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Abstract

We study the stability of explicit Runge-Kutta methods for high order Lagrangian finite
element approximation of linear parabolic equations and establish bounds on the largest
eigenvalue of the system matrix which determines the largest permissible time step. A
bound expressed in terms of the ratio of the diagonal entries of the stiffness and mass
matrices is shown to be tight within a small factor which depends only on the dimension and
the choice of the reference element and basis functions but is independent of the mesh or
the coefficients of the initial-boundary value problem under consideration. Another bound,
which is less tight and expressed in terms of mesh geometry, depends only on the number
of mesh elements and the alignment of the mesh with the diffusion matrix. The results
provide an insight into how the interplay between the mesh geometry and the diffusion
matrix affects the stability of explicit integration schemes when applied to a high order finite
element approximation of linear parabolic equations on general nonuniform meshes.

1 Introduction

We consider the initial-boundary value problem (IBVP)
ut = ∇ · (D∇u) , x ∈ Ω, t ∈ (0, T ] ,
u(x, t) = 0, x ∈ ΓD, t ∈ (0, T ] ,
D∇u(x, t) · n = 0, x ∈ ΓN , t ∈ (0, T ] ,
u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω ⊂ Rd (d ≥ 1) is a bounded polygonal or polyhedral domain, ΓD ∪ ΓN = ∂Ω,
measd−1 ΓD > 0, u0 is a given function, and D = D(x) is the diffusion matrix, which is
assumed to be time-independent, symmetric and uniformly positive-definite on Ω. If u0 ∈
H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD} and u is sufficiently smooth, then the solution of the

IBVP satisfies the stability estimates{
‖u(·, t)‖L2(Ω) ≤

∥∥u0
∥∥
L2(Ω)

, t ∈ (0, T ] ,

|||u(·, t)||| ≤ |||u0|||, t ∈ (0, T ] ,

where |||u||| =
∥∥D1/2∇u

∥∥
L2(Ω)

is the energy norm. We are interested in the stability conditions
so that the numerical approximation preserves these stability estimates.

The stability of explicit Runge-Kutta methods depends on the largest eigenvalue of the corre-
sponding system matrix, which, in turn, depends on the mesh and the coefficients of the IBVP.
For our model problem this means that we need to estimate the largest eigenvalue of M−1A,
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Figure 1: Example of the standard quadratic FE reference mesh element K̂ , mapping FK , the
corresponding mesh elements K , nodes and their patches

where M and A are the mass and stiffness matrices for the finite element discretization of the
IBVP (1) [4, Theorem 3.1]. For the Laplace operator on a uniform mesh it is well known that
λmax(M−1A) ∼ N2/d, where N is the number of mesh elements. For general meshes and
diffusion coefficients, estimates have been derived recently in Huang et al. [4] and Zhu and
Du [6, 7]. All of these works allow anisotropic diffusion coefficients and anisotropic meshes, while
the former employs a more accurate measure for the interplay between the mesh geometry and
the diffusion matrix and gives a sharper estimate on λmax(M−1A) than the latter. On the other
hand, the former considers only linear finite elements whereas the estimates in the latter are
valid for both linear and higher order finite elements.

The purpose of this paper is to extend the result of [4] to high order Lagrangian finite elements as
well as provide a mathematical understanding of how the interplay between the mesh geometry
and the diffusion matrix affects the stability condition. We show that the main result of [4] ([4,
Theorem 3.3]) holds for high order finite elements as well. The analysis is based on bounds
on the mass and stiffness matrices. We follow the approach in [4, 5] and derive simple but
accurate bounds for high order Lagrangian finite elements on simplicial meshes (Lemmas 2.2
to 2.5). We also consider the more general case of surrogate mass matrices M̃ . The main
result (Theorem 2.8) shows that λmax(M̃−1A) is proportional to the maximum ratio between
the corresponding diagonal entries of the stiffness and surrogate mass matrices. Moreover,
λmax(M̃−1A) is bounded by a term depending only on the number of the mesh elements and
the alignment of the shape of the mesh elements with the inverse of the diffusion matrix.

