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Abstract

We study a model for induction hardening of steel. The related differential system consists of
a time domain vector potential formulation of the Maxwell’s equations coupled with an internal
energy balance and an ODE for the volume fraction of austenite, the high temperature phase in
steel. We first solve the initial boundary value problem associated by means of a Schauder fixed
point argument coupled with suitable a-priori estimates and regularity results. Moreover, we prove
a stability estimate entailing, in particular, uniqueness of solutions for our Cauchy problem. We
conclude with some finite element simulations for the coupled system.

1 Introduction

In induction hardening a coil that is connected to an alternating current source generates a periodi-
cally changing electro-magnetic field. The temporal changing magnetic flux induces a current in the
workpiece that is enclosed by the induction coil. Due to the resistance of the workpiece, some part
of the power is transformed into eddy current losses that result in Joule heating. The latter leads to a
change of microstructure to the high temperature phase in steel called austenite. After switching off
the current and possibly a short holding time the workpiece is cooled rapidly and the austenite layer
produced upon heating is transformed to another phase called martensite, responsible for the desired
hardening effect.

Induction heat treatments can easily be integrated into a process chain. Moreover, they are
energy efficient since the heat is generated directly in the workpiece. That is why induction hardening
is still the most important surface treatment technology.

Due to the skin effect, the eddy currents tend to distribute in a small surface layer. The pene-
tration depth of these eddy currents depends on the material and essentially on the frequency. There-
fore, it is difficult to obtain a uniform contour hardened zone for complex workpiece geometries such as
gears using a current with only one frequency. If for example, a high frequency (HF) is applied, then the
penetration depth is small and it is possible to harden only the tip of the gear. With a medium frequency
(MF) it is possible to heat the root of the gear, but not the tip. With a single frequency, a hardening of
the complete tooth can only be achieved by increasing the heating time. But then, the complete tooth
is heated beyond the austenitization temperature, which results in a complete martensitic structure of
the tooth after quenching, which is not desirable, since this will foster fatigue effects.

Recently, a new approach has been developed which amounts to supplying medium and high
frequency powers simultaneously on the induction coil. This concept is called multifrequency induction
hardening, see also Figure 1.

The inductor current consists of a medium frequency fundamental oscillation superimposed by
a high frequency oscillation. The amplitudes of both frequencies are independently controllable, which
allows separate regulation of the respective shares of the output power of both frequencies according
to the requirements of the workpiece. This provides the ability to control the depth of hardening at the
root and the tip of the tooth individually [19].

The main building blocks for a mathematical model of multifrequency hardening are an eddy
current formulation of the Maxwell equations in the time domain, coupled to the balance of internal
energy to describe the temperature evolution, and a model for the evolution of the high temperature
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Figure 1: The effect of medium-, high- and multifrequency induction heating. MF (left): only the root of
the gear is heated, HF (middle): only the tip of the gear is heated, MF+HF (right): tip and root of the
gear are heated.

phase austenite. Since the electric conductivity and the magnetic permeability may depend on tem-
perature and/or the phase fractions and the Joule effect in the time domain is modelled by the square
of the time derivative of the magnetic vector potential we are faced with a strongly coupled nonlinear
system of evolution equations.

In two recent papers the simpler frequency domain situation of Joule heating has been studied.
In [8] the Boccardo-Galluet approach has been used to prove existence of a weak solution, while in
[4] new regularity results established in [3] have been used to prove existence and stability in the
frequency domain setting. In [11, 12] the eddy current model has been considered in the time domain.
In the former the existence of a weak solution to the fully coupled model has been proven, in the latter
also stability results are established, but only for a model with one-sided coupling in which the electric
conductivity and permeability are assumed to be constant.

The main novelty of the present paper is an existence and stability result for the strongly cou-
pled time domain eddy current and Joule heating system. The paper is organised as follows. In the
next section we derive the model equations and show that it complies with the second law of thermo-
dynamics in form of the Clausius-Duhem inequality. In Section 3 we formulate the main mathematical
results, the proofs of which are given in Section 4. The last section is devoted to presenting some
results of numerical simulations for the coupled system based on a two time step approach with se-
quential decoupling of the evolution equations.

2 The model

We restrict to the following idealized geometric setting (cf. the following Figure 2). Let D ∈ R3 be a
domain containing the inductor coil Ω and the workpiece Σ. Assume that Ω ⊂ D, Σ ⊂ D, Ω∩Σ = ∅
and ∂Ω, ∂Σ, ∂D are of class C1,1. Call G = Ω ∪Σ the set of conductors and define the space-time
domain as Q = Σ× (0, T ).

Following the model derivation of [11], in the eddy current problems we neglect displacement
currents and so we get the following Maxwell’s equations (cf. [2]) in D × (0, T ):

curlH = J,(2.1)

curlE = −Bt,(2.2)

divB = 0 ,(2.3)

where E is the electric field, B the magnetic induction, H the magnetic field, J the spatial current
density.

We include phase transitions by describing the evolution of the volume fraction of austenite z
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Figure 2: Domain D consisting of the inductor Ω, the workpiece Σ and the surrounding air.

with the following problem derived in [15] and [6]:

zt(t) =
(zeq(ϑ)− z)+

τ(ϑ)
in Q ,(2.4)

z(0) = 0 in Σ .

We will make precise the assumption on τ and zeq in the following section, however note that zeq ∈
[0, 1] is an equilibrium fraction of austenite, τ(ϑ) a time constant, and by (·)+ we denote the positive
part function.

Then, we assume the Ohm’s law and a linear relation between the magnetic induction and the
magnetic field in D × (0, T ):

J = σE ,(2.5)

B = µH ,

where the electrical conductivity σ and the magnetic permeability µ (sufficiently regular and bounded
from below and above) may depend both on the spatial variables and also on the phase parameter z
and on the absolute temperature ϑ:

(2.6) σ(x, z, ϑ) =


0, x ∈ D \G ,
σw(z, ϑ), x ∈ Σ ,

σi, x ∈ Ω ,

with its derivative with respect to the z-variable

(2.7) σz(x, z, ϑ) =

{
0, x ∈ D \ Σ ,

σ′w(z, ϑ), x ∈ Σ ,

and

(2.8) µ(x, z, ϑ) =


µ0, x ∈ D \G ,
µw(z, ϑ), x ∈ Σ ,

µi, x ∈ Ω ,

with

(2.9) µz(x, z, ϑ) =

{
0, x ∈ D \ Σ ,

µ′w(z, ϑ), x ∈ Σ .
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In view of (2.3), we introduce the magnetic vector potential A such that

(2.10) B = curlA in D

and, since A is not uniquely defined, we impose the Coulomb gauge

divA = 0 in D .

