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Abstract

We apply a flexible numerical integrator to the simulation of adiabatic quantum com-
putation with nonlinear paths. We find that a nonlinear path may significantly improve the
performance of adiabatic algorithms versus the conventional straight-line interpolations.
The employed integrator is suitable for solving the time-dependent Schrödinger equation
for any qubit Hamiltonian. Its flexible storage format significantly reduces cost for storage
and matrix-vector multiplication in comparison to common sparse matrix schemes.

Simulating quantum systems requires enormous computational resources: Even for a few hun-
dred particles there would be more variables to be stored than atoms exist in the universe [1]. To
turn this problem into an advantage, quantum computers may be efficiently used for such sim-
ulations, since they are quantum systems themselves [2]. Moreover, quantum algorithms can
solve distinct problems like number factoring with exponential speedup compared to classical
computers [3].

In the conventional picture, quantum algorithms are implemented as a sequence of unitary
operations [4], which implies fast switching of the generating Hamiltonian. In contrast, within the
paradigm of adiabatic quantum computation [5], the Hamiltonian is modified slowly from a simple
initial Hamiltonian with an easy-to-prepare ground state to a final Hamiltonian which encodes
in its ground state the solution to some difficult problem. Most importantly, for a large class of
problems, implementation of the final Hamiltonian is possible without knowing the solution of
the problem explicitly. The adiabatic theorem implies – provided the evolution is slow enough –
that the system will end up near the ground state of the final Hamiltonian, such that the solution
to the problem can be obtained by measuring the system. The evolution time is related to the
spectral properties of the time-dependent Hamiltonian and thus corresponds to the algorithmic
complexity of an adiabatic quantum algorithm (AQA). The conventional circuit picture and the
adiabatic approach are known to be polynomially equivalent [6, 7], but exact results for adiabatic
algorithms are scarce [8]. It is therefore quite interesting that first numerical simulations of the
Schrödinger equation revealed a seemingly polynomial complexity of the adiabatic algorithm for
an NP-complete problem [5]. Since then, it has been a strongly debated question whether this
scaling would persist for larger problem sizes [9, 10, 11, 12, 13, 14]. Recent findings suggest
that the scaling complexity of the conventional straight-line adiabatic interpolation is typically
exponential [15, 16]. It may however be conjectured that with modifications of the adiabatic
algorithm, its scaling behavior can be considerably improved [17], such that the scaling behavior
of adapted algorithms is still an open question.

Unfortunately, this question can currently not be settled from the experimental side: Though
enormous progress has been made in the last decade, not more than a few quantum bits (qubits)
have been entangled so far [18], which currently restricts the execution of quantum algorithms to
proof-of-principle demonstrations. As experiments are still neither flexible nor scalable enough
to investigate new theoretical models, the demand for classical computer simulations of quan-
tum algorithms is growing. Such simulations are computationally expensive and usually must be
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coded separately for each problem considered. Here, we use an efficient numerical integrator
to solve the time-dependent Schrödinger equation for the high-dimensional but sparse Hamilto-
nians typical for qubit systems. An adopted storage format will reduce the memory required for
storing the Hamiltonian in comparison to common sparse matrix schemes while keeping their
advantage of fast matrix-vector multiplication. In particular its ability to follow flexible adiabatic
paths renders our storage scheme suitable for such simulations.

The paper is structured as follows: In Sec. 1, we expose the prerequisites discussing the data
storage scheme, adiabatic computation, and the particular NP-complete problem considered.
Afterwards, we numerically compare the performance of different adiabatic quantum algorithms
(AQAs) for straight-line interpolation in Sec. 2. Then, we turn to the investigation of non-linear
paths in Sec. 3 and close with conclusions.

