
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 0946 – 8633

A curvature estimate for open surfaces subject to a general

mean curvature operator and natural contact conditions at

their boundary

Pierre-Étienne Druet

submitted: December 11, 2013

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: PierreEtienne.Druet@wias-berlin.de

No. 1897

Berlin 2013

2010 Mathematics Subject Classification. 35J93, 35B65, 58J99.

Key words and phrases. Mean curvature equation, contact-angle boundary conditions, regularity theory, K −K ′

quasi-conformal Gaussian map.

This research is supported by DFG Research Center ’Mathematics for Key Technologies’ MATHEON in Berlin.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Abstract

In the seventies, L. Simon showed that the main curvatures of two-dimensional hyper-
surfaces obeying a general equation of mean curvature type are a priori bounded by the
Hölder norm of the coefficients of the surface differential operator. This was an essentially
interior estimate. In this paper, we provide a complement to the theory, proving a global
curvature estimate for open surfaces that satisfy natural contact conditions at the intersec-
tion with a given boundary.

1 Introduction

In this paper, we consider a two-dimensional hypersurface S ⊂ Ω ⊂ R3 of class C2 obeying
the geometric equation

divS σq(x, ν) + σx(x, ν) · ν = Φ(x, ν) on S . (1)

The domain Ω ⊂ R3 is assumed bounded and has a boundary of class C2. The functions σ
and Φ map from Ω × R3 into R, (x, q) 7→ σ(x, q), Φ(x, q). The function q 7→ σ(x, q) is
moreover assumed positively homogeneous of degree one and convex. Throughout the paper,
ν denotes a unit normal to S. In the case that Φ does not depend on ν, the equation (1) is often
originating in the first variation of a parametric convex functional.

The paper is dealing with surfaces satisfying contact conditions at their boundary. It is here
assumed that the (relative) boundary of the given surface S is a closed simple curve contained
in ∂Ω, and that

σq(x, ν) · n(x) = κ(x) on ∂S (2)

where n denotes the outward unit normal to ∂Ω and κ is a given function on ∂Ω. Our main
result is an a priori estimate up to the boundary for the main curvatures of the surface S (note
S1 = unit sphere):

‖ δ ν‖L∞(S) ≤ c (‖Φ‖L∞(S1;Cα(Ω)) + ‖σx‖C1,α(S1;Cα(Ω)) + ‖κ‖C1,α(∂Ω)) . (3)

An interior version (for S ′ ⊂ S not intersecting ∂S) of the a priori estimate (3) was first proved in
the work of L. Simon and N. Trudinger ([Sim77a, Sim77b] and [GT01], Chapter 16). The validity
of their approach based on elementary surface differential calculus is essentially restricted to
two-dimensional hypersurfaces. However, it is not outdated, even in the light of newer theorems
of geometric measure theory, for at least two reasons: The starting point is a surface differential
equation instead of a geometric minimisation property and, moreover, most general operators
of mean curvature type can be treated with the method.
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In this paper we prove a complement of the theory exposed in the Chapter 16 of [GT01]: We
formulate sufficient conditions on σ, κ and Ω that allow to prove the validity of (3) up to ∂S
under the condition (2).

In the context of the mean curvature equation with contact boundary conditions, it is usual to
assume that the functions σ, κ and the domain Ω satisfy a compatibility condition

0 < γ1 := inf
x∈∂S
{σ(x, n(x))− |κ(x)|} . (4)

This condition in connexion to (2) ensures that the surfaces S and ∂Ω do not meet tangentially
(cf. [Ura73, Ger79, SS76, Lie83, Dru12] among others). In particular the angle of contact α
between the two surfaces is such that

| sinα(x)| :=
√

1− (ν(x) · n(x))2 ≥ γ1

‖σq‖L∞(Ω×R3)

for all x ∈ ∂S . (5)

For our boundary estimates, we shall need instead of (4) the assumption

0 < γ2 := inf
x∈∂S

{
1

σ∗(x, n(x))
− |κ(x)|

}
. (6)

where q 7→ σ∗(x, q) is the dual convex function to q 7→ σ(x, q) (Appendix, Section A or
among others [Roc70] Section 15, [Kra11] Section 2.2 for detailed discussions on σ∗). The
definition of the dual convex function σ∗ directly implies that σ∗(x, n(x))σ(x, n(x)) ≥ 1.
Therefore γ2 ≤ γ1 and the condition (6) turns out slightly stronger than (4). A second assump-
tion is a compatibility condition between the domain Ω and the topology of S. As in the theory
by L. Simon, we require that S possesses a representation as a graph, but it must in addition
be possible to choose the Z−axis of the coordinate system in which this graph-representation
is valid tangent to ∂Ω. We assume that there is a unit vector ~g such that

ν(x) · ~g > 0 for all x ∈ S and n(x) · ~g = 0 for all x ∈ ∂S . (7)

The assumption (7) implies that the surface boundary ∂S can oscillate only vertically with re-
spect to some local coordinates. The assumption is satisfied in the setting of the mean-curvature
equation : the domain Ω is a cylinder G×]− L, L[, with G ⊂ R2 and L > 0, and the surface
S ⊂ Ω is a graph in the standard coordinates. Thus ν3 > 0 on S and n3 = 0 on ∂G×]−L, L[,
and (7) is valid with the constant unit vector ~g = e3.

We then show that the constant c in the estimate (3) will only depend on the coefficients of the
differential operator (1) and the boundary operator (2), and on γ2. The structure of the paper
is as follows. The Section 2 is devoted to formulating and interpreting more exhaustively the
assumptions on the data needed for the proof of (3). The main idea used in the Section 3 is
that under the condition (2), the mapping ϕ(x) := σq(x, ν(x)), x ∈ S, solves a system of
nonlinear equation

σ∗(x, ϕ(x)) = 1, ϕ(x) · n(x) = κ(x) for all x ∈ ∂S . (8)

This fact allows under the assumption (6) to express the vector field ϕ(x), x ∈ ∂S as a smooth
function of only one of its components. The next sections are devoted to prove the estimate (3)
using [GT01], Chapter 16 as a road map: With the boundary reduction of Section 3 at hand, we
can apply a variant of the theory of surfaces with K −K ′ quasi-conformal Gaussian map to ϕ.
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2 Notations and statement of the main result

We assume that Ω ⊂ R3 is a bounded domain of class C2. Throughout the paper, the function
σ is assumed to satisfy

σ ∈ C1,α(Ω; C1,α(R3 \ {0})) ∩ C1(Ω; C2,α(R3 \ {0})) α > 0 . (9)

We assume that σ = σ(x, q) is convex and positively one-homogeneous in the q−variable.
In particular, there are positive constants λj (j = 0, 1) and µi (i = 0, . . . , 2) such that for all
(x, q) ∈ Ω× R3 \ {0}

λ0 |q| ≤ σ(x, q) ≤ µ0 |q| (10a)

λ1

|q|
|ξ|2 ≤

3∑
i,j=1

σqi,qj(x, q) ξi ξj ≤
µ1

|q|
|ξ|2 for all ξ ∈ R3 : ξ · q = 0 (10b)

3∑
j=1

σqi,qj(x, q) qj = 0 for i = 1, . . . , 3 (10c)

|σq,x(x, q)| ≤ µ2 . (10d)

The relations (10) are well-known consequences of the smoothness, the convexity and of the
positive one-homogeneity of σ (cf. [LU70] for a proof). Note moreover the consequences of (10)

σq(x, q) · q = σ(x, q), |σq(x, q)| ≤ µ0, |σx(x, q)| ≤ µ2 |q| . (11)

For the right-hand side Φ of (1), we assume that there is α > 0 such that

x 7→ Φ(x, q) ∈ Cα(Ω) for all q ∈ R3 ,

q 7→ Φ(x, q) ∈ C0,1(R3) for all x ∈ Ω ,
(12)

and moreover that

‖Φ‖L∞(R3;Cα(Ω)) := sup
q∈R3

‖Φ(·, q)‖Cα(Ω) <∞ ,

‖Φ‖L∞(Ω;C0,1(R3)) := sup
x∈Ω

‖Φ(x, ·)‖C0,1(R3) <∞ .
(13)

For the right-hand side κ of (2), we assume the regularity

κ ∈ C1,α(∂Ω) α > 0 . (14)

Theorem 2.1. Assume that S ⊂ Ω satisfies (1) and (2). Assume that σ satisfies (9) and is
convex and positively one-homogeneous in the variable q. Assume that Φ satisfies (12) and
(13) and that κ satisfies (14). If the compatibility conditions (6) and (7) are valid, there is a
constant c > 0 that depends only on Ω, on the constants appearing in the conditions (10), on
‖κ‖C1(∂Ω), on ‖Φ‖L∞(Ω;C0,1(S1)) and on the number γ2 such that (3) holds true.
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3 The preliminary boundary reduction

Throughout the section, we assume that S ∈ C2 satisfies (2). It is not necessary that S be
a graph-surface. For x ∈ S, define ϕ(x) := σq(x, ν(x)). Then ϕ ∈ C1(S; R3). For x ∈
Γ := ∂S, the point ϕ(x) belongs to the solution manifold for the system (8) of two algebraic
equations. For x ∈ Γ treated as parameter, we accordingly consider the following system of
nonlinear equations for the variable q ∈ R3:

F(x, q) = 0 where

{
F1(x, q) := q · n(x)− κ(x)

F2(x, q) := σ∗(x, q)− 1
. (15)

Lemma 3.1. For x ∈ Γ, denote K(x) := {q ∈ R3 : F(x, q) = 0}. Under the as-
sumptions of Theorem 2.1, K(x) is a nonempty closed planar curve of class C2 enclosing
a convex domain. The point q0(x) := κ(x)n(x) belongs to the interior of this domain and
dist(q0(x), K(x)) ≥ γ2

λ0

µ0
.

Proof. At first, we computeF ′(x, q) = (σ∗q (x, q), n(x)). For all x ∈ Γ, the range ofF ′(x, q)
is equal to 2 on solutions to (15). Otherwise, there would exist a λ = λ(x, q) 6= 0 such that
σ∗q (x, q) = λn(x). Thus, using the properties of dual convex functions

q

σ∗(x, q)
= sign(λ)σq(x, n(x)) =⇒ κ(x) = q · n(x) = ±σ(x, n(x)) ,

which contradicts (4). Thus, we see that if q is a solution to F(x, q) = 0, there is a neighbour-
hood Bρ(q) in R3 such that the range of F ′(x) is equal to 2 therein, and the solution manifold
for (15) has to be a curve.