Using (2.2) and (2.10), we define the scalar potential φ by

(2.11) E + At = −∇φ in D × (0, T ) .

Using (2.5), we then obtain the following form for the total current density

(2.12) J = −σAt − σ∇φ in D × (0, T ) ,

which, together with (2.10) and (2.1), gives

(2.13) σAt + curl

(
1

µ
curlA

)
= Jsource in D × (0, T ) ,

where, for a given coil geometry (here a torus with rectangular cross-section), the source current
density

(2.14) Jsource = −σ∇φ

can be precomputed analytically and it can be used as control for optimization, i.e., it can be taken of
the form Jsource = u(t)J0, where J0 is the spatial current density prescribed in the induction coil Ω

(2.15) J0(x) =

{
Ji(x), x ∈ Ω

0, x ∈ D \ Ω ,

and u = u(t) denotes a time-dependent control on [0, T ]. Assuming to have as constant density
ρ = 1 (for simplicity), the internal energy balance in Q results as

(2.16) et + div q = JE = σ|At +∇φ|2 = σ|At|2 ,

where e denotes the internal energy of the system and q the heat flux, which, accordingly to the
standard Fourier law is assumed as follows

(2.17) q = −κ(ϑ)∇ϑ, κ > 0 .

In case κ(ϑ) = κ > 0 constant, we get the standard Fourier law. From the Helmholtz relation
e = ψ + ϑs, where ψ = ψ(ϑ, z) denotes the free energy of the system, (2.16) and (2.17), we have
that the Clausius-Duhem inequality

ϑ
(
st + div

( q
ϑ

))
= et − ψϑϑt − ψzzt − ϑts−

q

ϑ
∇ϑ+ div q(2.18)

= et + div q − (ψϑ + s)ϑt − ψzzt +
κ|∇ϑ|2

ϑ

= σ|At|2 − (ψϑ + s)ϑt − ψzzt +
κ|∇ϑ|2

ϑ
≥ 0
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is satisfied e.g. if we assume the standard relations ψϑ + s = 0 and Lτ(ϑ)zt = −ψz, and hence
(cf.(2.4)) ψz = −L(zeq(ϑ)− z)+, for some positive constant L > 0. Then, using the definition of the
specific heat cv = ϑsϑ (cf., e.g., [16]), we get

et = cvϑt + (ψz + ϑsz)zt = cvϑt + F(ϑ, z)zt ,

where we have denoted for simplicity by

(2.19) F(ϑ, z) = ψz − ϑ(ψz)ϑ = −L(zeq(ϑ)− z)+ + Lϑz′eq(ϑ)H(zeq(ϑ)− z) .

HereH represents the Heaviside function. Hence, the internal energy balance (2.16) can be rewritten
as

(2.20) cvϑt + div q = σ|At|2 −F(ϑ, z)zt in Q.

Finally, we couple the system (2.4), (2.13), (2.14), (2.17), (2.19–2.20) with suitable boundary condi-
tions. We assume that the tangential component of A vanishes on ∂D, i.e.

(2.21) n× A = 0 on ∂D × (0, T ) ,

where n denotes the outward unit normal vector to ∂D; for the absolute temperature we neglect the
possible radiative heat transfer between the inductor and the workpiece assuming

(2.22) κ
∂ϑ

∂ν
+ ηϑ = g on ∂Σ× (0, T ) ,

where ν denotes the outward unit normal vector to ∂Σ, η stands for an heat transfer coefficient and g
is a given boundary source.

In the following sections we will study the well-posedness for the Cauchy system associated to
a suitable variational formulation of (2.4), (2.13), (2.14), (2.17), (2.19–2.22).

3 Well-posedness results

In this section we introduce the functional framework, the main notation, and the assumptions on
the data in order to deal with system (2.4), (2.13), (2.14), (2.17), (2.19–2.22). Moreover, we state
here our main results concerning well-posedness and regularity for a suitable weak formulation of
the corresponding Cauchy problem. The proofs of these results are given in Section 4. For analytical
reasons our analysis is restricted to the case σ = σ(x, z), µ = µ(x, z) in (2.6) and (2.8), that is we
drop the explicit temperature dependence. Since the phase fraction grows with growing temperature
we still maintain the effect of temperature change on the parameter values. Moreover, we consider the
standard Fourier law with κ positive constant in (2.17).

3.1 Notation and preliminaries

We first recall the definitions of generalized curl and div operators as well as the related embedding
results we need in the sequel. Referring to the Figure 2, let D ⊆ R3 be a bounded domain. Assume
that Ω ⊂ D, Σ ⊂ D, Ω ∩ Σ = ∅ and ∂Ω, ∂Σ, ∂D are of class C1,1. Define G = Ω ∪ Σ and the
space-time domain Q = Σ× (0, T ). Let us denote with the symbol W the vector-valued counterpart
of the Banach spaceW . Let us use the symbol Lq(U×(0, t)) for the spaceLq(0, t; Lq(U)), for every
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q ∈ [1,+∞), t ∈ (0, T ], U bounded and C1,1 domain in R3. Let p ∈ (1,+∞) and ψ ∈ Lp(D),
then, we write curlψ ∈ Lp(D) if there exists ξ ∈ Lp(D) such that∫

D

ψ curlφdx =

∫
D

ξφdx ,

for all φ ∈ C∞c (D). We define curlψ := ξ, as the uniquely determined vector ξ. Analogously, we
write divψ ∈ Lp(D) if there exists ζ ∈ Lp(D) such that∫

D

ψ · ∇ηdx = −
∫
D

ζηdx ,

for all η ∈ C∞c (D). We define divψ := ζ , as the uniquely determined vector ζ . Then, we introduce
the Banach spaces (with the graph norms) Lp

curl(D) = {ψ ∈ Lp(D) : curlψ ∈ Lp(D)} and
Lp
div(D) = {ψ ∈ Lp(D) : divψ ∈ Lp(D)}. For ψ ∈ L2

curl(D) we define the the linear bounded
trace operator γτ (ψ) using the well-known Green’s formula (cf., e.g. [5])

