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PRECONDITIONING OPERATORS ON 
UNSTRUCTURED GRIDS* 

S.V. Nepomnyaschikht 

Abstract 

We consider systems of mesh equations that approximate elliptic 
boundary value problems on arbitrary (unstructured) quasi-uniform 
triangulations and propose a method for constructing optimal precon-
ditioning operators. The method is based upon two approaches: (1) 
the fictitious space method, i.e. the reduction of the original problem 
to a problem in an auxiliary (fictitious) space, and (2) the multilevel 
decomposition method, i.e. the construction of preconditioners by de-
composing functions on hierarchical meshes. The convergence- rate of 
the corresponding iterative process with the preconditioner obtained 
is independent of the mesh size. The preconditioner has an optimal 
computational cost: the number of arithmetic operations required for 
its implementation is proportional to the number of unknowns in the 
problem. The construction of the preconditioning operators for three 
dimensional problems can be done in the same way. 

1 INTRODUCTION 
Let n c IR.2 be a domain with a piecewise smooth boundary r which belongs 
to the class C2 and satisfies the Lipschitz condition [21]. In the domain n 
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we consider the boundary value problem 

where 

2 a au - I: - aii(x) - + ao(x)u = f(x), 
. ·-1 axi ax,· i,1-

u(x) = 0, 

au 
aN+a(x)u=O, 

x Ero 

au 2 au 
aN = .~ ai,i(x) ax. cos(n, Xi) 

i,3=1 1 

(1.1) 

is the conormal derivative, n denotes the outward normal to r' and r 0 is a 
union of a finite number of curvilinear segments, r = r 0 Uri, r 0 = f'0 . Here 
f'o denotes the closure of ro. 

By H 1(f!, r 0 ) we denote the subspace of the Sobolev space H 1(f!) 

H 1(f!, ro) = {v E H 1(f!) I v(x) = 0, x Ero}. 

We introduce a bilinear form a( u, v) and a linear functi~:mal l( v) as follows: 

a(u,v) = r ( t aij(x) a{)u. ·aav. + ao(x)uv) dx + r a(x)uvdx Jn i,i=l x1 x,, lr1 

l ( v) = in f ( x) v dx . 

Let us suppose that the operator coefficients and the right-hand side of prob-
lem (1.1) are such that the bilinear form a(u,v) is symmetric, elliptic and 
continuous on H 1(f!, r 0 ) x H 1(f!, r 0 ), i.e. 

a(u,v) = a(v,u) Vu, v E H1(fl, ro) 

and the linear functional l(v) is continuous on H 1(f!, r 0 ): 
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The generalized solution u E H 1 (fl, r0 ) of problem (1.1) is, by definition, 
a solution to the projection problem [2] 

u E H 1 (fl, r0 ): a(u,v) = l(v) (1.2) 

It is familiar that under these assumptions concerning a( u, v) and l( v) there 
exists a unique solution of problem (1.2). 

Let a positive parameter h be fixed (we always suppose that h is suffi-
ciently small). Let 

i=l 

be a triangulation of the domain n (nh is assumed to be a closed set). We 
suppose that nh is a quasi-uniform triangulation [8]' i.e. there exist positive 
constants l1, l 2 and s which are independent of h and such that 

Ti -<s - ' Pi 
i= l, ... ,M 

where Ti and Pi are radii of circumscribed and inscribed circles for the tri-
angle Ti, respectively. We also assume that the triangulation boundary rh 
approximates r with an error O(h2 ). If r 1 =I\. we suppose that n c n\ if 
r 0 = r' we suppose that nh c n. If r 0 =J. 0 and r 1 f. 0,. we make the follow-
ing assumption: points ·where the boundary condition changes should be at 
triangulation nodes, r1 c nh and r0 c (IR2 \ flh). Part of rh approximating 
r 0 will be denoted by r~, and that for r 1 by rt. For the triangulation flh, 
we defip.e the space Hh(flh) of real continuous functions which are linear on 
each triangle of flh and vanish at r~. We extend these functions on n \ nh 
by zero. 

The solution of the projection problem 

(1.3) 

will be called an approximate solution of problem (1.2). Aspects of approxi-
mation of (1.2) by (1.3) have been thoroughly studied (see [8, 17]); we do not 
consider them here. Each function uh E Hh(flh) is put in standard corre-
spondence with a real column vector u E IRN whose components are values 
of the function uh at the corresponding nodes of the triangulation nh. Then 
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(1.3) is equivalent to the system of mesh equations 

Au=f 

(1.4) 

where uh and vh are the respective prolongations of vectors u and v; (!, v) is 
the Euclidean scalar product in IRN. 