To proceed, we introduce unit tangent vectors τ j , j = 1, 2 at ∂Ω such that the system
{n(x), τ 1(x), τ 2(x)} is orthonormal for all x ∈ ∂Ω. The set K(x) can alternatively be de-
scribed as

K(x) := {q ∈ R3 : q = κ(x)n(x) +
2∑
j=1

pj τ
j(x), p ∈ R2, σ∗(x, q) = 1} . (16)

We compute the second partial derivatives

∂2
pi,pj

σ∗(x, κ(x)n(x) + pj τ
j(x)) = σq,q(x, κ(x)n(x) + pj τ

j(x))τ i(x) · τ j(x) ,

and using (10b), we easily show that if K(x) is not empty, it is a convex curve in the plane
P (x) := {q : q · n(x) = κ(x)}. The assumption (6) yields σ∗(x, n(x)) |κ(x)| < 1, and it
implies that the point q0(x) := κ(x)n(x) belongs to the interior of the unit ball W 1

σ∗(x) of the
function σ∗(x) (Appendix, Section A). As an obvious by-product K(x) cannot be empty.

Calling G(x) the planar convex domain enclosed by K(x), we see that q0(x) is an interior
point G(x). Moreover, writing σ∗(x, q0(x)) = 1− δ, and using also (10a) it follows that

δ = 1− |κ(x)|σ∗(x, n(x)) ≥ γ2 σ
∗(x, n(x)) ≥ γ2

µ0

. (17)

For arbitrary q ∈ ∂W 1
σ∗(x), it follows that δ ≤ σ∗(x, q) − σ∗(x, q0) ≤ λ−1

0 |q − q0|. This

shows that dist(q0(x), K(x)) ≥ dist(q0(x), ∂W 1
σ∗(x)) ≥ γ2

λ0

µ0
.
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Next, we construct a parametrisation of the manifold K(x).

Lemma 3.2. There is ψ ∈ C1(Γ; C1([0, 2π])) ∩ C(Γ; C2([0, 2π])) such that

K(x) = {q ∈ R3 : q = ψ(x, θ), θ ∈ [0, 2π[} .

Moreover, there is c depending on Ω, on the constants in the conditions (10) and on γ2 such
that

‖ψ‖C1(Γ;C1([0, 2π])) + ‖ψ‖C(Γ;C2([0, 2π])) ≤ c(‖σ‖C1(Ω;C2(S1)) + ‖κ‖C1(∂Ω)) .

The function θ 7→ ψ(x, θ) is invertible with inequality

|θ1 − θ2| ≤
λ0 γ2

µ0

|ψ(x, θ1)− ψ(x, θ2)| for all x ∈ Γ and θ1, θ2 ∈ [0, 2π[ . (18)

Proof. In Lemma 3.1, we proved that the curve K(x) is closed and contained in the plane
P (x) = {q : q · n(x) = κ(x)} where it encloses a convex domain. Due to Lemma 3.1, the
point q0(x) = κ(x)n(x) ∈ P (x) must belong to the interior of this domain. It follows that for
each x ∈ Γ and θ ∈ [0, 2π[, the equation

1 = f(x, θ, r) := σ∗(x, q0(x) + r cos θ τ 1(x) + r sin θ τ 2(x)) (19)

possesses a solution r ∈]0, +∞[. The inequality dist(q0, K) ≥ γ2 λ0/µ0 even implies that
every solution to (19) satisfies

r :=
λ0

µ0

γ2 ≤ dist(q0(x), K(x)) ≤ r ≤ r̄ := sup
x∈Γ

diam(W 1
σ∗(x)) . (20)

The solution to (19) is also unique. To see this, we abbreviate e = e(x, θ) = cos θ τ 1(x) +
sin θ τ 2(x), and we compute

fr(x, θ, r) = σ∗q (x, q0 + r e) · e , (21)

fr,r(x, θ, r) = σ∗q,q(x, q0 + r e) e · e
(10b)
≥ λ1

(1 + r2)3/2
. (22)

We note that limr→±∞ fr(x, θ, r) = ±σ∗(x, e) (cp. (11)). Due to (22), there thus exists for
x and θ fixed a unique r0 ∈ R such that fr(x, θ, r0) = 0, and the function f(x, θ, r) attains
its global minimum at r0. In particular, σ∗(x, q0) = f(0) ≥ f(r0). If r is a solution to (19), it
follows that (cp. (17))

γ2

µ0

≤ 1− σ∗(x, q0) ≤ f(x, θ, r)− f(x, θ, r0) ≤ r − r0

λ0

.

Thus, on a solution to (19), we also obtain for some t ∈ [0, 1] that

fr(x, θ, r) = fr(x, θ, r0) + fr,r(x, θ, t r0 + (1− t) r) (r − r0)

≥ λ1

(1 + (t r0 + (1− t) r)2)3/2

λ0 γ2

µ0

≥ λ1

(1 + r̄2)3/2

λ0 γ2

µ0

.

(23)
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This shows that (19) possesses a unique solution, and the implicit function theorem allows
to introduce a function r : Γ × [0, 2π] → [r, r̄] such that f(x, θ, r(x, θ)) = 0 for all
(x, θ) ∈ Γ× [0, 2π]. Using the equation (19) and the regularity of the function r implied by the
implicit function theorem, we obtain the identities (subscript s means tangent derivative along
Γ)

fr(x, θ, r) ∂sr + fs(x, θ, r) = 0, fr(x, θ, r) ∂θr + fθ(x, θ, r) = 0

fr(x, θ, r) ∂
2
s,θr + fr,θ(x, θ, r) ∂sr + fs,θ(x, θ, r) = 0,

fr(x, θ, r) ∂
2
θ2r + fr,θ(x, θ, r) ∂θr + fθ,θ(x, θ, r) = 0 .

From the two latter relations and owing to (23), we can easily obtain the announced bounds for
the derivatives of r. We define

ψ(x, θ) := κ(x)n(x) + r(x, θ) cos θ τ 1(x) + r(x, θ) sin θ τ 2(x) . (24)

Using (20), we compute |∂θψ| = (r2
θ + r2)1/2 ≥ r, which shows that the function ψ(x)

possesses a Lipschitz continuous inverse.

Next, we observe that ϕ(x) ∈ K(x) for all x ∈ Γ (cf. (8)). Thus, the Lemma 3.2 implies that
there is a unique θ(x) ∈ [0, 2π] such that

ϕ(x) = ψ(x, θ(x)) for x ∈ Γ . (25)

The differentiability of ψ just proved yields the identity

∂sϕ(x) = ψs(x, θ(x)) + ψθ(x, θ(x)) ∂sθ(x), x ∈ Γ . (26)

Lemma 3.3. For a mapping f ∈ C1(Γ× R3; R3), (x, q) 7→ f(x, q), we introduce

F (x, θ) :=

∫ θ

0

f(x, ψ(x, z)) · ψθ(x, z) dz, x ∈ Γ, θ ∈ [0, 2π] .

For x ∈ Γ, denote θ(x) := ψ(x)−1(ϕ(x)), with ψ according to Lemma 3.2. Then, there is a
function a ∈ L∞(Γ) such that for all x ∈ Γ

f(x, ϕ(x)) · ∂sϕ(x) =
d

ds
F (x, θ(x)) + a(x)

‖a‖L∞(Γ) ≤ 2π ‖ψ‖C1(Γ×C1([0, 2π])) ‖f‖C1(Γ×R3; R3)

Proof. Due to (26), we obtain that

f(x, ϕ(x)) · ∂sϕ(x) = f(x, ψ(x, θ(x))) · (ψs(x, θ(x)) + ψθ(x, θ(x)) ∂sθ(x))

= f(x, ψ(x, θ(x))) · ψs(x, θ(x)) +
d

ds

∫ θ(x)

0

f(x, ψ(x, z)) · ψθ(x, z) dz

−
∫ θ(x)

0

{[fs(x, ψ(x, z)) + fq(x, ψ(x, z)) · ψs(x, z)] · ψθ(x, z)

+ f(x, ψ(x, z)) · ψs,θ(x, z)} dz .
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We introduce the abbreviation

a(x) :=f(x, ψ(x, θ(x))) · ψs(x, θ(x))−
∫ θ(x)

0

{[fs(x, ψ(x, z))

+ fq(x, ψ(x, z)) · ψs(z, z)] · ψθ(x, z) + f(x, ψ(x, z)) · ψs,θ(x, z)} dz .

The inequality for a follows from Lemma 3.2.

4 A Morrey-type estimate for δ ν

For x ∈ S and ρ > 0 denote Sρ(x) := S ∩ Bρ(x) where Bρ(x) is the three-dimensional ball
of radius ρ centred at x. We also introduce a decomposition of ∂Sρ according to

∂Sρ(x) = Γρ(x) ∪ Σρ(x), Γρ(x) := ∂S ∩Bρ(x), Σρ(x) := ∂Bρ(x) ∩ S . (27)

For µ > 0 we introduce the notation [u]µ,S := supx∈S, ρ>0 ρ
−µ ∫

Sρ(x)
|u| dS. Throughout the

section, we denote c0 = c0(S) > 0 the smallest constant such that

meas(Sρ(x)) ≤ c0 ρ
2, ∀x ∈ S, ρ > 0 . (28)

If S satisfies (7), it is locally a graph subject to (1) and (2), and there are well known estimates for
the constant c0 (Appendix, Lemma A.6). The following theorem states a Morrey-type estimate for
δ ν. The original interior version (for Sρ(x) not intersecting ∂S) was proved in [GT01, Sim77b].

Theorem 4.1. Assumptions of the theorem 2.1. Then, there are numbers c > 0 and 1 > β > 0
depending only on the constants in the conditions (6), (10), on the constant of (28), on Ω, on
‖Φ‖L∞(S×S1) and on ‖κ‖C1(∂Ω) such that [δ ν]1+β,S ≤ c.