(3.1)

∫
D

ψ curlφdx−
∫
D

curlψ · φdx = −
∫
∂D

(n× ψ) · φds =: 〈γτ (ψ), φ〉 ,

for all φ ∈ H1(D), where (with an abuse of notation) the integral over ∂D has to be understood
as the duality between H−1/2(∂D) and H1/2(∂D) and n denotes the outward unit normal vector to
∂D. Similarly, for ψ ∈ L2

div(D) we introduce the linear bounded trace operator γn(ψ) by the Green’s
formula

(3.2)

∫
D

ψ · ∇φdx+

∫
D

divψ · φdx =

∫
∂D

(n · ψ)φds =: 〈γn(ψ), φ〉 ,

for all φ ∈ H1(D), where (with an abuse of notation) the integral over ∂D has to be understood as
the duality between H−1/2(∂D) and H1/2(∂D). Finally, we introduce the Hilbert space

X = {v ∈ L2
curl(D) : div v = 0 and γτ (v) = 0} .

Notice that, since ∂D ∈ C1,1, then the space X, equipped with the norm

‖v‖X = ‖ curl v‖L2(D) ,

is a closed subspace of H1(D). Moreover, let us notice that, from the Green’s formula it follows that:
if A ∈ X, then γn(A) = 0. Indeed, if we denote by w = curlA ∈ L2(D), then divw = 0
and γn(w) ∈ H−1/2(∂D). Moreover the following Green’s formulas hold true for every test function
φ ∈ H1(D):

〈γn(w), φ〉 =

∫
D

(divwφ+ w · ∇φ) dx =

∫
D

curlA · ∇φdx(3.3)

=

∫
D

curlA · ∇φ−
∫
D

A · curl∇φdx

=〈γτ (A),∇φ〉 .

Hence, if A ∈ X, then γn(curlA) = 0 (cf., e.g., [7, Chapter 2]).
We recall here some results which will be useful in the sequel of the paper. The first one is

an embedding result which is a consequence of [9, Thm. 3.3]. The complete proof of a more general
result can be found in [3, Prop. 2.2, p. 7].
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Lemma 3.1. Let U ⊂ R3 be a bounded C1 domain, then the space

Wp,α(U) = {u ∈ Lp
curl(U) ∩ Lp

div(U) : γn(u) ∈ Lα(∂U)}

continuously embeds in the space Lξ(U) for ξ := min{3α
2
, p∗}, where p∗ is the Sobolev embedding

exponent

p∗ :=


3p

3−p if 1 ≤ p < 3 ,

s ∈ [1,+∞) if p = 3 ,

+∞ if p > 3 .

Moreover, we recall the following interpolation inequality, holding true for p, q, r ∈ [1,+∞],
with p < r < q, 1/r = α/p+ (1− α)/q, α ∈ (0, 1), and v ∈ Lq(D):

(3.4) ‖v‖Lr(D) ≤ ‖v‖αLp(D)‖v‖1−α
Lq(D) .

3.2 Hypotheses

We list here our basic assumptions on the functions σ, µ, J0, u, τ , and zeq in (2.13), (2.4), and (2.20),
where we take the constants cv, κ, η, and L equal to 1, for simplicity.

Hypothesis 3.2. Assume that

(i) σ(x, z) : D × [0, 1] → R is a continuous and Lipschitz continuous (w.r.t. z for almost all
x ∈ D) function defined in (2.6) and (2.7), where σw ∈ C1,1([0, 1]), σi > 0, constant.
Assume moreover that there exists two constants 0 < σ ≤ σ such that

σ ≤ σ(x, z) ≤ σ in D × [0, 1] ;

(ii) µ(x, z) : D × [0, 1] → R is a continuous and Lipschitz continuous (w.r.t. z for almost all
x ∈ D) function defined in (2.8), (2.9), where µw ∈ C1,1([0, 1]), µi, µ0 ∈ R+. Assume
moreover that there exists two constants 0 < µ ≤ µ such that

µ ≤ µ(x, z) ≤ µ in D × [0, 1] ;

(iii) u ∈ H1(0, T ), J0 : D → R3 is an L2
curl(D)-function defined in (2.15);

(iv) τ, zeq ∈ C2(R) and there exists positive constants 0 < τ∗ ≤ τ ∗ and M > 0 such that

τ∗ ≤ τ(ϑ) ≤ τ ∗, 0 ≤ zeq(ϑ) ≤ 1 for all ϑ ∈ R, ‖τ‖C2(R) ≤M, ‖zeq‖C2(R) ≤M ,

| − zeq(ϑ) + ϑz′eq(ϑ)| ≤M for all ϑ ∈ R, |ϑz′′eq(ϑ)| ≤M ;

(v) g ∈ L∞(0, T ;L∞(∂Σ));

(vi) A0 ∈ X ∩H3(D), ϑ0 ∈ W 2,5/3(Σ).

Remark 3.3. We will use in the following weak formulation (3.10) of the internal energy balance (2.20)
the notation f(ϑ, z) = −L(zeq(ϑ)−z−ϑz′eq(ϑ)). Indeed, using (2.4) we can rewrite−F(ϑ, z)zt =
−f(ϑ, z)zt for z ≥ zeq(ϑ) and −F(ϑ, z)zt = 0 = −f(ϑ, z)zt for z < zeq(ϑ). Notice moreover
that Hyp. 3.2 (iv) implies that

(3.5) f ∈ C0,1(R× [0, 1]), |f(ϑ, z)| ≤ Cf ∀(ϑ, z) ∈ R× [0, 1] ,

for some positive constant Cf depending on M . Finally, let us observe that the assumption (3.5) are
the only ones we need in order to get our next results, i.e., we do not need the explicit form (2.19) of f
which was assumed in the previous section in order to comply with Thermodynamics. However, other
thermodynamically-compatible choices are possible.
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3.3 Weak formulation and main theorem.

We are ready now to state the weak formulation of the Cauchy problem (2.4), (2.13), (2.14), (2.17),
(2.19–2.22).

