained in the classical justification results [vHa91, KSM92, Sch94].
Our present theory is not adapted for such results, since first we would need to turn the
['-convergence of the functionals F. to its limit Fqp, into quantitative statements. For
this, one needs to introduce suitable recovery operators, see the folding and unfolding
operators in [Hanll, MRT13].

We kept the restriction |y| < 7o throughout this work, but believe that it can be
avoided without too much effort. In particular, this condition guarantees the global ex-
istence of solutions. For 4% > 27/38 the GLe has blowup and the associated justification
results need to be restricted to time intervals on which the solutions stay smooth. Such
a restriction can easily be achieved by modifying the SHe and the GLe outside of large
balls by adding a suitable stabilizing term to the corresponding energies. The state-
ment concerning the original equations is then restricted to time intervals on which the
modifications are not yet seen.

A major advantage of our approach based on evolutionary I'-convergence is that we can
easily add perturbations to the problems and derive their effect on the limiting amplitude
equation. For instance, we can study the perturbed SHe

1
U= ——2(1+528§)2u + pu + T2 — By he(x) 4+ ac(x)u, u(t,z+0) =u(t,z), (5.1)
5 5
where a. and h. are suitable coefficients depending on ¢ and z, e.g. in the form a.(z) =
e *A(x, %x) Thus, these terms may include localized or fast oscillating terms.
The perturbed SHe has still a gradient structure (L3, FZHrert 1| ||2), ie. it can be
written in the form @ = —DFSMPert(y). The transformation A = ¥ u or u = Re(AE.)

leads to the energy functional

FPr(A) = Fo(A) — P-(A)  with P.(A) = /S h.Re(AE.) + %(Re(AEE))Q dz.

If the functionals P. continuously converge in the weak topology of Hi to Py (i.e. A — A

in HL implies P.(A.) — Po(A)), then FPert L For — P, and the same convergence theory
as above applies. Note that h. does not contribute to the A-convexity, hence a. < ¢ is
sufficient to make P. uniformly A-convex. As an example we consider

he(z) = 24 (Lz) + by(z) cos (1z) and ac(z) = ba(x) cos (2x)

with ¢ € C2(R) and b; € L. Then, we find

ba

Po(A) = zA(0) + ZA(0) + /S b (A+A) + 0

1 (A2+Z2) dx with z = / Y(y)e dy € C,
R
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and are led to a macroscopic perturbed GLe of the form

=
v}
—~

S
~

A =4A,, + pA — p|APA + 4260(x) + by () +

=l

where &y denotes the Dirac distribution located at x = 0.

A An interpolation inequality

The aim of this section is to prove the following interpolation inequality that is used in
Proposition 2.2 to show the equi-coercivity of the energy ]:EH. Recall S := Sy = R/9,7.

Theorem A.1 There exists kg > 0 such that

2
Vu e H*(S)VN €N: (/ugdx) < /ﬁg/(u—l—ﬁu”)de /u4dx. (A1)
S S S

The inequality is not a classical interpolation inequality, because on the left-hand side we
do not have the norm in L3. It is really essential that we consider the power u® having
negative and positive values. In fact, for the function u(z) = cos(Nx) we easily see that
both sides vanish.

Proof: We use the linear operator ¥ : L?(S; R) — L2(S; C) defined via

a=VYu=1uy+ 2 Z u,E"  where u(x Z upEF.

n=1 keN

Note that ¥ can be written in terms of the Hilbert transform Hu = >,  sign(k)u,EF,
namely U = [ + H. It is well-known (cf. [McE88]) that H : L*(S;C) — L4(S,C) is
bounded, namely ||Huls < (14+v/2)|u/ls. Hence there exists Cy < 24+/2 < 3.5 such that

Vu € LAS;R) : || Vully < Cyllul|s (A.2)

We transform the desired interpolation inequality (A.1) via A = Uyu = (Vu)Ey
where Ey(z) = E¥(z) = ¢™*. The range of ¥y is given by

Xy ::{A:ZakEk|ak:0f0r k<—N, a_y € R} CL(S;C).
keZ

The inverse mapping is v = Re(AEy) and for u = ), . uxE" we have

o0

A=Vyu= Z a,E" with a_y = ug and a,, = 2u,,y for n > —N.
n=—N

Hence a direct computation using u_j, = uy gives

/(u+$u ) de = QWZ |Uk|2 = 2m|uo|* + 47TZ 2>2|“k|2
s

keZ keN

1
=2rla_y|*+7 Y (1 — 0,2 > Z |an|2 ol A2
n>—N n>— ]V

(A.3)
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To deal with the cubic term we use u®> = (Re(AEy)? and obtain
1 — 1 —
/Su3 dr =2 /S (AEy + AEy)’ dz = 7 Re (/SA3E;°’V + 3A%AEy dx)

For the first term we can use the fact that A = a_nEx + > a,E"™ and find

n>—N

1
/A?’E?V dr =2ma® y  with a_y = — /A(m)EN(x) dz.
s 21 Js

Doing either a simple estimate for £y or integration by parts gives

a-x] < £ AL < g llAl and Jaos] < g AT < wbll Al

2r

The second term can be estimated by integration by parts as well:
_ — 3
‘/AQAEN dx‘ - )/(zyAPA' + AZA) LEy dx( < AL
s S
Combining the last two estimates we find

5 /
| [ da] < AR

Combining this with (A.2) and (A.3) we obtain the desired estimate (A.1) with ko =
5C2 /2 < 5(4+3/2) ~ 41,2132, =

Remark A.2 We have k3 > 19/3 and conjecture equality. The estimate follows choosing
u(z) = cos(Nz) + 9e + e cos(2Nx) in the limit e = 1/N — 0. More precisely, we find

/u3 dz = 2719 + O(%), /u4 dz =37 + O(&?), /(u—i—#u”)2 dr = 97192,
S S S

Remark A.3 Minimizing the right-hand side of (A.1) with respect to N we obtain the
slightly stronger estimate

2
Vue HA(S):  [lu[3( fyu? do)” < wdflullg (llul 113 — llv']l3).

This estimate implies (A.1) with o < k1. We conjecture the optimal value k¥ = 19/3.
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