To prove the Theorem 4.1, we use on the one hand a variation of the theory of surfaces with
K −K ′quasi-conformal Gaussian map (see [GT01], Ch. 16). On the other hand we rely on the
boundary estimates proved independently in the Section 3. For i, j = 1, 2, 3, we compute

δi ϕj(x) = σqj ,δi(x, ν(x)) + σqj ,q(x, ν(x)) · δi ν(x) . (29)

Here and in the following, uδi := ux · (ei − νi ν). According to the Appendix Lemma A.1 and
Remark A.2, we can choose a vector field ω ∈ C1(Ω× R3; R3) satisfying

curlq ω(x, ϕ(x)) · ν(x) = 1 for all x ∈ S . (30)

Lemma 4.2. Assume that S is a graph solution to (1). For i, j = 1, 2, 3, denote (Mϕ)i,j(x) :=
σqj ,q(x, ν(x)) · δi ν(x). Then, zero is an eigenvalue of the matrix Mϕ(x), associated with the
eigenvector ν(x). Denoting mi(x), i = 1, 2 the two remaining eigenvalues of Mϕ

m1(x)m2(x) = ν(x) · (δ ωi(x, φ(x))× δ φi(x)) + a(x) , (31)

with a function a ∈ L∞(S) such that |a(x)| ≤ c | δ ϕ(x)|, where c depends only on the
constants in the conditions (10).

7



Proof. Since (10b) implies that Mϕν(x) = 0 = MT
ϕ ν(x), zero is an eigenvalue of Mϕ.

By assumption, the surface S is globally a graph. To avoid technicalities, we assume that S
is already a graph in the standard coordinates: There is G ∈ R2 a bounded domain, and
ψ ∈ C2(G) such that S = graph(ψ; G).

Every x ∈ S can be represented x = (x̄, ψ(x̄)) with x̄ ∈ G and ν(x) = (−∇ψ(x̄), 1)√
1+|∇ψ(x̄)|2

. Due

to this representation, the unit normal possesses a natural extension in the whole of G × R.
This can be used to simplify the computations, since D3ν = 0 (We denote Di, i = 1, 2, 3 the
derivative according to the standard coordinates). Exploiting the symmetry of δ ν and (10b), we
see that (Mϕ)i,j := σqj ,q · δ νi = σqj ,q ·Dνi. We use that there is a zero eigenvalue, so that
the product m1m2 is the sum of the three co-factors associated with the diagonal of Mϕ. From
direct computation, we obtain that

m1m2 =(σq1,q2 σq2,q3 − σq2,q2 σq1,q3) (D1ν2D2ν3 −D2ν2D1ν3)

+ (σq2,q1 σq1,q3 − σq1,q1 σq2,q3) (D2ν1D1ν3 −D1ν1D2ν3)

+ (σq1,q1 σq2,q2 − σq1,q2σq2,q1) (D1ν1D2ν2 −D1ν2D2ν1) ,

where σqi,qj = σqi,qj(x, ν(x)). Recall that det(D2ψ)(x̄)/(1 + |∇ψ(x̄)|2)2 = KG(x) =
Gaussian curvature of S at x. Direct computations further show that

D1ν2D2ν3 −D2ν2D1ν3 = −ψx1 KG, D2ν1D1ν3 −D1ν1D2ν3 = −ψx2 KG ,

D1ν1D2ν2 −D1ν2D2ν1 = KG . (32)

The latter relations yield

m1m2 =KG [−(σq1,q2 σq2,q3 − σq2,q2 σq1,q3)ψx1

− (σq2,q1 σq1,q3 − σq1,q1 σq2,q3)ψx2 + σq1,q1 σq2,q2 − σq1,q2σq2,q1 ]
=KG ν

−1
3 σ(C)

q,q (x, ν)ν · e3 ,

with σ(C)
q,q = co-factor matrix of σq,q and e3 = third standard basis vector. Further, the property

(10c) ensures that there is an orthonormal system {τ 1(x), τ 2(x)} of unit tangent eigenvectors
for the matrix σq,q(x, ν(x)). Thus, we can use the formula

σ(C)
q,q ν(x) = σ(C)

q,q (τ 1(x)× τ 2(x)) = σq,qτ
1(x)× σq,qτ 2(x)

= λ1(x)λ2(x) τ 1 × τ 2 = λ1(x)λ2(x) ν(x) ,
(33)

where λi(x), i = 1, 2 are the (positive) eigenvalues of σq,q(x, ν(x)) (cp. (10b)). Thus

m1(x)m2(x) = KG(x)λ1(x)λ2(x) . (34)

To prove the validity of (31), we now reexpress ν(x) · (δ ωi(x, φ(x))× δ φi(x)). Owing to the
chain rule

ν · (δ ωi(x, φ)× δ φi) = ωi,xk(x, φ) ν · (δ φk × δ φi) + ν · (ωi,δ(x, φ)× δ φi)
= ωi,xk(x, φ)σqk,ql σqi,qj ν · (δ νl × δ νj) + ν · (ωi,δ(x, φ)× δ φi)

+ ωi,xk(x, φ) ν · [(σδ,qk × δ φi) + (δ φk × σδ, qi)] .
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We define

a := ν · (ωi,δ(x, φ)× δ φi) + ωi,xk(x, φ) ν · [(σδ,qk × δ φi) + (δ φk × σδ, qi) .

The estimate |a| ≤ c | δ φ| with c = c(σ, ω) follows directly. By construction, the norm
‖ω‖C1(Ω×R3; R3) depends only on the dual convex function σ∗, and therefore this quantity is
also estimated by the constants in the conditions (10).

Abbreviating also for j, l = 1, 2, 3 that ζj,l = ωi,xk(x, φ)σqk,ql σqi,qj , and using the graph
representation of S, we see that

ν · (δ ωi(x, φ)× δ φi)− a = ν3 [(ζ1,2 − ζ2,1) (D1ν1D2ν2 −D1ν2D2ν1)

+ (ζ3,1 − ζ1,3) (D2ν1D1ν3 −D1ν1D2ν3)

+ (ζ2,3 − ζ3,2) (D1ν2, D2ν3 −D2ν2D1ν3)] .

Using the identities (32) again

ν · (δ ωi × δ φi)− a = KG [(ζ1,2 − ζ2,1) ν3 + (ζ3,1 − ζ1,3) ν2 + (ζ2,3 − ζ3,2) ν1] .

It remains to observe that (cf. (33))

[(ζ1,2 − ζ2,1) ν3 + (ζ3,1 − ζ1,3) ν2 + (ζ2,3 − ζ3,2) ν1] = σ(C)
q,q curlq ω(x, φ) · ν

= σ(C)
q,q ν · ν curlq ω(x, φ) · ν = λ1 λ2 curlq ω(x, φ) · ν .

Therefore, we finally obtain that

ν · (δ ωi(x, φ)× δ φi)− a = λ1 λ2KG curlq ω(x, σq(x, ν)) · ν .

Due to lemma A.1 and to the choice of ω, one sees that curlq ω(x, σq(x, ν)) · ν = 1, and the
claim follows comparing to (34).

Corollary 4.3. Assumptions of Lemma 4.2. Then there is a number c > 0 depending only on
the constants in the conditions (10) such that

| δ ϕ|2 ≤ c (−ν · curl(ωi(x, ϕ) δ ϕi) + |Φ(x, ν)|2 + 1) on S .

Proof. We can perform the differentiation in the equation (1) to see that

σqi,qj(x, ν) δi νj = Φ(x, ν)− σx(x, ν) · ν − σδi,qi(x, ν) . (35)

Define Φ̃(x, ν) the right-hand of (35). This is thus equivalent to m1(x) + m2(x) = Φ̃(x, ν),
wheremi are the eigenvalues of the matrixMϕ of Lemma 4.2. We square this identity to obtain

that m2
1 + m2

2 = Φ̃2 − 2m1m2. We estimate the 2−norm of the matrix Mϕ from above with
its spectral norm, and obtain that

1

2
|Mϕ|2 ≤

c

2
(m2

1 +m2
2) = c (Φ̃2 − a− ν · (δ ωi(x, ϕ)× δ ϕi)) .

Recall that δ ϕ = Mϕ + σq,δ (cf. (29)). It follows that

1

2
| δ ϕ|2 ≤ −c ν · (δ ωi(x, ϕ)× δ ϕi) + c (µ2 + Φ̃2 + |a|)

≤ −c ν · (δ ωi(x, ϕ)× δ ϕi) + c (µ2 + Φ̃2 + | δ ϕ|) .
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We now have to introduce another variation to the proof in [GT01]. Again this is owing to the
presence of a surface boundary in the case here under study. Observe at first that since we
assume S being of class C2, the sets Sρ(x) = S ∩Bρ(x) consists of finitely many connected,
relatively open surfaces S1

ρ(x), . . . , Smρ (x), m = m(ρ, x) ∈ N. For each of these surfaces
and almost all ρ > 0, the Theorem of Sard implies that the boundary ∂Siρ(x) is a closed
simple curve (cp. [GT01], formula (16.78)) such that | δ r| > 0 on ∂Siρ(x). However, the curves
Σi
ρ(x) := ∂Siρ(x) ∩ S and Γiρ(x) := ∂Siρ(x) ∩ ∂S need not being themselves connected.

This fact counteracts our proof idea based on Section 3, and we have to introduce a modification
of the sets Sρ(x). In the following Lemma, we want to construct for each i = 1, . . . ,m a set
Ki
ρ(x) as the smallest sup-set of Siρ(x) such that the boundary ∂Ki

ρ(x) ∩ ∂S is connected.