2 Stability condition for explicit time stepping

Let {Th} be a family of simplicial meshes for Ω and V h the Lagrangian Pm (m ≥ 1) finite
element space associated with Th. LetK be an arbitrary element of Th, K̂ the reference element,
and ωi the element patch of the ith vertex (Fig. 1); element and patch volumes are denoted by |K|
and |ωi| =

∑
K∈ωi |K|. For each K ∈ Th let FK : K̂ → K be an invertible affine mapping

and F ′K its Jacobian matrix which is constant and satisfies det(F ′K) = |K| (for simplicity, we
assume that |K̂| = 1). We further assume that the mesh is fixed for all time steps.

With V h
D = V h ∩H1

D(Ω), the finite element solution uh(t) ∈ V h
D (t ∈ (0, T ]) is defined by∫

Ω

∂tu
hvh dx = −

∫
Ω

∇vh · D∇uh dx, ∀vh ∈ V h
D , t ∈ (0, T ] , (2)
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subject to the initial condition∫
Ω

uh(x, 0)vh dx =

∫
Ω

u0(x)vh dx, ∀vh ∈ V h
D . (3)

Let Nφ be the dimension of the finite element space V h
D and denote a nodal basis of V h

D by
{φ1, . . . , φNφ}, then uh can be expressed as

uh(x, t) =

Nφ∑
j=1

uhj (t)φj(x).

UsingU = (uh1 , . . . , u
h
Nφ

)
T

, (2) and (3) can be written into a matrix form

MUt = −AU , U(0) = U0, (4)

where the mass and stiffness matrices M and A are defined by

Mij =

∫
Ω

φiφj dx and Aij =

∫
Ω

∇φi · D∇φj dx, i, j = 1, . . . , Nφ.

We further assume that surrogate mass matrices M̃ considered throughout the paper satisfy

(M1) The reference element matrix M̃K̂ is symmetric positive definite.

(M2) The element matrix M̃K satisfies M̃K = |K|M̃K̂ .

For example, (M1) and (M2) are satisfied for any mass lumping by means of numerical quadrature
with positive weights.

Lemma 2.1 ([4, Theorem 3.1]). For a given explicit RK method with the polynomial stability
function R and a symmetric positive definite surrogate matrix M̃ that satisfies1 c1M̃ ≤M ≤
c2M̃ for some positive constants c1 and c2, the finite element approximation uhn at tn = nτ
satisfies ∥∥uhn∥∥L2(Ω)

≤
√
c2

c1

∥∥uh0∥∥L2(Ω)
and |||uhn||| ≤ |||uh0 |||,

if the time step τ is chosen such that

max
i
|R(−τλi(M̃−1A))| ≤ 1.

This lemma is proven in [4] for the linear finite element discretization. However, from the proof one
can see that it is valid for any system in the form of (4) with symmetric positive definite matrices
M and A. Particularly, it can be used for the system (4) resulting from the Pm finite element
discretization. In the following, we establish a series of lemmas for bounds on the stiffness and
mass matrices A and M̃ and then develop bounds for λmax(M̃−1A).

1In the following, the less-than-or-equal-to sign for matrices means that the difference between the right-hand
side and left-hand side terms is positive semidefinite.
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Lemma 2.2. Let η be the maximal number of basis functions per element. Then the stiffness
matrix A and its diagonal part AD for Pm finite elements satisfy

A ≤ ηAD.

Proof. Notice that for any positive semi-definite matrix S for any vectors u and v we have
uTSv + vTSu ≤ uTSu+ vTSv. From this,

uTAu =
∑
i,j

∫
Ω

(ui∇φi)TD (uj∇φj) dx ≤
∑
i

η

∫
Ω

(ui∇φi)TD (ui∇φi) dx

= η
∑
i

u2
i

∫
Ω

∇φTi D∇φi dx = uTηADu.

Lemma 2.3. Let φ̂i be the basis functions on the reference element that correspond to φi and

CH1 = max
i
|φ̂i|

2

H1(K̂).

Then the diagonal entries Aii of the stiffness matrix A are bounded by

Aii ≤ CH1

∑
K∈ωi

|K|max
x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2
,

Proof. From the definition of the stiffness matrix we have

Aii =

∫
Ω

∇φTi D∇φi dx =
∑
K∈ωi

∫
K

∇φTi D∇φi dx.