Problem 3.4. Find a triple (A, ϑ, z) with the regularity properties

A ∈ H2(0, T ; L2(D)) ∩W 1,∞(0, T ; X), curlA ∈ L∞(0, T ; L6(D)) ,(3.6)

ϑ ∈ W 1,5/3(0, T ;L5/3(Σ)) ∩ L5/3(0, T ;W 2,5/3(Σ)) ∩ L2(0, T ;H1(Σ)) ∩ L∞(Q) ,(3.7)

z ∈ W 1,∞(0, T ;W 1,∞(Σ)), 0 ≤ z < 1 a.e. in Q ,(3.8)

solving the following system∫
G

σ(x, z)At · vdx+

∫
D

1

µ(x, z)
curlA · curl vdx =

∫
Ω

J0(x)u(t) · vdx(3.9)

for all v ∈ X, a.e. in (0, T ) ,

ϑt −∆ϑ = −f(ϑ, z)zt + σ(x, z)|At|2 a.e. in Q ,(3.10)

zt =
1

τ(ϑ)
(zeq(ϑ)− z)+ a.e. in Q ,(3.11)

∂ϑ

∂ν
+ ϑ = g a.e. on ∂Σ× (0, T ) ,(3.12)

A(0) = A0, a.e. in D, ϑ(0) = ϑ0, z(0) = 0 a.e. in Σ .(3.13)

and satisfying the following estimate

‖A‖H2(0,T ;L2(D))∩W 1,∞(0,T ;X) + ‖ curlA‖L∞(0,T ;L6(D))(3.14)

+ ‖ϑ‖W 1,5/3(0,T ;L5/3(Σ))∩L5/3(0,T ;W 2,5/3(Σ))∩L2(0,T ;H1(Σ))∩L∞(Q)

+ ‖z‖W 1,∞(0,T ;W 1,∞ (Σ)) ≤ S

where the constant S depends on the data of the problem.

We are now ready to state our main result.

Theorem 3.5. Let Hypothesis 3.2 hold true. Then, there exists a unique solution to Problem 3.4.
Moreover, if we denote by (Ai, ϑi, zi) (i = 1, 2) two triples of solutions corresponding to data
(A0,i, ϑ0,i, ui), then, there exists a positive constant C = C(S) (cf. estimate (3.14)) such that the
following stability estimate holds true

‖(A1 − A2)(t)‖2
L2(D) + ‖ curl(A1 − A2)‖2

L2(D×(0,T ))(3.15)

+ ‖∂t(A1 − A2)(t)‖2
L2(D) + ‖ curl(∂t(A1 − A2))‖2

L2(D×(0,T ))

+ ‖(ϑ1 − ϑ2)(t)‖2
L2(Σ) + ‖ϑ1 − ϑ2‖2

L2(0,T ;H1(Σ))

+ ‖(z1 − z2)(t)‖2
H1(Σ) + ‖∂t(z1 − z2)‖2

L2(0,T ;H1(Σ))

≤ C
(
‖A0,1 − A0,2‖2

X + ‖(∂t(A1 − A2))(0)‖2
L2(D) + ‖ϑ0,1 − ϑ0,2‖2

L2(Σ)

+‖u1J0 − u2J0‖2
L2(0,T ) + ‖u′1J0 − u′2J0‖2

L2(0,T )

)
for all t ∈ [0, T ] .
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4 Proof of Theorem 3.5

In this Section we prove Theorem 3.5 in three steps: first we prove local existence of solutions by
means of Schauder fixed point argument. Secondly we prove the global a-priori estimates necessary
in order to extend the solution to the whole time interval [0, T ]. Finally, we prove the stability estimate
(3.15) entailing, in particular, uniqueness of solution to Problem 3.4.

4.1 Existence of a (local in time) solution

We start the proof by solving (locally in time) Problem 3.4 by means of a standard fixed point argument
of Schauder type.

For a fixed T0 ∈ (0, T ] (which shall be specified later on) and a fixed constant R > 0, let us
introduce the space

O = {ϑ ∈ L2(0, T0;L2(Σ)) : ‖ϑ‖L2(0,T0;L2(Σ)) ≤ R} .

In the following, we shall construct an operator T , which maps O into itself for a suitable time
0 < T0 ≤ T , in such a way that any fixed point of T yields a solution to Problem 3.4. We shall prove
that T is compact and continuous w.r.t. the topology of L2(0, T0;L2(Σ)). Hence, by the Schauder
theorem T admits (at least) a fixed point ϑ in O, whence the existence of a solution (A, ϑ, z) to the
Cauchy Problem 3.4 on the interval [0, T0]. Finally, the (local) uniqueness result will be a consequence
of the stability estimate (4.23) below.

Definition of the fixed point map T . We construct the operator T in this way: given ϑ̄ ∈ O, the opera-
tor

T : O→ L5/3(0, T ;W 2,5/3(Σ)) ∩W 1,5/3(0, T ;L5/3(Σ))

T : ϑ̄ 7→ ϑ where ϑ solves

ϑt −∆ϑ = −f(ϑ̄, z)zt + σ(x, z)|At|2 a.e. in Q ,(4.1)

∂ϑ

∂ν
+ ϑ = g a.e. on ∂Σ× (0, T ) ,(4.2)

ϑ(0) = ϑ0, a.e. in Σ ,(4.3)

and z ∈ W 1,∞(0, T ;L∞(Σ)), A ∈ H1(0, T ; X) ∩W 1,∞(0, T ; L2(D)) solve

zt =
1

τ(ϑ̄)

(
zeq(ϑ̄)− z

)+
a.e. in Q, z(0) = 0 a.e. in Σ ,(4.4) ∫

G

σ(x, z)At · vdx+

∫
D

1

µ(x, z)
curlA · curl vdx =

∫
Ω

J0(x)u(t) · vdx(4.5)

for all v ∈ X, a.e. in (0, T ), A(0) = A0, a.e. in D .