Lemma 4.4. Let S ⊂ Ω be of class C2 with boundary Γ ⊂ ∂Ω a simple curve. For x ∈ S and
ρ > 0, define Sρ(x) = S ∩ Bρ(x). Then, there exists a set Sρ(x) ⊆ Kρ(x) ⊂ S with the
following properties:

1 For all x ∈ S and almost all ρ > 0, the boundary ∂Kρ(x) consists of finitely many
Lipschitz closed simple curves ∂Ki

ρ(x), i = 1, . . . ,m with m = m(ρ, x) ∈ N;

2 For each i ∈ {1, . . . ,m}, the curve ∂Ki
ρ(x) ∩ S and the curve ∂Ki

ρ(x) ∩ ∂S are
connected;

3 The set ∂Kρ(x) ∩ S is a subset of the set Σρ(x) := ∂Sρ(x) ∩ S;

There is c > 0 depending only on the constants of the conditions (10) such that

meas(∂Kρ(x) ∩ Γ) ≤ c γ−1
1

(
meas(Σρ(x)) + (1 + ‖Φ‖L∞(Ω×S1)) meas(Kρ(x))

)
(36)

Assume that S moreover satisfies (7). Then, there is a R0 = R0(Ω) > 0 and a constant c > 0
(see Lemma A.5 below for details) such that

meas(Kρ(x)) ≤ c ρ, for all x ∈ S, 0 < ρ ≤ R0 . (37)

Proof. As we already observed, the surface Sρ(x) consists of finitely many connected, relatively
open surfaces S1

ρ(x), . . . , Smρ (x), m = m(ρ, x) ∈ N. For each i, the boundary ∂Siρ(x) is a
closed simple curve such that | δ r| > 0 therein.

Consider arbitrary i ∈ {1, . . . ,m}. If the intersection ∂Siρ(x) ∩ ∂S has vanishing arclength
measure, we define Ki

ρ(x) := Siρ(x).

Otherwise, the simple curve ∂Siρ(x) possesses an intersection with ∂S of positive arclength
measure. We define xi0 = xi0(x, ρ) ∈ ∂S and xi1 = xi1(x, ρ) ∈ ∂S as the first and the
last (according to some fixed orientation of ∂Siρ(x)) intersection point between the two curves
∂Siρ(x) and Γ. We call Γ(xi0, x

i
1) the connected segment of Γ joining xi0 and xi1. By definition,

xi0 and xi1 belong to the intersection of Σi
ρ(x) = ∂Siρ(x) ∩ S and Γ; Moreover, there is a con-

nected segment Σ(xi0, x
i
1) of Σi

ρ(x) joining these two points. The curve Σ(xi0, x
i
1)∪Γ(xi0, x

i
1)

is a Lipschitz continuous closed and simple curve. We define Ki
ρ(x) as the piece of the surface

S enclosed by this curve. Finally, we define Kρ(x) :=
⋃m
i=1 K

i
ρ(x).
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In order to prove the inequality (36), we start from the following identity valid for all k = 1, 2, 3,
all surfaces S ′ ⊆ S bounded by a simple curve, and all v ∈ C1(S ′):∫

S′
(σ δkj − σqj νk) δj v =

∫
S′

(Φ νk − σxk) v +

∫
∂S′

(σ δkj − σqj νk) ν ′j v ds , (38)

where δkj is the Kronecker symbol ((38) is a direct consequence of the Gauss integral theorem
and (1)). We apply this identity to S ′ = Ki

ρ(x), and we choose v = nk. Observe that on
∂Ki

ρ(x) ∩ Γ, the unit co-normal is given by ν ′ = | sinα|−1 (n− ν · n ν), which implies that

(σ δkj − σqj νk) ν ′j nk = | sinα|−1 (σ − κ (ν · n)) ≥ γ1/| sinα| ≥ γ1 . (39)

Therefore, as the unit co-normal on Σ(xi0, x
i
1) ⊂ Σρ(x) is given by δ r/| δ r|

γ1 meas(Γ(xi0, x
i
1)) ≤c (meas(Σ(xi0, x

i
1)) + (1 + ‖Φ‖L∞(Ω×S1)) meas(Ki

ρ(x))) ,

where c depends only on the constants of the conditions (10). Summing up these inequalities
for i = 1, . . . ,m, (36) follows.

We now prove (37). For simplicity, we assume that S is globally the graph of a function in
the standard coordinates, and that the vector ~g := e3 is tangent on ∂Ω at ∂S. Thus, S =
{(x̄, ψ(x̄)) : x̄ ∈ G ⊂ R2} where G = π(S) is the projection of S onto R2 × {0}. Since
n · e3 = 0 on ∂S, the unit normal n(x̄) for x̄ ∈ ∂G is nothing else but n(x̄, ψ(x̄)), and we see
that the curvature of ∂G depends only on Ω. Thus, there is a certain R0 > 0 depending only
on Ω, such that for all x̄ ∈ G and 0 ≤ ρ ≤ R0, the intersection of the ball Bρ(x̄) with ∂G is a
connected curve.

For i = 1, . . . ,m and ρ ≤ R0, consider the set Ki
ρ(x) as above. The boundary ∂Ki

ρ(x)
consists of two simple curves Σ(xi0, x

i
1) and Γ(xi0, x

i
1). Denote x̄i0, x̄

i
1 ∈ ∂G the projections

of the extremal points xi0, x
i
1. The projection of the connected curve segment π(Γ(xi0, x

i
1))

can be nothing else but the entire piece of curve ∂G(x̄i0, x̄
i
1). Since xi0, x

i
1 belong to Σρ(x),

their projections x̄i0, x̄
i
1 ∈ G satisfy |x̄ik − x̄| ≤ ρ for k = 0, 1 with x̄ := π(x). Owing to the

choice of ρ, the intersection Bρ(x̄) ∩ ∂G is connected, so that the entire π(Γ(xi0, x
i
1)) must

be contained in Bρ(x̄). Thus, Ki
ρ(x) is contained in the cylinder Zρ(x) := Bρ(x̄)× R. Using

Lemma A.5, we obtain the inequality meas(Kρ(x)) ≤ meas(Zρ(x)) ≤ c ρ.

Corollary 4.5. Assume that S is a graph solution to (1). Then there is a constant c that depends
only on σ such that∫

Kρ(x)

| δ ϕ|2 dS ≤c
∫
Kρ(x)

(1 + Φ2(x, ν)) dS − c
∫
∂Kρ(x)

ωi(x, ϕ) · ∂sϕi ds .

Proof. We integrate the inequality of the Corollary 4.3 over Kρ and use the structure of the
boundary ∂Kρ to apply the Stokes integral theorem.

The most consequent step in the proof of the theorem 4.1 is the following statement.
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Proposition 4.6. Assume that S is a graph solution to (1), (2). Let x ∈ S and 0 ≤ ρ ≤ R0

with R0 = R0(Ω) according to Lemma 4.4. Then there is a constant c > 0 depending on all
the quantities mentioned in the statement of Theorem 2.1 such that∣∣∣∣∣

∫
∂Kρ(x)

ωi(x, ϕ) ∂sϕi ds

∣∣∣∣∣ ≤ c

ρ+ meas(Σρ(x)) +

(∫
Σρ(x)

|∂sϕ| ds

)2
 .

Proof. For all x ∈ S and 0 ≤ ρ ≤ R0, define
∫
∂Kρ(x)

ω(x, ϕ) · ∂sϕds =: IS . For arbitrary

constant vectors ω1
0, . . . , ω

m
0 the identity

IS =
m∑
i=1

∫
∂Ki

ρ(x)

(ω(x, ϕ)− ωi0) · ∂sϕds =:

∫
∂Kρ(x)

(ω(x, ϕ)− ω0) · ∂sφ ds

is a consequence of the definition of IS and the fact that the curves ∂Ki
ρ(x) are closed. For

i = 1, . . . ,m, we can choose points xi0, x
i
1 ∈ Σi

ρ(x) such that ∂Ki
ρ(x)∩∂S is the connected

segment Γ(xi0, x
i
1) of the curve Γ, and such that ∂Ki

ρ(x) ∩ S is the connected segment
Σ(xi0, x

1
i ) of the curve Σρ(x) (Lemma 4.4). We then choose

ωi0 := ω(xi0, ϕ(xi0)) . (40)

The identity IS =: IΓ + IΣ is valid, where IΣ :=
∫
∂Kρ(x)∩S(ω(x, ϕ) − ω0) · ∂sϕds, and

IΓ :=
∫
∂Kρ(x)∩∂S(ω(x, ϕ)−ω0) · ∂sϕds. For y ∈ Σ(xi0, x

i
1), we can use the smoothness of

ω and the fact that Σ(xi0, x
i
1) ⊆ Σi

ρ(x) to show that

|ω(y, ϕ(y))− ω0| ≤ cω (|y − xi0|+ |ϕ(y)− ϕ(xi0)|) ≤ c

(
ρ+

∫
Σiρ(x)

|∂sϕ| ds

)
,

implying that maxy∈Σ(xi0, x
i
1) |ω(y, ϕ(y))− ω0| ≤ c (ρ+

∫
Σiρ
|∂sϕ| ds). Thus

|IΣ| ≤
m∑
i=1

∫
Σ(xi0, x

i
1)

|∂sϕ| ds ( max
y∈(xi0, x

i
1)
|ω(y, ϕ(y))− ω0|)

≤ c

(
ρ+

∫
Σρ

|∂sϕ| ds

) ∫
Σρ

|∂sϕ| ds .

In order to estimate IΓ, we apply the Lemma 3.3 with f = ω − ω0. We obtain that (ω(x, ϕ)−
ω0) ·∂sϕ = d

ds
F (x, θ(x))+a(x), with a ∈ L∞(Γ) satisfying the estimate of Lemma 3.3. The

function F is given on Γ× [0, 2 π] by the expression

F (x, θ) :=

∫ θ

0

(ω − ω0)(x, ψ(x, z)) · ψθ(x, z) dz .
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In particular, recall that the functions ψ and θ are such that ψ(x, θ(x)) = ϕ(x) for all x ∈ Γ
(Lemma 3.2). We obtain that∫

Γ(xi0, x
i
1)

(ω(x, ϕ)− ω0) · ∂sϕds =

∫
Γ(xi0, x

i
1)

{
a(x) +

d

ds
F (x, θ(x))

}
ds(x)

=

∫
Γ(xi0, x

i
1)

a(x) ds(x) + F (xi1, θ(x
i
1))− F (xi0, θ(x

i
0))

≤ ‖a‖L∞(Γ) meas(Γ[xi0, x
i
1]) + |F (xi1, θ(x

i
1))− F (xi0, θ(x

i
0))| .

The choice (40) of the constant ω0 implies that

Fθ(x
i
0, θ(x

i
0)) = (ω − ω0)(xi0, ψ(xi0, θ(x

i
0))) · ψθ(xi0, θ(xi0))

= (ω − ω0)(xi0, ϕ(xi0)) · ψθ(xi0, θ(xi0)) = 0 .