1 Theory

1.1 Sparse Quantum Hamiltonian (SQH)

A single-qubit state is a superposition of two fundamental states denoted by |0〉 and |1〉, which
form the computational basis. As a convention, those states are the eigenstates of the Pauli
matrix σz: |0〉 := ( 1

0 ) , |1〉 := ( 0
1 ). Similarly, the basis states for an n-qubit system can be

constructed by the tensor product

|z〉 =
n⊗
i=1

|zi〉 , zi ∈ {0, 1}. (1)

Here z is the decimal representation z =
∑n

i=1 zi 2
i−1 of the bitstring zn zn−1 . . . z2 z1. An

arbitrary n-qubit state is then given by the superposition

|ψ〉 =
2n−1∑
z=0

αz |z〉 , αz ∈ C (2)

with normalization condition
∑

z |αz|
2 = 1. Obviously, the dimension of the Hilbert space,N =

2n, is growing exponentially with the number of qubits which makes simulations of quantum
systems hard.

A Hamiltonian acting on n qubits can be described by the Pauli matrices σx, σy, σz: To-
gether with the identity σ0 := 1 they span the space of all 2 × 2-matrices. Using the n-
fold Kronecker product of those matrices yields N2 = 22n generalized Pauli matrices (GPMs)
Si =

⊗n
q=1 σ

αi,q as a basis for all N × N -matrices. Trace-orthogonality ensures that any
Hamiltonian can be decomposed into GPMs,

H =
N2−1∑
i=0

mi Si with mi =
1

N
Tr{HSi} ∈ R. (3)

Let σαi be the short notation of the tensor product

1⊗ . . .⊗ 1︸ ︷︷ ︸
i−1

⊗ σα ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
n−i

, α ∈ {x, y, z}, (4)
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acting only on the i-th qubit. A GPM of order j (acting non-trivially on j qubits) is then written as
σα1
i1
σα2
i2
. . . σ

αj

ij
. By counting only non-vanishing termsmi 6= 0, Eq. (3) has the more convenient

form

H = m(0)1+

p∑
j=1

kj∑
l=1

m
(j)
l

j∏
q=1

σ
α
(j)
l,q

i
(j)
l,q

, (5)

where p denotes the order of the Hamiltonian, kj the number of j-local terms, m(j)
l the corre-

sponding real prefactor, and m(0) the energy shift.

We now introduce a Sparse Quantum Hamiltonian (SQH) format : For a complete description of
the Hamiltonian’s structure, we do not need to store the full GPMs but only the parameters used
in Eq. (5), including the positions i and types α of the (single) Pauli matrices. Consequently,
storage of a Hamiltonian is efficient if its order is independent of the number of qubits, p � n,
and becomes even more favorable when the number of terms for every order j is small, e.g.,
kj ∼ O(n). An example of such a system is the quantum Ising model in a transverse field,

H = −Ω(1− s)
n∑
i

σxi − Ωs
n∑
i

σzi σ
z
i+1 , (6)

where Ω represents an energy scale and s a control parameter and where periodic boundary
conditions are assumed σzn+1 = σz1 . This Hamiltonian would only require O(n) elements to
store in SQH format.

A matrix-vector product H |ψ〉 is according to Eq. (5) reduced to a sum of GPMs acting on a
basis state, σα1

i1
. . . σ

αj

ij
|z〉. Due to the tensor structure of z (c.f. Eq. (1)), such a multi-qubit

operation is broken down to a multiplication of successive single-qubit operations σαi |zi〉. As-
suming the number of terms inH isO(n), the effort for computingH |ψ〉 scales as N ×O(n)
instead of N2 when the Hamiltonian was stored conventionally.

The universal applicability of the SQH representation allows to write program code (e.g., an
integrator) independent of the used Hamiltonian as long as it has the SQH structure given in
Eq. (5). Also time-dependent Hamiltonians can be implemented by time-dependent coefficients
m

(j)
l (t).

