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1 INTRODUCTION 1

Abstract

A phase field approach for structural topology optimization which allows for topology

changes and multiple materials is analyzed. First order optimality conditions are rigorously

derived and it is shown via formally matched asymptotic expansions that these conditions

converge to classical first order conditions obtained in the context of shape calculus. We

also discuss how to deal with triple junctions where e.g. two materials and the void meet.

Finally, we present several numerical results for mean compliance problems and a cost

involving the least square error to a target displacement.

1 Introduction

In structural topology optimization one tries to distribute a limited amount of material in a design

domain such that an objective functional is minimized. Known quantities in these problems are

e.g. the applied loads, possible support conditions, the volume of the structure and possible

restrictions as for example prescribed solid regions or given holes. A priori the precise shape

and the connectivity (the “topology”) of the structure is not known. Often also the problem arises

that several materials have to be distributed in the given design domain.

Different methods have been used to deal with shape and topology optimization problems. The

classical method uses boundary variations in order to compute shape derivatives which can be

used to decrease the objective functional by deforming the boundary of the shape in a descent

direction, see e.g. [39, 51, 52] and the references therein. The boundary variation technique

has the drawback that it needs high computational costs and does not allow for a change of

topology.

Sometimes one can deal with the change of topology by using homogenization methods, see [2]

and variants of it such as the SIMP method, see [7] and the reference therein. These approaches

are restricted to special classes of objective functionals.

Another approach which was very popular in the last ten years is the level set method which

was originally introduced in [43]. The level set method allows for a change of topology and was

successfully used for topology optimization by many authors, see e.g. [17, 42]. Nevertheless

for some problems the level set method has difficulties to create new holes. To overcome this

problem the sensitivity with respect to the opening of a small hole is expressed by so called

topological derivatives, see [52]. Then, the topological derivative can be incorporated into the

level set method, see e.g. [18], in order to create new holes.

The principal objective in shape and topology optimization is to find regions which should be

filled by material in order to optimize an objective functional. In a parametric approach this is

done by a parametrization of the boundary of the material region and in the optimization process
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the boundary is varied. In a level set method the boundary is described by a level set function

and in the optimization process the level set function changes in order to optimize the objective.

As the boundary of the region filled by material is unknown the shape optimization problem is a

free boundary problem. Another way to handle free boundary problems and interface problems

is the phase field method which has been used for many different free boundary type problems,

see e.g. [19, 22].

In structural optimization problems the phase field approach has been used by different authors

[9, 11, 12, 16, 23, 48, 53, 55, 56, 57, 58]. The phase field method is capable of handling topology

changes and also the nucleation of new holes is possible, see e.g. [9]. The method is applied for

domain dependent loads [11], multi-material structural topology optimization [57], minimization

of the least square error to a target displacement [53], topology optimization with local stress

constraints [18] mean compliance optimization [9, 53], compliant mechanism design problems

[53], eigenfrequency maximization problems [53] and problems involving nonlinear elasticity

[48].

Although many computational results on phase field approaches to topology optimization exist

there has been relatively little work on analytical aspects. One result to be mentioned is the

Γ-convergence result, see e.g. [11], which relates the phase field energy in topology optimiza-

tion to classical objective functionals. There is an existence result for the phase field model for

compliance shape optimization in nonlinear elasticity in [48]. Most other authors derived first

order conditions in a formal way and presented numerical examples obtained by a gradient

flow method leading to either an Allen-Cahn [9] or a Cahn-Hilliard type phase field equation

[23, 53, 57]. We also like to mention that in [16] a primal-dual interior point method is used to

solve the phase field topological optimization problem.

Although in principle the phase field approach can also be applied for other problems in topology

optimization we focus on applications formulated in the context of linear elasticity. In the simplest

situation given a working or design domain Ω with a boundary ∂Ω which is decomposed into a

Dirichlet part ΓD, a non-homogeneous Neumann part Γg and a homogeneous Neumann part

Γ0 and body and surface forces f and g one tries to find a domain ΩM ⊂ Ω (M stands for

material) and the displacement u such that the mean compliance

∫

ΩM

f · u +

∫

Γg∩∂ΩM

g · u

or the error compared to a target displacement uΩ, i.e.

(
∫

ΩM

c|u − uΩ|
2

)κ

, κ ∈ (0, 1]

is minimized, where c is a given weighting function and | · | is the Euclidean norm. Here the

displacement u is the solution of the linearized elasticity system

−∇ · (CME(u)) = f in ΩM

subject to appropriate boundary conditions. As discussed in [3] the above minimization problem

is not well-posed on the set of all possible shapes and typically a perimeter regularization is
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used, i.e. one adds

P (ΩM) =

∫

(∂ΩM )∩Ω

ds

to the above functionals, where ds stands for the surface measure.

In a phase field model the domains with material and the void are described by a phase field ϕ

which attains two given values. Moreover the interface between the domains is not sharp any

longer but diffuse where the thickness of the interface is proportional to a small parameter ε.

The phase field rapidly changes in an interfacial region. Then the perimeter is approximated by

a suitable multiple of
∫

Ω

( ε
2
|∇ϕ|2 + 1

ε
Ψ(ϕ)),

where Ψ is a potential function attaining global minima at given values of ϕ which correspond

to void and material. We refer to the next section for a precise formulation of the problem.

In this paper we first give a precise formulation of the problem also in the case of multi-material

structural topology optimization (Section 2). In this context we use ideas introduced in [29] and

[57]. Then we rigorously derive first order optimality conditions (Section 4). In Section 5 we

consider the sharp interface limit of the first order conditions, i.e. we take the limit ε → 0 and

therefore the thickness of the interface converges to zero. We obtain limiting equations with

the help of formally matched asymptotic expansions and relate the limit, which involve classical

terms from shape calculus, transmission conditions and triple junction conditions, to the shape

calculus of [3].

Finally we present several numerical computations by using a gradient descent method based

on a volume conserving L2-gradient flow of the energy. The resulting problem is a generalized

non-local vector-valued Allen-Cahn variational inequality coupled to elasticity. We solve this

evolution equation using a primal dual active set method as in [8].

2 Formulation of the Problem

In this subsection we first introduce the phase field method and after that we will formulate the

structural topology optimization problem in the phase field context.

2.1 Phase field approach

Given a bounded Lipschitz design domain Ω ⊂ Rd we describe the material distribution with the

help of a phase field vector ϕ := (ϕi)N
i=1, where each component of ϕ stands for the fraction

of one material. Hence, d denotes the dimension of our working domain Ω and N stands for the

number of materials. Moreover we denote by ϕN the fraction of void. We consider systems in

which the total spatial amount of phases are prescribed, e.g. we have additionally the constraint
∫

Ω
− ϕ = m = (mi)N

i=1, where mi ∈ (0, 1) for i ∈ {1, . . . , N} is a fixed given number. We

use the notation
∫

Ω
− f(x)dx := 1

|Ω|
f(x)dx with |Ω| being the Lebesgue measure of Ω. To
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ensure that all phases are present we require 0 < mi < 1 and
N
∑

i=1

mi = 1, where the last

condition makes sure that
N
∑

i=1

ϕi = 1 can be true. We define RN
+ := {v ∈ RN | v ≥ 0},

where v ≥ 0 means vi ≥ 0 for all i ∈ {1, . . . , N}, the affine hyperplane

ΣN :=

{

v ∈ R
N |

N
∑

i=1

vi = 1

}

,

and its tangent plane

TΣN :=

{

v ∈ R
N |

N
∑

i=1

vi = 0

}

.

With these definitions we obtain as the phase space for the order parameter ϕ the Gibbs simplex

G = RN
+ ∩ ΣN . We furthermore define G := {v ∈ H1(Ω, RN) | v(x) ∈ G a.e. in Ω} and

G
m := {v ∈ G |

∫

Ω
− v = m}. As discussed in the introduction we use the well-known

Ginzburg-Landau energy

Eε(ϕ) :=

∫

Ω

(

ε

2
|∇ϕ|2 +

1

ε
Ψ(ϕ)

)

, ε > 0, (2.1)

which is an approximation of the weighted perimeter functional. The convergence theory of (2.1)

for ε → 0 relies on the notion of Γ-convergence, see [4, 38].

In (2.1) the function Ψ : RN → R∪{∞} is a bulk potential with a N -well structure on ΣN , i.e.

with exactly N local minima ei (i ∈ {1, . . . , N}) and height Ψ(ei) = 0, where ei is the i-th
unit vector in RN . Obstacle type functionals have the form Ψ(ϕ) = Ψ0(ϕ) + IG(ϕ), where

Ψ0 ∈ C1,1(RN , R) and IG is the indicator function of G, i.e.

IG(ϕ) :=

{

0 for ϕ ∈ G,
∞ otherwise.

Prototype examples for Ψ0 are given by

Ψ0(ϕ) :=
1

2
(1 − ϕ · ϕ) and Ψ0(ϕ) :=

1

2
ϕ · Wϕ, (2.2)

where W is a symmetric N × N matrix [10, 24] with zeros on the diagonal which in addition

is negative definite on TΣN . On ΣN we have (1 − ϕ · ϕ) = ϕ · (1 ⊗ 1 − Id)ϕ with

1 = (1, . . . , 1)T and hence on TΣN the first choice is a special case of the second.