Thus, owing also to (18), and Lemma 3.2

|F (xi1, θ(x
i
1))− F (xi0, θ(x

i
0))|

≤ |F (xi1, θ(x
i
1))− F (xi0, θ(x

i
1))|+ |F (xi0, θ(x

i
1))− F (xi0, θ(x

i
0))|

≤ sup
θ∈[0,2π]

‖Fs(θ)‖C(Γ) meas(Γ[xi0, x
i
1]) + sup

x∈Γ
‖Fθ,θ(x)‖C([0,2π]) |θ(xi1)− θ(xi)|2

≤ c (meas(Γ[xi0, x
i
1]) + |ϕ(xi1)− ϕ(xi)|2)

≤ c

meas(Γ[xi0, x
i
1]) +

(∫
Σ[xi, xi1]

|∂sϕ|

)2


We now estimate with the help of Lemma 4.4

m∑
i=1

meas(Γ[xi0, x
i
1]) ≤ c (meas(Kρ) + meas(Σρ)) ≤ c (ρ+ meas(Σρ)) .

The claim follows.

For the proof of Theorem 4.1, we need a few more elementary inequalities.

Lemma 4.7. Assume that S is a surface of class C2 that satisfies (1), (2). Then, there are
constants ci > 0 (i = 1, . . . , 5) such that the following inequalities are valid:

(1) meas(∂S) ≤ c1 meas(S);

(2)
∫
S
| δ ϕ|2 dS ≤ c2 meas(S).

(3)
∫
S
| δ ν|2 dS ≤ c3 meas(S).

(4) For all ρ > 0, x ∈ S, meas(Γρ(x)) ≤ c4 ρ.

(5) For all ρ > 0, x ∈ S,
∫

Σρ(x)
| δ r| ds ≤ c5 ρ, where r(y) = r(y; x) := |y − x|.
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The constants ci depend for i = 1, 2, 3 only on Ω, on the constants in the conditions (10) and
(4) and on ‖Φ‖L∞(S×S1). The constants c4, c5 additionally depend on meas(S) and on the
constant of (28).

Proof. To prove (1), we choose v = nk in formula (38) for S ′ = S. Due to (39), it follows that
γ1 meas(∂S) ≤

∫
S
{cσ | δ n|+ |Φ|+ |σx|} dS ≤ c meas(S).

In order to prove (2), we first apply the inequality of lemma 4.5 and integrate over S, to obtain
that ∫

S

| δ ϕ|2 dS ≤ c

∫
S

(1 + |Φ|2) dS + c

∣∣∣∣∫
∂S

ω(x, ϕ) · ∂sϕ
∣∣∣∣ . (41)

Due to the Lemma 3.3 with f = ω, ω(x, ϕ) ·∂sϕ = d
ds
F (x, θ(x))+a(x). Since Γ is a closed

curve, it follows that |
∫
∂S
ω(x, ϕ) · ∂sϕds| ≤ ‖a‖L∞ meas(∂S). Using also point (1) in this

Lemma, the claim (2) follows.

The point (3) is a direct corollary. The properties of the dual convex function σ∗ (Appendix, (66))

imply that ν =
σ∗q (x, ϕ)

|σ∗q (x, ϕ)| . Also |σ∗q (x, ϕ)| = |ν|
σ(x, ν)

≥ µ−1
0 . Thus,

δi νj =
σ∗qj ,qk(x, ϕ)

σ(x, ν)
δi ϕl (δk,l −

σ∗qk(x, ϕ)σ∗ql(x, ϕ)

σ(x, ν)2
) . (42)

Thus, | δ ν| ≤ c | δ ϕ| and (2) proves (3).

We prove (4) in the same fashion as (1). Consider x ∈ S and ρ > 0 arbitrary. Let ζ ∈ C∞(R3)
satisfy ζ = 1 on Bρ(x), 0 ≤ ζ ≤ 1 in R3, supp(ζ) ⊆ B2 ρ(x) and |∇ζ| ≤ ρ−1. We choose
v = ζ nk in the formula (38), and it follows that

γ1 meas(Γρ) ≤ cσ

∫
S

| δ ζ| dS +

∫
S

{cσ | δ n|+ |Φ|+ |σx|} ζ dS

≤ c (ρ−1 + 1) meas(S2ρ) .

Thus using the definition (28), the estimate (4) follows.

We at last prove (5). Since Σρ = ∂Bρ(x) ∩ S, the co-normal unit vector n′ on Σρ is given
by δ r/| δ r|. We denote ν ′ = co-normal on ∂S. Using the Gauss theorem

∫
Σρ
| δ r| ds =∫

Σρ
δ r·n′ ds =

∫
Sρ
4Sr dS−

∫
Γρ
δ r·ν ′ ds. Since4Sr = r−1 (1+(ν·∇r)2)−div ν (ν·∇r),

the estimate |4Sr| =≤ 2 r−1 + | δ ν| is valid. We also observe that∫
Sρ

r−1 dS =

∫ ρ

0

t−2 meas(St) dt ≤ c0 ρ ,∫
Sρ

| δ ν| dS ≤ ‖ δ ν‖L2(S) meas(Sρ)
1/2 ≤ ‖ δ ν‖L2(S)

√
c0 ρ .

Thus, due also to the estimate (3) in this Lemma,
∫
Sρ
|4Sr| dS ≤ c ρ. On the other hand,

| δ r · ν ′| ≤ 1 on Γρ, and the estimate (4) yields |
∫

Γρ
δ r · ν ′ ds| ≤ c4 ρ, achieving to prove the

claim.
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We are now able to give the final argument and finish the proof of Theorem 4.1. We denote c a
generic constant that depends on the constants of the conditions (10), (6), (28) and moreover
on ‖κ‖C1(∂Ω), ‖Φ‖L∞(S×S1), on meas(S) and on the domain Ω.

For x ∈ S, define f(ρ) :=
∫
Sρ(x)
| δ ϕ|2 dS. Due to the statements 4.5 and 4.6, we obtain the

inequality

f(ρ) ≤c

ρ+ meas(Σρ(x)) +

(∫
Σρ(x)

| δ ϕ| ds

)2
 . (43)

The Sard Theorem implies that for x ∈ S and almost all ρ > 0, | δ r| vanishes at no point of
∂Sρ(x) (see also the proof of Corollary 4.5). Thus, we can follow the ideas of Theorem 16.4 in
[GT01] to estimate(∫

Σρ(x)

| δ ϕ| dS

)2

=

(∫
Σρ(x)

| δ r|1/2 | δ ϕ|
| δ r|1/2

ds

)2

≤

(∫
Σρ(x)

| δ r| ds

) (∫
Σρ(x)

| δ ϕ|2

| δ r|
ds

)
.

The Lemma A.4 below shows that
∫

Σρ(x)
| δ ϕ|2
| δ r| ds = f ′(ρ). Moreover, meas(Σρ(x)) ≤ g′(ρ),

where g(ρ) := meas(Sρ(x)). Exploiting moreover the inequality of Lemma 4.7, (5), it follows
that (

∫
Σρ(x)

| δ ϕ| ds)2 ≤ c5 ρ f
′(ρ).

Using this latter inequality in (43) yields the differential inequality

f(ρ) ≤ c [ρ+ g′(ρ) + ρ f ′(ρ)] . (44)

For β := 1/c, and h(ρ) := ρ−β f(ρ), it follows that 0 ≤ ρ−β + g′(ρ) ρ−1−β + h′(ρ), and
therefore, after intergation on the interval (R, R0)

h(R) ≤ h(R0) +
R1−β

0

1− β
+

∫ R0

R

g′(ρ) ρ−1−β dρ .

Using integration by parts∫ R0

R

g′(ρ) ρ−1−β =
g(R0)

R1+β
0

− g(R)

R1+β
− (1 + β)

∫ R0

R

g(ρ) ρ−2−β dρ .

Owing to the definition of g, the condition (28) implies that g ≤ c0 ρ
2, and therefore |

∫ R0

R
g′(ρ) ρ−1−β| ≤

cRβ
0 . It follows that

f(R) ≤
(
R

R0

)β (∫
S

| δ ϕ|2 + c(R0)

)
0 < R ≤ R0 .

Using finally that | δ ν| ≤ c | δ ϕ| (cf. (42)) yields
∫
SR(x)

| δ ν|2 dS ≤ c (R/R0)2β . Thus, by
Hölder’s inequality∫

SR

| δ ν| dS ≤ meas1/2(SR)

(∫
SR

| δ ν|2 dS
)1/2

≤
√
c0 cR

1+β ,

and the claim of Theorem 4.1 follows.
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5 The Hölder estimate and the curvature estimates

The inequality of Theorem 4.1 in principle implies a Hölder estimate for the vector ν, because the
Campanato spaceL(C)

1,2+β(S) is continuously embedded inCβ(S). But the challenge is to prove
that the embedding constant can be controlled by the the coefficients of the operators in (1), (2).
The interior Hölder estimate was shown in [GT01], Theorem 16.15. But the Hölder estimate on
a curved manifold with contact boundary conditions must now be worked out. Unfortunately, we
find no way to directly apply representation theorems on on the surface S like in the interior
case: We obtain in the first subsection 5.1 a result at once more technical and weaker, though
it is still sufficient for our purposes. In the second subsection 5.2 we finish the proof of the main
result, the curvatures estimate.

The results of both sections are based on local transformations of the surface that allows to
pass to a flat configuration. This flattening happens to be more concisely handled if we consider
a piece of surface S0 ⊆ S near a portion of ∂Ω itself assumed to be planar. By this we mean
that S0 ⊆ S ∩ U , with an open smooth bounded domain U ⊂ R3 such that U ∩ Ω ⊂ {x ∈
R3 : x1 < 0}, and U ∩ ∂Ω is contained in the plane {x ∈ R3 : x1 = 0} (so that n(x) = e1

for all x ∈ U ∩∂Ω). There is not enough room here to describe the technical step how to locally
flatten the boundary of Ω, but we claim it to be a standard procedure that does not affect the
generality of the result.

In the next lemma, we want to show how to locally flatten S. At first we need a notation.

Notation 5.1. For i = 1, 2, 3, we denote x̄i :=
∑3

j=1, j 6=i x · ej the projection of x on the
plane {xi = 0}. Here, ej (j = 1, 2, 3) are the standard basis vectors in R3. For i = 1, 2, 3 we
employ the reordering (x̄i, xi) := x of the coordinates.

