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ABSTRACT. We consider the equation

vt = Lsv −W ′(v) + σε(t, x) in (0,+∞)×R,
where Ls is an integro-differential operator of order 2s, with s ∈ (0, 1), W is a periodic potential,
and σε is a small external stress. The solution v represents the atomic dislocation in the Peierls–
Nabarro model for crystals, and we specifically consider the case s ∈ (0, 1/2), which takes into
account a strongly nonlocal elastic term.

We study the evolution of such dislocation function for macroscopic space and time scales, namely
we introduce the function

vε(t, x) := v

(
t

ε1+2s
,
x

ε

)
.

We show that, for small ε, the function vε approaches the sum of step functions. From the physical point
of view, this shows that the dislocations have the tendency to concentrate at single points of the crystal,
where the size of the slip coincides with the natural periodicity of the medium. We also show that the
motion of these dislocation points is governed by an interior repulsive potential that is superposed to
an elastic reaction to the external stress.
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1. INTRODUCTION

In this paper we deal with an integro-differential equation of fractional order derived from the classical
Peierls–Nabarro model for crystal dislocations. Specifically we will focus on the case in which the
fractional order of the equation is low, which corresponds to a situation in which the long-range elastic
interactions give the highest contribute to the energy. In this framework, we will describe the evolution
of the atom dislocation function by showing that, for sufficiently long times and at a macroscopic
scale, the dislocation function approaches the superposition of a finite number of dislocations. These
individual dislocations have size equal to the characteristic period of the crystal and they occur at
some specific points, which in turn evolve according to a repulsive potential and reacting elastically to
the external stress.

More precisely, we consider the problem

(1.1) vt = Lsv −W ′(v) + σε(t, x) in (0,+∞)×R,

where s ∈ (0, 1), Ls is the so-called fractional Laplacian, and W is a 1-periodic potential. More
explicitly, given ϕ ∈ C2(R) ∩ L∞(R) and x ∈ R, we define

Lsϕ(x) :=
1

2

∫
R

ϕ(x+ y) + ϕ(x− y)− 2ϕ(x)

|y|1+2s
dy.

We refer to [10, 3] for a basic introduction to the fractional Laplace operator. As for the potential, we
assume that

(1.2)


W ∈ C3,α(R), for some 0 < α < 1,
W (x+ 1) = W (x) for any x ∈ R,
W (k) = 0 for any k ∈ Z,
W > 0 in R \ Z,
W ′′(0) > 0.

As customary, ε > 0 is a small scale parameter, and σε plays the role of an exterior stress acting on
the material. We suppose that

σε(t, x) := ε2sσ(ε1+2st, εx),

where σ is a bounded uniformly continuous function such that, for some α ∈ (s, 1) and M > 0, it
holds

‖σx‖L∞([0,+∞)×R) + ‖σt‖L∞([0,+∞)×R) 6M,

|σx(t, x+ h)− σx(t, x)| 6M |h|α, for every x, h ∈ R and t ∈ [0,+∞).
(1.3)

The problem in (1.1) arises in the classical Peierls–Nabarro model for atomic dislocation in crys-
tals, see e.g. [7] and references therein. In this paper, our main focus is on the fractional parameter
range s ∈ (0, 1/2), which corresponds to a strongly nonlocal elastic term, in which the energy con-
tributions coming from far cannot be neglected and, in fact, may become predominant. We refer to [6]
for the case s = 1/2 and to [4] for the case s ∈ (1/2, 1).

We define

vε(t, x) := v

(
t

ε1+2s
,
x

ε

)
and we look at the equation satisfied by the rescaled function vε, that is, recalling (1.1), (vε)t =

1

ε

(
Lsvε −

1

ε2s
W ′(vε) + σ(t, x)

)
in (0,+∞)×R,

vε(0, ·) = v0
ε in R.

(1.4)
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Following [8, 1], we introduce the basic layer solution u ∈ C2,α(R) (here α = α(s) ∈ (0, 1)), that is,
the solution of the problem{

Lsu−W ′(u) = 0 in R,
u′ > 0, u(−∞) = 0, u(0) = 1/2, u(+∞) = 1.

(1.5)

The name of layer solution is motivated by the fact that u approaches the limits 0 and 1 at±∞. More
quantitatively, there exists a constant C > 1 such that

(1.6) |u(x)−H(x)| 6 C|x|−2s and |u′(x)| 6 C|x|−(1+2s),

where H is the Heaviside function, see Theorem 2 in [8].

As a preliminary result, we will prove a finer asymptotic estimate on the decay of the layer solution:

Theorem 1.1. Let s ∈ (0, 1/2). There exist constants C > 0 and ϑ > 2s such that∣∣∣∣u(x)−H(x) +
1

2sW ′′(0)

x

|x|1+2s

∣∣∣∣ 6 C

|x|ϑ
for any x ∈ R,

with ϑ depending only on s.

To state our next result, we recall that the semi-continuous envelopes of u are defined as

u∗(t, x) := lim sup
(t′,x′)→(t,x)

u(t′, x′)

and
u∗(t, x) := lim inf

(t′,x′)→(t,x)
u(t′, x′).

Moreover, given x0
1 < x0

2 < . . . < x0
N , we consider the solution

(
xi(t)

)
i=1,...,N

to the system
ẋi = γ

(
−σ(t, xi) +

∑
j 6=i

xi − xj
2s |xi − xj|2s+1

)
in (0,+∞),

xi(0) = x0
i ,

(1.7)

where

(1.8) γ =

(∫
R

(u′)2

)−1

.

For the existence and uniqueness of such solution see Section 8 in [5]. We consider as initial condition
in (1.4) the state obtained by superposing N copies of the transition layers, centered at x0

1, . . . , x
0
N ,

that is

(1.9) v0
ε(x) =

ε2s

β
σ(0, x) +

N∑
i=1

u

(
x− x0

i

ε

)
,

where

(1.10) β := W ′′(0) > 0.

The main result obtained in this framework is the following:

Theorem 1.2. Let s ∈ (0, 1/2), assume that (1.2), (1.3) and (1.9) hold, and let

v0(t, x) =
N∑
i=1

H(x− xi(t)),

where H is the Heaviside function and (xi(t))i=1,...,N is the solution to (1.7).
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Then, for every ε > 0 there exists a unique viscosity solution vε to (1.4). Furthermore, as ε→ 0, the
solution vε exhibits the following asymptotic behavior:

lim sup
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) 6 (v0)

∗(t, x)

and
lim inf

(t′,x′)→(t,x)
ε→0

vε(t
′, x′) > (v0)∗(t, x)

for any t ∈ [0,+∞) and x ∈ R.

When s = 1/2 the result above was proved in [6], where it was also raised the question about what
happens for other values of the parameter s.

In [4], the result was extended to the case s ∈ (1/2, 1). So the main purpose of this paper was to
obtain the result for the remaining range of s ∈ (0, 1/2). From the physical point of view, this range
of parameters is important since it corresponds to the case of a strong nonlocal elastic effect: notice
indeed that the lower the value of s the stronger become the energy contributions coming from far. We
refer to [6, 4] for a more exhaustive set of physical motivations and heuristic asymptotics of the model
we study.

We also remark that, differently from [6], we do not make use of any harmonic extension results, that
are specific for the fractional powers of the Laplacian, and so our proof is feasible for more general
types of integro-differential equations.

The cornerstone to prove Theorem 1.1 (and hence Theorem 1.2) is given by the following decay
estimate at infinity, which we think has also independent interest:

Theorem 1.3. Let s ∈ (0, 1/2), and let v ∈ L∞(R) ∩ C2(R) such that

(1.11) lim
x→±∞

v(x) = 0.

Suppose that there exists a function c ∈ L∞(R) such that c(x) > δ > 0 for any x ∈ R and for
some δ > 0, and

(1.12) −Lsv + cv = g,

where g is a function that satisfies the following estimate

(1.13) |g(x)| 6 C

1 + |x|4s
for any x ∈ R,

for some constant C > 0.

Then, there exist ϑ ∈ (2s, 1 + 2s] depending only on s, and a constant C > 0 depending on C , δ,
‖c‖L∞(R), and s, such that

|v(x)| 6 C

1 + |x|ϑ
for any x ∈ R.

In our setting, we will use Theorem 1.3 in the proof of Theorem 1.1 (there, the function v in the
statement of Theorem 1.3 will be embodied by the difference between the solution u of problem
(1.5) and a suitable heteroclinic solution of a model problem, so that in this case condition (1.11) is
automatically satisfied).