T maps O in itself. Notice that, given ϑ̄ ∈ O, [12, Lemma 2.5, p. 1093] ensures that there exists a
unique solution z ∈ W 1,∞(0, T0;L∞(Σ)) to (4.4) such that

‖z‖W 1,∞(0,T0;L∞(Σ)) ≤ C1 ,

with C1 independent of ϑ̄, and 0 ≤ z < 1 a.e. in Σ.
Then, given z ∈ W 1,∞(0, T0;L∞(Σ)), it is possible to find a unique solution A ∈ H1(0, T0;

X) ∩W 1,∞(0, T0; L2(D)) to (4.5) by means of a standard implicit time-discretization scheme (cf.,
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e.g., the monograph [13]). The basic estimates are the discrete versions of the ones which follows
from taking v = At in (4.5) (cf. also the following Second estimate) and taking the time derivative of
(4.5) with v = At (cf. also the following and Third estimate). These give the bound

‖A‖H1(0,T0;X)∩W 1,∞(0,T0;L2(D)) ≤ C2 ,

with C2 independent of ϑ̄. Then, using the fact that At ∈ L∞(0, T0; L2(D)), At ∈ L2(0, T0; X) ↪→
L2(0, T0; L6(D)) (due to the continuous embedding of H1(D) into L6(D)) and employing the inter-
polation inequality (3.4) with q = 6, p = 2 and r = 10/3, we get At ∈ L10/3(D × (0, T0)). This
implies that |At|2 ∈ L5/3(D × (0, T0)) on the right hand side of (4.1) and

‖At‖L10/3(D×(0,T0)) ≤ C3 .

Applying now the standard maximal regularity results in Lp-spaces (cf., e.g., [18, Thm. 3.1, Prop. 3.3])
to (4.1–4.3), and Hyp. 3.2 (iv) (cf. also Remark 3.3), we can conclude that there exists a unique
ϑ ∈ L5/3(0, T0;W 2,5/3(Σ)) ∩W 1,5/3(0, T0;L5/3(Σ)) solving (4.1–4.3) and such that

‖ϑ‖L5/3(0,T0;W 2,5/3(Σ))∩W 1,5/3(0,T0;L5/3(Σ)) ≤ C4 ,

with C4 independent of ϑ̄. Moreover, testing equation (4.1) by ϑ, we get

‖ϑ‖L2(0,T0;H1(Σ))∩L∞(0,T0;L2(Σ)) ≤ C5 ,

with C5 independent of ϑ̄. This implies in particular

‖ϑ‖L2(0,t;L2(Σ)) ≤ t1/2‖ϑ‖L∞(0,T0;L2(Σ)) ≤ t1/2C5 for every t ∈ [0, T0) .

Then, if we choose T0 such that T 1/2
0 C5 ≤ R the map T maps O into itself.

T is compact. The map T is compact due to the compact embedding

L5/3(0, T0;W 2,5/3(Σ) ∩ L2(0, T0;H1(Σ)) ∩W 1,5/3(0, T0;L5/3(Σ)) ↪→↪→ L2(0, T0;L2(Σ))

(cf. [20, Thm. 4, Cor. 5]).

T is continuous. The continuity of T follows from these facts:

1. From [12, Lemma 2.5] we have that, if ϑ̄k → ϑ strongly in L2(0, T0;L2(Σ)), for k → +∞,
then zk → z strongly in W 1,p(0, T0;Lp(Σ)) for every p ∈ [1,+∞), where zk (and z) are the
solutions to (4.4) corresponding to ϑ̄k (and ϑ̄), respectively.

2. From the compact embedding ofH1(0, T0; X)∩W 1,∞(0, T0; L2(D)) into Lq(D×(0, T0)) (for
q ∈ [1, 10/3)), we get that ∂tAk → ∂tA strongly in Lq(D × (0, T0)) for every q ∈ [1, 10/3),
and curlAk → curlA weakly in H1(0, T0; L2(D)) (at least for a subsequence of k), where
Ak are the solutions to (4.5) corresponding to zk. We need now to show that the limit A is
the solution of (4.5) corresponding to z. Then, the convergence will hold true for the whole
sequence Ak. Indeed, from the strong convergence of zk and using Hyp. (3.2) (i), (ii), we get
that σ(x, zk) → σ(x, z) and µ(x, zk) → µ(x, z) strongly in Lp(0, T0;Lp(Σ)) for every
p ∈ [1,+∞). This implies that we can pass to the limit for k → +∞ and the limit A solves
(4.5).
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3. Finally, we can come back to equation (4.1) and we have that |∂tAk|2 → |∂tA|2 in Ls(Σ ×
(0, T0)) for some s ∈ [1, 5/4) because ∂tAk → ∂tA strongly in Lq(D×(0, T0)) for every q ∈
[1, 10/3) and ∂tAk, ∂tA are bounded (uniformly in k) in L2(D × (0, T0)). This fact, together
with the strong convergence ∂tzk → ∂tz strongly in Lp(0, T0;Lp(Σ)) for every p ∈ [1,+∞),
f(ϑ̄k, zk) → f(ϑ̄, z) strongly in L2(0, T0;L2(Σ)) (cf. Hyp. 3.2 (iv) and Remark 3.3), imply
that also ϑk → ϑ strongly in L2(Σ × (0, T0)), for k → +∞, where ϑk (and ϑ) are are the
solutions to (4.1) corresponding to zk, Ak (and z, A), respectively.

Hence, by the Schauder theorem T admits (at least) a fixed point ϑ in O, whence the existence of a
solution (A, ϑ, z) to the Cauchy Problem 3.4 on the interval [0, T0].

4.2 Global a-priori estimates

In order to extend the solution to the whole time interval [0, T ] we need to prove suitable global
(independent of T0) a-priori estimates. In what follows the positive constants are denoted by the same
symbol C even if they are different from line to line. They may depend on σ, µ, τ , zeq, A0, ϑ0, g, u,
J0, and T , but not on T0.

First estimate. First of all, we can apply [12, Lemma 2.5, p. 1093] to the equation (3.11) entailing the
following estimate:

(4.6) ‖z‖W 1,∞(0,T0;L∞(Σ)) ≤ C , 0 ≤ z(x, t) < 1 a.e. in Q .

Second estimate. Take t ∈ (0, T0) and v = At in (3.9). Using Hyp 3.2 (i), (ii) (cf. also (2.9)), we get
(using the symbol s for the time variable and x for the space variable inside the integrals, but making
the dependence on x and s explicit only when it is necessary):

σ

∫ t

0

∫
G

|As|2 dxds+

∫ t

0

∫
D

1

µ(x, z)
curlA · curlAsdxds(4.7)

=

∫ t

0

∫
Ω

u(s)J0(x) · Asdxds .