Lemma 5.2. Let F ⊆ S be a relatively open two-dimensional hypersurface such that |νi| ≥
c0 > 0 onF . Then there are: An open neighbourhoodB ⊂ R3 ofF and a Lipschitz continuous
diffeomorphism T in B with Lipschitz constant equal 1, such that the set G := T (F) is con-
tained in the plane {x ∈ R3 : xi = 0} and such that supy∈G |(T−1)′(y)| ≤ c−1

0 . Moreover, if
∂F ∩ Γ is contained in a flat portion of ∂Ω, the curve γ := T (∂F ∩ Γ) is contained in the line
{x1 = 0, xi = 0}.

Proof. Observe that the surfaceS is the zero level-set of d(x) = dist(x, S), and that ∂xid(x) =
±νi(x) for x ∈ S, i = 1, 2, 3. For x ∈ F arbitrary, the implicit function theorem implies that
there are an open neighbourhood B of the point x̄i in R2 (cf. the Notation 5.1), and a function
ψ ∈ C1(B) such that

d(ȳ, ψ(ȳ)) = 0 for ȳ ∈ B(x̄i), ψ(x̄i) = xi .

Since |∂xid| ≥ c0 onF , it also follows thatψȳj(ȳ) = −∂x̄jd/νi(ȳ, ψ(ȳ)). Thus, supȳ∈B |ψȳ| ≤
c−1

0 . The latest bound being uniform for x ∈ F , the construction can be extended to the entire
F .
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5.1 The Hölder estimate

Throughout this section, S0 ⊂ S is a connected surface such that the curve Γ0 := ∂S0 ∩ ∂S
is connected and such that

S0 ⊂ {x ∈ R3 : x1 < 0}, Γ0 ⊂ {x ∈ R3 : x1 = 0} . (45)

Since n = e1 on Γ0, the inequality (5) implies that

(ν2
2(x) + ν2

3(x))1/2 = | sinα(x)| ≥ γ1

µ0

=: γ0, x ∈ Γ0 . (46)

We define a function fγ0 : [0, 1]→ [0, 1] via

f(t) :=


1 for t ≥ γ0/2
4
γ0

(t− γ0
4

) for t ∈ [γ0/4, γ0/2[

0 otherwise

.

For x ∈ S, we introduce functions

ζ3(x) := fγ0(|ν3(x)|), ζ2(x) := fγ0(|ν2(x)|) (1− ζ3(x))

ζ1(x) := 1− ζ3(x)− ζ2(x) .
(47)

Lemma 5.3. For i = 1, 2, 3, let ζi ∈ C0,1(S) be given by (47). Then 0 ≤ ζi(x) ≤ 1, and∑3
i=1 ζi(x) = 1 for all x ∈ S. Moreover

| δ ζi(x)| ≤ 4

γ0

| δ ν(x)| x ∈ S .

Denote supp(ζi) := {x ∈ S : ζi > 0}. Then, |νi| ≥ γ0/4 on supp(ζi) for i = 1, 2, 3. Let
Γ0 be defined by (45). Then dist(supp(ζ1), Γ0) > 0.

Proof. Looking at the definition of ζ1 it immediately follows that
∑3

i=1 ζi(x) = 1 on S. Moreover

ζ1 = 1− ζ3 − (1− ζ3) fγ0(|ν2|) = (1− fγ0(|ν3|)) (1− fγ0(|ν2|)) .

Thus, 0 ≤ ζi ≤ 1. For x ∈ supp(ζ3), the choice of f ensures that |ν3(x)| ≥ γ0/4, and for
x ∈ supp(ζ2), it implies that |ν2(x)| ≥ γ0/4. If x ∈ supp(ζ1), then ν3(x), ν2(x) ≤ γ0/2,
and since we can assume γ0 < 1,

|ν1(x)| ≥
√

1− 2 (γ0/2)2 ≥ γ0/4 .

Finally, due to the property (46), sup{|ν3(x)|, |ν2(x)|} ≥ γ0/
√

2 for x ∈ Γ0. Therefore,
dist(supp(ζ1), Γ0) > 0.

For x ∈ S and i ∈ {1, 2, 3}, either ζi(x) = 0, or we can introduce the largest relatively
open connected surface F i,x ⊆ supp(ζi) such that x ∈ F i,x. This definition implies that
∂F i,x ⊆ {ζi = 0} ∪ ∂S. For i = 1 and x ∈ S such that ζ1(x) > 0, the Lemma 5.3 implies
that dist(F1,x, ∂S) > 0. Thus ∂F1,x ⊆ {ζ1 = 0}.
We now prove a kind of mean value inequality in the spirit of [GT01], (16.27) and (16.29). As
already mentioned, it is weaker but allows to consider points x ∈ S arbitrary near to ∂S.
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Lemma 5.4. Let S0 satisfy (45). Let u ∈ C1(S) be nonnegative and satisfy

u(x) = 0 for all x ∈ S \ S0 . (48)

Then there is c = c(γ0) > 0 such that for all x ∈ S

u(x) ≤ c

∫
S

{| δ u(y)|+ |u(y)| | δ ν(y)|}
|x− y|

dS(y) + max
y∈∂S

u(y) for all x ∈ S (49)

u(x) ≤ c

∫
S

{| δ u(y)|+ |u(y)| | δ ν(y)|}
|x− y|

dS(y) for all x ∈ ∂S . (50)

Proof. For i = 1, 2, 3, set ui(x) := ζi(x)u(x) for x ∈ S. Then
∑3

i=1 ui = u on S (Lemma
5.3). Let i ∈ {1, 2, 3}. If ζi(x) = 0, then

ui(x) = 0 . (51)

Otherwise, ζi(x) > 0, and we consider the set F = F i,x. Owing to Lemma 5.2, there is
an open neighbourhood B ⊂ R3 of F i,x and a Lipschitz continuous diffeomorphism T in B,
such that the set G := T (F) is contained in the plane {x ∈ R3 : xi = 0} and such that
supy∈G |(T−1)′(y)| ≤ 4/γ0. Moreover, for i = 2, 3, the set G is contained in the half plane
{xi = 0, x1 < 0} and the curve γ := T (∂F i,x∩Γ) is contained in the line {x1 = 0, xi = 0}.
We identify G with a domain in R2 and denote ȳ ∈ G its elements. For ȳ ∈ G, we furthermore
define ũi(ȳ) := ui(T

−1(ȳ)).

Let x̄ := T (x) ∈ G. For ε > 0, the vector field

V ε(ȳ) :=

{
ȳ−x̄
|ȳ−x̄|2 if |ȳ − x̄| ≥ ε
ȳ−x̄
ε2

otherwise
for ȳ ∈ G

is Lipschitz continuous in G, and it satisfies div V ε = 2 ε−2 χBε(x̄). Thus∫
G

(div V ε)(ȳ) ũi(ȳ) dȳ =
2

ε2

∫
Bε(x̄)∩G

ũi(ȳ) dȳ . (52)

Since ∂F ⊆ ∂S ∪ {ζi = 0}, it follows that ũi = 0 on ∂G \ γ. Moreover, γ is either empty
(i = 1), or it is contained in a straight line and the outward normal relatively to G satisfies
nγ = e1 (i = 2, 3). Thus, integration by parts in (52) yields

1

π ε2

∫
Bε(x̄)∩G

ũi dλ2 = − 1

2π

∫
G

V ε · ∇ũi dλ2 +
1

2π

∫
γ

V ε · e1 ũi dλ1 . (53)

Note that x ∈ F being an interior point, x̄ ∈ G is also an interior point. For ε sufficiently small,
the ball Bε(x̄) is entirely contained in G. Moreover V ε is bounded on γ. Since the singularity of
V ε is integrable over G, we can let ε tend to zero in the latest relation to obtain that

ũi(x̄) = − 1

2π

∫
G

ȳ − x̄
|ȳ − x̄|2

· ∇ũi dλ2 +
1

2π

∫
γ

ȳ1 − x̄1

|ȳ − x̄|2
ũi dλ1 . (54)

18



Denote Φ the double-layer potential of the density ũi associated with the curve γ, that is
π−1

∫
γ
ȳ1−x̄1

|ȳ−x̄|2 ũi dλ1 = −Φ(x̄). Consider x̄0 ∈ γ arbitrary. Since γ is contained in a line,

it is well known that limx̄→x̄0 Φ(x̄) = −ũi(x̄0). For a proof of this fundamental fact, the reader
may consult for instance [Hac95], Section 8.2. It is also well known that the double-layer poten-
tial Φ is an harmonic function in the half plane {x1 ≤ 0}, and for this reason it must attain its
extrema on γ. Thus, the relation (54) also implies for x̄ ∈ G that

ũi(x̄) ≤ − 1

2π

∫
G

ȳ − x̄
|ȳ − x̄|2

· ∇ũi dλ2 +
1

2
max
ȳ∈γ

ũi(ȳ) , (55)

For i = 1, the curve γ being empty, we obtain that

ũ1(x̄) ≤ − 1

2π

∫
G

ȳ − x̄
|ȳ − x̄|2

· ∇ũ1 dλ2 . (56)

For j = 1, 2, ȳ ∈ G, we compute ∂ȳũi(ȳ) = δk ui(T
−1(ȳ))T−1

ȳ,k (ȳ). Thus

∣∣∣∣ ȳ − x̄|ȳ − x̄|2
· ∇ũi

∣∣∣∣ ≤ 4

γ0

| δ ui(T−1(ȳ))|
|ȳ − x̄|

≤ 4

γ0

(
1 +

(
4

γ0

)2
)1/2

| δ ui(T−1(ȳ))|
|T−1(ȳ)− T−1(x̄)|

.

Using the transformation formula∣∣∣∣∫
G

ȳ − x̄
|ȳ − x̄|2

· ∇ũi dλ2

∣∣∣∣ ≤ 4

γ0

(
1 +

(
4

γ0

)2
)1/2 ∫

F
|x− y|−1 | δ ui| dS . (57)

The relations (55), (56) and (57) altogether imply that

ui(x) ≤ c(γ0)

π

∫
Fi,x
|x− y|−1| δ ui| dS +

1

2
max

y∈∂Fi,x∩∂S
ui(y), for i = 2, 3

u1(x) ≤ c(γ0)

π

∫
F1,x

|x− y|−1| δ u1| dS .