The explicit value of the exponent ϑ that appears in the statement of Theorem 1.3 will be given in
formula (5.4), but such explicit value will not play any role in this paper (the only relevant feature for us
is that ϑ > 2s). We think that it is an interesting open problem to determine the optimal value of the
exponent ϑ in a general setting.
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Theorem 1.3 may be seen as the strongly nonlocal version of Corollary 5.13 in [6] and Corollary 7.1
in [4], where similar decay estimates (with different exponents) where obtained when s = 1/2
and s ∈ (1/2, 1), respectively. However, the techniques in [6, 4] are not sufficient to obtain the
desired decay estimates when s ∈ (0, 1/2), so the proof of Theorem 1.3 here will rely on completely
different methods. Roughly speaking, we use suitable test functions in order to obtain an integral
decay estimates (this will be accomplished in Proposition 5.1) and then we use barriers and sliding
arguments to infer from it a pointwise estimate. Remarkably, differently from the classical case where
pointwise estimates follow from integral ones using a suitable version of the weak Harnack inequality
(see e.g. Theorem 4.8(2) in [2]), in our case, to the best of our knowledge, the fractional analog of
this weak Harnack inequality is not known. To overcome this difficulty, some careful estimates on the
fractional Laplacian of a function below a barrier are employed (these estimates will be obtained in
Corollary 4.2).

The rest of the paper is organized as follows. The proof of Theorem 1.3 is contained in Sections 2–6.
More precisely, we collect some preliminary elementary estimates in Section 2. Then, in Sections 3
and 4, we estimate the fractional Laplacian of a function below a barrier by taking into account the
contribution in a neighborhood of a given point and the contribution coming from infinity. An integral
decay estimate is given in Section 5 and the proof of Theorem 1.3 is completed in Section 6.

With this we have the basic technical tools to prove Theorem 1.1 in Section 7. Then, Sections 8–10
are devoted to the proof of Theorem 1.2. Namely, Section 8 collects some uniform bounds that are
used in Section 9 to construct the solution of a corrector equation and prove its regularity. With this,
the proof of Theorem 1.2 is completed in Section 10.

2. AN AUXILIARY SUMMATION LEMMA

Here we present some technical summation estimates, to be used in the forthcoming Section 4. For
the sake of generality, we prove the results in Sections 2-5 in Rn, for any s ∈ (0, 1) and n > 1.

Lemma 2.1. Let s ∈ (0, 1), x0 ∈ Rn such that |x0| > 3, and ϑ ∈ (0, n+ 2s]. Then∑
k∈Zn\{0}

|x0+k|6|x0|/2

1

|k|n+2s (1 + |x0 + k|)ϑ
6

C

(1 + |x0|)ϑ
,

for some C > 0 depending on n, s and ϑ.

Proof. If |x0 + k| 6 |x0|/2 then |k| > |x0| − |x0 + k| > |x0|/2, therefore

(2.1)
∑

k∈Zn\{0}
|x0+k|6|x0|/2

1

|k|n+2s (1 + |x0 + k|)ϑ
6

2n+2s

|x0|n+2s

∑
k∈Zn\{0}

|x0+k|6|x0|/2

1

(1 + |x0 + k|)ϑ
.

Moreover, ∫ |x0|

1

ρn−1 dρ

ρϑ
= Z(n, ϑ, x0),

where

Z(n, ϑ, x0) :=

(n− ϑ)−1(|x0|n−ϑ − 1) if n > ϑ,
log |x0| if n = ϑ,

(ϑ− n)−1(1− |x0|n−ϑ) if n < ϑ.

In any case

(2.2)
Z(n, ϑ, x0)

|x0|n+2s
6

cn,ϑ
|x0|ϑ

,
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for some constant cn,ϑ > 0 only depending on n and ϑ. Therefore∑
k∈Zn\{0}

|x0+k|6|x0|/2

1

(1 + |x0 + k|)ϑ
6

∫
B|x0|(−x0)

dx

(1 + |x+ x0|)ϑ

= ωn−1

∫ |x0|

0

ρn−1 dρ

(1 + ρ)ϑ

6 ωn−1

[∫ 1

0

ρn−1 dρ+

∫ |x0|

1

ρn−1 dρ

ρϑ

]

= ωn−1

[
1

n
+ Z(n, ϑ, x0)

]
.

This and (2.1) give that∑
k∈Zn\{0}

|x0+k|6|x0|/2

1

|k|n+2s (1 + |x0 + k|)ϑ
6
C1 (1 + Z(n, ϑ, x0))

|x0|ϑ
,

for some C1 > 0. Then, the desired result follows from (2.2). �

Corollary 2.2. Let s ∈ (0, 1), x0 ∈ Rn such that |x0| > 3, and ϑ ∈ (0, n+ 2s]. Then∑
k∈Zn\{0}

1

|k|n+2s (1 + |x0 + k|)ϑ
6

C

(1 + |x0|)ϑ
,

for some C > 0 depending on n, s and ϑ.

Proof. Notice that∑
k∈Zn\{0}

|x0+k|>|x0|/2

1

|k|n+2s (1 + |x0 + k|)ϑ
6

1

(1 + |x0|/2)ϑ

∑
k∈Zn\{0}

1

|k|n+2s
6

C0

(1 + |x0|)ϑ
,

for some C0 > 0, and so the result follows from Lemma 2.1. �

3. FRACTIONAL LAPLACE COMPUTATIONS I – INTEGRAL ESTIMATES AT A POINT

Here we estimate the local contribution of the fractional Laplacian of a function touched by above by
a polynomial barrier. By local, we mean here the contribution coming from a neighborhood of a given
point. The contribution coming from far will then be studied in Section 4.

Though the main focus of this paper is the fractional parameter range s ∈ (0, 1/2) the results pre-
sented hold true for any s ∈ (0, 1). For this, it is convenient to recall the notation on singular integrals
in the principal value sense, that is

P.V.

∫
Rn

u(x+ y)− u(x)

|y|n+2s
dy := lim

ρ↘0

∫
Rn\Bρ

u(x+ y)− u(x)

|y|n+2s
dy.

As a matter of fact, when s ∈ (0, 1/2) the above notation may be dropped since the integrand is
indeed Lebesgue summable and no cancellations are needed to make the integral convergent near
the origin.

With this notation, we can estimate the contribution in a given ball according to the following result:

Lemma 3.1. Let s ∈ (0, 1), ϑ > 0, ε ∈ (0, 1), and

F1(x) :=
1

(1 + |x|)ϑ
.



7

For any fixed M > 0 let FM(x) := MF1(x). Suppose that u ∈ L∞(Rn) ∩ C2(Rn) satisfies

FM(x0) + ε = u(x0) for some point x0 ∈ Rn,(3.1)

FM(x) + ε > u(x) for every x ∈ Rn,(3.2) ∫
B1(x0)

|u(ζ)| dζ 6 C0

(1 + |x0|)ϑ
(3.3)

for some C0 > 0.

Then there exists M0 > 0, depending only on n, s, ‖u‖L∞(Rn), ϑ, and C0, such that if M > M0

then

P.V.

∫
B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6 − M |B1|

10 (1 + |x0|)ϑ
.

Proof. First of all we observe that, without loss of generality, we can suppose that

(3.4) |x0| > 3.

Indeed, if |x0| 6 3 we deduce from (3.1) that

M

4ϑ
6

M

(1 + |x0|)ϑ
= FM(x0) = u(x0)− ε 6 ‖u‖L∞(Rn)

that gives an upper bound on M which would be violated by choosing M0 large enough.

From (3.4), we have that

(3.5) for any y ∈ B1, |x0 + y| > |x0| − |y| > |x0|/2.

Now we define

D1 :=

{
y ∈ B1 s.t. |u(x0 + y)| > M

2 (1 + |x0|)ϑ

}
,

D2 :=

{
y ∈ B1 s.t. |u(x0 + y)| < M

2 (1 + |x0|)ϑ

}
.

Then, by (3.3),
C0

(1 + |x0|)ϑ
>
∫
D1

|u(x0 + y)| dy > M |D1|
2 (1 + |x0|)ϑ

.

Hence

(3.6) |D1| 6
2C0

M
and, as a consequence, if M is large enough,

(3.7) |D2| > |B1| − |D1| >
9 |B1|

10
.

Now we define

r0 :=

(
(1 + |x0|)2

M

)1/(n+2)

,

D3 := D1 ∩Br0 ,

D4 := D1 \Br0 .

If y ∈ D3 we use (3.1), (3.2) and a Taylor expansion of F1 to obtain that

u(x0 + y)− u(x0) 6 M
(
F1(x0 + y)− F1(x0)

)
6 M∇F1(x0) · y +M sup

ξ∈B1

|D2F1(x0 + ξ)| |y|2.
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Notice that

|∂2
xi,xj

F1(x)| 6 2ϑ

(1 + |x|)ϑ+1 |x|
+

ϑ (ϑ+ 1)

(1 + |x|)ϑ+2

and so, by (3.4) and (3.5),

sup
ξ∈B1

|D2F1(x0 + ξ)| 6 C1

(1 + |x0|)ϑ+2
,

for some C1 > 0. Therefore, for any y ∈ D3,

u(x0 + y)− u(x0) 6M∇F1(x0) · y +
C1M |y|2

(1 + |x0|)ϑ+2

and so, since the odd term vanishes in the principal value integral,

P.V.

∫
D3

u(x0 + y)− u(x0)

|y|n+2s
dy 6

C1M

(1 + |x0|)ϑ+2

∫
D3

|y|2−n−2s dy

6
C1M

(1 + |x0|)ϑ+2

∫
Br0

|y|2−n−2s dy

=
C2M r2−2s

0

(1 + |x0|)ϑ+2
.