The main goal of this work is to construct a symmetric positive definite 
preconditioning operator B for problem (1.4) so as to satisfy the inequalities 

(1.5) 

where positive constants c1 and c2 are independent of h; the multiplication 
of a vector by B-1 should be easy to implement. 

The preconditioner B is constructed by using the method of fictitious 
space [13] in two stages. At the first stage, we pass from an arbitrary un-
structured triangulation nh to an auxiliary structured non-hierarchical mesh, 
and at the second stage to a hierarchical mesh (a square mesh on a square 
·containing the original domain 0). Note that the passage from an arbitrary 
triangulation to a structured mesh was ear~ier used in [14]. This paper in-
cludes some development of [16] for the case of locally refined grids. Other 
techniques for constructing the preconditioners on unstructured meshes were 
proposed in [3, 4, 7, 11, 12, 13, 20]. The construction of preconditioning oper:.: 
ators on non-hierarchical grids was considered in [9]. 

2 REDUCTION TO A STRUCTURED MESH 
The preconditioning operator B in (1.5) is constructed on the basis of the 
lemma of fictitious space [14]. For convenience, we give this lemma here. 
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Lemma 2.1. Let Ho and H be Hilbert spaces with the scalar products 
(uo,vo)Ho and (u,v)H, respectively. Let Ao and A be symmetric positive def-
inite continuous operators in the spaces H0 and H: 

Ao: Ho--+ Ho, A: H --t H. 

Suppose that R is a linear operator such that 

R: H --t Ho 

(AoRv, Rv)Ho:::; cR(Av,v)H Vv EH 

and there exists an operator T such that 

T: Ho --t H, RTuo = uo 

Vuo E Ho 

where CR and CT are positive constants. Then 

cT(A01uo, uo)Ho :::; (RA- 1 R*uo, uo)Ho :::; cR(A01uo, uo)Ho Vuo E Ho. 

The operator R* is adjoint to R with respect to the scalar products ( u 0 , v0 ).H0 

and(u,v)H: 

R*: H-+ Ho 

(R*uo,v)H = (uo,Rv)H0 • 

Note that for constructing and implementing the preconditioner, i.e. the 
operator RA-1 R*, we only require the existence of the operator T. In our 
case, the role of the operator Ao is played by A of (1.4), and the role of the 
space H0 by Hh(flh). In order to use Lemma 2.1, we construct a fictitious 
(auxiliary) space and the corresponding operators. To do this, we embed 
the domain n in a square II. Let Ki denote the union of triangles in the 
triangulation D,h which have a common vertex Zi, and let di be the maximum 
radius of circle inscribed in Ki. In the square II, we introduce an auxiliary 
grid IIh with a step size li such that 

- 1 
h < rn m~n di. 

2v2 " -
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Let us assume that h = l · 2-J, where l is the length of sides of II and J 
is a positive integer. We denote the nodes of the grid IIh by Zij, 

i, j = 0, 1, ... , L 

and the cells of IIh by Dij, 

Dij = {( x, y) I Xi ~ x < Xi+i, Yi ~ y < Yi+i } 

h L 
II = U Dii. 

i,j=O 

Let Qh denote the minimum figure that consists of cells Dii and contains 
Qh: Qh c Q\ let Sh be the set of boundary nodes of Qh. We subdivide the 
set Sh into two subsets sg and S? as follows: if 

all nodes of Di3 n Sh are in Sg 

Using cell diagonals, we triangulate Qh and II\ hereafter, the designations 
Qh and IIh refer to triangulations as well. Let Hh( Qh) be the space of real 
continuous functions which are linear on the triangles of Qh and vanish at 
the nodes of Si. It is the space Hh( Qh) that will be used as the fictitious 
space in Lemma 2.1. 

We now define the projection operator R 

the extension operator T 

and an easily invertible operator in the space Hh(Qh). 
Let us begin with the operator R. For a given mesh function 
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we define a function uh E Hh(O,h) as follows. Let zz be a vertex in the 
triangulation nh; assume that Zz E Dij· We put 

(2.2) 

The function uh is equal to zero at nodes Z[ E r~. 
Then, let us define the operator T. For a given function uh E Hh(O,h), 

we define a function U E Hh(Qh). The function Uh is equal to zero at nodes 
Zij E Si. At the other nodes·, U is defined as follows. If a cell Dij contains 
a certain vertex Zz of the triangulation Qh, We put . 