Now, integrating by parts in time the second term in (4.7), we get∫ t

0

∫
D

1

µ(x, z)
curlA · curlAsdxds =

1

2

∫ t

0

∫
Σ

µ′w(z)zs
µ2(x, z)

| curlA|2 dxds

+

∫
D

1

2µ(x, z(t))
| curlA|2(t)dx

− 1

2

∫
D

1

µ(x, 0)
| curlA0|2 dx .

Then, using estimate (4.6) and Hyp. 3.2 (ii), we get

σ

2

∫ t

0

∫
G

|As|2 dxds+
1

2µ

∫
D

| curlA|2(t)dx ≤ 1

2µ

∫
D

| curlA0|2 dx

+ C

(∫ t

0

∫
D

| curlA|2 dxds+

∫ t

0

∫
Ω

|u(s)|2|J0|2 dxds

)
.

Using now a standard Gronwall lemma together with Hyp 3.2 (vi), we obtain

(4.8)

∫ t

0

∫
G

|As|2 dxds+

∫
D

| curlA|2(t)dx ≤ C

(
1 +

∫ t

0

∫
Ω

|u(s)|2|J0(x)|2 dxds

)
.
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Third estimate. We can now formally (in order to make it rigorous one should perform the estimate,
e.g., on a time discrete scheme) differentiate (3.9) with respect to t and take v = At as test function.
Integrating over (0, t), using Hyp 3.2 (i), (ii), as well-as the integration by parts in time in the second
summand, gives (cf. also (2.7), (2.9)):

σ

2

∫
G

|At|2(t)dx+
1

2µ

∫ t

0

∫
D

| curlAs|2 dxds ≤ σ

∫
D

|At(0)|2 dx

− 1

2

∫ t

0

∫
Σ

σ′w(z)zs|As|2 dxds+

∫ t

0

∫
Σ

µ′w(z)zs
µ2(x, z)

curlA · curlAsdxds

+

∫ t

0

∫
Ω

|u′(s)|2|J0(x)|2 dxds .

Using now estimates (4.6), (4.8), and Hyp. 3.2 (i), (ii), (vi), we obtain∫
G

|At|2(t)dx+

∫ t

0

∫
D

| curlAs|2 dxds(4.9)

≤ C

(
1 +

∫ t

0

∫
Ω

(
|u′(s)|2 + |u(s)|2 + |u(0)|2

)
|J0(x)|2 dxds

)
,

where we have used the inequality ‖At(0)‖2
L2(D) ≤ C(‖A0‖2

H2(D) +
∫

Ω
|u(0)|2|J0(x)|2 dx).

Fourth estimate. Collecting (4.8) and (4.9) and using the continuous embedding of H1(D) into L6(D))
and employing the interpolation inequality (3.4) with q = 6, p = 2 and r = 10/3, and Hyp. 3.2 (iii),
we get

(4.10) ‖A‖H1(0,T0;X)∩W 1,∞(0,T0;L2(D)) + ‖At‖L10/3(D×(0,T0)) ≤ C .

This implies that |At|2 ∈ L5/3(Q) in the right hand side of (3.10). Applying now the standard maximal
regularity results in Lq-spaces (cf., e.g., [18, Thm. 3.1, Prop. 3.3]) to (3.10), (3.12–3.132), together
with Hyp. 3.2 (iv), (v), (vi) we can deduce the estimate

(4.11) ‖ϑ‖L5/3(0,T0;W 2,5/3(Σ))∩W 1,5/3(0,T0;L5/3(Σ)) ≤ C .

Moreover, we can test (3.10) by ϑ obtaining, in particular, the estimate

(4.12) ‖ϑ‖L2(0,T0;H1(Σ))∩L∞(0,T0;L2(Σ)) ≤ C .

Moreover, from the non-negativity of the r.h.s in (3.10) and of the initial and boundary conditions we
also get ϑ ≥ 0 a.e. More in general, we also get from the standard maximal regularity results in
Lq-spaces (cf., e.g., [18, Thm. 3.1, Prop. 3.3])

(4.13) ‖ϑ‖
L

2p
3(p−2) (0,T0;W 2,

p
2 (Σ))∩W

1,
2p

3(p−2) (0,T0;L
p
2 (Σ))

≤ C ,

for all p ∈ (2, 6].

Sixth estimate. By comparison in the ODE (3.11), using (4.13) and Hyp. 3.2 (iv), we get, for all p ∈
(2, 6]

(4.14) ‖zt‖L2(0,T0;W 2,p/2(Σ)) + ‖ztt‖
L

2p
3(p−2) (0,T0;Lp/2(Σ))

≤ C ,

implying
‖∇z‖L∞(0,T0;W 1,p/2(Σ)) ≤ C ,
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and so

(4.15) ‖∇z‖L∞(Σ×(0,T0)) ≤ C .

Sixth estimate. Using the L∞(0, T0; L2(D))-regularity of At (cf. (4.10)) and Hyp. 3.2 (iii) on u and
J0, by comparison in (3.9), we get∥∥∥∥curl

(
1

µ(x, z)
curlA

)∥∥∥∥
L∞(0,T0;L2(D))

≤ C .

Moreover, we can formally compute the divergence operator of 1
µ(x,z)

curlA and we get (applying
Hyp. 3.2 (ii))

div

(
1

µ(x, z)
curlA

)
=
µ′w(z)∇z
µ2(x, z)

curlA ∈ L∞(0, T0; L2(Σ)) ,

because curlA ∈ L∞(0, T0; L2(D)) and ∇z ∈ L∞(0, T ;L∞(Σ)) due to (4.15). Thus, applying
Lemma 3.1 with p = 2, U = D, ξ = 6, we obtain

(4.16) ‖ curlA‖L∞(0,T0;L6(D)) ≤ C .

Notice that we can apply Lemma 3.1 with every exponent α (hence ξ = p∗ = 6) because, due to
formula (3.3) and to the fact that A ∈ L∞(0, T ; X), we have that γn(curlA) = 0.