(3.8)

Moreover, by (3.1), (3.2), and (3.5), we have that, if y ∈ D4,

u(x0 + y)− u(x0)

|y|n+2s
6

FM(x0 + y)− FM(x0)

|y|n+2s

6
FM(x0 + y)

|y|n+2s

6
M

rn+2s
0 (1 + |x0 + y|)ϑ

6
2ϑM

rn+2s
0 (1 + |x0|)ϑ

..

Accordingly, making use of (3.6), we conclude that

P.V.

∫
D4

u(x0 + y)− u(x0)

|y|n+2s
dy 6

2ϑM |D4|
rn+2s
0 (1 + |x0|)ϑ

6
2ϑM |D1|

rn+2s
0 (1 + |x0|)ϑ

6
C3

rn+2s
0 (1 + |x0|)ϑ

.

(3.9)

for some C3 > 0. Thus, by (3.8) and (3.9), we obtain

P.V.

∫
D1

u(x0 + y)− u(x0)

|y|n+2s
dy 6

C2M r2−2s
0

(1 + |x0|)ϑ+2
+

C3

rn+2s
0 (1 + |x0|)ϑ

6
C4M

β

(1 + |x0|)ϑ+2β

(3.10)

for a suitable C4 > 0, where

(3.11) β :=
n+ 2s

n+ 2
∈ (0, 1).
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This completes the estimate of the contribution in D1. Now we estimate the contribution in D2. For
this, we notice that, if y ∈ D2, then

u(x0 + y)− u(x0) = u(x0 + y)− M

(1 + |x0|)ϑ
− ε 6 − M

2 (1 + |x0|)ϑ

and therefore

P.V.

∫
D2

u(x0 + y)− u(x0)

|y|n+2s
dy 6 − M

2 (1 + |x0|)ϑ

∫
D2

dy

|y|n+2s

6 − M

2 (1 + |x0|)ϑ

∫
D2

dy

6 − 9M |B1|
20 (1 + |x0|)ϑ

,

(3.12)

thanks to (3.7). By collecting the estimates in (3.10) and (3.12), we obtain that

P.V.

∫
B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6

C4M
β

(1 + |x0|)ϑ+2β
− 9M |B1|

20 (1 + |x0|)ϑ

= − 9M |B1|
20 (1 + |x0|)ϑ

(
1− C5

M1−β (1 + |x0|)2β

)
6 − 9M |B1|

20 (1 + |x0|)ϑ

(
1− C5

M1−β

)
for some C5 > 0. So, since β ∈ (0, 1) due to (3.11), for M large we obtain the desired result. �

4. FRACTIONAL LAPLACE COMPUTATIONS II – INTEGRAL ESTIMATES AT INFINITY

This is the counterpart of Section 3, since here we study the contribution coming from infinity of
the fractional Laplacian of a function touched by above by a polynomial barrier (since the singularity
of the integral only occur at the origin, we do not need to use the principal value notation for such
contribution).

Lemma 4.1. Let s ∈ (0, 1), ϑ ∈ (0, n+ 2s], ε ∈ (0, 1), and

F1(x) :=
1

(1 + |x|)ϑ
.

For any fixed M > 0 let FM(x) := MF1(x). Suppose that u ∈ L∞(Rn) ∩ C2(Rn) satisfies

FM(x0) + ε = u(x0) for some point x0 ∈ Rn,(4.1)

FM(x) + ε > u(x) for every x ∈ Rn(4.2) ∫
B1(x)

|u(ζ)| dζ 6 C0

(1 + |x|)ϑ
for every x ∈ Rn(4.3)

for some C0 > 0.

Then there exists M0 > 0, depending only on n, s, ‖u‖L∞(Rn), ϑ, and C0, such that if M > M0

then ∫
Rn\B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6

M |B1|
20 (1 + |x0|)ϑ

.

Proof. We notice that

u(x0 + y)− u(x0) = u(x0 + y)− FM(x0)− ε 6 u(x0 + y)− ε 6
(
u(x0 + y)− ε

)+
.
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Also, the cube centered at zero with side 1/
√
n lies inside the unit ball, namely Q1/

√
n ⊂ B1. There-

fore

(4.4)

∫
Rn\B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6

∫
Rn\Q1/

√
n

(
u(x0 + y)− ε

)+
|y|n+2s

dy.

Now we coverRn \Q1/
√
n with cubes of side 1/(8n

√
n) centered at points of a sublatticeZ (roughly

speaking, this sublattice is just a scaling of Zn by a factor 1/(8n
√
n), outside Q1/

√
n). In this way,

(4.5) if k ∈ Z , then |k| > 1

2
√
n

.

Therefore

(4.6) if k ∈ Z and y ∈ Q1/(8n
√
n)(k) then |y| > |k| − |y − k| > |k|

2
+

1

4
√
n
− 1

8n
>
|k|
2

.

Moreover,

if k ∈ Z and y ∈ Q1/(8n
√
n)(k) then

1 + |x0 + y| > 1 + |x0 + k| − |y − k| > 1 + |x0 + k| − 1

8n
>

1

2

(
1 + |x0 + k|

)
.

(4.7)

Now we observe that, from (4.4),

(4.8)

∫
Rn\B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6

∑
k∈Z

∫
Q1/(8n

√
n)(k)

(
u(x0 + y)− ε

)+
|y|n+2s

dy.

We define

D1(k) :=

{
y ∈ Q1/(8n

√
n)(k) s.t. |u(x0 + y)| >

√
M

(1 + |x0 + k|)ϑ

}
,

D2(k) :=

{
y ∈ Q1/(8n

√
n)(k) s.t. |u(x0 + y)| <

√
M

(1 + |x0 + k|)ϑ

}
.

Then, from (4.3),

C0

(1 + |x0 + k|)ϑ
>

∫
B1(x0+k)

|u(ζ)| dζ

>
∫
Q1/(8n

√
n)(x0+k)

|u(ζ)| dζ

>
∫
D1(k)

|u(x0 + y)| dy

>

√
M |D1(k)|

(1 + |x0 + k|)ϑ

and so

|D1(k)| 6 C0√
M
.
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Consequently, using (4.2), (4.6) and (4.7), we see that∫
D1(k)

(
u(x0 + y)− ε

)+
|y|n+2s

dy 6
∫
D1(k)

FM(x0 + y)

|y|n+2s
dy

6
∫
D1(k)

C1M

(1 + |x0 + k|)ϑ |k|n+2s
dy

=
C1M |D1(k)|

(1 + |x0 + k|)ϑ |k|n+2s

6
C0C1

√
M

(1 + |x0 + k|)ϑ |k|n+2s
,

(4.9)

for a suitable C1 > 0. Now we use again (4.6) to estimate the contribution in D2(k) in the following
computation: ∫

D2(k)

u+(x0 + y)

|y|n+2s
dy 6

∫
D2(k)

√
M

(|k|/2)n+2s (1 + |x0 + k|)ϑ
dy

6
2n+2s |Q1/(8n

√
n)|
√
M

|k|n+2s (1 + |x0 + k|)ϑ
.

(4.10)

Using (4.9) and (4.10), and the fact that(
u(x0 + y)− ε

)+
6 u+(x0 + y),

we conclude that ∫
Q1/(8n

√
n)(k)

(
u(x0 + y)− ε

)+
|y|n+2s

dy 6
C2

√
M

(1 + |x0 + k|)ϑ |k|n+2s
,

for a suitable C2 > 0. So we plug this estimate into (4.8) and we deduce that∫
Rn\B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6 C2

√
M
∑
k∈Z

1

(1 + |x0 + k|)ϑ |k|n+2s
.

Thus we estimate the latter series using Corollary 2.2 (notice that Z may be seen as a scaled version
of Zn \ {0}, due to (4.5), and x0 stays away from 0, as pointed out in (3.4), so the assumptions of
Corollary 2.2 are satisfied, up to scaling): we obtain that∫

Rn\B1

u(x0 + y)− u(x0)

|y|n+2s
dy 6

C3

√
M

(1 + |x0|)ϑ
,

for a suitable C3 > 0, hence the claim plainly follows if M is large enough. �

Combining the estimates of Lemmata 3.1 and 4.1 we obtain that the negative local contribution cannot
be compensated by the contribution at infinity. More explicitly, we have:

Corollary 4.2. Let s ∈ (0, 1), ϑ ∈ (0, n+ 2s], ε ∈ (0, 1), and

F1(x) :=
1

(1 + |x|)ϑ
.

For any fixed M > 0 let FM(x) := MF1(x). Suppose that u ∈ L∞(Rn) ∩ C2(Rn) satisfies

FM(x0) + ε = u(x0) for some point x0 ∈ Rn,

FM(x) + ε > u(x) for every x ∈ Rn∫
B1(x)

|u(ζ)| dζ 6 C0

(1 + |x|)ϑ
for every x ∈ Rn
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for some C0 > 0.