We sum up these inequalities. Observe that if F i,x is empty, then the case (51) applies. Thus,
considering Lemma 5.3, we obtain that

u(x) ≤ c(γ0)

π

∫
Sx
|x− y|−1

3∑
i=1

| δ ui| dS(y) + max
y∈∂Sx∩∂S

u(y) , Sx :=
3⋃
i=1

F i,x

It remains to observe that

| δ ui| ≤ ζi | δ u|+ | δ ζi|u ≤ ζi | δ u|+
4

γ0

| δ ν|u , (58)

and the inequality (49) follows. For x ∈ ∂S, we choose a sequence {xk} ⊂ S such that
xk → x. If x ∈ F i,x, then due to the fact that F i,x is open, also xk ∈ F i,x for k sufficiently
large. Thus, we can choose for i = 2 or i = 3 a fixed transformation T of the set F i,xk . We

19



obtain the relation (54) with x̄ = x̄k. For k → ∞, x̄k → x̄, we use the properties of the
double-layer potential, to obtain that

ũi(x̄)

2
= − 1

2π

∫
G

ȳ − x̄
|ȳ − x̄|2

· ∇ũi dλ2 . (59)

For x ∈ ∂S and i = 2, 3, the relations (59) and (57) yield

ui(x) ≤ c(γ0)

π

∫
Fi,x
|x− y|−1 | δ ui| dS .

It follows that u(x) ≤ c(γ0)
π

∫
Sx
|x− y|−1

∑3
i=1 | δ ui| dS(y), and the claim follows from (58).

For x ∈ S fixed, denote rx(y) := |x− y|, y ∈ R3. ForR > 0 fixed, let φ be the cutoff function

φ(t) :=

{
1− t2/R2 for 0 ≤ t ≤ R

0 for t > R .
(60)

Corollary 5.5. Same assumptions as Lemma 5.4 for the function u. There is c = c(γ0) > 0
such that for all R > 0 and x ∈ S, we can find z = z(R, x) ∈ SR(x) such that

u(x) ≤ c
1

R2

∫
SR(z)

u dS + c

∫
SR(z)

r−1
z φ(rz) (| δ u|+ | δ ν|u) dS .

Proof. Consider first x ∈ ∂S. In Lemma 5.4, we can choose the function uφ(rx) instead of u.
Straightforward calculations yield

u(x) ≤ c
1

R2

∫
SR(x)

u dS + c

∫
SR(x)

r−1
x φ(rx) (| δ u|+ | δ ν|u) dS , (61)

which proves the claim with z = x. If x ∈ S, we also choose choose the function uφ(rx) in
Lemma 5.4 to obtain that

u(x) ≤c 1

R2

∫
SR(x)

u dS + c

∫
SR(x)

r−1
x φ(rx) (| δ u|+ | δ ν|u) dS

+ max
y∈∂S∩BR(x)

{u(y)φ(rx(y))} .
(62)

Considering (61), and choosing y ∈ ∂S ∩BR(x) such that u(y) = max∂S∩BR(x) u, we obtain
that

max
∂S∩BR(x)

{uφ(rx)} ≤ u(y)

≤ c
1

R2

∫
SR(y)

u dS + c

∫
SR(y)

r−1
y φ(ry) (| δ u|+ | δ ν|u) dS .

(63)

Thus, taking (62), (63) into account

u(x) ≤ 2c
1

R2

∫
SR(z)

u dS + c

∫
SR(z)

r−1
z φ(rz) (| δ u|+ | δ ν|u) dS ,

where z = x or z = y.
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For the proof following main result of this section, we can in view of our previous preparations
at last follow the lines of Lemma 16.4 in [GT01].

Theorem 5.6. Assumptions of Lemma 5.4. Let c = c(γ0) denote the constant of Lemma 5.5

and let β ∈]0, 1]. Define R0 :=
(
c β

4[δ ν]1+β,S

)1/β

. Then, there is c̃ = c̃(γ0) > 0 such that for

all u ∈ C1(S) satisfying (48), and for all x ∈ S and 0 < R ≤ R0

oscS∗R(x) u ≤ c̃ β−1 [δ u]1+β,S

(
1 +

meas(S2R)

4π R2

)
Rβ .

Here, S∗R(x) ⊆ SR(x) denotes the connected part of SR(x) that contains x.

Proof. Denote u1 := supS∗R(x) u, u0 = infS∗R(x) u. Set c0 = 2 c [δ u]1+β,S/β. If u1 − u0 ≤
c0R

β , we are already done. Otherwise, denote N the largest integer such that N ≤ (u1 −
u0)/c0R

β . The interval [u0, u1] can be subdivided into N subintervals I1, . . . , IN of length
larger than (or equal to) c0R

β . For each j = 1, . . . , N , letψj be a Lipschitz continuous function
such that supp(ψj) ⊆ Ij , 0 ≤ ψj ≤ 1 in Ij , maxIj ψj = 1, and |ψ′j| ≤ 1/(2c0R

β).

Exploiting that S∗R(x) is connected, there is for each j = 1, . . . , N a xj ∈ S∗R(x) such that
ψj(u(xj)) = 1. We apply Corollary the 5.5 with x = xj and u = ψj(u), to find a zj ∈ SR(x)
such that

1 = ψj(u(xj)) ≤c
1

R2

∫
SR(zj)

ψj(u) dS

+ c

∫
SR(zj)

r−1
zj
φ(rzj) (ψ′j(u) | δ u|+ | δ ν|ψj(u)) dS .

(64)

We now use the formula
∫
SR
r−1 φ(r) g dS ≤

∫ R
0
ρ−2

∫
Sρ
g dS dρ, and the fact that ψj ≤ 1

in order to prove that∫
SR(zj)

r−1
zj
φ(rzj) | δ ν|ψj(u) dS ≤

∫ R

0

ρ−2

∫
Sρ

| δ ν| dS dρ

≤ [δ ν]1+β,S

∫ R

0

ρ−1+β dρ = β−1Rβ [δ ν]1+β,S .

Thus, choosing R ≤ R0, we obtain that c
∫
SR(zj)

r−1
zj
φ(rzj) | δ ν|ψj(u) dS ≤ 1/4. Analo-

gously, we estimate∫
SR(zj)

r−1
zj
φ(rzj)ψ

′
j(u) | δ u| dS ≤ 1

2 c0Rβ

∫ R

0

ρ−2

∫
Sρ

| δ u| dS dρ ≤ [δ u]1+β,S

2c0β
.

Thus, by the choice of c0 we see that c
∫
SR(zj)

r−1
zj
φ(rzj)ψ

′
j(u) | δ u| dS ≤ 1/4. Tor all j =

1, . . . , N , (64) now implies that

1

2
≤ c

1

R2

∫
SR(zj)

ψj(u) dS .
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Since zj ∈ SR(x), it follows that SR(zj) ⊂ S2R(x). Thus, since by construction
∑N

j=1 ψj ≤ 1,
we obtain that

N

2
≤ c

R2

∫
S2R(x)

N∑
j=1

ψj(u) dS ≤ cR−2 meas(S2R(x)) .

Due to the choice of N , we finally obtain that

u1 − u0 ≤ (N + 1) c0R
β ≤ c β−1 [δ u]1+β,S (1 +

meas(S2R(x))

4π R2
)Rβ .

5.2 Final proof of the curvature estimates

Let us note the following essential consequence of the Theorems 4.1 and 5.6.

Corollary 5.7. Assumptions of the Theorem 4.1. Define β ∈]0, 1[ as in this Theorem. Then,
there are c > 0 and R0 > 0 such that

oscS∗R(x) ν ≤ cRβ, ∀x ∈ S, R ≤ R0 .

Here, the number c and R0 depended on all quantities mentioned in the statement of Theorem
2.1.

With the Corollary 5.7 at hand, the proof of the main Theorem 2.1 is standard. The idea is that for
all x ∈ S, a certain neighbourhood S∗R1

(x) can be flattened in such a way that the problem (1),
(2) is equivalent to a second order, elliptic boundary value problem in two space dimensions. For
the proof of the following Lemma, we use the same flattening technique as in the Lemma 5.2,
since we can ensure that there is a fixed vector ξ = ν(x) such that oscS∗R(x) |ν ·ξ−1| ≤ cRβ .
Thus, up to a rotation S∗R(x) is the graph of a function ψ ∈ C2(R2) in the standard coordinates.

Moreover, under the simplifying assumption that ∂Ω is locally flat, the curve Γ∗R(x) is contained
in the plane {x1 = 0}. Define

G := {(x̄, 0) : (x̄, ψ(x̄)) ∈ S∗R(x)} , γ := {(x̄, 0) : (x̄, ψ(x̄)) ∈ Γ∗R(x)} .

The problem (1), (2) is then equivalent to

− d

dxi
σ̄qi(x̄, ψ, ∇ψ) + σ̄x3(x̄, ψ, ∇ψ) = Φ̄(x̄, ψ, ∇ψ) in G

−σ̄qi(x̄, ψ, ∇ψ)ni(x̄) = κ(x̄, ψ) on ∂G .

Here, σ̄(x̄, z, p) = σ(x̄, z, −p, 1) for p ∈ R2, and Φ̄(x̄, z, p) := Φ(x̄, z, ν(p)) with
ν(p) := (−pi, 1) (1 + p2)−1/2. This is a quasilinear elliptic equation with a singularity of mean
curvature type. Moreover,

√
1 + |∇ψ|2 = ν−1

3 ≤ c in G. Thus, the equation is even uniformly
elliptic. The arguments to obtain the higher order estimates are well-known. First it is possible to
obtain a Hölder estimate ‖∇ψ‖Cα(G∪γ) ≤ c (‖Φ‖L∞(S×S1) + ‖σx‖L∞(S×S1) + ‖κ‖Cα(∂S)).
Due to a bootstrapping argument well known in this context one obtains that ‖∇ψ‖C1,α(G∪γ) ≤
c (‖Φ‖L∞(S1;Cα(S))+‖σx‖C1,α(S1;Cα(S))+‖κ‖C1,α(∂S)). For details, see the classical literature
[LU70, Ura73, SS76, Ger79, Lie83] and further references therein.
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A Auxiliary results

Let σ ∈ C1(Ω; C2,α(R3 \ {0})) be a convex, one-homogeneous function satisfying the as-
sumptions (10). Define

σ∗(x, q) := sup
p∈R3

q · p

σ(x, p)
. (65)

In can be shown that σ∗ is as smooth as σ, convex and one-homogeneous in the q−variable.
It moreover satisfies (10) with constants λ∗i , µ

∗
j . In particular, µ∗0 = λ−1

0 , and λ∗0 = µ−1
0 .