We remark that on G we have

Eε(ϕ) =

∫

Ω

(

ε

2
|∇ϕ|2 +

1

ε
Ψ0(ϕ)

)

=: Êε(ϕ). (2.3)

This observation is important for the analysis in Section 4.
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We denote by u : Ω → Rd the displacement vector and by

E := E(u) := (∇u)sym

the strain tensor, where Asym := 1
2
(A + AT ) is the symmetric part of a second order tensor

A. Furthermore, we denote by C the elasticity tensor, by f : Ω → Rd a vector-valued volume

force and by g : Γg → R
d a boundary traction acting on the structure. In this paper we always

assume f ∈ L2(Ω, Rd) and g ∈ L2(Γg, R
d). The boundary of our domain is divided into a

Dirichlet part ΓD with positive (d−1)-dimensional Hausdorff measure, i.e. Hd−1(ΓD) > 0 and

a Neumann part, which consists of a non-homogeneous Neumann part Γg and a homogeneous

Neumann part Γ0. Moreover, in our setting the elasticity equation which is used in structural

topology optimization is given by














−∇ · [C(ϕ)E(u)] =
(

1 − ϕN
)

f in Ω,
u = 0 on ΓD,

[C(ϕ)E(u)] n = g on Γg,
[C(ϕ)E(u)] n = 0 on Γ0,

(2.4)

where n is the outer unit normal to ∂Ω = ΓD ∪ Γg ∪ Γ0. Introducing the notation

〈A,B〉C :=

∫

Ω

A : CB,

where for any matrices A and B the product is given as A : B :=
∑d

i,j=1 AijBij , the elastic

boundary value problem (2.4) can be written in the weak formulation

〈E(u), E(η)〉C(ϕ) = F (η, ϕ), (2.5)

which has to hold for all η ∈ H1
D(Ω, Rd) := {η ∈ H1(Ω, Rd) | η = 0 on ΓD} and where

F (η, ϕ) =

∫

Ω

(

1 − ϕN
)

f · η +

∫

Γg

g · η. (2.6)

The assumptions on the elasticity tensor are Cijkl ∈ C1,1(RN , R), i, j, k, l ∈ {1, . . . , d}, and

the symmetry property

Cijkl = Cjikl = Cijlk

holds. Additionally, there exist positive constants θ, Λ, Λ′, such that for all symmetric A,B ∈
Rd×d \ {0} and for all ϕ, h ∈ RN it holds

θ|A|2 ≤ C(ϕ)A : A ≤ Λ|A|2, (2.7)

|C′(ϕ)hA : B| ≤ Λ′|h||A||B|, (2.8)

where (C′(ϕ)h)d
i,j,k,l=1 :=

(

∑N
m=1 ∂mCijkl(ϕ)hm

)d

i,j,k,l=1
.

More information on the theory of elasticity can be found in the books [20] and [35]. Discussions

on appropriate interpolations C(ϕ) of the elasticity tensors in the pure material can be found in

[7, 27, 29, 32]. In the following we discuss a concrete choice of the interpolation function, which

fulfills the above assumptions.
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2.2 Choice of the elasticity tensor

We now discuss how we can define a ϕ-dependent elasticity tensor starting with constant elas-

ticity tensors Ci, i ∈ {1, . . . , N−1} which are defined in the pure materials, i.e. when ϕ = ei.

We first extend the elasticity tensor to the Gibbs simplex, then define it on the hyperplane ΣN

and eventually on the whole of R
N . First of all we model the void as a very soft material. A

possible choice which is appropriate for the sharp interface limit discussed later and for the nu-

merics is CN = CN(ε) = ε2C̃N where C̃N is a fixed elasticity tensor. Moreover, we assume

that there exist positive constants ϑ̃i, ϑi such that for all A ∈ Rd×d \ {0} it holds

ϑi|A|2 ≤ C
iA : A ≤ ϑ̃i|A|2 ∀i ∈ {1, . . . , N}. (2.9)

In order to model the elastic properties also in the interfacial region the elasticity tensor is

assumed to be a tensor valued function C(ϕ) := (Cijkl(ϕ))d
i,j,k,l=1 and we set for ϕ in the

Gibbs simplex

C(ϕ) = C(ϕ) + C
NϕN , ∀ϕ ∈ G, (2.10)

where C(ϕ) :=
N−1
∑

i=1

Ciϕi.

We now extend the elasticity tensor C to the hyperplane ΣN . For δ > 0 we define on R a

monotone C1,1-function

w(s) :=























−δ for s < −δ,
wl(s) for − δ ≤ s < 0,
s for 0 ≤ s ≤ 1,
wr(s) for 1 < s ≤ 1 + δ,
1 + δ for s > 1 + δ,

(2.11)

where wj, j ∈ {l, r} are monotone C1,1-functions such that w ∈ C1,1. By means of (2.11) we

construct an extention of the elasticity tensor C(ϕ) for ϕ in the affine hyperplane ΣN

Ĉ(ϕ) =
N
∑

i=1

C
iw(ϕi), ∀ϕ ∈ ΣN . (2.12)

Indeed for ϕ ∈ G we have w(ϕi) = ϕi, ∀i ∈ {1, . . . , N} and Ĉ(ϕ) = C(ϕ), i.e. in the

Gibbs simplex we have a linear interpolation of the values in the corners of the simplex. Such

linear interpolations are frequently used in the modeling of multi-phase elasticity, see [27, 32].

For ϕ ∈ ΣN we obtain

Ĉ(ϕ)A : A =

N
∑

i=1

w(ϕi)CiA : A

=
∑

i∈I<0

w(ϕi)CiA : A +
∑

i∈I≥0

w(ϕi)CiA : A, (2.13)
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where the index sets are defined as

I<0 := {i ∈ {1, . . . , N} | ϕi < 0}; I≥0 := {1, . . . , N} \ I<0.

Hence, we obtain, using
∑

i∈I≥0

ϕi ≥ 1,

Ĉ(ϕ)A : A ≥ [min
i∈I≥0

ϑi − δ max
i∈I<0

ϑ̃i|I<0|)] |A|2.

Choosing δ small enough there exists a δ′ > 0 such that for all |I<0|

[min
i∈I≥0

ϑi − δ max
i∈I<0

ϑ̃i|I<0|)] ≥ δ′

and we can set θ := δ′ in (2.7).

We now define the projection from RN into ΣN by

PΣ(ϕ) = arg min
v∈ΣN

1

2
‖ϕ − v‖2

l2, ∀ϕ ∈ R

and define

Č(ϕ) =

N
∑

i=1

C
iw(PΣ(ϕ)i), ∀ϕ ∈ R

N . (2.14)

Then Č(ϕ) fulfills (2.7) and (2.8).

2.3 Structural optimization problem

In the following we are going to formulate an optimization problem involving the mean compli-

ance functional (2.6) and the functional for the compliant mechanism, which is given by

J0(u, ϕ) :=

(∫

Ω

c
(

1 − ϕN
)

|u − uΩ|
2

)κ

, κ ∈ (0, 1], (2.15)

with a given non-negative weighting factor c ∈ L∞(Ω) with |supp c| > 0, where |supp c| is the

Lebesgue measure of supp c.

Given (f , g, uΩ, c) ∈ L2(Ω, Rd)×L2(Γg, R
d)×L2(Ω, Rd)×L∞(Ω) and measurable sets

Si ⊆ Ω, i ∈ {0, 1}, with S0 ∩ S1 = ∅, the overall optimization problem is

(Pε)











min Jε(u, ϕ) := αF (u, ϕ) + βJ0(u, ϕ) + γEε(ϕ),

over (u, ϕ) ∈ H1
D(Ω, Rd) × H1(Ω, RN ),

s.t. (2.5) is fulfilled and ϕ ∈ G
m ∩ U c,

where α, β ≥ 0, γ, ε > 0, m ∈ (0, 1)N ∩ ΣN and

U c := {ϕ ∈ H1(Ω, RN ) | ϕN = 0 a.e. on S0 and ϕN = 1 a.e. on S1}.
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Remark 2.1 (i) From the applicational point of view it is desirable to fix material or void in

some regions of the design domain, so the condition ϕ ∈ U c makes sense. Moreover by

choosing S0 such that |S0 ∩ supp c| 6= 0 we can ensure that it is not possible to choose

only void on the support of c, i.e. in (2.15) |supp (1 − ϕN) ∩ supp c| > 0.

(ii) Taking (2.1) and (2.3) into account we can replace Eε(ϕ) by Êε(ϕ) in (Pε).

3 Analysis of the state equation

In this section we discuss the well-posedness of the state equation (2.4) and show the differ-

entiability of the control-to-state operator. In this Section the functions (f , g) ∈ L2(Ω, Rd) ×
L2(Γg, R

d) are given. Because (Gm∩U c) ⊂ L∞(Ω, RN) we assume throughout this Section

that ϕ ∈ L∞(Ω, RN).

Theorem 3.1 For any given ϕ ∈ L∞(Ω, RN) there exists a unique u ∈ H1
D(Ω, Rd) which

fulfills (2.5). Furthermore, there exists a positive constant C which depends on the data of the

problem such that

‖u‖H1
D

(Ω,Rd) ≤ C(‖ϕ‖L∞(Ω,RN ) + 1). (3.1)

Proof. Indeed 〈E(·), E(·)〉C(ϕ) : H1
D(Ω, Rd) × H1

D(Ω, Rd) → R is a bilinear form and we

have by (2.7) and Korn’s inequality, see [59] Corollary 62.13 and [36, 41],

〈E(u), E(u)〉C(ϕ) ≥
θ

cK
‖u‖2

H1
D

(Ω,Rd) ∀u ∈ H1
D(Ω, Rd), (3.2)

where cK > 0 stems from Korn’s inequality. Hence, 〈E(·), E(·)〉C(ϕ) is H1
D(Ω, Rd)-elliptic.

Moreover, using (2.7) it is easy to check that 〈·, ·〉C(ϕ) is continuous. Applying Hölder’s inequality

and the trace theorem we have

|F (η, ϕ)| ≤

∫

Ω

|(1 − ϕN)f · η| +

∫

Γg

|g · η|

≤ C
(

‖1 − ϕN‖L∞(Ω)‖f‖L2(Ω,Rd) + ‖g‖L2(Γg ,Rd)

)

‖η‖H1
D

(Ω,Rd), (3.3)

where C > 0. Hence, for ϕ ∈ L∞(Ω, RN ) it holds that F (·, ϕ) ∈ (H1
D(Ω, Rd))∗. Applying

the Lax-Milgram theorem we obtain a unique solution u ∈ H1
D(Ω, Rd) to (2.5) and (3.1) follows

from (3.3) and (3.2). 2

Based on Theorem 3.1 we define the solution or the control-to-state operator

S : L∞(Ω, RN ) → H1
D(Ω, Rd), S(ϕ) := u, (3.4)

which assigns to a given control ϕ ∈ L∞(Ω, RN) the unique state variable u ∈ H1
D(Ω, Rd).