Then there exists M0 > 0, depending only on n, s, ‖u‖L∞(Rn), ϑ, and C0, such that if M > M0

then

(4.11) Lsu(x0) = P.V.

∫
Rn

u(x0 + y)− u(x0)

|y|n+2s
dy 6 − M |B1|

20 (1 + |x0|)ϑ
.

5. DECAY ESTIMATES IN AVERAGE

Here we obtain some precise information on the decay at infinity of the solution of a nonlocal equation
with decaying nonlinearity:

Proposition 5.1. Let s ∈ (0, 1), u ∈ L∞(Rn) ∩ C2(Rn) satisfy

(5.1) −Lsu+ cu = g in Rn,

where c(x) ∈ (c0, c
−1
0 ), for some c0 ∈ (0, 1) and

(5.2) |g(x)| 6 C

(1 + |x|)α

for some C > 0 and α > 0.

Then, for any x ∈ Rn,

(5.3)

∫
B1(x)

|u(y)| dy 6 C∗
|x|ϑ

where C∗ > 0 is a suitable constant and

(5.4) ϑ :=
min{n+ 2s− (n− 2α)+, 2α}

2
.

Proof. We use that u satisfies (5.1) in the weak sense, that is, for any test function ψ,∫
Rn

∫
Rn

(u(x)− u(y))(ψ(x)− ψ(y))

|x− y|n+2s
dx dy +

∫
Rn
c uψ dx =

∫
Rn
gψ dx.

Choosing ψ = uϕ2 we get
(5.5)∫

Rn

∫
Rn

(
u(x)− u(y)

) (
u(x)ϕ2(x)− u(y)ϕ2(y)

)
|x− y|n+2s

dx dy +

∫
Rn
c u2ϕ2 dx =

∫
Rn
guϕ2 dx.

Notice that we can write(
u(x)− u(y)

) (
u(x)ϕ2(x)− u(y)ϕ2(y)

)
=

(
u(x)− u(y)

) (
u(x)ϕ2(x)− u(y)ϕ2(x) + u(y)ϕ2(x)− u(y)ϕ2(y)

)
=

(
u(x)− u(y)

) [(
u(x)− u(y)

)
ϕ2(x) + u(y)

(
ϕ2(x)− ϕ2(y)

)]
=

(
u(x)− u(y)

)2
ϕ2(x) + u(y)

(
u(x)− u(y)

) (
ϕ(x) + ϕ(y)

) (
ϕ(x)− ϕ(y)

)
.
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Hence (5.5) becomes∫
Rn

∫
Rn

(u(x)− u(y))2ϕ2(x)

|x− y|n+2s
dx dy

+

∫
Rn

∫
Rn

u(y)
(
u(x)− u(y)

) (
ϕ(x) + ϕ(y)

) (
ϕ(x)− ϕ(y)

)
|x− y|n+2s

dx dy

+

∫
Rn
c u2ϕ2 dx =

∫
Rn
guϕ2 dx.

(5.6)

Now we estimate the second term in (5.6) in the following way∣∣∣∣∣
∫
Rn

∫
Rn

u(y)
(
u(x)− u(y)

) (
ϕ(x) + ϕ(y)

) (
ϕ(x)− ϕ(y)

)
|x− y|n+2s

dx dy

∣∣∣∣∣
6

1

4

∫
Rn

∫
Rn

(u(x)− u(y))2(ϕ(x) + ϕ(y))2

|x− y|n+2s
dx dy +

∫
Rn

∫
Rn

u2(y)(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx dy

6
1

2

∫
Rn

∫
Rn

(u(x)− u(y))2(ϕ2(x) + ϕ2(y))

|x− y|n+2s
dx dy +

∫
Rn

∫
Rn

u2(y)(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx dy

6
∫
Rn

∫
Rn

(u(x)− u(y))2ϕ2(x)

|x− y|n+2s
dx dy +

∫
Rn

∫
Rn

u2(y)(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx dy.

Using this and (5.6) we obtain

c0

∫
Rn
u2ϕ2 dx 6

∫
Rn
c u2ϕ2 dx

=

∫
Rn
guϕ2 dx−

∫
Rn

∫
Rn

(u(x)− u(y))2ϕ2(x)

|x− y|n+2s
dx dy

−
∫
Rn

∫
Rn

u(y)(u(x)− u(y))(ϕ(x) + ϕ(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy

6
∫
Rn
guϕ2 dx+ I,

(5.7)

where

I :=

∫
Rn

∫
Rn

u2(y)(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx dy.

On the other hand ∫
Rn
guϕ2 dx =

∫
Rn

2 (
√

1/(2c0) gϕ)(
√
c0/2uϕ) dx

6
1

2c0

∫
Rn
g2ϕ2 +

c0
2

∫
Rn
u2ϕ2 dx.

By plugging this into (5.7) and reabsorbing one term on the left hand side we obtain

(5.8)
c0
2

∫
Rn
u2ϕ2 dx 6

1

2c0

∫
Rn
g2ϕ2 dx+ I.

Our goal is now twofold: to estimate
∫
Rn
g2ϕ2 dx and to reabsorb I on the left hand side. For this, we

choose

ϕ(x) :=
1

(1 + ε2|x− x0|2)N
,

where x0 ∈ Rn is fixed,

(5.9) N :=
n+ 2s

4
,
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and 0 < ε� 1/N . Notice that ϕ ∈ L2(Rn) ∩ L∞(Rn). We set

(5.10) R := |x0|/2 > 10,

and we claim that

(5.11)

∫
Rn
g2ϕ2 dx 6 CεR

−γ,

for some Cε > 0 and

γ := min{n+ 2s− (n− 2α)+, 2α}.
Notice that

(5.12) ϑ = γ/2,

see (5.4).

To prove the claim, we first observe that if x ∈ BR then

|x− x0| > |x0| − |x| > 2R−R = R,

so

ϕ(x) 6
1

(1 + ε2R2)N
6

1

ε2NR2N
.

Accordingly, using also (5.2) and (5.9), we obtain∫
BR

g2ϕ2 dx 6
1

ε4NR4N

∫
BR

g2 dx

6
1

ε4NR4N

∫
BR

C

(1 + |x|)2α
dx

6
C

ε4NR4N

[∫
B1

1 dx+

∫
BR\B1

C

|x|2α
dx

]
6 CεR

−4N
(

1 + `(R)R(n−2α)+
)

6 2Cε`(R)R−n−2s+(n−2α)+ ,

(5.13)

for some Cε > 0, where

`(R) :=

{
logR if 2α = n,

1 otherwise.

Moreover, if x ∈ BR(x0) then

|x| > |x0| − |x− x0| > 2R−R = R

and so, from (5.2), we have

|g(x)| 6 C

(1 +R)α
6

C

Rα
.

As a consequence ∫
BR(x0)

g2ϕ2 dx 6
C2

R2α

∫
BR(x0)

ϕ2 dx

6
C2

R2α

∫
Rn
ϕ2 dx

6 CεR
−2α,

(5.14)
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for some Cε > 0 (up to renaming it). Now, if x ∈ Rn \ (BR(x0) ∪ BR) then |x| > R and so,
from (5.2) and (5.9),∫

Rn\(BR(x0)∪BR)

g2ϕ2 dx 6
C2

R2α

∫
Rn\(BR(x0)∪BR)

ϕ2 dx

6
C2

R2α

∫
Rn\BR(x0)

1

ε4N |x− x0|4N
dx

6 CεR
n−2α−4N

= CεR
−2α−2s.

(5.15)

Then (5.11) follows from (5.13), (5.14) and (5.15).

Now we claim that, for any ε′ > 0, we can choose ε sufficiently small (in the definition of ϕ) so that

(5.16)

∫
Rn

(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx 6 ε′ϕ2(y),

holds.

To prove this, we first observe that

(5.17) |∇ϕ(x)| = 2ε2N |x− x0|
(1 + ε2|x− x0|2)N+1

6 2εNϕ(x).

In particular we have that |∇ϕ| 6 2εN and therefore, for any r > 0,∫
Rn

(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx 6

∫
Br(y)

4ε2N2|x− y|2

|x− y|n+2s
dx+

∫
Rn\Br(y)

4

|x− y|n+2s
dx

6 C(ε2r2−2s + r−2s),

for some C > 0. Accordingly, if we choose r := 1/
√
ε, we obtain∫

Rn

(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx 6 2Cεs.

Hence if y is such that ε|y − x0| 6 ε−s/(4N)/| log ε| then we have that

| log ε|−Nϕ2(y) =
| log ε|−N

(1 + ε2|y − x0|2)2N

>
| log ε|−N(

1 + (ε−s/(4N)/| log ε|)2
)2N

>
| log ε|−N(

2(ε−s/(4N)/| log ε|)2
)2N

= 2−2Nεs| log ε|3N

> 2Cεs

>
∫
Rn

(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx,

provided that ε is small enough, and this shows that (5.16) holds true if ε|y−x0| 6 ε−s/(4N)/| log ε|.
So we may and do suppose that

(5.18) ε|y − x0| > ε−s/(4N)/| log ε|.
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Notice that, in this case, ε|y − x0| > 1 if ε is small enough and so

(5.19) ϕ2(y) =
1

(1 + ε2|y − x0|2)2N
>

1

(2ε2|y − x0|2)2N
=

1

4Nεn+2s|y − x0|n+2s
,

thanks to (5.9). Now we set

rε :=
ε−(n+3s)/(n+2s)

2| log ε|
and we study the contributions in Brε(x0) and in Brε(y).