1.2 Adiabatic Quantum Computation

Quantum computation by adiabatic evolution has been suggested as a promising approach for
solving NP-complete problems [5]. The idea is simple: A final Hamiltonian Hf is constructed
which encodes the solution for a computational problem in its ground state, e.g., as an energy
penalty function. We stress here that for a number of hard problems this can be done without
knowing the solution. Starting from an easy to construct ground state of an initial Hamiltonian
Hi, the system is transformed toHf after the runtime T . A common approach is to use a linear
interpolation:

H(s) = (1− s)Hi + sHf (7)

with constant velocity s(t) = t
T

and 0 ≤ t ≤ T . If this transformation is slow enough, the
adiabatic theorem guarantees that the system remains always near the instantaneous ground
state [19] such that a measurement after time T yields the solution. This works in principle
with every energy eigenstate of the system, but by using the ground state one hopes that the
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evolution is dissipation-free (which becomes relevant when the system is coupled to a low-
temperature reservoir [20]). The runtime T thus is a measure for the algorithmic complexity. It
can be optimized by adapting the speed of the interpolation ṡ(t) to the energy gap above the
ground state [8, 21, 22]. In this case however, the time-dependent Hamiltonian is still a convex
combination of initial and final Hamiltonian (hence the terminology straight-line interpolations),
and we will not consider such extensions here.

To study the efficiency of such an algorithm, i.e., the runtime scaling with increasing system size
n, we need to determine an adiabatic runtime Ts(n) by simulating the evolution of a system
prepared in the initial ground state. It is governed by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (8)

which for the expansion in Eq. (2) becomes a whole set of N coupled ordinary differential
equations with initial condition |ψ(0)〉 = |ψ0〉. A fast numerical integration is achieved by using
the SQH format for H(t) and a fourth-order predictor-corrector scheme [23], which requires
only a single evaluation ofH |ψ〉 per integration step.

1.3 3-Bit Exact Cover

A common problem for probing adiabatic quantum algorithms (AQAs) is 3-bit exact cover (EC3),
which is NP-complete. In a nutshell, solutions to problems in the class NP can be verified (with
a classical computer) in a time that is polynomial in the length of their input. The completeness
property in addition implies that every other problem in NP can be mapped to EC3 with polyno-
mial overhead only. On an n-bitstring zn zn−1 . . . z2 z1 we define an instance of EC3 as a set of
m different clauses ci each involving three different bits

ci = (c
(1)
i , c

(2)
i , c

(3)
i ), c

(k)
i ∈ {1 . . . n} (9)

with 1 ≤ i ≤ m. A clause is satisfied, if and only if one of the involved bits zi equals 1, i.e.,
when

z
c
(1)
i

+ z
c
(2)
i

+ z
c
(3)
i

= 1 , (10)

where ’+’ denotes the ordinary integer sum. A solution to an instance is a bitstring satisfying all
clauses in the set, which is easy to check. In contrast, finding such a bitstring is a combinatorial
search problem for which no efficient classical algorithm is known. Figure 1 visualizes an EC3
instance for 13 bits with a unique solution.

For an AQA the problem is encoded as a cost function, where each unsatisfied clause adds an
energy penalty to the Hamiltonian [24],

hi =

[
1− 1

2

3∑
k

(
1− σz

c
(k)
i

)]2
. (11)

The final HamiltonianHf is simply constructed as a sum over all clauses and can be simplified
to [25]

Hf =
m∑
i=1

Ωhi = Ωm1− Ω
n∑
i

ni
2
σzi + Ω

n∑
i<j

ni,j
2
σzi σ

z
j . (12)
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Figure 1: Instance of EC3, where the labeled vertices represent the 13 bits zi, edges of same
color and line style represent a clause ci. Bold-bordered vertices indicate the upbits in the
solution z = 1098 = (0010001001010).

Here, Ω > 0 just denotes an energy scale, the coefficient ni denotes the number of clauses
involving the i-th qubit, and ni,j is the number of clauses, which contain the i-th and j-th qubit.
For example, in Fig. 1 we have n11 = 4 and n11,13 = 1. The Hamiltonian Hf corresponds
to a frustrated antiferromagnet in a non-uniform magnetic field (with an energy shift m) [25].
The coupling strength between the spins, however, is not defined by the experimental geometry
(e.g., only between nearest neighbors) but by the edges of the clauses ni,j , which may define
a highly disordered network.