In order to derive first-order necessary optimality conditions for the optimization problem (Pε),

it is essential to show the differentiability of the control-to-state operator S. In order to show this

we prove the following stability result.
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Theorem 3.2 Suppose that ϕi ∈ L∞(Ω, RN), i = 1, 2, are given, and let ui = S(ϕi), i =
1, 2. Then there exists a positive constant C which depends on the given data of the problem

such that

‖u1 − u2‖H1
D

(Ω,Rd) ≤ C‖ϕ1 − ϕ2‖L∞(Ω,RN ). (3.5)

Proof. Because of ui = S(ϕi) ∈ H1
D(Ω, Rd) it holds

〈E(ui), E(η)〉C(ϕi) = F (η, ϕi) ∀η ∈ H1
D(Ω, Rd), (3.6)

where i = 1, 2. The difference gives

∫

Ω

[C(ϕ1)E(u1)−C(ϕ2)E(u2)] : E(η)

=

∫

Ω

(ϕN
2 − ϕN

1 )f · η ∀η ∈ H1
D(Ω, Rd). (3.7)

Testing (3.7) with η := u1 − u2 ∈ H1
D(Ω, Rd), using

[C(ϕ1)E(u1) − C(ϕ2)E(u2)] = [C(ϕ1) − C(ϕ2)]E(u2) + C(ϕ1)E(u1 − u2)

and (2.7) we get for (3.7)

θ‖E(u1 − u2)‖
2
L2(Ω,Rd×d) ≤ 〈E(u1 − u2), E(u1 − u2)〉C(ϕ1)

≤

∣

∣

∣

∣

∫

Ω

[C(ϕ1) − C(ϕ2)]E(u2) : E(u1 − u2)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(ϕN
2 − ϕN

1 )f · (u1 − u2)

∣

∣

∣

∣

.

Because of Hölder’s inequality and the global Lipschitz-continuity of C we obtain

θ‖E(u1 − u2)‖
2
L2(Ω,Rd×d)

≤ LC‖ϕ1 − ϕ2‖L∞(Ω,RN )‖E(u2)‖L2(Ω,Rd×d)‖E(u1 − u2)‖L2(Ω,Rd×d)

+ ‖ϕ1 − ϕ2‖L∞(Ω,RN )‖f‖L2(Ω,Rd) · ‖u1 − u2‖L2(Ω,Rd), (3.8)

where LC denotes the global Lipschitz-constant. Using (3.1), Korn’s inequality, the inequality

(3.8) finally shows (3.5). 2

We are now in a position to prove the differentiability of the control-to-state operator.

Theorem 3.3 The control-to-state operator S, defined in (3.4), is Fréchet differentiable. Its di-

rectional derivative at ϕ ∈ L∞(Ω, RN) in the direction h ∈ L∞(Ω, RN) is given by

S ′(ϕ)h = u∗, (3.9)
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where u∗ denotes the unique solution of the problem

〈E(u∗), E(η)〉C(ϕ) = −〈E(u), E(η)〉C′(ϕ)h −

∫

Ω

hNf · η, ∀η ∈ H1
D(Ω, Rd), (3.10)

which formally can be derived by differentiating the implicit state equation

〈E(S(ϕ)), E(η)〉C(ϕ) = F (η, ϕ)

with respect to ϕ ∈ L∞(Ω, RN). Moreover, there exists a constant C > 0 which depends on

the given data of the problem such that the estimate

‖u∗‖H1
D

(Ω,Rd) ≤ C‖h‖L∞(Ω,RN ) (3.11)

holds, which shows that S ′(ϕ) is a bounded operator and hence the Fréchet-differentiability of

S.

Proof. For given h ∈ L∞(Ω, RN ) we define

F̂ (η, h) := −〈E(u), E(η)〉C′(ϕ)h −

∫

Ω

hNf · η, ∀η ∈ H1
D(Ω, Rd).

Using (2.8) we can estimate

|F̂ (η, h)| ≤ |〈E(u), E(η)〉C′(ϕ)h| +

∫

Ω

|hNf · η|

≤ max{Λ′, 1}‖h‖L∞(Ω,RN )(‖f‖L2(Ω,Rd) + ‖u‖H1
D

(Ω,Rd))‖η‖H1
D

(Ω,Rd).

Moreover, using (3.1) we get that F̂ (·, h) ∈ (H1
D(Ω, Rd))∗. Hence, the existence of a unique

solution u∗ ∈ H1
D(Ω, Rd) to (3.10) is given by the Lax-Milgram theorem.

Now define uh := S(ϕ + h) and r := uh − u − u∗, where u∗ fulfills (3.10). We have to

show that

‖r‖H1
D

(Ω,Rd) = o(‖h‖L∞(Ω,RN )) as ‖h‖L∞(Ω,RN ) → 0. (3.12)

Applying the definition of u, uh and u∗ we obtain

〈E(uh), E(η)〉C(ϕ+h) − 〈E(u), E(η)〉C(ϕ) − 〈E(u∗), E(η)〉C(ϕ)

= 〈E(u), E(η)〉C′(ϕ)h, ∀η ∈ H1
D(Ω, Rd).

Using

[C(ϕ + h)E(uh) − C(ϕ)E(u)] =

= [C(ϕ + h) − C(ϕ)]E(uh) + C(ϕ)E(uh − u), (3.13)

we obtain after standard calculations

〈E(r), E(η)〉C(ϕ) = −〈E(uh), E(η)〉C(ϕ+h)−C(ϕ)−C′(ϕ)h

− 〈E(uh − u), E(η)〉C′(ϕ)h, ∀η ∈ H1
D(Ω, Rd). (3.14)
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Now we choose η := r in (3.14). Using (2.7) for the left side of (3.14) we have

|〈E(r), E(r)〉C(ϕ)| ≥ θ‖E(r)‖2
L2(Ω,Rd×d). (3.15)

Due to the differentiability properties of C we obtain

|C(ϕ + h) − C(ϕ) − C
′(ϕ)h| ≤ |h|

1
∫

0

|C′(ϕ + th) − C
′(ϕ)|dt

≤
1

2
LC′ |h|2, (3.16)

where we used for the last estimate the global Lipschitz-continuity of C′ with the Lipschitz con-

stant LC′ . We obtain using Hölders’s inequality for the first summand of the right hand side of

(3.14)

|〈E(uh), E(r)〉C(ϕ+λh)−C(ϕ)−C′(ϕ)h| ≤LC′‖h‖2
L∞(Ω,RN )·

· ‖E(uh)‖L2(Ω,Rd×d)‖E(r)‖L2(Ω,Rd×d). (3.17)

Owing to (3.1), we can estimate ‖E(uh)‖L2(Ω,Rd×d) in (3.17). For the second summand on the

right hand side of (3.14) with η := r we obtain using (2.8)

|〈E(uh − u), E(r)〉C′(ϕ)h| ≤Λ′‖h‖L∞(Ω,RN )·

‖E(uh − u)‖L2(Ω,Rd×d)‖E(r)‖L2(Ω,Rd×d).

Moreover, (3.5) yields ‖E(uh − u)‖L2(Ω,Rd×d) ≤ C‖h‖L∞(Ω,RN ) and we get that there exists

a positive constant C(Λ′) such that

|〈E(uh − u), E(r)〉C′(ϕ)h| ≤C(Λ′)‖h‖2
L∞(Ω,RN )‖E(r)‖L2(Ω,Rd×d). (3.18)

Using (3.15), (3.17) and (3.18) this establishes (3.12). We now want to prove (3.11). Testing

(3.10) with η := u∗ and arguing like in the proof of Theorem 3.2 we end up with (3.11) and

hence we proved Theorem 3.3. 2

4 Optimal control problem

The goal of this section is to show that the minimization problem (Pε) has a solution and to

derive first-order necessary optimality conditions. In this Section (f , g, uΩ, c) ∈ L2(Ω, Rd) ×
L2(Γg, R

d)×L2(Ω, Rd)×L∞(Ω) and measurable sets Si ⊆ Ω, i ∈ {0, 1}, with S0∩S1 = ∅,

are given.

Theorem 4.1 The problem (Pε) has a minimizer.
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Proof. We denote the feasible set by

Fad := {(u, ϕ) ∈ H1
D(Ω, Rd) × (Gm ∩ U c) | (u, ϕ) fulfills (2.5)}.

It is clear that Jε is bounded from below on H1
D(Ω, Rd)× (Gm∩U c). Since Fad is nonempty,

the infimum

inf
(u,ϕ)∈Fad

Jε(u, ϕ)

exists and hence we find a minimizing sequence {(uk, ϕk)} ⊂ Fad with

lim
k→∞

Jε(uk, ϕk) = inf
(u,ϕ)∈Fad

Jε(u, ϕ).

Moreover, we obtain, using (3.1), that there exists a positive constant C such that

Jε(uk, ϕk) ≥ γ
ε

2
‖∇ϕk‖

2
L2(Ω) − C.

Hence, by virtue of
∫

Ω
− ϕk = m for all k ∈ N and the Poincaré inequality the sequence

{ϕk} ⊂ (Gm ∩U c) is bounded in H1(Ω, RN)∩L∞(Ω, RN ). Theorem 3.1 implies that also

the sequence of the corresponding states {uk} ⊂ H1
D(Ω, Rd) is bounded. Hence there exist

some (u, ϕ) ∈ H1
D(Ω, Rd) × H1(Ω, RN) and subsequences (also denoted the same) such

that as k → ∞

uk −→ u weakly in H1
D(Ω, Rd),

ϕk −→ ϕ weakly in H1(Ω, RN).
(4.1)

Moreover the set G
m ∩ U c is convex and closed, hence weakly closed and we get (u, ϕ) ∈

H1
D(Ω, Rd) × (Gm ∩ U c). Finally we have to show that Jε is sequentially weakly lower semi-

continuous. From the above convergence result we obtain for k → ∞

uk −→ u strongly in L2(Ω, Rd),
ϕk −→ ϕ strongly in L2(Ω, RN ).

(4.2)

Using (4.1), (4.2) and since the norm is weakly lower semi-continuous we immediately obtain

Jε(u, ϕ) ≤ lim
k→∞

Jε(uk, ϕk)

and

−∞ < inf
(u,ϕ)∈Fad

Jε(u, ϕ) ≤ Jε(u, ϕ) ≤ lim
k→∞

Jε(uk, ϕk) = inf
(u,ϕ)∈Fad

Jε(u, ϕ).

In addition (4.1), (4.2) and the fact that (uk, ϕk) fulfills (2.5) imply that also (u, ϕ) fulfill (2.5).