Seventh estimate. We can now formally (in order to make it rigorous one should perform the estimate,
e.g., on a time discrete scheme) differentiate (3.9) with respect to t and take v = Att as test function.
Integrating over (0, t) and using Hyp 3.2 (i), (ii) (cf. (2.7), (2.9)) we get

σ

∫ t

0

∫
D

|Ass|2 dxds+
1

2µ

∫
D

| curlAt|2(t)dx =
1

2µ

∫
D

| curlAt(0)|2 dx

−
∫ t

0

∫
Σ

µ′w(z)

µ2(x, z)
zs| curlAs|2 dxds

−
∫ t

0

∫
Σ

σ′w(z)zsAsAssdxds

−
∫ t

0

∫
Σ

µ′w(z)

µ2(x, z)
zs curlAss curlAdxds

+

∫ t

0

∫
Ω

J0(x)u′(s)dxds .

We start estimating the second integral in the r.h.s using Hyp 3.2 (ii) and estimates (4.6), (4.10) as
follows:

−
∫ t

0

∫
Σ

µ′w(z)

µ2(x, z)
zs| curlAs|2 dxds ≤ C‖ curlAt‖L2(0,T0;L2(D)) ≤ C .

In order to bound the third integral we use Hyp. 3.2 (i) and again estimates (4.6), (4.10) as follows:

−
∫ t

0

∫
Σ

σ′w(z)zsAsAssdxds ≤ C‖At‖2
L2(0,T0;L2(D)) +

1

2σ

∫ t

0

∫
D

|Ass|2 dxds

≤ C +
σ

2

∫ t

0

∫
D

|Ass|2 dxds .
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In the fourth integral we need to use the integration by parts formula, Hyp. 3.2 (ii), and estimates (4.6),
(4.10), and (4.16):∫ t

0

∫
Σ

µ′w(z)

µ2(x, z)
zs curlAss curlAdxds

≤ C

∫ t

0

‖ curlAs‖L2(D)‖ curlA‖L6(D)‖zss‖L3(Σ) ds+ C

∫ t

0

‖ curlAs‖2
L2(D) ds

≤ C

∫ t

0

‖ curlAs‖L2(D)‖zss‖L3(Σ) ds+ C

∫ t

0

‖ curlAs‖2
L2(D) ds .

Now, we use Hyp. 3.2 (iii), (vi), estimate (4.14) with p = 3, and apply a standard Gronwall lemma to
the following inequality

σ

2

∫ t

0

∫
D

|Ass|2 dxds+
1

2µ

∫
D

| curlAt|2(t)dx ≤ C + C

∫ t

0

‖ curlAs‖L2(D)‖zss‖L3(Σ) ds ,

getting the desired estimate

(4.17) ‖Att‖L2(0,T0;L2(D)) + ‖ curlAt‖L∞(0,T0;L2(D)) ≤ C .

and so, since |At|2 ∈ L∞(0, T0; L3(D)), using [14], we get

(4.18) ‖ϑ‖L∞(Σ×(0,T0)) ≤ C .

Collecting estimates (4.6), (4.10), (4.11), (4.16), (4.17), and (4.18), we can now extend the solution
we found on [0, T0] to the whole time interval [0, T ]. Finally, notice that testing (3.10) by −ϑ− ((·)−
denoting the negative part), and using the definition of f (2.19) together with Hyp. 3.2 (v), (vi), we gain
the non-negativity of ϑ. This concludes the proof of existence of solutions to Problem 3.4.

4.3 Stability estimate

In this part we prove the stability estimate (3.15), entailing, in particular, uniqueness of solutions to
Problem 3.4. Consider the time derivative of equation (3.9) and rewrite it in the following form∫

G

(h(x, z, zt)At + σ(x, z)Att) · vdx(4.19)

+

∫
D

(
1

µ(x, z)
curlAt + `(x, z, zt) curlA

)
· curl vdx =

∫
Ω

J0(x)u′(t) · vdx ,

for all v ∈ X and a.e. in (0, T ), where

h(x, z, zt) := σ′(x, z)zt, `(x, z, zt) :=
µz(x, z)zt
µ2(x, z)

.

Let (Ai, ϑi, zi) (i = 1, 2) be two triples of solutions corresponding to data (A0,i, ϑ0,i, ui). Take the
difference between (4.19)1 and (4.19)2 and take the test function v = Āt := (A1 − A2)t. Then,
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denoting by z̄ := z1 − z2, we get, integrating over (0, t)

σ

2

∫
G

|Āt(t)|2 dx+
1

µ

∫ t

0

∫
D

| curl Ās|2 dx(4.20)

≤ σ

2

∫
G

|Āt(0)|2 dx+ Cσ

∫ t

0

(
‖z̄‖L∞(Σ) + ‖z̄s‖L∞(Σ)

)
‖Ās‖2

L2(D) ds

+ Cσ

∫ t

0

(
‖Ās‖2

L2(D) + ‖z̄‖L∞(Σ)‖A1,ss‖L2(D)‖Ās‖L2(D)

)
ds

+ Cµ

∫ t

0

(
‖z̄‖L∞(Σ) + ‖z̄s‖L∞(Σ)

)
‖Ās‖2

L2(D) ds

+ Cµ

∫ t

0

(
‖ curl Ā‖L2(D)‖Ās‖L2(D) + ‖z̄‖L∞(Σ)‖ curl Ās‖L2(D)

)
ds

+ C

∫ t

0

‖u′1 − u′2‖Ās‖L2(D) ds,

where we have used the following inequalities (holding true for a.e. x) due to Hyp. 3.2 (i), (ii):

|h(x, z1, z1,t)− h(x, z2, z2,t)| ≤ Cσ (|z1,t||z1 − z2|+ |z1,t − z2,t|) ,
|h(x, z2, z2,t| ≤ Cσ|z2,t| ,
|`(x, z1, z1,t)− `(x, z2, z2,t)| ≤ Cµ (|z1 − z2||z1,t|+ |(z1 − z2)t|) ,
|`(x, z2, z2,t| ≤ Cµ|z2,t| .