1.4 Hard Instances

To provide statistical evidence for our simulations, we generate for each system size 100 hard
instances. These were characterized by a unique solution, a number of clauses close to the
classical EC3 phase transition m ≈ 2

3
n from satisfiable to unsatisfiable problems [26], and

the constraint that nij ∈ {0, 1}. The last constraint implies that clauses should only share
vertices and not edges. It is motivated by the fact that in case an edge is shared by two clauses,
one may easily conclude that in the solution, the opposite vertices must have the same value.
Effectively, clauses that share edges would thus reduce the size of the problem. Altogether,
these constraints lead toO(n) terms in Eq. (12), andHf is efficiently stored in SQH format.

The recipe for generating a random (hard) instance is shown in figure 2. We start with a full
pool of all possible clauses. Randomly choosing one of the clauses defines an initial graph –
a triangle. This graph is now iteratively increased by randomly choosing among the remaining
clauses whilst obeying simple rules: First, only clauses which intersect with the existing graph
are added to ensure connectivity. When all bits are connected to the graph, the number of
solutions is checked each time after a clause is drawn. A clause is discarded, if it reduces the
number of solutions to zero. The algorithm finishes if only one solution is left. If no such unique
satisfying assignment (USA) has been found but all clauses are dropped from the pool or the
number of allowed clauses m is reached, the algorithm restarts itself.
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Figure 2: Schema of the used algorithm for randomly generating hard instances of EC3. Rect-
angles and circles indicate instructions and if-clauses, respectively. The algorithm starts and
stops at diamonds.

2 Straight Line Interpolation

In this section, we simulate and compare the results of three AQAs defined by different initial
Hamiltonians Hi. The interpolation path between initial and final Hamiltonian is a straight line
given by Eq. (7), traversed at constant speed s(t) = t/T . As a benchmark, we compare with
the analytically solvable Ising model in Eq. (6), which exhibits an inverse 1/n-scaling of the
minimum energy gap between ground and first coupled excited state, leading to a quadratic
scaling of the adiabatic runtime [27]. We begin by summarizing the explored algorithms.

2.1 Algorithms

2.1.1 X-Algorithm

The original approach [5] used a single-qubit structure

Hi = Hx = Ω
n∑
i

ni
2

(1− σxi ) (13)

with the ground state

|S〉 =
1√
2n

N−1∑
z=0

|z〉 . (14)

However, this does not reflect the interaction topology of the final Hamiltonian (12), i.e., the
coefficient ni does not carry the full information about the clauses ci.
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2.1.2 XYZ-Algorithm

A choice with two-qubit interactions is the Heisenberg ferromagnet [25, 14]

Hi = Hxyz = Ω
n∑
i<j

ni,j
2

(1− σi · σj). (15)

BothHxyz andHf are invariant under rotations around the Σz-axis,

Σz =
n∑
i

1

2
(1− σzi ). (16)

The eigenvalue ∆ of Σz is directly related to the number of 1-bits in the solution (also denoted as
Hamming weight ∆). It is therefore a constant of motion and conserved during dynamics. Only
the subspace |ψ〉 : Σz |ψ〉 = ∆w |ψ〉 with the fixed Hamming weight ∆w of the solution has
to be considered here, as all subspaces with different Hamming weights evolve independently.
The ground state of Hxyz in the appropriate subspace is given by a balanced superposition
over all basis states |u〉 with Σz |u〉 = ∆w |u〉,

|ψ0〉xyz =

(
n

∆w

)− 1
2 ∑

u

|u〉 . (17)

which can be prepared efficiently [28] by adiabatic evolution Hx T→ HP . In that reference,
the final Hamiltonian HP used an energy penalty to separate the subspaces: It was given by
HP = (Σz −∆w)2, which has highly degenerate energy levels, but due to symmetry argu-
ments the correct angular momentum eigenstates were selected. In our numerical considera-
tions we circumvent this preparation step and directly prepare the initial state (17), such that the
adiabatic algorithm only consists in a deformation ofHxyz to the final problem Hamiltonian (12).