Therefore (u, ϕ) ∈ H1
D(Ω, Rd) × (Gm ∩ U c) is a minimizer of (Pε). 2
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4.1 Fréchet-differentiability of the reduced functional

For the rest of the paper we assume that, in case β 6= 0 and κ ∈ (0, 1) we have J0 6= 0 . In

case κ = 1 we have J0(u, ϕ)
κ−1

κ = 1.

In the following, let ϕ ∈ H1(Ω, RN )∩L∞(Ω, RN) and u = S(ϕ) ∈ H1
D(Ω, Rd) the associ-

ated state. With the control-to-state operator S : H1(Ω, RN)∩L∞(Ω, RN ) ⊂ L∞(Ω, RN ) →
H1

D(Ω, Rd) the cost functional thus attains the form

Jε(u, ϕ) = Jε(S(ϕ), ϕ)

= αF (S(ϕ), ϕ) + βJ0(S(ϕ), ϕ) + γÊε(ϕ) =: j(ϕ), (4.3)

where F , J0 and Êε are defined as in (2.6), (2.15) and (2.3). The Fréchet-differentiability of the

reduced cost-functional j in H1(Ω, RN) ∩ L∞(Ω, RN) is shown in the next lemma.

Lemma 4.1 The reduced cost-functional j : H1(Ω, RN) ∩ L∞(Ω, RN) → R is Fréchet-

differentiable.

Proof. The proof is divided into two steps.

Step 1: (Jε is Fréchet-differentiable)

The Fréchet-differentiability of F is obvious. Moreover Êε is also Fréchet-differentiable, be-

cause it consists only of quadratic parts, see (2.2) and (2.3). We now discuss the Fréchet-

differentiability of J0. Defining J̃0 := J
1/κ

0 we have for arbitrary v ∈ H1
D(Ω, Rd)

|J̃0(u + v, ϕ) − J̃0(u, ϕ) − (J̃0)′u(u, ϕ)v| =

∣

∣

∣

∣

∫

Ω

c (1 − ϕN)(v)2

∣

∣

∣

∣

≤ C‖c‖L∞(Ω)(‖ϕ‖H1(Ω,RN )∩L∞(Ω,RN ) + 1)‖v‖2
H1

D
(Ω,Rd),

where C > 0. That means, that J̃0 is Fréchet-differentiable with respect to u. Furthermore

J̃0 is linear and Fréchet-differentiable in ϕ. Hence, using the chain rule we obtain the Fréchet-

differentiability of J0.

Step 2: (j is Fréchet-differentiable)

By definition we have j(ϕ) = Jε(u, ϕ). From Theorem 3.3 the control-to-state operator is

Fréchet-differentiable. The chain rule, see [54] Theorem 2.20, gives that j is Fréchet-differentiable

and we obtain with u∗ = S ′(ϕ)h as in Theorem 3.3

j′(ϕ)h = Jε
′u(u, ϕ)u∗ + Jε

′ϕ(u, ϕ)h, (4.4)

where

Jε
′u(u, ϕ)u∗ = αF′u(u, ϕ)u∗ + β(J0)′u(u, ϕ)u∗, (4.5)

Jε
′ϕ(u, ϕ)h = αF′ϕ(ϕ)h + β(J0)′ϕ(u, ϕ)h + γÊε

′ϕ(ϕ)h,
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with

F′u(u, ϕ)u∗ =

∫

Ω

(

1 − ϕN
)

f · u∗ +

∫

Γg

g · u∗,

(J0)′u(u, ϕ)u∗ = 2κJ0(u, ϕ)
κ−1

κ

∫

Ω

c
(

1 − ϕN
)

(u − uΩ) · u∗,

F′ϕ(ϕ)h = −

∫

Ω

hNf · u,

(J0)′ϕ(u, ϕ)h = −κJ0(u, ϕ)
κ−1

κ

∫

Ω

c hN |u − uΩ|
2,

Êε
′ϕ(ϕ)h = ε

∫

Ω

∇ϕ : ∇h +
1

ε

∫

Ω

Ψ′
0(ϕ) · h.

This shows Lemma 4.1. 2

4.2 Adjoint equation

In this subsection, we discuss the following equation, which is the system formally adjoint to

(2.4):























−∇ · [C(ϕ)E(p)] = α
(

1 − ϕN
)

f+

+2βκJ0(u, ϕ)
κ−1

κ c(1 − ϕN)(u − uΩ) in Ω,
p = 0 on ΓD,

[C(ϕ)E(p)] n = αg on Γg,
[C(ϕ)E(p)] n = 0 on Γ0.

(4.6)

We now show existence of a weak solution to the above problem (4.6).

Theorem 4.2 For given (ϕ, u) ∈ (H1(Ω, RN) ∩ L∞(Ω, RN)) × H1
D(Ω, Rd) there exists a

unique p ∈ H1
D(Ω, Rd) which fulfills (4.6) in the weak sense, i.e.,

〈E(p), E(η)〉C(ϕ) = F̃ (η, ϕ) ∀η ∈ H1
D(Ω, Rd), (4.7)

where

F̃ (η, ϕ) := α

∫

Ω

(

1 − ϕN
)

f · η + α

∫

Γg

g · η+

+ 2βκJ0(u, ϕ)
κ−1

κ

∫

Ω

c(1 − ϕN)(u − uΩ) · η.

Proof. One easily can check as in the proof of Theorem 3.3 that F̃ (·, ϕ) ∈ (H1
D(Ω, Rd))∗

for every ϕ ∈ H1(Ω, RN) ∩ L∞(Ω, RN). Hence, the existence of a unique weak solution

p ∈ H1
D(Ω, Rd) to (4.6) is given by the Lax-Milgram theorem. 2
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4.3 First-order necessary optimality conditions

In the following, let ϕ ∈ G
m ∩ U c denote a minimizer of the problem (Pε) and u = S(ϕ) ∈

H1
D(Ω, Rd) is the associated state variable. Using the reduced functional j, see (4.3), the

optimal control problem (Pε) can be reformulated as follows

min
ϕ∈Gm∩Uc

j(ϕ). (4.8)

Lemma 4.2 Let u∗ ∈ H1
D(Ω, Rd) be the solution to (3.10) and let p ∈ H1

D(Ω, Rd) be the

adjoint state defined as the weak solution to problem (4.6). Then

Jε
′u(u, ϕ)u∗ = −〈E(p), E(u)〉C′(ϕ)h −

∫

Ω

hNf · p. (4.9)

Proof. Testing (4.7) with u∗ ∈ H1
D(Ω, Rd) and using (4.5) gives

Jε
′u(u, ϕ)u∗ = 〈E(u∗), E(p)〉C(ϕ).

Using (3.10) we end up with (4.9). 2

Theorem 4.3 Let ϕ ∈ G
m∩U c be a solution to (4.8). Then the following variational inequality

is fulfilled:

j′(ϕ)(ϕ̃ − ϕ) ≥ 0 ∀ϕ̃ ∈ G
m ∩ U c, (4.10)

where

j′(ϕ)(ϕ̃ − ϕ) = Jε
′ϕ(u, ϕ)(ϕ̃ − ϕ) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ)

−

∫

Ω

(ϕ̃N − ϕN)f · p.

Proof. Since G
m ∩ U c is convex, the assertion follows directly. 2

We can now state the complete optimality system.

Theorem 4.4 Let ϕ ∈ G
m ∩ U c denote a minimizer of the problem (Pε) and S(ϕ) = u ∈

H1
D(Ω, Rd), p ∈ H1

D(Ω, Rd) are the corresponding state and adjoint variables, respectively.

Then the functions (u, ϕ, p) ∈ H1
D(Ω, Rd) × (Gm ∩ U c) × H1

D(Ω, Rd) fulfill the following

optimality system in a weak sense. We obtain the state equations (SE)

(SE)















−∇ · [C(ϕ)E(u)] =
(

1 − ϕN
)

f in Ω,
u = 0 on ΓD,

[C(ϕ)E(u)] n = g on Γg,
[C(ϕ)E(u)] n = 0 on Γ0,
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the adjoint equations (AE)

(AE)























−∇ · [C(ϕ)E(p)] = α
(

1 − ϕN
)

f+

+2βκJ0(u, ϕ)
κ−1

κ c(1 − ϕN)(u − uΩ) in Ω,
p = 0 on ΓD,

[C(ϕ)E(p)] n = αg on Γg,
[C(ϕ)E(p)] n = 0 on Γ0

and the gradient inequality (GI)

(GI)



















γε
∫

Ω
∇ϕ : ∇(ϕ̃ − ϕ) + γ

ε

∫

Ω
Ψ′

0(ϕ) · (ϕ̃ − ϕ)

−βκJ0(u, ϕ)
κ−1

κ

∫

Ω
c(ϕ̃N − ϕN)|u − uΩ|

2

−
∫

Ω
(ϕ̃N − ϕN)f · (αu + p) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0,

∀ϕ̃ ∈ G
m ∩ U c.

Proof. The claim follows directly from Theorem 4.3. 2

Remark 4.1 In the case β = 0 we get p = αu and the first-order optimality system can be

written without the adjoint state as follows

(SE)M















−∇ · [C(ϕ)E(u)] =
(

1 − ϕN
)

f in Ω,
u = 0 on ΓD,

[C(ϕ)E(u)]n = g on Γg,
[C(ϕ)E(u)]n = 0 on Γ0,

together with

(GI)M











γε
∫

Ω
∇ϕ : ∇(ϕ̃ − ϕ) + γ

ε

∫

Ω
Ψ′

0(ϕ)(ϕ̃ − ϕ)

−2α
∫

Ω
(ϕ̃N − ϕN)f · u − α〈E(u), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0,

∀ϕ̃ ∈ G
m ∩ U c.

5 Sharp interface asymptotics

In this section we derive the sharp interface limit of the optimality system derived in Theorem

4.4. The discussion in this section will not be rigorous and in particular we will use the method

of formally matched asymptotic expansions where asymptotic expansions in bulk regions have

to be matched with expansions in interfacial regions.

For solutions (uε, ϕε, pε) of the optimality system in Theorem 4.4 we perform formally matched

asymptotic expansions. It will turn out that the phase field ϕε will change its values rapidly on

a length scale proportional to ε. For additional information on asymptotic expansions for phase

field equations we refer to [1, 26]. From now on we will assume that C(ϕ) has the form in (2.10)

and that the weighting factor c in the compliant mechanism functional J0 is a smooth function.