For this, we point out that, by (5.9) and (5.18),

(5.20) |y − x0| >
ε−(4N+s)/(4N)

| log ε|
=
ε−(n+3s)/(n+2s)

| log ε|
= 2rε.

Therefore, if x ∈ Brε(x0) we have that

|x− y| > |x0 − y| − |x− x0| > |x0 − y| − rε >
|x0 − y|

2

hence, using (5.19), we see that∫
Brε (x0)

(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx 6

∫
Brε (x0)

4n+1+2s

|x0 − y|n+2s
dx

6 C
rnε

|x0 − y|n+2s

6 4NC
ε−n(n+3s)/(n+2s)

2| log ε|n
εn+2sϕ2(y)

= 4NC
εs(n+4s)/(n+2s)

2| log ε|n
ϕ2(y).

(5.21)

Now we estimate the contribution in Brε(y). For this, we take x ∈ Brε(y) and ξ = tx + (1 − t)y
with t ∈ [0, 1] such that

|ϕ(x)− ϕ(y)| 6 |∇ϕ(ξ)| |x− y|.
Notice that, in this case,

|ξ − y| = t|x− y| 6 rε 6
|y − x0|

2
thanks to (5.20), and therefore

|ξ − x0| > |y − x0| − |ξ − y| >
|y − x0|

2
.

Using this and (5.17) we obtain that

|∇ϕ(ξ)| 6 2εNϕ(ξ)

=
2εN

(1 + ε2|ξ − x0|2)N

6
22N+1εN

(1 + 22 ε2|ξ − x0|2)N

6
22N+1εN

(1 + ε2|y − x0|2)N

= 22N+1εNϕ(y).
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As a consequence ∫
Brε (y)

(ϕ(x)− ϕ(y))2

|x− y|n+2s
dx 6

∫
Brε (y)

42N+2ε2N2ϕ2(y)

|x− y|n+2s−2
dx

= Cε2r2−2s
ε ϕ2(y)

=
C ε2s(n−1+3s)/(n+2s)

22−2s | log ε|2−2s
ϕ2(y).

(5.22)

It remains to estimate the contribution in Rn \
(
Brε(x0) ∪Brε(y)

)
. For this we will use the following

estimate: fixed p ∈ Rn we have that

(5.23)

∫
Rn\Brε (p)

dx

|x− p|n+2s
=

C

r2s
ε

= 22sC ε2s(n+3s)/(n+2s) | log ε|2s..

Moreover
|y − x0|

|x− x0| |x− y|
6
|y − x|+ |x− x0|
|x− x0| |x− y|

=
1

|x− x0|
+

1

|x− y|
and therefore

|y − x0|n+2s

|x− x0|n+2s |x− y|n+2s
6 2n+2s

(
1

|x− x0|n+2s
+

1

|x− y|n+2s

)
.

Hence, if we integrate over Rn \
(
Brε(x0) ∪Brε(y)

)
and we use (5.23) we obtain that∫

Rn\
(
Brε (x0)∪Brε (y)

) |y − x0|n+2s

|x− x0|n+2s |x− y|n+2s
dx

6 2n+2s

(∫
Rn\Brε (x0)

dx

|x− x0|n+2s
+

∫
Rn\Brε (y)

dx

|x− y|n+2s

)
6 C ε2s(n+3s)/(n+2s) | log ε|2s,

(5.24)

up to renaming constants. Moreover, exploiting (5.9) and (5.19) we see that

ϕ2(x) =
1

(1 + ε2|x− x0|2)(n+2s)/2
6

1

εn+2s|x− x0|n+2s
6

4N |y − x0|n+2s

|x− x0|n+2s
ϕ2(y).

Therefore ∫
Rn\
(
Brε (x0)∪Brε (y)

) ϕ2(x)

|x− y|n+2s
dx

6 4Nϕ2(y)

∫
Rn\
(
Brε (x0)∪Brε (y)

) |y − x0|n+2s

|x− x0|n+2s |x− y|n+2s
dx

6 4NC ε2s(n+3s)/(n+2s) | log ε|2s ϕ2(y),

(5.25)

thanks to (5.24). Furthermore, by (5.23) we have that∫
Rn\
(
Brε (x0)∪Brε (y)

) ϕ2(y)

|x− y|n+2s
dx 6

∫
Rn\Brε (y)

ϕ2(y)

|x− y|n+2s
dx

6 22sC ε2s(n+3s)/(n+2s) | log ε|2s ϕ2(y).

(5.26)

Now we use that

(ϕ(x)− ϕ(y))2 6 (|ϕ(x)|+ |ϕ(y)|)2 6 4(ϕ2(x) + ϕ2(y)),

so that by (5.25) and (5.26) we obtain

(5.27)

∫
Rn\
(
Brε (x0)∪Brε (y)

) (ϕ(x)− ϕ(y))2

|x− y|n+2s
dx 6 C ε2s(n+3s)/(n+2s) | log ε|2s ϕ2(y),
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up to renaming constants once again. In view of (5.21), (5.22) and (5.27), the proof of (5.16) is finished.

As a consequence of (5.16) we obtain that

I 6 ε′
∫
Rn
u2(y)ϕ2(y) dy = ε′

∫
Rn
u2ϕ2 dx.

So we take ε so small that ε′ 6 c0/4, we plug the estimate above into (5.8) and we reabsorb one
term into the left hand side (this fixes ε now once and for all): we conclude that

c0
4

∫
Rn
u2ϕ2 dx 6

1

2c0

∫
Rn
g2ϕ2 dx.

Hence, from (5.11),
c0
4

∫
Rn
u2ϕ2 dx 6

Cε
2c0

R−γ.

Now we use that ϕ > 1/2 in B1(x0) to deduce from this that

−
∫
B1(x0)

u2 dx 6 CR−γ,

for some C > 0. Then, by the Hölder inequality, (5.10) and (5.12), for any x0 ∈ Rn such that |x0| >
20 we have that

−
∫
B1(x0)

u dx 6

√
−
∫
B1(x0)

u2 dx 6
√
CR−γ =

√
C R−ϑ = 2ϑ

√
C|x0|−ϑ.

Since u is bounded, a similar estimate holds for |x0| 6 20 as well, by possibly changing the constants
(also in dependence of ‖u‖L∞(B20)). This proves (5.3) and concludes the proof of Proposition 5.1. �

Remark 5.2. In the sequel, we will only use Proposition 5.1 for the proof of Theorem 1.3 when n = 1
and s ∈ (0, 1/2). Though the statement of Proposition 5.1 remains valid for the whole parameter
range s ∈ (0, 1), in general the exponent ϑ found in (5.4) would not be sufficiently accurate (indeed,
we think it is an interesting open problem to find a sharp value for the exponent ϑ in general).

The sensitivity of the decay estimates on the fractional parameter s is the main reason for which
different methods are needed to prove Theorem 1.3 when s ∈ (0, 1/2) and s ∈ [1/2, 1): in a sense,
when s ∈ (0, 1/2), the integral contributions coming from far are predominant and they strongly
affect the available bounds on the asymptotic behaviour of the solution at infinity.

6. PROOF OF THEOREM 1.3

Let v be as in Theorem 1.3. We prove that

(6.1) v(x) 6
M0

(1 + |x|)ϑ

for any x ∈ R, where M0 > 0 is a universal constant (the bound from below follows by exchanging v
with −v). To this goal, fixed any ε > 0, we use (1.11) to find Rε > 0 such that

(6.2) |v(x)| 6 ε/2 for all |x| > Rε.

We claim that

(6.3) v(x) <
M

(1 + |x|)ϑ
+ ε

for any x ∈ R, as long as
M > ‖v‖L∞(R) (1 +Rε)

ϑ.
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To check this, we distinguish two cases. If |x| 6 Rε, then

v(x) 6
|v(x)| (1 +Rε)

ϑ

(1 + |x|)ϑ
6

M

(1 + |x|)ϑ
<

M

(1 + |x|)ϑ
+ ε,

proving (6.3) in this case. Conversely if |x| > Rε, then v(x) < ε and so (6.3) holds true in this case
too.

Hence, we can take the smallest M := Mε > 0 for which (6.3) is satisfied. If Mε = 0 for a sequence
of ε↘ 0 then (6.3) gives that v(x) 6 ε and so, in the limit, v 6 0, which proves (6.1). Thus, without
loss of generality, we can suppose that Mε > 0. In this case, by (6.2) and a simple compactness
argument, there exists xε ∈ R for which

(6.4) v(xε) =
Mε

(1 + |xε|)ϑ
+ ε.