Test now (3.10)1-(3.10)2 by ϑ̄ := ϑ1 − ϑ2, integrate over (0, t), and use the following inequalities

‖z̄‖L∞(Σ) +

∫ t

0

‖z̄s‖L∞(Σ) ds ≤ C

∫ t

0

‖ϑ̄‖L∞(Σ) ds ≤ C

∫ t

0

‖ϑ̄‖W 2,3/2(Σ) ds(4.21)

≤ C

∫ t

0

(
‖|A1,s|2 − |A2,s|2‖L3/2(D) + ‖z̄s‖L2(Σ)

)
ds

≤ C

∫ t

0

((
‖A1,s‖L6(D) + ‖A2,s‖L6(D)

)
‖Ās‖L2(D) + ‖ϑ̄‖L2(Σ)

)
ds ,

obtaining (for all positive δ)

‖ϑ̄(t)‖2
L2(Σ) +

∫ t

0

‖∇ϑ̄‖2
L2(Σ) ds ≤ C‖ϑ̄(0)‖2

L2(Σ)

(4.22)

+ δ

∫ t

0

‖ϑ̄‖2
L6(Σ) ds+ Cδ

∫ t

0

(
‖ϑ̄‖2

L2(Σ) +
(
‖A1,s‖L6(D) + ‖A2,s‖L6(D)

)
‖Ās‖L2(D)

)
ds .

Add now the term
∫ t

0
‖ϑ̄‖2

L2(Σ) to both sides of (4.22), choose δ sufficiently small and sum the result
up to (4.20), getting (for all positive constant η)

‖Āt(t)‖2
L2(D) +

∫ t

0

‖ curl Āt‖2
L2(D) ds+ ‖ϑ̄(t)‖2

L2(Σ) +

∫ t

0

‖ϑ̄‖2
H1(Σ) ds(4.23)

≤ C‖Āt(0)‖2
L2(D) + C‖ curl Ā(0)‖2

L2(D) + C‖ϑ̄(0)‖2
L2(Σ) + C

∫ t

0

|u1(s)− u2(s)|2 ds

+ η

∫ t

0

‖ curl Ās‖2
L2(D) ds+ Cη

∫ t

0

‖ϑ̄‖2
L2(Σ) ds

+ Cη

∫ t

0

(
‖A1,s‖2

L6(D) + ‖A2,s‖2
L6(D) + ‖A1,ss‖2

L2(D)

)
‖Ās‖2

L2(D) ds ,
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where we have used once more (4.21). Choosing now η sufficiently small in (4.23) and applying a
standard Gronwall lemma together with the regularity properties (3.6) of the solution, we obtain the
desired stability estimate (3.15). This concludes the proof of Theorem 3.5.

5 Numerical simulations

In this section, numerical simulations for Problem 3.4 are carried out. We use the same setting as
in Section 3, all material parameters are assumed to depend on the phase fraction z but not on the
temperature ϑ. The physical, temperature dependent parameters taken from literature are replaced
by average values over the typical temperature range for induction hardening processes. For further
numerical simulations and an experimental verification for the complete temperature dependent in-
duction hardening problem where also mechanical strains and stresses are considered, we refer to
[10].

The coupled system consisting of the vector potential equation, the heat equation and the rate
law for the phase fraction is solved using the finite element method. For this, we use the software
pdelib that is developed at WIAS. In order to discretize the temperature ϑ we use standardP1
elements. As space for the vector potential A we take the Hilbert space H(curl, D) = L2

curl(D).
In order to discretize A, curl-conforming finite elements of Nédélec type are used [17]. These admit
only tangential continuity across interelement boundaries while the normal component, especially at
material interfaces, might be discontinuous. Instead of nodal values as for classical finite elements,
the degrees of freedom are the tangential components along edges of the underlying triangulation of
the domain D.

Regarding the discretization in space, one has to account for the skin effect: alternating cur-
rents tend to distribute in a small surface layer of the workpiece. The computational grid has to resolve
this small surface region. This is resolved by creating an adaptive grid, that has a high resolution in
the surface area of the workpiece and is coarse in regions where a high accuracy is not necessary.

Regarding the time discretization, the system has to be solved using different time steps, since
the vector potential equation and the heat equation admit different time scales. If we consider the
vector potential equation for a given temperature ϑ, then it represents a parabolic equation that admits
a time periodic solution due to the time periodic source term. We solve this equation for some periods
using an order two time stepping scheme with time step δt.

The heat equation also represents a parabolic equation with rapidly varying right hand side
σ|At|2. Since heat conduction is supposed to happen on a time scale that is much slower than the
oscillating current, the temperature changes at a time scale that is much larger than that of the right
hand side, which is governed by the frequency of the source current. The usual approach is to approxi-
mate the Joule heat term by its average over one period, [1]. Then, the heat equation together with the
rate law describing the phase transition can be solved using time steps ∆t � δt, where the rapidly
varying Joule heat is replaced by an averaged Joule heat term that is obtained from the solution of the
vector potential equation.

In order to reduce computational time, we make use of symmetry conditions. The cross section
through the gear represents a symmetry plane, it is only necessary to consider the upper half of the
geometry shown in Figure 2. In addition, it is sufficient to perform the computations only for half of a
tooth. The boundary conditions on the cutting planes are adapted accordingly.

Figure 3 shows the temperature and the phase fraction of austenite for different time snapshots
for a simulation using the multifrequency approach. Starting from room temperature, the temperature
increases in the surface layer of the tooth and finally rises above the austenitization temperature. The
formation of the high temperature phase austenite starts. After 0.3 s, one obtains an austenitic profile
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(a) t = 0.1 s (b) t = 0.2 s (c) t = 0.3 s

Figure 3: Numerical simulation of induction heating of a gear using the multifrequency approach,
temperature (top row) and volume fraction of austenite (bottom row).

that follows the contour of the tooth. The corresponding temperature profile is shown in Figure 3 (c),
the temperature is not homogeneous across the tooth, the highest temperatures are attained at the
top edge of the root and at the tip of the tooth. This is an important for engineers planning a heat
treatment in order to prevent a melting of the gear during the hardening process.

(a) MF (b) HF (c) MF+HF

Figure 4: Austenitic profile z of a gear heated with medium-, high- and multifrequency power.

In Figure 4, simulations of the austenitic fraction using only a single frequency, either MF or
HF, are compared to the multifrequency case. As one can see, in the case of MF only the root of the
tooth is hardened while high frequency leads to a hardening of the tip of the tooth. Only a suitable
combination of MF power, HF power and heating time leads to a contour hardening of the tooth using
the multifrequency approach. The numerical computations reflect the physical aspects as explained in
the introduction, see also Figure 1.
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