In what follows we need to introduce Lagrange multipliers λ = (λi)N
i=1 with

N
∑

i=1

λi = 0 for the
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integral constraint
∫

Ω
− ϕ = m, see [8, 47, 60]. Then the gradient inequality (GI) in Theorem 4.4

can be reformulated as

(GI’)































γε
∫

Ω
∇ϕ : ∇(ϕ̃ − ϕ) + γ

ε

∫

Ω
Ψ′

0(ϕ) · (ϕ̃ − ϕ)

−βκJ0(u, ϕ)
κ−1

κ

∫

Ω
c(ϕ̃N − ϕN)|u − uΩ|

2

−
∫

Ω
(ϕ̃N − ϕN)f · (αu + p) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ)

+
∫

Ω
λ · (ϕ̃ − ϕ) ≥ 0,

∀ϕ̃ ∈ G ∩ U c.

5.1 Outer expansions (expansion in bulk regions)

We first expand the solution in outer regions away from the interface. We assume an expansion

of the form uε(x) =
∞
∑

k=0

εkuk(x), pε(x) =
∞
∑

k=0

εkpk(x), ϕε(x) =
∞
∑

k=0

εkϕk(x), where

ϕ0(x) ∈ ΣN ,
∫

Ω
− ϕ0 = m, ϕk(x) ∈ TΣN ,

∫

Ω
− ϕk = 0 for k ≥ 1, ϕ0 ∈ U c and ϕk = 0 on

S0 ∪ S1 for k ≥ 1. Since the Ψ-term in the energy (2.1) scales with 1
ε

we obtain

∫

Ω

Ψ(ϕ0) = 0,

which follows by arguments similar as in [4], Theorem 2.5. Hence, Ψ(ϕ0) = 0 a.e. in Ω and

we obtain that ϕ0 has to attain the values e1, . . . , eN which are the N global minima of Ψ
with height 0. Hence, to leading order the domain Ω is partitioned into N regions Ωi, i ∈
{1, . . . , N}, where ϕ0 = ei, i ∈ {1, . . . , N}. The leading order expansion of the state and

the adjoint equation are straightforward and we obtain for i ∈ {1, . . . , N − 1}

(SE)
i















−∇ · [CiE(u0)] = f in Ωi,
u0 = 0 on ΓD ∩ ∂Ωi,

[CiE(u0)]n = g on Γg ∩ ∂Ωi,
[CiE(u0)]n = 0 on Γ0 ∩ ∂Ωi,

(AE)
i















−∇ · [CiE(p0)] = αf + 2βκJ0(u, ϕ)
κ−1

κ c(u0 − uΩ) in Ωi,
p0 = 0 on ΓD ∩ ∂Ωi,

[CiE(p0)]n = αg on Γg ∩ ∂Ωi,
[CiE(p0)]n = 0 on Γ0 ∩ ∂Ωi.

In the domain ΩN the elasticity tensor CN converges to zero, see Subsection 2.2, and we obtain

no relevant equation to leading order.

5.2 Inner expansions

We now construct a solution in the interfacial regions.
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5.2.1 New coordinates in the inner region

Denoting by Γij a smooth interface separating Ωi and Ωj which we expect to obtain in the

limit when ε tends to zero, we now introduce new coordinates in a neighborhood of Γij . To

keep the notation simple we sometimes denote Γij by Γ. Choosing a spatial parameter domain

U ⊂ R
d−1 we define a local parametrization

γ : U → R
d

of Γ. By ν we denote the unit normal to Γ pointing from Ωi to Ωj .

Close to γ(U) we consider the signed distance function d(x) of a point x to Γ with d(x) > 0 if

x ∈ Ωj . We introduce a local parametrization of Rd close to γ(U) using the rescaled distance

z = d
ε

as follows

Gε(s, z) := γ(s) + εzν(s),

where s ∈ U ⊂ Rd−1. Let (s1, . . . , sd−1) ∈ U . Then

∂s1
γ + εz∂s1

ν, . . . , ∂sd−1
γ + εz∂sd−1

ν, εν

is a basis of Rd locally around Γ. Denoting by sd the z-variable we have for a scalar function

b(x) = b̂(s(x), z(x))

∇xb = ∇Γεz
b̂ + 1

ε
∂z b̂ν. (5.1)

Here ∇Γεz
b̂ is the surface gradient ∇Γεz

b|Γεz
on Γεz := {γ(s)+ εzν(s) | s ∈ U}. In addition

we compute for a vector quantity j(x) = ĵ(s(x), z(x))

∇x · j = ∇Γεz
· ĵ + 1

ε
∂z ĵ · ν, (5.2)

where ∇Γεz
· ĵ is the divergence on Γεz. We also compute

∆xb = ∆Γεz
b̂ + 1

ε
(∆xd)∂z b̂ + 1

ε2 ∂zz b̂

and derive

∇Γεz
b̂(s, z) = ∇Γb̂(s, z) + h.o.t. ,

∇Γεz
· ĵ(s, z) = ∇Γ · ĵ(s, z) + h.o.t. ,

∆Γεz
b̂(s, z) = ∆Γb̂(s, z) + h.o.t. ,

where ∇Γ, ∇Γ· and ∆Γ are computed on Γεz with the metric tensor on Γ and h.o.t. stands for

higher order terms in ε, see [1]. Denoting by κ the mean curvature and by |S| the spectral norm

of the Weingarten map S we obtain, see [1],

∆xb = ∆Γb̂ − 1
ε
(κ + εz|S|2)∂z b̂ + 1

ε2 ∂zz b̂ + h.o.t. .

Now using (5.1) we have for a vector quantity b(x) = b̂(s(x), z(x))

∇xb = ∇Γb̂ + 1
ε
∂zb̂ ⊗ ν + h.o.t.. (5.3)
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Furthermore, for a second order tensor quantity A(x) = (aij(x))d
i,j=1 = Â(s(x), z(x)) with

A = (ji)
d
i=1, where ji = (aij)

d
j=1, the divergence is defined by ∇x · A = (∇x · ji)

d
i=1 and

by (5.2) we get

∇x · A = ∇Γ · Â +
1

ε
∂zÂν + h.o.t.. (5.4)

For the inner expansion we make the ansatz

U ε(x) =

∞
∑

k=0

εkU k(z(x), s(x)),

P ε(x) =

∞
∑

k=0

εkP k(z(x), s(x)),

Φε(x) =
∞
∑

k=0

εkΦk(z(x), s(x)),

where Φ0(z(x), s(x)) ∈ ΣN , Φk(z(x), s(x)) ∈ TΣN , ∀k ≥ 1. We remark that no interface

occurs on S0 ∪ S1 as we set ϕN = 0 on S0 and ϕN = 1 on S1.

5.2.2 Matching conditions

The inner and outer expansion have to be related with the help of matching conditions, see

[25, 26, 33]. We need to require the following matching conditions at x = γ(s):

Φ0(z, s) →

{

(ϕ0)j = ej for z → +∞,

(ϕ0)i = ei for z → −∞,
(5.5)

∂zΦ1(z, s) →

{

(∇ϕ0)jν for z → +∞,

(∇ϕ0)iν for z → −∞,
(5.6)

where for a quantity (v)j := lim
δ↘0

v(x+δν) and (v)i := lim
δ↘0

v(x−δν) for x ∈ Γ. We remark

that for δ > 0 small we have x + δν ∈ Ωj and x − δν ∈ Ωi. In addition we obtain that if

Φ1(z, s) =

{

Aj(s) + Bj(s)z + o(1) for z → +∞,

Ai(s) + Bi(s)z + o(1) for z → −∞,

the identities

Aj(s) = (ϕ1)j , Ai(s) = (ϕ1)i, (5.7)

Bj(s) = (∇ϕ0)jν, Bi(s) = (∇ϕ0)iν (5.8)

have to hold, see [25, 33]. Of course similar relations hold for the other functions like u and p.

In the following we will use for a quantity v the jump across the interface Γ which is denoted by

[v]ji and defined as

[v]ji := lim
δ↘0

(v(x + δν) − v(x − δν)) for x ∈ Γ.
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5.2.3 The equations to leading order

Plugging the asymptotic expansions into the optimality system in Theorem 4.4 we ask that each

individual coefficient of a power in ε vanishes. For the state equation using (5.1), (5.4) and

∂zν = 0 we compute

−∇x · [C(ϕ)E(u)] = −
1

ε2
∂z[C(Φ)(∂zU ⊗ ν)symν] −

1

ε
∂z[C(Φ)(∇Γεz

U)symν]

−
1

ε
∇Γεz

· [C(Φ)(∂zU ⊗ ν)sym] −∇Γεz
· [C(Φ)(∇Γεz

U)sym].

We obtain to leading order O
(

1
ε2

)

:

∂z[C(Φ0)(∂zU 0 ⊗ ν)symν] = 0. (5.9)

Multiplying (5.9) by U 0, integrating over z ∈ (−∞, +∞) we obtain using integration by parts

and lim
z→±∞

∂zU 0(z) = 0 (using the matching conditions)

0 =

∫ +∞

−∞

C(Φ0)(∂zU 0 ⊗ ν)sym : (∂zU 0 ⊗ ν)symdz.

We obtain (∂zU 0⊗ν)sym = 0 which gives that U 0 is constant in z. This implies after matching

for i, j 6= N

[u0]
j
i = 0.

Similarly for the adjoint equation we obtain to leading order O
(

1
ε2

)

that P 0 is constant in z and

for i, j 6= N

[p0]
j
i = 0.

We now want to analyze the state and the adjoint equation to the next order O
(

1
ε

)

. The term

∇x · [C(ϕ)E(u)] gives to the order O
(

1
ε

)

:

∂z[C(Φ0)(∂zU 1 ⊗ ν + ∇ΓU 0)
symν] = 0. (5.10)

Matching requires

∂zU 1 ⊗ ν + ∇ΓU 0 →

{

(∇xu0)j for z → +∞,

(∇xu0)i for z → −∞.
(5.11)

Hence (5.10) and (5.11) give for i 6= N

C
iEi(u0)ν =

{

0 if j = N,

CjEj(u0)ν if j 6= N,

where Ei(u0) := lim
δ↘0

E(u0)(x − δν) and Ej(u0) := lim
δ↘0

E(u0)(x + δν).
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A similar reasoning provides for i 6= N

C
iEi(p0)ν =

{

0 if j = N,

CjEj(p0)ν if j 6= N.