Realistically, the solution |w〉 and thus the Hamming weight ∆w would not be known in advance,
which would make repeated runs of the AQA in different subspaces necessary. But even in the
worst case, when every possible value of ∆ ∈ {0 . . . n} has to be tried, the computational
overhead scales only linearly in n.

2.1.3 XY-Algorithm

Similar to the previous example is the x,y-ferromagnet

Hi = Hxy = 3mΩ1− Ω
n∑
i<j

ni,j
2

(σxi σ
x
j + σyi σ

y
j ). (18)

It has already been shown numerically that it yields on average a better performance thanHxyz

on a common instance of EC3 with a unique solution [25]. Again, the Hamming weight is a
constant of motion and we only consider the corresponding subspace. The ground state of

(18) is analytically unknown but can be initialized by adiabatic evolution Hx T→ Hxy. Using
an ARPACK eigensolver [29, 30] accepting SQH as input variable, we found numerically for the
examples considered that the minimum gap during the initial preparation is roughly independent
of the system size. We expect therefore only a mild algorithmic scaling of this preparation step
with the system size n, which would enable an efficient adiabatic preparation of the ground state
of Eq. (18).
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2.2 Results

The probability to find the system in the solution state |w〉 after the runtime T is P1(T ) =
|〈ψ(T )|w〉|2 and would ideally approach one. However, to avoid too long computation times
but simultaneously ensure a high fidelity, we define a successful runtime Ts by measuring the
system’s energy E(Ts)/Ω = 1

2
. Here, we exploit the fact, that any excited state raises the

energy by an amount greater or equal Ω, cf. Eq. (12). The first excited state ofHf therefore has
an energy E2 ≥ Ω. The energy is thus lower bounded by (using E1(T ) = 0)

E(T ) =
N∑
n=1

En(T )Pn(T ) ≥ E2(P2 + . . .+ PN)

≥ Ω(1− P1) , (19)

and defining this criterion as a measure for a successful runtime means that the ground state
occupation is at least one-half.

101

102

 8  10  12  14  16  18

ru
nt

im
e 
Ω

T

system size n

Hx

Hxyz

Hxy

Ising

Figure 3: Scaling of the dimensionless runtime ΩTs(n) (symbols, fit lines only serve to guide
the eye) for algorithms X (solid), XYZ (long-dashed), XY (dotted) compared with the quadrati-
cally scaling Ising model (dash-dotted). Symbols represent the median and error bars the first
and third quartile out of 100 randomly chosen hard instances. Although the scaling behavior is
inconclusive, it is evident that different initial states may drastically improve the performance of
the AQA.

Figure 3 shows computed median runtimes Ts(n) for the three different algorithms compared
with an adiabatic version of the Ising model, Eq. (6), traversed at constant interpolation speed
s(t) = t/T . The latter serves as a benchmark with a runtime scaling known to be quadratically
[27]. Our results show, that the XY-algorithm is the fastest followed by the XYZ-algorithm. Both
stay close to the Ising curve which would indicate a polynomial scaling in the observed region.
A clear statement however is hampered by the large deviations and fitting remains ambiguous.
In contrast to previous studies [5], where the runtime of the X-algorithm appeared polynomial
on small system sizes, our results on harder instances suggest an exponential scaling of the
original algorithm already for these moderate sizes n.
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3 Alternative Paths

A straight line interpolation between initial HamiltonianHi and final HamiltonianHf is a convex
combination of only of two Hamiltonians. However, there are plenty of other paths connect-
ing these two but involving a third or even more intermediate Hamiltonians. Our hope is, that
some of such alternative paths may increase the energy gap above the ground state leading
to a speedup of the AQA. For example, in the simple Ising model (6) it is known that even for
constant-speed interpolations s(t) = t/T , the runtime can be improved from quadratic scaling
(straight line) to linear scaling (nonlinear path) [31].