Moreover, the identities

σ∗(x, σq(x, q)) = 1, σ∗q (x, σq(x, q)) =
q

σ(x, q)
, (66)

are valid for all (x, q) ∈ Ω× R3 \ {0}.
For all x ∈ Ω, we can introduce the unit ball/sphere of the function σ∗(x, ·)

W 1
σ∗(x) = {q ∈ R3 : σ∗(x, q) < 1}, S1

σ∗(x) = ∂W 1
σ∗(x) , (67)

which is a convex domain of class C2 containing the origin. For x ∈ Ω, the properties (66) show
that q 7→ σq(x, q) is a mapping from R3 onto S1

σ∗(x), and in particular from the standard unit

sphere S1 onto S1
σ∗(x).

Consider an arbitrary surface S ⊂ Ω class C2. Then, ν(x), x ∈ S maps from S into S1,
and ϕ(x) := σq(x, ν(x)) maps from S into S1

σ∗(x). The following proposition states sufficient

conditions for the existence of a C1−vector field ω satisfying the property (30).

Lemma A.1. Let S ⊂ Ω be a surface of class C2. Assume that there is a connected free
surface1 E ⊂ S1 of class C1 such that ν(x) ∈ E for all x ∈ S.

Then, there exists a vector fields ω ∈ C1(Ω× R3; R3) such that

curlq ω(x, σq(x, ν(x))) · ν(x) = 1 for all x ∈ S . (68)

Moreover, ‖ω‖C1(Ω×R3; R3) depends on σ and E , but not on S.

Proof. For x ∈ Ω, r ∈ R3 \{0} consider the change of coordinates Ti(x, r) := |r|σqi(x, r).
The Jacobian (dT )i,j = ∂rjTi, i, j = 1, 2, 3 is given by

(dT (x, r))i,j = |r|σqi,qj(x, r) + σqi(x, r)
rj
|r|

.

Using (10c), observe that (dT (x, r))t r = σ(x, r) r
|r| . Therefore (dT (x, r))−t r = |r|

σ(x, r)
r,

and we see that

|(dT (x, r))−t r| = |r|2

|σ(x, r)|
≥ |r|
µ0

for all r ∈ R3 \ {0} . (69)

1A free surface is a nonclosed, connected surface
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Moreover, we can compute that

(dT (x, r)) r · r = |r|σ(x, r) ≥ λ0 |r|2 ,
(dT (x, r)) η · η = |r|σq,q(x, r)η · η ≥ λ1 |η|2 for all η · r = 0 .

Thus, dT (x, r) is strictly positive definite, and its smallest eigenvalue is larger than min{λ1, λ0}.
It follows that

det(dT (x, r)) ≥ λ2
1 λ0 . (70)

Consider now the function u(x, r) := det(dT (x, r)) |(dT (x, r))−t r|. Thanks to the as-
sumptions on σ, u ∈ C1(Ω; Cα(R3 \ {0})). Applying Lemma A.3 below, we find ω̂ ∈
C1, α(Ω × R3; R3) such that curlr ω̂(x, r) · r = u(x, r) for all r ∈ E ⊂ S1. Define for
the new coordinates q := T (x, r)

ω(x, q) := dT (x, r) ω̂(x, r) .

Then, ‖ω‖C1,α(Ω)×R3) ≤ c(σ, E), and the transformation formula of the curl operator under
coordinate changes yields

curlq ω(x, q) =
1

det(dT )(x, r)
dT (x, r) curlr ω̂(x, r) ,

where we also used (70). Note now that the transformation T (x, ·) maps S1 into S1
σ∗(x). Thus,

taking also (69) into account, the unit normal n(r) = r on S1 transforms according to the

formula nσ
∗(x)(q) = (dT (x, r))−t r

|(dT (x, r))−t r| . Thus, for q = T (x, r) with r ∈ E

curlq ω(x, q) · nσ∗(x)(q) =
[dT (x, r) curlr ω̂(x, r)] · [(dT (x, r))−t r]

det(dT )(x, r) |(dT (x, r))−t r|

=
u(x, r)

det(dT )(x, r) |(dT (x, r))−t r|
= 1 .

Since ν(x) ∈ E , we can choose q = σq(x, ν(x)), and using that nσ
∗(x)(q) = ν(x) (cf. (66)),

the claim follows.

Remark A.2. If the surface S is a graph, there is a vector ~g such that ~g ·ν(x) > 0 for all x ∈ S.
Thus, the assumptions of Lemma A.1 are satisfied with E := {q ∈ S1 : ~g · q > 0}.

Lemma A.3. Let E ⊂ S1 be a connected free surface of class C1, and u ∈ C1(Ω; Cα(S1)),
α > 0. Then, there is ω̂ ∈ C1(Ω; R3; R3) such that

curl ω̂(x, r) · r = u(x, r) for all (x, r) ∈ Ω× E , (71)

and the estimate ‖ω‖C1,α(Ω×R3; R3) ≤ cE ‖u‖C1(Ω;Cα(S1)) is valid.

Proof. In a first step we show that for arbitrary u ∈ Cα(S1), there is ω̂ ∈ C1(R3; R3) such
that curl ω̂ ·n = u on E and ‖ω̂‖C1,α(R3)]3 ≤ cE ‖u‖Cα(S1). First we choose T 1 : Cα(S1)→
Cα
M(S1) (sub-script M means vanishing mean value) a linear extension operator such that

T 1(u) = u on E ,
∫
S1

T 1(u) dS = 0, ‖T 1(u)‖Cα(S1) ≤ cE ‖u‖Cα(S1) .
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Since ∂E is a C1,α curve, T 1(u) can be constructed by standard techniques. We then find
a solution p ∈ C2,α(S1) to the problem −4S1p = T 1(u), and we extend p outside of
S1 so that ‖p‖C2,α(R3) ≤ c ‖p‖C2,α(S1). We then set ŵ(r) := ∇p × r. Suppose further
that u depends on the parameter x ∈ Ω and that the mapping x 7→ u(x, ·) ∈ Cα(S1)
is continuously differentiable. Then, the vector field ω̂(x, ·) constructed as above belongs to
C1(Ω; C1,α(R3; R3)).

The next property extends the validity of formula (16.77) in [GT01] for Sρ(x0) = S ∩ Bρ(x0)
that might intersect ∂S. The proof being completely similar, we shall omit it.

Lemma A.4. There is a set N ⊂ [0, R0] of measure zero, such that for all ρ ∈ [0, R0] \ N
and all x0 ∈ S, the quantity | δ r| is strictly positive on Σρ(x0). Moreover, for all g ∈ C(S), the
identity

∫
Σρ(x0)

g | δ r|−1 ds = d
dρ

∫
Sρ(x0)

g dS is valid.

Lemma A.5. Let S be a solution to the problem (1) and globally the graph of a function (denote
e3 the Z−axis of the coordinate system in which S is a graph). Assume that the following
conditions are satisfied:

(1) There is a constant µ3 such that σx(x, q) · e3 ≤ µ3 |q · e3| for q ∈ R3;

(2) The vector e3 is tangent to ∂Ω for all x ∈ ∂S.

Then, there is a constant c depending on the constants in the conditions (10) and on µ3, on
‖Φ‖L∞(S×S1), on γ1 and on Ω, such that for all x̄ ∈ G := π(S) and ρ > 0, the intersection of
S with the cylinder Zρ := Bρ(x̄)× R satisfies meas(S ∩ Zρ) ≤ c ρ.

Proof. The formula (38) on the whole of S for k = 3 implies that∫
S

(σ δ3 v − σq · δ v ν3) =

∫
S

(Φ ν3 − σx3) v +

∫
∂S

(σ ν ′3 − σq · ν ′ ν3) v ds .

Let ρ > 0, and x̄ ∈ R2 such that the point x = (x̄, ψ(x̄)) belongs to S. We fix ζ ∈
C1
c (B2ρ(x̄)) equal to one on Bρ(x̄) and nonnegative, and satisfying |∇ζ| ≤ ρ−1. Here, ∇

means differentiation in the x̄ coordinates. We choose the test function v(x̄, z) = ζ(x̄) z. Note
that | δ3 ζ| ≤ ρ−1 ν3 and that δ3 z = 1−ν2

3 on S. Moreover, the co-normal on the outer bound-
ary satisfies by assumption ν ′3 = | sinα|−1 (n3 − cosα ν3 = | sinα|−1 cosα ν3. It follows
that ∫

S

σ ζ ≤
∫
S

ν3 {(σ + |σq|) |∇ζ|+ (| δ z| |σq|+ |Φ| |z|+ |σx3| ν−1
3 ) ζ}

+

∫
∂S

ν3 {σ | cotα|+ |σq|} |z| |ζ| .

We denote γ = π(∂S) the projection of ∂S on R2. Owing to the assumption n3 = 0 on ∂S, the
curvature of γ depends only on ∂Ω. Since |σδ3| ≤ (µ3 + µ0) ν3, and since | cotα| ≤ µ0/γ1,
we thus obtain the inequality∫

S

σ ζ ≤c ((ρ−1 + 1) meas(B2ρ(x̄)) + meas(γ ∩B2ρ(x̄))) ≤ c ρ .

The constant c depends on the constants in (10) and µ3, on γ1, ‖Φ‖L∞ and ‖z‖L∞(S).
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Applying similar ideas, we can choose v = (z − z0)ρ ζ with ζ like in the proof of Lemma A.5
and (·)ρ the truncation at levels ±ρ. We obtain the following result, achieving to show that the
constant c of the main estimate (3) is independent of the surface S.

Lemma A.6. Assumptions of Lemma A.5. Then the constant c0 of the condition (28) depends
only on the constants in the condition (10) and µ3, on ‖Φ‖L∞(S×S1) and on γ1.
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