In order to deal with the sum constraint
N
∑

i=1

ϕi = 1 we introduce an orthogonal projection, see

[8]:

P TΣ : R
N → TΣN , P TΣϕ = ϕ −

(

1

N

N
∑

i=1

ϕi

)

1,

where 1 := (1, . . . , 1)T . As the gradient inequality results in an equation in the interior of the

Gibbs simplex using (GI’) we obtain, see also [5], to leading order O
(

1
ε

)

:

λ0 = γ∂zzΦ0 − γP TΣΨ′
0(Φ0), (5.12)

where λ0 +ελ1 + . . . is the inner expansion of the Lagrange multiplier variable λε. We multiply

(5.12) with ∂zΦ0, integrate with respect to z, use (5.5) and Ψ(ei) = 0, i ∈ {1, . . . , N} and

obtain λ0 · (ej − ei) = 0. Using
N
∑

i=1

λi
0 = 0 we get

λ0 = 0. (5.13)

Now Φ0 is obtained as a solution of

0 = ∂zzΦ0 − P TΣΨ′
0(Φ0), (5.14)

connecting the values ei and ej , see [13].

Furthermore in the interior of the Gibbs simplex using (GI’) we obtain to the order O(1):

1

γ
λ1 + ∂zzΦ1 − P TΣΨ′′

0(Φ0)Φ1 = (5.15)

= κ∂zΦ0 −
βκJ0(u, ϕ)

κ−1

κ

γ
c|U 0 − uΩ|

2eN −
1

γ
f · (αU0 + P 0)eN

−
1

γ
[C

′
(Φ0)(∂zU 1 ⊗ ν + ∇ΓU 0)

sym : (∂zP 1 ⊗ ν + ∇ΓP 0)
sym].

In order to be able to obtain a solution Φ1 from (5.15) a solvability condition has to hold. This

solvability condition will yield a gradient equation in the sharp interface situation. We multiply

(5.15) with ∂zΦ0, integrate with respect to z, use ∂zν = 0, (5.10) and obtain after integration
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by parts

1

γ
λ1 · (ej − ei) +

∫ ∞

−∞

(∂zz(∂zΦ0) − Ψ′′
0(Φ0)∂zΦ0) · Φ1 =

= σijκ −
βκJ0(u, ϕ)

κ−1

κ

γ

∫ ∞

−∞

c |U0 − uΩ|
2eN · ∂zΦ0

−
1

γ

∫ ∞

−∞

f · (αU0 + P 0)eN · ∂zΦ0

−
1

γ

∫ ∞

−∞

d

dz

(

C(Φ0)(∂zU 1 ⊗ ν + ∇ΓU 0)
sym : (∂zP 1 ⊗ ν + ∇ΓP 0)

sym
)

+
1

γ

∫ ∞

−∞

d

dz
[C(Φ0)(∂zP 1 ⊗ ν + ∇ΓP 0)

symν · ∂zU 1]dz

+
1

γ

∫ ∞

−∞

d

dz
[C(Φ0)(∂zU 1 ⊗ ν + ∇ΓU 0)

symν · ∂zP 1]dz, (5.16)

where σij :=
∫∞

−∞
|∂zΦ0|

2dz. By virtue of (5.14) we have

σij = 2

∫ ∞

−∞

Ψ0(Φ0)dz.

Because ∂zΦ0 lies in the kernel of ∂zzΦ1 − Ψ′′
0(Φ0)Φ1, see [25], we obtain

∫ ∞

−∞

(∂zz(∂zΦ0) − Ψ′′
0(Φ0)∂zΦ0) · Φ1 = 0. (5.17)

Now we combine (5.16) and (5.17), use the fact that U 0 and P 0 do not depend on z and then

obtain after matching for all i, j 6= N

0 = γσijκ − [CE(u0) : E(p0)]
j
i + [CE(u0)ν · (∇p0)ν]ji

+ [CE(p0)ν · (∇u0)ν]ji − [λ1]
j
i

and for all i 6= N

0 = γσiNκ + CiEi(u0) : Ei(p0) − βκJ0(u, ϕ)
κ−1

κ c|u0 − uΩ|
2 − f · (αu0 + p0)+

+ (λ1)i − (λ1)N .

5.3 Triple junction expansion and matching to the transition layer solu-

tions

We now construct a solution in the neighborhood of a triple point, where three phases meet,

each phase corresponding to one of the three different values ej , ek, el. We follow the ideas

of [13, 15, 44]. We perform the analysis in R
2 but the method also works in R

3 by using the

arguments in the space normal to the triple line, see [13, 40]. Assume that Γε
jk, Γ

ε
kl, Γ

ε
lj are three

curves that meet at the point mε
jkl. We use the notation (ab) for any of the three pairs (jk), (kl),
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(lj). On each Γε
ab we choose the normal νε

ab to point into Ωb-phase. We introduce the rescaled

coordinates y(x; ε) := (x − mε
jkl)/ε and make the ansatz, omitting the t-dependence in the

notation,

utp(x) =
∞
∑

k=0

εk
Uk(y(x; ε)), ptp(x) =

∞
∑

k=0

εk
Pk(y(x; ε)),

and

ϕtp(x) =

∞
∑

k=0

εkΘk(y(x; ε)),

where Θ0(y(x; ε)) ∈ ΣN and Θk(y(x; ε)) ∈ TΣN ∀k ≥ 1. We substitute this into the first

order optimality system in Theorem 4.4 and then expand y in powers of ε.

The O( 1
ε2 )-system reads







−∇y ·
[

C(Θ0)E(U0)
]

= 0 (SE)tp,
−∇y ·

[

C(Θ0)E(P0)
]

= 0 (AE)tp,

−P TΣ(C
′
(Θ0)E(P0)E(U0)) = 0 (GE)tp.

The adjoint and the state equation allow for solutions constant in z and since matching implies

that P0 and U 0 remain bounded these are the only solutions. Here one can use arguments as

in [34], see Theorem 4.16 (Liouville theorem). For these constant solutions the gradient equation

is also fulfilled. Using the fact that P0 and U 0 are constant and (5.13) the O(1
ε
)-system reads

−∆yΘ0 + P TΣΨ′
0(Θ0) = 0.

We are looking for a solution of this equation that connects ej to ek at +∞ across Γε
jk, ek to

el at +∞ across Γε
kl and el to ej at +∞ across Γε

lj in form of the associated one-dimensional

stationary wave solutions, see [14, 15, 44] for details. Such a solution exists only if the force

balance condition

σjkν
0
jk + σklν

0
kl + σljν

0
lj = 0

is satisfied. This identity admits a solution if and only if the coefficients σab fulfill σab + σbc ≥
σca for any cyclic permutation (a, b, c) of (j, k, l). But, since in the present case, σab can be

characterized as

d(ea, eb) := inf

{
∫ 1

0

Ψ
1

2

0 (%(t))|%′(t)|dt | % ∈ C1([0, 1], Rd), %(0) = ea, %(1) = eb

}

,

see [4], here this constraint is always fulfilled which follows from the triangle inequality for d. The

angles at the junction satisfy Young’s law which is given as

sin θjk

σjk

=
sin θkl

σkl

=
sin θlj

σlj

,

where θab is the angle between the vectors ν0
bc and ν0

ca.
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Remark 5.1 In applications to multi-structural topology optimization it is desirable that at a triple

junction involving void the angle of the void is close to π. If this would not be the case one would

expect high stresses at the junction which could lead to damage. Certain given angles can

be achieved in the sharp interface limit of the phase field model by choosing the function Ψ0

appropriately, see [30].

5.4 The limit problem and its geometric properties

As mentioned before the domain Ω is partitioned into N regions Ωi, i ∈ {1, . . . , N}, which

are separated by interfaces Γij, i < j. We remark that for δ > 0 small we have x + δν ∈ Ωj

and x − δν ∈ Ωi. Moreover we define [w]ji := lim
δ↘0

(w(x + δν) − w(x − δν)). We obtain

for i, j ∈ {1, . . . , N − 1}:

(SE)
i































−∇ · [CiE(u)] = f in Ωi,

[u]ji = 0 on Γij ,

[CE(u)ν]ji = 0 on Γij ,
u = 0 on ΓD ∩ ∂Ωi,

[CiE(u)]n = g on Γg ∩ ∂Ωi,
[CiE(u)]n = 0 on Γ0 ∩ ∂Ωi,

(AE)
i































−∇ · [CiE(p)] = αf + 2βκJ0(u, ϕ)
κ−1

κ c(u − uΩ) in Ωi,

[p]ji = 0 on Γij,

[CE(p)ν]ji = 0 on Γij,
p = 0 on ΓD ∩ ∂Ωi,

[CiE(p)]n = αg on Γg ∩ ∂Ωi,
[CiE(p)]n = 0 on Γ0 ∩ ∂Ωi,

and we have CiEi(u)ν = CiEi(p)ν = 0 on ΓiN . Moreover we obtain for all i, j 6= N

0 = γσijκ − [CE(u) : E(p)]ji + [CE(u)ν · (∇p)ν]ji

+ [CE(p)ν · (∇u)ν]ji − [λ1]
j
i on Γij (5.18)

and remark that the terms involving u and p generalize the Eshelby traction known from mate-

rials science, see [27, 28]. In addition for all i 6= N it holds

0 = γσiNκ + C
iEi(u) : Ei(p) − βκJ0(u, ϕ)

κ−1

κ c |u − uΩ|
2

− f · (αu + p) + (λ1)i − (λ1)N on ΓiN .