Let ∇̂ = ∂/∂ξ be the gradient operator in K̂. The chain rule yields ∇ = (F ′K)−T ∇̂ and
together with det(F ′K) = |K| we obtain

Aii =
∑
K∈ωi

|K|
∫
K̂

∇̂φ̂Ti (F ′K)
−1D(F ′K)

−T ∇̂φ̂i dξ

≤
∑
K∈ωi

|K| ‖∇̂φ̂i‖
2

L2(K̂) max
x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2

≤ CH1

∑
K∈ωi

|K|max
x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2
.

Lemma 2.4. Let M̃ be a surrogate Pm finite element mass matrix, Λ̂M̃ and λ̂M̃ be the largest
and smallest eigenvalues of the surrogate mass matrix M̃K̂ on the reference element and

W = diag(|ω1|, . . . ,
∣∣ωNφ∣∣).

Then
λ̂M̃W ≤ M̃ ≤ Λ̂M̃W . (5)
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Proof. We have

uTM̃u =
∑
K

uTKM̃KuK =
∑
K

|K|uTKM̃K̂uK ≤
∑
K

|K|Λ̂M̃‖uK‖
2
2

= Λ̂M̃

∑
i

u2
i

∑
K∈ωi

|K| = Λ̂M̃

∑
i

u2
i |ωi| = Λ̂M̃u

TWu.

The lower bound can be obtained similarly.

Lemma 2.5. Let M̃1 and M̃2 be two surrogate mass matrices for Pm finite elements. Then

λ̂M̃1

Λ̂M̃2

M̃2 ≤ M̃1 ≤
Λ̂M̃1

λ̂M̃2

M̃2.

Proof. Use Lemma 2.4 by applying (5) to M̃1 and M̃2.

Corollary 2.6. Let κ(MK̂) and κ(M̃K̂) be the condition numbers of the full and the surrogate
reference element mass matrices. Under the assumptions of Lemma 2.1 we have∥∥uhn∥∥L2(Ω)

≤
√
κ(MK̂)κ(M̃K̂)

∥∥uh0∥∥L2(Ω)

and
|||uhn||| ≤ |||uh0 |||.

Proof. Use M̃1 = M and M̃2 = M̃ in Lemma 2.5 and apply Lemma 2.1.

Corollary 2.7. The surrogate mass matrix M̃ for Pm finite elements and its diagonal part M̃D

satisfy
1

κ(M̃K̂)
M̃D ≤ M̃ ≤ κ(M̃K̂)M̃D.

Proof. Using (5) with the canonical basis vector ei implies λ̂M̃Wii ≤ M̃ii ≤ Λ̂M̃Wii, which
gives uiλ̂M̃Wiiui ≤ uiM̃iiui ≤ uiΛ̂M̃Wui for any ui. Since M̃D and W are diagonal
matrices, this leads to

λ̂M̃W ≤ M̃D ≤ Λ̂M̃W . (6)

The statement now follows from Lemma 2.5 with M̃1 = M̃ and M̃2 = M̃D.

Having obtained the preliminary bounds on the stiffness and mass matrices A and M̃ , we
can now give the estimate for the largest eigenvalue of the system matrix M̃−1A for Pm finite
elements.

Theorem 2.8. The eigenvalues of M̃−1A are real and positive and the largest eigenvalue is
bounded by

max
i

Aii

M̃ii

≤ λmax

(
M̃−1A

)
≤ η κ(M̃K̂) max

i

Aii

M̃ii

, (7)

where η is the maximal number of basis functions per element. Further,

λmax

(
M̃−1A

)
≤ η

CH1

λ̂M̃
max
i

{∑
K∈ωi

|K|
|ωi|

max
x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2

}
. (8)
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Proof. Since M̃ and A are symmetric positive definite, the eigenvalues of M̃−1A are real and
positive. The lower bound in (7) is obtained by using the canonical basis vectors ei and the upper
bound follows from Lemma 2.2 and Corollary 2.7,

λmax(M̃−1A) = max
v 6=0

vTAv

vTM̃v
≤ max

v 6=0

vTηADv

vT 1
κ(M̃K̂)

M̃Dv
= η κ(M̃K̂) max

i

Aii

M̃ii

.