Our goal is to show that

(6.5) Mε 6M0

for a suitable M0 > 0 independent of ε. For this, we observe that, by (6.3), (6.4) and Proposition 5.1
(with α := 4s), we have that the hypotheses of Corollary 4.2 are satisfied (by taking u := v and x0 :=
xε). Therefore, by (4.11), if Mε were too large we would have that

(6.6) Lsv(xε) 6 −
Mε |B1|

20 (1 + |xε|)ϑ
.

On the other hand, by (6.4), (1.12), and (1.13), we have

Lsv(xε) = Lsv(xε)− cv(xε) + c

(
Mε

(1 + |xε|)ϑ
+ ε

)
> Lsv(xε)− cv(xε)

= −g(xε)

> − C

(1 + |xε|)4s

> − C

(1 + |xε|)ϑ

(6.7)

(recall that ϑ 6 α = 4s, see (5.4)). Hence (6.7) and (6.6) show that Mε is universally bounded,
proving (6.5).

From (6.5) we deduce that

v(x) 6
Mε

(1 + |x|)ϑ
+ ε 6

M0

(1 + |x|)ϑ
+ ε

for any x ∈ R, and so, by letting ε↘ 0, we obtain (6.1). This concludes1 the proof of Theorem 1.3.

1We remark that ϑ, as defined in (5.4), satisfies

ϑ =
{

4s if s ∈ (0, 1/6],
1+2s

2 if s ∈ (1/6, 1/2).

In any case, since s ∈ (0, 1/2), we have that

2s < ϑ < 1 + 2s.
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7. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is now analogous to the one of Proposition 7.2 in [4], up to the following
modifications, needed in the case s ∈ (0, 1/2):

� the exponent 1 + 2s in formulas (7.9) and the previous one in [4] must be replaced by ϑ (the
rest of the argument remains unchanged, since ϑ ∈ (2s, 1 + 2s]),

� the use of Corollary 7.1 of [4] is replaced here by Theorem 1.3.

8. L∞ BOUNDS

The goal of this section is to state some uniform regularity estimates that will be needed in the subse-
quent Section 9.

We introduce the norm

(8.1) ‖f‖Hs
0(Rn) :=

√∫
Rn

∫
Rn

|f(x)− f(y)|2
|x− y|n+2s

dx dy

and we provide an auxiliary estimate:

Lemma 8.1. Let s ∈ (0, 1). There exists a constant C = C(n, s) > 0 such that, if f ∈ Hs(Rn),
then

(8.2) ‖f‖L2(Rn) 6 C‖f‖n/(n+2s)
Hs

0(Rn) ‖f‖
2s/(n+2s)

L1(Rn) .

Also, if f > 0 then

(8.3) ‖f‖L2(Rn) 6 C‖f‖Hs
0(Rn) |{f > 0}|s/n.

Proof. We start by proving (8.2), which is a variation of the classical Nash inequality. Without loss of
generality, we suppose that f ∈ L1(Rn), otherwise the right hand side of (8.2) is infinite and there is
nothing to prove. Given ρ > 0, we have

(8.4)

∫
Rn\Bρ

|f̂(ξ)|2 dξ 6
∫
Rn\Bρ

|ξ|2s

ρ2s
|f̂(ξ)|2 dξ 6 Cρ−2s‖f‖2Hs

0(Rn).

Here we have used the notation of the norm ‖ · ‖Hs
0(Rn), as introduced in (8.1) and its equivalent

in Fourier spaces (see e.g. Proposition 3.4 in [3]). On the other hand, |f̂(ξ)| 6 ‖f‖L1(Rn) for any
ξ ∈ Rn, and so by integrating over Bρ we obtain∫

Bρ

|f̂(ξ)|2 dξ 6 |B1| ρn‖f‖2L1(Rn).

By adding this to (8.4) we obtain

‖f‖2L2(Rn) = ‖f̂‖2L2(Rn) 6 Cρ−2s‖f‖2Hs
0(Rn) + |B1| ρn‖f‖2L1(Rn).

Since this estimate is valid for any ρ > 0, we now choose

ρ :=
(
‖f‖Hs

0(Rn)/‖f‖L1(Rn)

)2/(n+2s)

to obtain

‖f‖2L2(Rn) 6 (C + |B1|) ‖f‖2n/(n+2s)
Hs

0(Rn) ‖f‖4s/(n+2s)

L1(Rn) ,

which gives (8.2).
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Now we prove (8.3) by using (8.2) and the Hölder inequality: we have

‖f‖n+2s
L2(Rn) 6 C‖f‖nHs

0(Rn) ‖f‖2sL1(Rn)

6 C‖f‖nHs
0(Rn)

[
‖f‖L2(Rn) |{f > 0}|1/2

]2s
= C‖f‖nHs

0(Rn) ‖f‖2sL2(Rn) |{f > 0}|s,
which implies (8.3). �

We can now prove a uniform pointwise estimate using a De Giorgi-type argument. For the sake of
generality, we prove it for any s ∈ (0, 1) and any n > 1 (though we only need it here for n = 1
and s ∈ (0, 1/2)).

Theorem 8.2. Let s ∈ (0, 1) and let ψ ∈ Hs(Rn) be a weak solution to

−Lsψ = λψ + b in Rn,

with b, λ ∈ L∞(Rn). Then ψ ∈ L∞(Rn) and

‖ψ‖L∞(Rn) 6 C

where the constant C > 0 depends only on n, s, ‖ψ‖L2(Rn), ‖λ‖L∞(Rn), and ‖b‖L∞(Rn).

Proof. First, for any 0 < δ << 1 (we will choose later a suitable δ, see formula (8.15) below), we
consider the function φ defined as

φ(x) :=
δψ(x)

‖ψ‖L2(Rn)

, for any x ∈ Rn.

By construction,
‖φ‖L2(Rn) = δ,

and

(8.5) −Lsφ = λφ+ δb/‖ψ‖L2(Rn).

In order to prove the theorem, it will suffice to prove that

(8.6) ‖φ‖L∞(Rn) 6 1,

since this implies that

‖ψ‖L∞(Rn) 6
‖ψ‖L2(Rn)

δ
‖φ‖L∞(Rn) 6

‖ψ‖L2(Rn)

δ

and δ is fixed.

Now, for any integer k ∈ N, we consider the function wk defined as follows

wk(x) := (φ(x)− (1− 2−k))+, for any x ∈ Rn.

By construction, wk ∈ Hs(Rn), wk(±∞) = 0, and

(8.7) wk+1(x) 6 wk(x) a.e. in Rn.

The following inclusion

(8.8)
{
wk+1 > 0

}
⊆
{
wk > 2−(k+1)

}
holds true for all k ∈ N. Indeed, if x ∈

{
wk+1 > 0

}
, then

0 < wk+1(x) = φ(x)− 1 + 2−k−1

hence
φ(x)− (1− 2−k) > 2−k − 2−k−1 = 2−k−1
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and so wk(x) > 2−k−1, thus proving (8.8). Moreover, we have the inequality

(8.9) φ(x) < 2k+1wk(x) for any x ∈
{
wk+1 > 0

}
.

Indeed, if x ∈
{
wk+1 > 0

}
then

wk(x) > wk+1(x) = φ(x)− (1− 2−k−1),

which together with (8.8) implies

φ(x) 6 wk(x) + (1− 2−k−1) = wk(x) + (2k+1 − 1)2−k−1

< wk(x) + (2k+1 − 1)wk(x) = 2k+1wk(x).

This proves (8.9).

Also, we remark that for any v ∈ Hs(Rn) we have

(8.10)
(
v+(x)− v+(y)

)(
v(x)− v(y)

)
> |v+(x)− v+(y)|2,

for all x, y ∈ Rn. In order to check this, let assume that v(x) > v(y). There is no loss of generality in
such assumption, since the roles of x and y can be interchanged. Then, one can reduce to the case
when x ∈ {v > 0} and y ∈ {v 6 0}, as otherwise the inequality in (8.10) plainly follows. Finally, we
notice that in such a case (8.10) becomes

(v(x)− v(y))v(x) > v(x)2

which does hold since v(y) 6 0 and v(x) > 0. This proves (8.10).

We now prove (8.6) by a standard iterative argument based on estimating the decay of the quantity

Uk := ‖wk‖2L2(Rn).

First, in view of (8.10) with v := φ− (1− 2−k), we have

‖wk+1‖2Hs
0(Rn) :=

∫
Rn

∫
Rn

|wk+1(x)− wk+1(y)|2

|x− y|n+2s
dx dy

6
∫
Rn

∫
Rn

(
φ(x)− φ(y)

)(
wk+1(x)− wk+1(y)

)
|x− y|n+2s

dx dy.

Thus, plugging wk+1 as a test function in (8.5), we obtain

‖wk+1‖2Hs
0(Rn) 6

∫
{wk+1>0}

(
λ(x)φ(x) +

δ b(x)

‖ψ‖L2(Rn)

)
wk+1(x) dx.