Since the XY-algorithm showed the best median performance in the previous section, we set the
initial Hamiltonian toHxy and probe two alternative algorithms based on paths shown in Fig. 4.

0 1

Figure 4: Sketch of alternative paths for adiabatic algorithms all starting from Hxy. As an ex-
ample, the number of clauses is set to m = 6. The red, solid line is the straight line algorithm.
The green, dashed curve denotes a path with an additional, nonlinear term s(1− s)H5, which
is defined in the text. A clause-by-clause algorithm is shown by the blue, dotted lines.

3.1 Algorithms

3.1.1 Nonlinear Smooth Interpolation

We add a third term to the straight line interpolating Hamiltonian H(s) in Eq. (7), which is
quadratic in s:

H(s) = (1− s)Hxy + sHf + αs(1− s)Hm−1, (20)

whereHm−1 = Ω
∑m−1

i=1 hi is the final Hamiltonian reduced by one (arbitrarily chosen) clause
and α is a coupling strength. To motivate this path, we note that for large n, the related reduced
EC3 problem may be expected to have many solutions, since there exists a phase transition
from satisfiable to unsatisfiable EC3 problems at a clause-to-size ratio m/n ≈ 0.62 [26]. Thus,
reducing the number of clauses moves the problem into the satisfiable phase. Intuitively, we
expect that the additional term in Eq. (20), which becomes dominant during the evolution, will
already at this state suppress states which are not a solution toHm−1 (and therefore neither of
Hm). Thereby, the search space to find the solution ofHf is reduced, and the algorithm could
be expected to be faster compared to conventional straight line interpolation.
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It should be noted, that for m clauses there are m different Hamiltonians Hm−1. The best
reduction of the search space is then obtained for reduced HamiltoniansHm−1 with the small-
est number of solutions. However, this number will in realistic experiments not be known. In
our numerical simulations, we have decided to remove only clauses when the connectivity
of the graph is not destroyed. In the example of Fig. 1, allowed clauses to be removed are
(1, 4, 13), (1, 10, 11) and (9, 11, 13).

3.1.2 Nonlinear Clause-By-Clause Interpolation

We try again to reduce to search space by applying an additional term to the straight line in-
terpolation. In contrast to the previous case however, the reduction is conducted not in a single
step but by switching on the clauses one after another. This can be written formally as

H(s) = (1− s)Hxy + sHf +Hd(s), (21)

Hd(s) =
m∑
k=1

[
(1− sk)Hk−1 + skHk

]
×Θ(sk)Θ(1− sk),

(22)

where sk = ms− k + 1. (23)

The primary interpolation s : 0 → 1 of Eq. (21) is thus split into m steps, which consist of
secondary interpolations sk : 0 → 1 from Hk−1 to Hk in Eq. (22). Here, Hk consists of k
clauses fromHf . Note that this is equivalent to adding a single clause with each step denoted
by Hk − Hk−1. As the initial and final Hamiltonians, H(0) = Hxy and H(1) = Hf should
not be changed by Hd, we define H0 = Hm = 0 · 1. The order, in which clauses are added,
is ambiguous, which results in m! possible paths. In our numerical simulations, the path was
defined by the order in which the clauses were stored.

3.2 Results

The qubit system is prepared in the ground state ofHxy, which can be done efficiently as stated
in section 2. We then compare for the presented algorithms the final energy Ef of the system
after a runtime T . For an adiabatic runtime, the energy should be close to 0. Additionally, we
numerically [29] compute the lower part of the spectrum and deduce the energy gap above the
ground state for each AQA. Figure 5 exemplarily shows our results for an instance with 13 qubits.
First, in the upper panel, it is visible that for short runtimes, the conventional algorithm rapidly
decreases its final energy, but it becomes increasingly hard to further reduce the energy below
the critical threshold one. Both the clause-by-clause algorithm and the XY-algorithm decrease
the final energy significantly faster, but the nonlinear path shows an even better performance
(we attribute the final plateaus to imperfect numerical preparation of the initial ground state). The
lower panel in Fig. 5 shows the gap between the two lowest eigenvalues ofH(s) dependent of
the interpolation parameter s : 0 → 1. For the clause-by-clause algorithm, the points indicate
the particular steps where another clause is added. Again, the nonlinear paths shows the best
result as its minimum gap is largest. Comparing both panels, it can be clearly seen, that a larger
minimum gap leads to a faster decrease in the final energy. Remarkably, the minimum gap for
the nonlinear algorithm is located at s = 0, i.e., it coincides with the gap ofHxy.
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Figure 5: Top: Final energies versus dimensionless runtimes for different paths between Hxy