Remark 5.2 In the case of N = 2 we have Ω = ΩM ∪ ΩV , where ΩM and ΩV denote

the material and the void part of the domain. The interface which separates the two phases is

denoted by ΓMV . Using the notation ΓM
k := Γk ∩ ∂ΩM , k ∈ {D, g, 0} we obtain as the limit
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problem

(SE)
MV























−∇ ·
[

C
ME(u)

]

= f in ΩM ,
[

CMEM(u)
]

ν = 0 on ΓMV ,
u = 0 on ΓM

D ,
[

C
ME(u)

]

n = g on ΓM
g ,

[

CME(u)
]

n = 0 on ΓM
0 ,

(AE)
MV























−∇ ·
[

CME(p)
]

= αf + 2βκJ0(u, ϕ)
κ−1

κ c(u − uΩ) in ΩM ,
[

CMEM(p)
]

ν = 0 on ΓMV ,
p = 0 on ΓM

D ,
[

CME(p)
]

n = αg on ΓM
g ,

[

CME(p)
]

n = 0 on ΓM
0 ,

and we have the equation:

0 = γσMV κ + C
MEM(u) : EM(p) − βκJ0(u, ϕ)

κ−1

κ c |u − uΩ|
2

− f · (αu + p) + (λ1)MV on ΓMV , (5.19)

where (λ1)MV is the difference of the Lagrange multipliers (λ1)M and (λ1)V discussed further

above.

5.5 Relating the sharp interface limit to classical shape calculus

In this subsection we compare the limit problem in Subsection 5.4 and especially (5.19) with

results of [3], which were obtained using classical shape calculus. For this purpose we refor-

mulate the results in [3] to our setting. Let Ω ⊂ Rd be defined as in Remark 5.2, that means

Ω = ΩM ∪ ΩV . Given (f , g, uΩ, c) ∈ L2(Ω, Rd) × L2(Γg, R
d) × L2(Ω, Rd) × L∞(Ω),

measurable sets Si ⊆ Ω, i ∈ {0, 1}, with S0 ∩ S1 = ∅, objective functions

F (ΩM) =

∫

ΩM

f · u +

∫

ΓM
g

g · u, (5.20)

J0(Ω
M) :=

(
∫

ΩM

c |u − uΩ|
2

)κ

, κ ∈ (0, 1] (5.21)

and the perimeter P (ΩM) =
∫

(∂ΩM )∩Ω

ds of ΩM in Ω the optimization problem is

(P0)



















































min J(ΩM ) := αF (ΩM) + βJ0(Ω
M) + γσMV P (ΩM),

over Ud = {ΩM ⊂ Ω such that |ΩM | = V and S0 ⊂ ΩM , S1 ⊂ ΩV },

s.t. (SE)MV































−∇ ·
[

C
ME(u)

]

= f in ΩM ,
[

CMEM(u)
]

ν = 0 on ΓMV ,

u = 0 on ΓM
D ,

[

CME(u)
]

n = g on ΓM
g ,

[

CME(u)
]

n = 0 on ΓM
0 .
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Note that ∂ΩM = ΓM
D ∪Γg∪ΓM

0 ∪ΓMV . The authors in [3] used shape calculus and formulated

the following theorem:

Theorem 5.1 Let ΩM be a smooth bounded open set and θ ∈ W 1,∞(Rd; Rd), with θ ·n = 0
on ∂ΩM \ ΓMV . Furthermore let κ be the mean curvature of ΓMV . Assume that f and the

solution u of the state equation are smooth, say f ∈ H1(ΩM , Rd) and u ∈ H2(ΩM , Rd).

In addition we assume that g is defined on ∂Ω. The shape derivative of J(ΩM) at ΩM in the

direction θ is given by

J ′(ΩM )(θ) = −

∫

ΓMV

(

γσMV κ + C
ME(u) : E(p)

)

θ · n ds

+

∫

ΓMV

(

βκJ0(u, ϕ)
κ−1

κ c|u + uΩ|
2
)

θ · n ds

+

∫

ΓMV

(f · (αu + p)) θ · n ds, (5.22)

where p is the adjoint state, assumed to be smooth, i.e. p ∈ H2(Ω, Rd), defined as the solution

of

(AE)MV























−∇ ·
[

CME(p)
]

= αf + 2βκJ0(u, ϕ)
κ−1

κ c(u − uΩ) in ΩM ,
[

CMEM(p)
]

ν = 0 on ΓMV ,
p = 0 on ΓM

D ,
[

C
ME(p)

]

n = αg on ΓM
g ,

[

CME(p)
]

n = 0 on ΓM
0 .

In contrast to [3] we define g on ∂Ω and in addition we use a different sign convention for

the mean curvature κ and the adjoint state p. We notice that the shape calculus approach,

see (5.22), coincides with the results we get by the asymptotic expansion of the phase field

optimality system, see (5.19). This follows since at a minimum of (P0) we have to take volume

constraints into account. Hence (5.22) leads to (5.19) with a Lagrange multiplier (λ1)MV which

is related to the volume constraint.

6 Numerical simulations

In this section we derive a finite element approximation of the phase field topology optimization

problem and discuss some computational results.

In order to solve the gradient inequality in Theorem 4.4, we use a gradient flow dynamic, see

[8, 9, 10], for the reduced functional yielding the following variational inequality for all ϕ̃ ∈
Gm ∩ Uc and all t > 0:

ε

∫

Ω

∂ϕ

∂t
(ϕ̃ − ϕ) + γε

∫

Ω

∇ϕ : ∇(ϕ̃ − ϕ) +
γ

ε

∫

Ω

Ψ′
0(ϕ) · (ϕ̃ − ϕ)

−βκJ0(u, ϕ)
κ−1

κ

∫

Ω

c(ϕ̃N − ϕN)|u − uΩ|
2

−

∫

Ω

(ϕ̃N − ϕN)f · (αu + p) − 〈E(p), E(u)〉C′(ϕ)(ϕ̃−ϕ) ≥ 0. (6.1)
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If
∂ϕ(t̃,·)

∂t
= 0 in (6.1) then ϕ(t̃, ·) is a solution of (GI) in Theorem 4.4. In the numerical experi-

ments we always choose f ≡ 0 which means no forces act in the interior.

For discretization in space we use the following finite element approximation, see also for ex-

ample [8]. Here we assume for simplicity that Ω is a polyhedral domain and we let Th be a

regular triangulation of Ω into disjoint open simplices T . We define h := maxT∈Th
{diam T}

the maximal element size of Th. Associated with Th is the piecewise linear finite element space

Sh :=
{

φ ∈ C0(Ω)
∣

∣

∣
φ∣
∣

T

∈ P1(T ) ∀ T ∈ Th

}

⊂ H1(Ω),

where we denote by P1(T ) the set of all affine linear functions on T . Furthermore we define

Sh
D(Ω, Rd) =

{

v ∈ (Sh)d
∣

∣

∣
v = 0 on ΓD

}

⊂ H1
D(Ω, Rd),

G
m
h

:= {χ ∈ (Sh)N | χ ≥ 0,

∫

Ω

− χ = m and

N
∑

i=1

χi = 1 in Ω}

and

U h
c := {χ ∈ (Sh)N | (χN)∣

∣

T

≡ 0 for T ⊆ S0, (χN )∣
∣

T

≡ 1 for T ⊆ S1, T ∈ Th}.

In time we apply a semi-implicit discretization with a fixed time step τ . The resulting method

can also be interpreted as a pseudo-time stepping approach to (GI). We obtain the following

iterative procedure:

Set n = 0 and start with an initial guess ϕ0
h ∈ Gm

h
∩U h

c . Then solve successively with respect

to n the following inequality for the solution ϕn+1
h ∈ Gm

h
∩ Uh

c in the (n + 1)-th (artifical) time

step

ε

τ

∫

Ω

(ϕn+1
h − ϕn

h)(ϕ̃h − ϕn+1
h ) + γε

∫

Ω

∇ϕn+1
h : ∇(ϕ̃h − ϕn+1

h )

+
γ

ε

∫

Ω

Ψ′
0(ϕ

n
h) · (ϕ̃h − ϕn+1

h )

−βκJ0(u
n
h, ϕn

h)
κ−1

κ

∫

Ω

c(ϕ̃N
h − ϕN,n+1

h )|un
h − uΩ|

2

−〈E(pn
h), E(un

h)〉C′(ϕn
h
)(ϕ̃h−ϕn

h
) ≥ 0 ∀ϕ̃h ∈ G

m
h

∩ Uh
c (6.2)

where pn
h, u

n
h ∈ Sh

D(Ω, Rd) are solutions of the following finite element approximations of the

adjoint equation and the state equation

〈E(pn
h), E(qh)〉C(ϕn

h
) =

∫

Ω

2βκJ0(u
n
h, ϕn

h)
κ−1

κ c(1 − ϕN,n
h )(un

h − uΩ) · qh

+α

∫

Γg

g · qh ∀qh ∈ Sh
D, (6.3)

〈E(un
h), E(vh)〉C(ϕn

h
) =

∫

Γg

g · vh ∀vh ∈ Sh
D. (6.4)
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We use a preconditioned conjugate gradient solver for (6.3) and (6.4), see also [32]. To solve

(6.2) we use the primal-dual active set method presented in [8]. To the resulting system of linear

equations we apply the direct solver UMFPACK [21] when d = 2 and MINRES when d = 3.

We note that the thickness of the interfacial layer between bulk regions is proportional to ε.

In order to resolve this interfacial layer we need to choose h � ε, see [22] for details. Away

from the interface h can be chosen larger and hence adaptivity in space can heavily speed up

computations. In fact we use the finite element toolbox Alberta 2.0, see [49] for adaptivity and

we implemented the same mesh refinement strategy as in [6], i.e. a fine mesh is constructed for

all variables ϕn+1
h , pn

h and un
h where 0 < (ϕn

h)i < 1 for at least one index i ∈ {1, . . . , N}
and with a coarser mesh present in the bulk regions where (ϕn

h)i = 0 or (ϕn
h)i = 1 for all

i ∈ {1, . . . , N}.

In the two dimensional simulations we choose as the minimal diameter of all elements hmin =
1

128
, the maximal diameter hmax = 1

16
and the time-step τ = 1.0·10−6. In the three dimensional

simulation we take hmin = 1
90

, hmax = 1
16

and τ = 1.0 ·10−5. When there is only one material

present, i.e. N = 2, then void is described by ϕ2 = 1−ϕ1. Thus the vector-valued Allen-Cahn

inequality with two order parameters is reduced in the computations to a scalar Allen-Cahn

inequality. In all cases the iteration stops when ϕ does visually not change anymore.

In Sections 6.1 - 6.3 we display numerical results with β = 0 (in this case it holds pn
h = αun

h).