Notice that if x ∈ {wk+1 > 0} then φ(x) > 0, and therefore, using (8.9) and (8.7), we get

‖wk+1‖2Hs
0(Rn) 6

∫
{wk+1>0}

sup
Rn
|λ|φ(x)wk+1(x) +

δ sup
Rn
|b|

‖ψ‖L2(Rn)

wk+1(x)

 dx

6
∫
{wk+1>0}

sup
Rn
|λ| 2k+1wk(x)wk+1(x) +

δ sup
Rn
|b|

‖ψ‖L2(Rn)

wk+1(x)

 dx

6
∫
{wk+1>0}

sup
Rn
|λ| 2k+1w2

k(x) +

δ sup
Rn
|b|

‖ψ‖L2(Rn)

wk(x)

 dx

6 sup
Rn
|λ| 2k+1Uk +

δ sup
Rn
|b|

‖ψ‖L2(Rn)

√
|{wk+1 > 0}| U

1
2
k ,

(8.11)

where we have also used the Hölder inequality.
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Also, by (8.8) and Chebychev’s inequality, one has

(8.12) |{wk+1 > 0}| 6 |{wk > 2−(k+1)}| 6 22(k+1)Uk,

so that (8.11) becomes

(8.13) ‖wk+1‖2Hs
0(Rn) 6

sup
Rn
|λ|+

δ sup
Rn
|b|

‖ψ‖L2(Rn)

 2k+1Uk.

On the other hand, using (8.3) (with f := wk+1 here) we have

(8.14) Uk+1 6 c‖wk+1‖2Hs
0(Rn)

∣∣{wk+1 > 0
}∣∣ 2sn ,

where the constant c > 0 only depends on n and s.

Combining (8.13) with (8.14) and using (8.12), we get

Uk+1 6 c

sup
Rn
|λ|+

δ sup
Rn
|b|

‖ψ‖L2(Rn)

 2k+1Uk
(
22(k+1)

) 2s
n U

2s
n
k

= c

sup
Rn
|λ|+

δ sup
Rn
|b|

‖ψ‖L2(Rn)

 2(1+ 4s
n

)(k+1)U
1+ 2s

n
k

6

1 + c

sup
Rn
|λ|+

δ sup
Rn
|b|

‖ψ‖L2(Rn)

 2(1+ 4s
n

)(k+1)U
1+ 2s

n
k

6

1 + c

sup
Rn
|λ|+

δ sup
Rn
|b|

‖ψ‖L2(Rn)

 21+ 4s
n

k+1

U
1+ 2s

n
k

= C̄k+1U
1+ 2s

n
k ,

for some constant C̄ > 1 depending on supRn |λ|, supRn |b|, ‖ψ‖L2(Rn), n, and s. Hence, an
estimate of the form

Uk+1 6 C̄k+1U1+α
k for any k ∈ N,

holds for suitable C̄ > 1 and α > 0.

Now we perform our choice of δ, that is we assume that

(8.15) δ2α =
1

C̄(1/α)+1
.

We set

(8.16) η :=
1

C̄1/α
.

Since C̄ > 1 and α > 0, we have that

(8.17) η ∈ (0, 1).

We claim that

(8.18) Uk 6 δ2ηk.

We show (8.18) by induction. Indeed, we notice that

U0 := ‖w0‖2L2(Rn) = ‖φ+‖2L2(Rn) 6 ‖φ‖2L2(Rn) = δ2,
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which is (8.18) for k = 0. Now, suppose that (8.18) is true for k and let us prove it for k + 1:

Uk+1 6 C̄k+1U1+α
k 6 C̄k+1(δ2ηk)1+α = δ2ηk(C̄ηα)kC̄δ2α = δ2ηk+1,

where we have used (8.15) and (8.16). Then, by (8.17) and (8.18) we have that

(8.19) lim
k→∞

Uk = 0.

Noticing that

0 6 wk =
(
φ− (1− 2−k)

)+
6 |φ| ∈ L2(Rn)

and
wk → (φ− 1)+ a.e. in Rn as k → +∞,

by the Dominated Convergence Theorem we get

(8.20) lim
k→+∞

Uk = ‖(φ− 1)+‖2L2(Rn).

Hence, from (8.19) and (8.20) we have that (φ − 1)+ = 0 almost everywhere in Rn, and so φ 6 1
almost everywhere in Rn. By replacing φ with −φ we get (8.6), which concludes the proof. �

9. THE CORRECTOR EQUATION

Now we consider the equation{
Lsψ −W ′′(u)ψ = u′ + η (W ′′(u)−W ′′(0)) in R,
ψ ∈ Hs(R),

(9.1)

where u is the solution of (1.5) and

(9.2) η =

∫
R

(u′(x))2 dx

W ′′(0)
.

For a detailed heuristic motivation of such an equation see Section 3.1 of [6].

Theorem 9.1. There exists a unique solution ψ ∈ Hs(R) to (9.1). Furthermore

(9.3) ψ ∈ C1,α
loc (R) ∩ L∞(R) for some α ∈ (0, 1), and ‖ψ′‖L∞(R) < +∞.

Proof. The proof is analogous to the one of Theorem 5.2 in [4], where the result was obtained for s ∈
(1/2, 1), except for the modifications listed below.

The proof of Theorem 5.2 in [4] uses the condition s ∈ (1/2, 1) only twice, namely before for-
mula (5.26) and at the end of Section 5. In the first occasion, such condition was used to obtain
that

a weak solution of Lsv0 = W ′′(u)v0 is C2s+α(R) ∩ L∞(R)

and, in particular, it is a classical solution.
(9.4)

In the second occasion, the condition on s was used to obtain (9.3). In both the cases, the condi-
tion s ∈ (1/2, 1) permitted to obtain the desired results as an easy consequence of the fractional
Morrey-Sobolev embedding (see e.g. Theorem 8.2 in [3]), and this embedding is not available in the
present case.

Hence, we prove (9.3) and (9.4) directly from the regularity theory developed in Section 8, thus obtain-
ing that Theorem 9.1 also holds when s ∈ (0, 1/2).

To prove (9.4), we first use Theorem 8.2 to obtain that v0 ∈ L∞(R). Hence, from Proposition 5 in [9]
we deduce that v0 ∈ Cα(R) for any 0 < α < 2s. In particular v0 is a viscosity solution, and since
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W ′′(u)v0 ∈ Cα(R), by Proposition 2.8 in [11] we deduce that v0 ∈ Cα+2s(R). Thus v0 is a classical
solution, proving (9.4).

To show (9.3), we use Theorem 8.2 and Proposition 5 in [9] to obtain that ψ is a viscosity solution
to (9.1) such that

(9.5) ψ ∈ L∞(R) ∩ Cα(R)

for any 0 < α < 2s.

Now, we define the incremental quotient of ψ as

ψh(x) :=
ψ(x+ h)− ψ(x)

h
for any x, h ∈ R.

From (9.1) we have that ψh satisfies

(9.6) Lsψh(x) = W ′′(u(x+ h))ψh(x) +W ′′
h (u(x))ψ(x) + u′h(x) + ηW ′′

h (u(x))

where, for any x ∈ R,

u′h(x) :=
u′(x+ h)− u′(x)

h
and

W ′′
h (u(x)) :=

W ′′(u(x+ h))−W ′′(u(x))

h
.

From (1.2), (9.5), and Lemma 6 in [8], we have that

W ′′(u) ∈ L∞(R) and W ′′
h (u)ψ + u′h + ηW ′′

h (u) ∈ L∞(R),

and so we can apply Theorem 8.2 to the solution of (9.6) to obtain that ψh ∈ L∞(R). Using Proposi-
tion 5 in [9], this gives that ψh ∈ Cα(R) for any α < 2s.

So we have proved that, for any x, y, h ∈ R,

|ψh(x)| 6 C1 and |ψh(x)− ψh(y)| 6 C2|x− y|α,

for some positive constants C1, C2. Letting h↘ 0 we obtain that ψ′ ∈ L∞(R)∩Cα(R), concluding
the proof of (9.3). �

Remark 9.2. Thanks to (9.1) and (9.3), we have that ψ ∈ Hs(R) is uniformly continuous, and this
implies that

(9.7) lim
x→±∞

ψ(x) = 0.

10. PROOF OF THEOREM 1.2

The proof is now conceptually similar to the one given in Section 8 of [4], but some quantitative esti-
mates of Proposition 8.4 there need to be modified when s ∈ (0, 1/2). For the facility of the reader, we
provide the details of the proof of Proposition 8.4 of [4] in our case (this will be done in Proposition 10.1
here below).

To this goal, we recall some of the notation of [6, 4] needed for our purposes. We take an auxiliary
parameter δ > 0 and define (xi(t))i=1,...,N to be the solution of the system

ẋi = γ

(
−δ − σ(t, xi) +

∑
j 6=i

xi − xj
2s |xi − xj|1+2s

)
in (0,+∞),

xi(0) = x0
i − δ.