and Hf for a 13 qubit example. Symbol shapes and colors correspond to the paths in Fig. 4.
The X-algorithm is also shown as an example of a slow adiabatic behavior. For the nonlinear
path, the coupling is chosen as α = 8. Bottom: Energy gap between ground and first excited
state of H(s) for the same algorithms. The symbols for the curves correspond to those in the
upper panel. For the clause-by-clause algorithm, the symbols indicate the start and end of the
secondary interpolations in (22). Comparing both panels, a correspondance between a large
minimal gap and a fast decrease in the final energy is clearly seen.
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was much better for all nonlinear paths, it turned out that these differ strongly for large evolution
times T , and choice A performs worse than the straight line interpolations. Bottom: Energy
gap for the same algorithms. Again, the value of the minimum gap clearly corresponds to the
large-time performance in the above panel. It depends on the choice of Hm−1 whether this gap
is increased or decreased compared to straight line algorithms.
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Although a broad statistics would exceed the scope of this paper, we observed a similar behavior
for many instances and different system sizes. However, there are very hard instances, where
an arbitrarily chosen nonlinear algorithm failed. The graph depicted in Fig. 1 is such an example,
which is as hard to solve for the XY-algorithm as it is for the X-algorithm. In this case, our chosen
smooth nonlinear path performed for a large coupling constant α even worse.

The choice of the nonlinear term Hm−1 in (20) turns out to be crucial as shown in Fig. 6. In
the upper panel, both straight line algorithms do not reduce the energy significantly below 1.
Also shown are the possible three nonlinear paths. Surprisingly, the energy of path A is almost
constant 1 for long runtimes. At least two out of three nonlinear paths show a faster decrease in
energy than the XY-algorithm, with path B having the best performance. This can be confirmed
by examining the energy gap in the lower panel of Fig. 6. The minimum gap of the straight line
algorithms is almost identical, whereas the minimum gap of path A is 20 times smaller. Path B
has the largest minimum gap as expected.

4 Conclusion

The employed universal integrator proved a flexible tool in simulating non-standard adiabatic
quantum algorithms. The introduced SQH format offers an efficient storage scheme and a fast
matrix-vector multiplication. Moreover, as the integrator is independent of the Hamiltonian’s
structure, it gives the flexibility to simulate hundreds of EC3 instances without changing the
source code. Adapting the integrator to alternative interpolating paths could be done very eas-
ily.

Our simulations agree with previous results pointing to an exponential scaling of the X-
algorithm [32] on hard instances. The performance of the XYZ- and the XY-algorithm is much
better, indicating an Ising-like polynomial scaling for the samples and sizes considered. How-
ever, we note that variations are large, and the worst-case complexity does not even expose
any scaling behavior. Even if this was not the case, finite-size simulations must remain incon-
clusive by construction. For the alternative paths, we did not study the runtime scaling versus
the problem size. Instead, we considered the adiabatic behavior for exemplary instances, where
a faster decrease in the final energy corresponds to a larger minimum gap. Here, the nonlinear
path outperforms the linear algorithms even for very hard instances. However, in general one
will not know in advance, which of the possible choices for the nonlinear path is the best.

For further studies, an analysis of its scaling behavior is of interest. This requires extensive
simulations for statistics, which will be a subject of future research.

Our results are of course limited to the specific examples considered, but may give rise to
the hope that nonlinear paths may be an interesting road to explore in the field of adiabatic
computation.
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