For each of the remaining nodes Zij E Qh, we find the closest vertex zz of 
the triangulation Qh (if there are several closest vertices, we can choose any 
of them) and put 

Uh(Zi;) = (Tuh)(Zi;) = uh(zz). 

Finally, in the space H h ( Qh) we define the operator Aq: 

where Uh and Vh are the respective prolongations of the vectors U and V. 

Theorem 2.1. There exist positive constants c3 and c4 , independent of 
h, · such that 

Here A, R and Aq are operators of (1.4), (2.2) and (2.3), respectively; R* 
is the transpose of R (we hereafter use the same designation for an operator 
and its matrix representation}. 

Proof. The theorem easily follows from Lemma 2.1, condition (2.1) and 
the familiar equivalence of H 1-norms of finite-element functions in the spaces 
Hh(Qh), Hh(Qh) and the difference counterparts of these norms [17]. 
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Remark 2.1. The implementation of the operator R is equivalent to the 
piecewise constant interpolation. It is easily seen that the number of arith-
metic operations required for multiplying R or R* by a vector is proportional 
to the number of nodes in the mesh domain. 

Thus, the construction of a preconditioning operator on an unstructured 
triangulation is reduced to the construction of a preconditioning operator for 
Aq. The latter problem is considered in Section 3. 

3 FICTITIOUS SPACE AND MULTILEVEL 
DECOMPOSITION METHODS 

In order to find a preconditioning operator for Aq, we again use Lemma 2.1. 
Here the fictitious (auxiliary) space is Hh(Ilh) which consists of piecewise 
linear continuous functions vanishing on the boundary arr of the square II. 
Efficient preconditioning operators in Hh(IIh) are well known; in particular, 
we may use the BPX preconditioner [6]. To do so, we use the following 
construction. 

We divide the domain II-\ n into two non-~ntersecting suhdomains such 
that · 

II\ = f' o U f\ , 
(3.1) 

aGo nan= I'o, 
According to (3.1), we represent the triangulation IIh \ Qh as a union of two 
non-overlapping parts: 

IIh \ Qh = G~ U G~ 

where G~ and G~ are mesh approximations of the domains Go and G1 , re-
spectively. Further, we denote 

a= nu ri u G1, 

Hh(Gh) finite-element space of functions vanishing on aGh. We consider in 
IIh the sequence of grids 

IIh IIh IIh _ IIh 
O> 1, •• ., J.= 
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with step sizes 

ho = l , hi = l · 2-1 
, . . . , h J = h = l · 2-1 . 

We triangulate these grids and consider the corresponding finite-element 
spaces 

w; c Wf c ... c wJ = Hh(ITh). 

By { q>~l)}~1 we denote the nodal basis of the space Wi\ l = 0, 1, ... , J. 
First, let us examine the case of r 1 = r; accordingly, here Sf = Sh. By 

~~l) we denote the restriction of the basic function q>~l) onto Qh. We put each 
function Uh E Hh( Qh) in correspondence with a function fjh E Hh(ITh): 

Define 
J 

Ci/Uh == L L (Uh, q>~l))L2(II) ~~l) 
l=O supp <P~l) n Qh;C0 

Theore:rp. 3.1. There ~xist positive cpnstants c5 and ·c6 , independent of 
h, such that 

Pro of. Let us define 

to be an operator of restriction on Qh: 

If we subdivide the nodes of fih into two groups: (1) the nodes of Qh (includ-
ing those of Sh), and (2) the remaining nodes, then we obtain the following 
matrix representation for RN (see also [l]): 

RN= (JO) 
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where I is the identity matrix corresponding to nodes of group (1), and 0 is 
the zero matrix corresponding to nodes of group (2). It is .evident that 

By the theorem of extension of mesh functions [6], there exists the extension 
operator 

TN: Hh( Qh) --+ Hh(ITh) 
uniformly bounded with respect to h. 

According to Lemma 2.1 and [6], there exist positive constants c7 and c8 , 

independent of h, such that 

where Aq is the operator of (2.3) and the definition of Cii 1 is 

Taking into account the explicit form of RN, we complete the proof of The""'. 
orem 3.1. 