The geometric bound is a direct consequence of Lemmas 2.2 to 2.4,

λmax(M̃−1A) = max
v 6=0

vTAv

vTM̃v
≤ max

v 6=0

vTηADv

vT λ̂M̃Wv

≤ η
CH1

λ̂M
max
i

{∑
K∈ωi

|K|
|ωi|

max
x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2

}
.

Theorem 2.8 can be used in combination with Lemma 2.1 or Corollary 2.6 to derive the stability
condition of a given explicit Runge-Kutta scheme, as shown in the next example.

Example 2.9 (Explicit Euler method). The stability region of the explicit Euler method includes
the real interval [−2, 0]. Lemma 2.1 implies that the method is stable if

−2 ≤ −τλi(M̃−1A) ≤ 0, i = 1, . . . , Nφ.

Using Theorem 2.8, we conclude that the method is stable if the time step τ satisfies

τ ≤ 2

η κ(M̃K̂)
min
i

M̃ii

Aii

or, in terms of mesh geometry,

τ ≤
2λ̂M̃K̂

η CH1

min
i

(∑
K∈ωi

|K|
|ωi|

max
x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2

)−1

.

Remark 2.10. Lemmas 2.2 and 2.3 and Corollary 2.7 are very general and valid for any mesh,
any D and any surrogate mass matrix M̃ satisfying (M1) and (M2). More accurate bounds can
be obtained if more information is available about the mesh or the stiffness and mass matrices.

For example, if A is an M-matrix, then the Gershgorin circle theorem yields λmax(A) ≤
2 maxiAii [4, Remark 2.2] and therefore η in Theorem 2.8 can be replaced by 2.

If M̃ = M (no mass lumping), then, instead of estimating MD through (6), a direct calculation
for the standard Pm finite elements yields

MD = CL2W , CL2 = diag
(
‖φ̂1‖

2

L2 , . . . , ‖φ̂Nφ‖
2

L2

)
,

and
λ̂MC

−1
L2 MD ≤M ≤ Λ̂MC

−1
L2 MD,

resulting in a slighly more accurate bound in Corollary 2.7.

Also, for simplicity, in Lemma 2.3 we used CH1 = maxi |φ̂i|
2

H1(K̂). A slightly more accurate
bound can be derived if we use

CH1 = diag
(

max
i
|φ̂1|

2

H1(K̂), . . . , |φ̂Nφ |
2

H1(K̂)

)
.
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3 Summary and conclusion

Theorem 2.8 states that the largest eigenvalue of the system matrix and, thus, the largest
permissible time step can be bounded by a term depending only on the number of mesh
elements and the alignment of the mesh with the diffusion matrix.

The bound in terms of matrix entries is tight within a small factor which depends only on the
dimension and the choice of the reference element and basis functions but is independent of
the mesh or the coefficients of the IBVP. This is valid for any Lagrangian Pm finite elements with
m ≥ 1.

A similar result is obtained by Zhu and Du [7, Theorem 3.1]. In our notation, it can be written as

λmax(M−1A) . max
K

{
max
x∈K

λmax(D)
∥∥∥(F ′K)

−1
(F ′K)

−T
∥∥∥

2

}
. (9)

The significant difference between this bound and the new bound (8) is the factor which represents
the interplay between the mesh geometry and the diffusion matrix,

max
x∈K

λmax(D)
∥∥∥(F ′K)

−1
(F ′K)

−T
∥∥∥

2
vs. max

x∈K

∥∥∥(F ′K)
−1D(F ′K)

−T
∥∥∥

2
.

For isotropic D or isotropic meshes both terms are comparable. However, the former is greater
than the latter in general. In particular, if both D and K are anisotropic, then the difference
between (8) and (9) can be very significant (see [4, Sect. 4.4] for a numerical example in case
of P1 finite elements). In this sense, Theorem 2.8 can be seen either as a generalization of [4]
to Pm (m ≥ 2) finite elements or as a more accurate version of [7] for anisotropic meshes and
general diffusion coefficients.

Finally, we would like to point out that a similar result can be established for p-adaptive finite
elements without major modifications.
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