This minimum compliance problem aims to construct a structure with maximal global stiffness

and is a basic problem in topology optimization, see [7]. Other numerical approaches based on

a phase field method can be found e.g. in [9, 48, 53, 57, 58]. Unless otherwise stated in our

examples we set the matrix W in the bulk potential term to be 1 ⊗ 1 − Id and the interfacial

parameters are taken to be γ = 1 with ε = 1
16π

for d = 2 and ε = 1
8π

for d = 3. Moreover, we

set S0 = S1 = ∅ and hence U c = H1(Ω, RN) and Gm
h

∩ Uh
c = Gm

h
.

In Section 6.4 we present results with α = 0. In this case we want to optimize the error com-

pared to a target displacement (compliant mechanism). Also this is a standard problem in topol-

ogy optimization and we refer to [3, 7, 53] for further details. For our simulation we choose an

example in which we aim to minimize the total displacement under a force acting on the bound-

ary, for the setup see Figure 8. Such a situation is typical in applications, see [7]. For numerical

simulations for the compliant mechanism using the SIMP method we refer to [7] whereas in [3]

the level set method is used and in [53] a phase field method is used to numerically solve the

problem.

6.1 Bridge construction with N = 2 and d = 2

The classical problem of the bridge configuration - depicted in Figure 1 - is considered first.

We pose Dirichlet boundary conditions on the bottom left and right boundaries ΓD and a

vertical force is acting on the bottom at the centre. We take Ω = (−1, 1) × (0, 1) and

ΓD = {(x, 0) ∈ R2 : x ∈ (−1,−0.9] ∪ [0.9, 1)}. The force F is acting on Γg := {(x, 0) ∈
R2 : x ∈ [−0.02, 0.02]} and is defined by a constant function g ≡ (0,−5000)T on Γg. In our

computations we use an isotropic elasticity tensor C1 of the form C1E = 2µ1E + λ1(trE)I
with the Lamé constants λ1 = µ1 = 250 and choose C2 = ε2

C1 in the void. Moreover, we as-
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sume as much void as material, hence m = (1
2
, 1

2
)T . We display results from two sets of initial

data, the first in which we set ϕ0
h ≡ (1

2
, 1

2
)T and the second in which we take a checkerboard

structure alternating regions with ϕ0
h ≡ (0, 1)T and ϕ0

h ≡ (1, 0)T , both sets of data ensure

that we approximately have the same proportion of material and void.

In Figures 2 and 3 we see that although the two sets of initial data give rise to different evolutions

the final solution is the same. We point out that the connectivity of the regions occupied by

material is found by the method without using informations on topological derivatives. One also

observes several topological changes during time, see also [57] and [58].

Figure 1: Bridge configuration.

t = 0.0 t = 0.001 t = 0.003

t = 0.005 t = 0.01 t = 0.03

Figure 2: Bridge simulation with N = 2 and ϕ0
h ≡ (1

2
, 1

2
)T , material in red and void in blue.

6.2 Cantilever beam construction with N = 3 and d = 2

In this section we present a numerical simulation for a cantilever beam geometry, see Figure 4,

consisting of hard as well as soft material and void. We pose Dirichlet boundary conditions on

the left boundary ΓD and a vertical force is acting at the bottom of its free vertical edge. We take

Ω = (−1, 1)×(0, 1), and hence ΓD = {(−1, y) ∈ R2 : y ∈ (0, 1)}. The force F is acting on

Γg := {(x, 0) ∈ R2 : x ∈ [0.75, 1)} and is defined by g ≡ (0,−250)T on Γg. Moreover, the

mass constraints are set such that they enforce 38.43% hard material, 21.33% soft material and

40.24% void. For the hard material (associated with ϕ1) we use the isotropic elasticity tensor
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t = 0.0 t = 0.0002 t = 0.0003

t = 0.0005 t = 0.001 t = 0.006

Figure 3: Bridge simulation with N = 2 and checkerboard initial data, material in red and void

in blue.

C1 (see 6.1) and the Lamé constants λ1 = µ1 = 5000; for the soft material (associated with

ϕ2) we choose C2 = 1
2
C1 and for the void we take C3 = (2ε)2C1. A symmetric choice of

Ψ would lead to 120◦ angles at the triple junction, see Subsection 5.3. When all these three

phases meet at a triple point 120◦ it can be more likely that a crack forms. Hence, in structural

topology optimization these 120◦ angle conditions at triple junctions are typically not wanted. To

overcome this the matrix W in the bulk potential is adjusted. We take

W =





0 0.1 1
0.1 0 1
1 1 0



 (6.5)

which at a triple junction forces the angle in the void to be larger than the other two angles. This

choice is motivated by the results in [30] and [31].

We initialize the order parameter ϕ0
h with random values such that the sum constraint is fulfilled

and the proportions of hard material, soft material and void are as required. Figure 5 shows the

results obtained, where ϕ at t = 0.3 appears to be a numerical steady state.

In Figure 6 we also display the final solution for the choice W = 1 ⊗ 1 − Id which leads to a

potential that is symmetric in the (ϕi)′s, i ∈ {1, 2, 3}. We observe smaller angles in the void at

the triple junction. Similar numerical results for such a symmetric situation have been obtained

earlier in [57] and [58].

Figure 4: Cantilever beam configuration.
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t = 0.0 t = 0.0015 t = 0.01

t = 0.02 t = 0.04 t = 0.3

Figure 5: Cantilever beam simulation with N = 3 and W given by (6.5). Hard material in red,

soft material in green and void in blue.

Figure 6: Cantilever beam simulation with N = 3 and W = 1 ⊗ 1 − Id. Hard material in red,

soft material in green and void in blue.

6.3 Cantilever beam construction with N = 2 and d = 3

A numerical simulation for the extension of the cantilever beam geometry to three space dimen-

sions is displayed in Figure 7. In particular we take m = (1
2
, 1

2
)T , Ω = (0, 5)×(0, 2.5)×(0, 3),

ΓD = {(0, y, z) ∈ R3 : (y, z) ∈ (0, 2.5) × (0, 3)}, Γg := {(x, y, 0) ∈ R3 : (x, y) ∈
[4.75, 5) × (0, 2.5)} and g ≡ (0, 0,−80)T on Γg. We use an isotropic elasticity tensor C1 of

the form C1E = 2µ1E + λ1(trE)I with λ1 = µ1 = 5000 and we choose C2 = ε2C1 in the

void. We initialize the order parameter ϕ with a similar checkerboard structure to that described

in Section 6.1. In Figure 7 we display the calculated solution of ϕ (left hand plot) together with

the boundary between the material and the void (right hand plot).

6.4 Push construction with N = 2 and d = 2

For the construction problem under pushing forces we present numerical simulations for the

configuration depicted in Figure 8 where one minimizes the target displacement only. We set

therefore α = 0 and choose β = 1, κ = 0.5. The interfacial parameter is selected as ε = 1
12π

and we set γ = 0.1. We take the constant weighting factor c ≡ 2000 in Ω := (−1, 1)×(−1, 1)
and no displacement of the material as target, i.e. uΩ = 0. Furthermore we pose Dirichlet

boundary conditions on the top and bottom of both the left and right boundaries, in particular we

set ΓD = {(−1, y) ∪ (1, y) ∈ R2 : y ∈ (−1,−0.9] ∪ [0.9, 1)}, and apply horizontal forces

along the left and right boundaries, i.e. Γg− ∪Γg+
with Γg± := {(±1, y) ∈ R

2 : y ∈ (−1, 1)}.
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Figure 7: 3D cantilever beam simulation with N = 2 and checkerboard initial data. Material in

red and void in blue (left), boundary between the material and the void (right).

Figure 8: Push configuration.

As forces we define g ≡ (±5, 0)T on Γg± . As in 6.1 we use an isotropic elasticity tensor

C1 of the form C1E = 2µ1E + λ1(trE)I and C2 = ε2
C1 in the void though here with

the Lamé constants λ1 = µ1 = 10. Moreover, we enforce material at the corners of Ω by

setting S0 = (−1,−0.9)× (−1,−0.9)∪ (−1,−0.9)× (0.9, 1)∪ (0.9, 1.0)× (−1,−0.9)∪
(0.9, 1) × (0.9, 1) and we take S1 = ∅. There shall be 50, 5% material and 49, 5% void. We

display results from the same two sets of initial data as in the bridge simulation except for the

corner where we have ϕ0
h = (1, 0)T .

In Figures 9 and 11 we see that although the two sets of initial data give rise to different evolu-

tions the final state solutions are the same. Since there can be many local minima, this is in fact

not required. In Figures 10 and 12 we display the displacement vector u and in Figure 13 we

display the deformed optimal configuration.

7 Conclusions

A multi-material structural topology optimization problem has been formulated in a phase field

context. First-order necessary optimality conditions are rigorously derived. They are formulated

as a variational inequality since the material concentration functions are restricted to lie on the

Gibbs simplex.
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t = 0.0 t = 0.004 t = 0.01

t = 0.03 t = 0.05 t = 2.25

Figure 9: Push simulation with N = 2 and ϕ0
h = (1

2
, 1

2
)T on Ω \ S0, material in red and void in

blue.

t=0.004 t = 0.01 t = 2.25

t=0.004 t = 0.01 t = 2.25

Figure 10: Displacement vector for the push simulation with N = 2 and ϕ0
h = (1

2
, 1

2
)T on

Ω \ S0; x-component top row, y-component bottom row.

It is possible to relate the first-order conditions of the phase field approach to classical neces-

sary conditions derived in the context of shape calculus by using formally matched asymptotic

expansions. In particular, we can relate our results to the sensitivity analysis of [3]. In addition,

at material-material interfaces we obtain terms generalizing the Eshelby traction from materials
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t = 0.0 t = 0.004 t = 0.01

t = 0.02 t = 0.035 t = 2.25

Figure 11: Push simulation with N = 2 and checkerboard initial data, material in red and void

in blue.

t=0.004 t = 0.01 t = 2.25

t=0.004 t = 0.01 t = 2.25

Figure 12: Displacement vector for the push simulation with N = 2 and checkerboard initial

data; x-component top row, y-component bottom row.

science, see (5.18).

Finally numerical simulations show that the approach can be used for mean compliance and for

tracking type functionals. Topology changes and the creation of new holes are possible in the

approach without using topological derivatives.
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Figure 13: Deformed optimal configuration.
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