(10.1)
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Moreover, we set

ci(t) := ẋi(t)(10.2)

σ̃ :=
δ + σ

β
, where β = W ′′(0) was introduced in (1.10),(10.3)

vε(t, x) := ε2sσ̃(t, x) +
N∑
i=1

{
u

(
x− xi(t)

ε

)
− ε2sci(t)ψ

(
x− xi(t)

ε

)}
,(10.4)

where u is given in Theorem 1.1 and ψ in Theorem 9.1. We set

(10.5) ũi := u

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
,

where H is the Heaviside function,

ψi := ψ

(
x− xi(t)

ε

)
.

and

(10.6) Iε := ε(vε)t +
1

ε2s

(
W ′(vε)− ε2sLsvε − ε2sσ

)
.

With this notation we have that (see Lemma 8.3 in [4]), for every i0 ∈ {1, . . . , N},

(10.7) Iε = ei0ε + (βσ̃ − σ) +O(ũi0)

(
η ci0 + σ̃ +

∑
16i6N
i 6=i0

ũi
ε2s

)
,

where the error ei0ε is given by

(10.8) ei0ε := O(ε2s) +
∑

16i6N
i 6=i0

O(ψi) +
∑

16i6N
i6=i0

O(ũi) +
∑

16i6N
i 6=i0

O

(
ũ2
i

ε2s

)
.

Now we can state the following result, which replaces Proposition 8.4 in [4]:

Proposition 10.1. There exists δ0 > 0 such that, for any 0 < δ 6 δ0 and T > 0, we have

(vε)t >
1

ε

(
Lsvε −

1

ε2s
W ′(vε) + σ

)
in (0, T )×R,

for ε > 0 sufficiently small.

Proof. Recalling the definition of Iε in (10.6), our goal is to show that

(10.9) Iε > 0

for ε small enough. For this, we make a preliminary observation: recalling the definition of ũi in (10.5)
and using Theorem 1.1, we obtain that, for any i ∈ {1, . . . , N},

(10.10)

∣∣∣∣ũi +
ε2s

2sW ′′(0)

x− xi(t)
|x− xi(t)|1+2s

∣∣∣∣ 6 C εϑ

|x− xi(t)|ϑ
.

Since ϑ > 2s, we can choose γ such that

(10.11) 0 < γ <
ϑ− 2s

ϑ
.

Now we divide the proof of (10.9) by dealing with two separate cases.
Case 1: Suppose that there exists i0 ∈ {1, . . . , N} such that

(10.12) |x− xi0(t)| 6 εγ.
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Therefore, since the xi’s are well-separated, for ε sufficiently small we have that

(10.13) |x− xi(t)| > κ > 0, for any i 6= i0,

where κ is a constant independent of ε.

Hence, thanks to (10.10) and (10.13),∣∣∣∣∑
i 6=i0

(
ũi
ε2s

+
1

2sW ′′(0)

x− xi(t)
|x− xi(t)|1+2s

)∣∣∣∣ 6 C εϑ

ε2s

∑
i 6=i0

1

|x− xi(t)|ϑ
6 C εϑ−2s.

Therefore, from (10.7), we deduce that

Iε = ei0ε + βσ̃ − σ +O(ũi0)

(
η ci0 + σ̃ +

∑
i 6=i0

ũi
ε2s

)
= ei0ε + βσ̃ − σ +O(ũi0)

(
η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

)
+O(εϑ−2s).

(10.14)

Now, we Taylor expand the function x−xi(t)
|x−xi(t)|1+2s for x in a neighborhood of the point xi0(t), and we

use (10.12) to get∣∣∣∣∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

−
∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

∣∣∣∣
=

∣∣∣∣∑
i 6=i0

(
1

|ξ − xi(t)|1+2s
− (1 + 2s)

(ξ − xi(t))2

|ξ − xi(t)|3+2s

)
(x− xi0(t))

∣∣∣∣
6
∑
i 6=i0

2 + 2s

|ξ − xi(t)|1+2s
εγ

6 C εγ,

(10.15)

where ξ is a suitable point lying on the segment joining x to xi0(t) (and hence |ξ − xi(t)| > κ/2
thanks to (10.12)). Therefore, using (10.15) in (10.14), we have

Iε = ei0ε + βσ̃ − σ +O(ũi0)

(
η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

)
+O(εϑ−2s) +O(εγ).

(10.16)

Now, we compute the term in parenthesis. From the definitions of η, ci0 and σ̃ given in (9.2), (10.2),
and (10.3) respectively, and recalling (1.8), we obtain

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

=
1

γ W ′′(0)
ẋi0(t) +

δ

W ′′(0)
+
σ(t, x)

W ′′(0)
− 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

=
1

W ′′(0)

(
ẋi0(t)

γ
+ δ + σ(t, xi0(t))−

1

2s

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

)
+
σ(t, x)− σ(t, xi0(t))

W ′′(0)
.

(10.17)
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Recalling (10.1), we have that

ẋi0(t)

γ
+ δ + σ(t, xi0(t))−

1

2s

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

= 0,

and so the term in parenthesis in (10.17) vanishes. Therefore (10.17) becomes

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

=
σ(t, x)− σ(t, xi0(t))

W ′′(0)

= O(x− xi0(t))
= O(εγ),

thanks to (1.3) and (10.12). Hence (10.16) reads

(10.18) Iε = ei0ε + βσ̃ − σ +O(εγ) +O(εϑ−2s) +O(εγ).

Also, in the light of (10.3), we see that

(10.19) βσ̃ − σ = δ > 0.

Now, we claim that

(10.20) the error ei0ε (that was defined in (10.8)) tends to zero as ε→ 0.

For this, we notice that ψi = ψ
(
x−xi(t)

ε

)
, with i 6= i0, tends to zero because of the behavior of

the corrector at infinity (recall (9.7) and (10.13)). Moreover, thanks to (1.6) and (10.13) we have that,
for i 6= i0,

ũi = u

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
= O

(
ε2s

|x− xi(t)|2s

)
= O(ε2s)

and
(ũi)

2

ε2s
=
O(ε4s)

ε2s
= O(ε2s),

thus proving (10.20).

Hence, from (10.18), (10.19) and (10.20) we obtain that for ε sufficiently small

Iε >
δ

2
> 0,

which implies (10.9) in this case.

Case 2: Suppose that |x−xi(t)| > εγ for every i ∈ {1, . . . , N}. In this case, we can fix i0 arbitrarily,
say i0 := 1 for concreteness. We use (10.10) to obtain∣∣∣∣∑

i 6=i0

(
ũi
ε2s

+
1

2sW ′′(0)

x− xi(t)
|x− xi(t)|1+2s

)∣∣∣∣ 6 C εϑ

ε2s

∑
i 6=i0

1

|x− xi(t)|ϑ

6 C
εϑ−2s

εγϑ
= C εϑ−2s−γϑ.

Therefore, by formula (10.7) and the definition of σ̃ in (10.3) we have

(10.21) Iε = ei0ε + δ +O(ũi0)

(
η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

)
+O(εϑ−2s−γϑ).

Now we observe that, for any i 6= i0,

(10.22)

∣∣∣∣ x− xi(t)
|x− xi(t)|1+2s

∣∣∣∣ 6 1

|x− xi(t)|2s
6

1

ε2γs
= O(ε−2γs).
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Notice that this term is divergent as ε tends to zero. Therefore, from (10.22) we conclude that

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

= O(ε−2γs),

since the other terms are bounded. By plugging this into (10.21) we obtain

(10.23) Iε = ei0ε + δ +O(ũi0) ·O(ε−2γs) +O(εϑ−2s−γϑ).

Now we observe that for every i ∈ {1, . . . , N},

ũi = u

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
= O

(
ε2s

|x− xi(t)|2s

)
= O

(
ε2s

ε2γs

)
= O

(
ε2s(1−γ)) .(10.24)

As a consequence

(10.25)
(ũi)

2

ε2s
= O

(
ε2s(1−2γ)

)
and O(ũi0) ·O(ε−2γs) = O

(
ε2s(1−2γ)

)
.

We observe that, since ϑ 6 4s (see (5.4) and recall that α = 4s), from (10.11) we have

(10.26) 1− 2γ > 1− 2(ϑ− 2s)

ϑ
=

4s− ϑ
ϑ

> 0.

Also, notice that, thanks again to (10.11),

(10.27) ϑ− 2s− γϑ > 0.

By inserting (10.25) into (10.23) and recalling (10.26) and (10.27) we get

(10.28) Iε = ei0ε + δ +O(εα),

for some α > 0. Now we check that

(10.29) the error term ei0ε tends to zero as ε→ 0.

For this, we remark that, in this case,

|x− xi(t)|
ε

>
εγ

ε
= εγ−1,

which diverges for small ε, since γ < 1. Therefore, for x fixed as in the assumption of Case 2, we
have that

ψi(x) = ψ

(
x− xi(t)

ε

)
−→ 0

as ε→ 0, due to the infinitesimal behavior of ψ at infinity (see (9.7)). Using this, (10.24), (10.25) and
the definition of the error term given in (10.8), we obtain (10.29).

Hence, by using (10.29) inside (10.28) and recalling that δ > 0, we conclude that

Iε >
δ

2
> 0

for ε sufficiently smooth, thus proving (10.9) in this case too. �
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