Then, let us examine the case of the Dirichlet problem; i.e. r 0 = r and, 
accordingly, Si= Sh. We define the preconditioner as follows: 

Theorem 3.2. There exist positive constants c9 and c10, independent of 
h, such that 

Proof. In this case, the equivalence of the operators Aq and CD easily 
follows from· the multilevel technique (5, 6, 18, 19] and can be done, for in-
stance, by using of quasi-interpolants from (15]. Then, from Theorem 2.1 we 
get the assertion of Theorem 3.2. 
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Finally, we examine the case of mixed boundary conditions, i.e. r0 f:. 0 
and r1 f:. 0. We denote 

I: 
supp <I>~Z) C Gh, 

supp <I>~l) n Qh f:. 0 

Theorem 3.3. There exist positive constants c11 and c12 , independent of 
h, such that 

Proof. The theorem is proved by using the argument of Theorem 3.2 
and then that of Theorem 3.1. Indeed, at the first step, let us 'extend' the 
Dirichlet boundary condition from S~ to the boundary of the triangulation 
ITh. To do it, we consider finite element space Hh( Gh) and define 

. J 

CG-1uh =" " (Uh ;r,.(l)) ;r,.(l) L.i L.J . ' ~ i L2 ( Gh) ~ i 
l=O supp ~(L) CGh 

l 

Then, according to Theorem 3.2, there exist positive constants c13 , c14 , inde-
pendent of h, such that 

At the second step, define 

as a restriction on Qh from Gh: 

Then, from Lemma 2.1 we get 

11 



where c15 , c16 are independent of h. Using again the explicit form of RN,G, 
we corn plete the proof of Theorem 3. 3. 

4 LOCALLY REFINED GRIDS 
In this section we consider a triangulation nh of the domain n 

and assume flh is regular but not quasi-uniform, i.e. there exists a constant 
s, independent of h, such that 

i = l, ... ,M 

where Ti and Pi are radii of circumscribed and inscribed circles for the triangle 
Ti, respectively. It means that flh can be locally refined. For this triangulation 
flh, we define the space Hh(flh) of real continuous functions which are linear 
on each triangle Ti of flh. For the sake of simplicity, we c~nsider the Dirichlet 
boundary condition and assume that the functions from Hh(flh) vanish at 
r~. 

If we introduce an uniform fictitious grid Qh, then it is possible to modify 
the operators R and T from Section 2 for locally refined triangulation flh, 
but the realization of a preconditioner will be expensive. 

Let us embed the domain n in a square II and start with a coarse uniform 
grid II~. We refine II~ several times 

II~, II~, ... 

The grid IIr consists of cells D~J). Let Q~ denote the minimum figure that 
consists of cells D~J) and contains nh. Denote by 10 a set of indices ( i, j) such 
that 

Q~= U n~?) 
i.3 

(i,j)Elo 
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We define grids Q~, Q~, ... in the following way. Denote by 11 a set of indices 
( i, j) such that the cell ng) contains more then one vertex of the triangu-
lation nh. We divide nW and all neighbouring cells (which have at least 
one common node with nW) into four congruent sub cells by connecting the 
midpoints of the edges. Denote new cells by ng+l) and a resulting grid by 
Q?+i, l = 0, 1, ... , which are the minimum figure that contains nh. We stop 
this process when each cell contains no more than one vertex of nh. Denote 
by Q~ the final grid. 

Define a finite-element space Hh(Qh) as follows 
J-1 

Hh(Qh) = { L ai0)<I>l0)+ L L L a~+l)<I>~+l) I a~) E Ill} 
supp<P~o) CQ~ l=O (i,j)Elisupp<P~+1>nDW# 

we now define the projection operator R 
R: Hh(Qh) -r H11:(ilh) 

the extension operator T 

T: Hh(ilh) -r Hh(Qh) 
according to the definitions from Section 2. 

Define a preconditioning-operator in Hh( Q~) in the following way: 

. G"R. 1Uh = L . (Uh, <Pi0))L2 (Q~)<I>i0) 
supp<P~o) CQ~ 

J-1 

+L:L: 

Theorem 4.1 There exist positive constants c11 and c18, independent of 
h, such that 

c17(A- 1u,u) ~ (RG"R. 1R*u,u) ~ c1s(A-1u,u) Vu E IRN. 

Proof. In this case, we again use the equivalence of H 1-norms of finite-
element functions in the spaces Hh(D.h), Hh(Qh) and the difference counter-
parts of these norms and the multilevel technique. 
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