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Abstract

This paper revisits the classical inference results for profile quasi maximum likelihood
estimators (profile MLE) in the semiparametric estimation problem. We mainly focus on two
prominent theorems: the Wilks phenomenon and Fisher expansion for the profile MLE are
stated in a new fashion allowing finite samples and model misspecification. The method
of study is also essentially different from the usual analysis of the semiparametric prob-
lem based on the notion of the hardest parametric submodel. Instead we apply the local
bracketing and the upper function devices from Spokoiny (2012). This novel approach
particularly allows to address the important issue of the effective target and nuisance di-
mension and it does not involve any pilot estimator of the target parameter. The obtained
nonasymptotic results are surprisingly sharp and yield the classical asymptotic statements
including the asymptotic normality and efficiency of the profile MLE. The general results
are specified to the important special cases of an i.i.d. sample.

1 Introduction

Many statistical tasks can be viewed as problems of semiparametric estimation when the un-
known data distribution is described by a high or infinite dimensional parameter while the target
is of low dimension. Typical examples are provided by functional estimation, estimation of a func-
tion at a point, or simply by estimating a given subvector of the parameter vector. The classical
statistical theory provides a general solution to this problem: estimate the full parameter vector
by the maximum likelihood method and project the obtained estimate onto the target subspace.
This approach is known as profile maximum likelihood and it appears to be semiparametrically
efficient under some mild regularity conditions. We refer to the papers Murphy and Van der
Vaart (2000, 1999) and the book Kosorok (2005) for a detailed presentation of the modern state
of the theory and further references. The famous Wilks result claims that the likelihood ratio
test statistic in the semiparametric test problem is nearly chi-square with p degrees of freedom
corresponding to the dimension of the target parameter. Various extensions of this result can
be found e.g. in Fan et al. (2001); Fan and Huang (2005); Boucheron and Massart (2011); see
also the references therein.

This study revisits the problem of profile semiparametric estimation and addresses some new
issues. The most important difference between our approach and the classical theory is a
nonasymptotic character of our study. A finite sample analysis is particularly challenging be-
cause most of notions, methods and tools in the classical theory are formulated in the asymp-
totic setup with growing sample size. Only few finite sample general results are available; see
e.g. the recent paper Boucheron and Massart (2011). The results of this paper explicitly de-
scribes all “small” terms in the expansion of the log-likelihood. This helps to carefully treat the
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question of applicability of the approach in different situations. A particularly important question
is about the critical dimension of the target p and the full parameter dimension p∗ for which
the main results are still accurate. Another issue addressed in this paper is the model misspec-
ification. In many practical problems, it is unrealistic to expect that the model assumptions are
exactly fulfilled, even if some rich nonparametric models are used. This means that the true data
distribution IP does not belong to the considered parametric family. Applicability of the general
semiparametric theory in such cases is questionable. An important feature of the new approach
of Spokoiny (2012) is that it equally applies under a possible model misspecification.

The mentioned issues, especially the non-asymptotic character of study dictate to change en-
tirely the tools and methods of analysis. We apply the recent bracketing approach of Spokoiny
(2012) and demonstrate its power on the considered case of semiparametric estimation. Let
Y denote the observed random data, and IP denote the data distribution. The parametric
statistical model assumes that the unknown data distribution IP belongs to a given parametric
family (IPυ) :

Y ∼ IP = IPυ∗ ∈ (IPυ, υ ∈ Υ ),

where Υ is some high dimensional or even infinite dimensional parameter space. This paper
concentrates on a finite dimensional setting, however, an extension to a functional space is
feasible and to be considered elsewhere. The maximum likelihood approach in the parametric
estimation suggests to estimate the whole parameter vector υ by maximizing the correspond-
ing log-likelihood L(υ) = log dIPυ

dµ0
(Y ) for some dominating measure µ0 :

υ̃
def
= argmax

υ∈Υ
L(υ).

Our study admits a model misspecification IP /∈ (IPυ ,υ ∈ Υ ) . Equivalently, one can say that
L(υ) is the quasi log-likelihood function on Υ . The “target” value υ∗ of the parameter υ can
defined by

υ∗ = argmax
υ∈Υ

IEL(υ).

Under model misspecification, υ∗ defines the best parametric fit to IP by the considered family.

In the semiparametric framework, the target of analysis is only a low dimensional component θ
of the whole parameter υ . This means that the target of estimation is

θ∗ = Π0υ
∗,

for some mapping Π0 : Υ → IRp , and p ∈ N stands for the dimension of the target.

The profile maximum likelihood approach defines the estimator of θ∗ by projecting the obtained
MLE υ̃ on the target space:

θ̃ = Π0υ̃.

The Gauss-Markov Theorem claims the efficiency of such procedures for linear Gaussian mod-
els and linear mapping Π0 , and the famous Fisher result extends it in the asymptotic sense to
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the general situation under some regularity conditions. The Wilks phenomenon describes the
limiting distribution of the likelihood ratio test statistic T :

T
def
= sup

υ∈Υ
L(υ)− sup

υ∈Υ
Π0υ=θ∗

L(υ). (1.1)

It appears that the distribution of this test statistic is nearly chi-square χ2
p as the samples size

grows, Wilks (1938). In particular, this limiting behavior does not depend on the particular model
structure and on the full dimension of the parameter υ , only the dimension of the target matters.
The full parameter dimension can be even infinite under some upper bounds on its total entropy.

Below we consider a slightly different presentation of this estimator based on the partial opti-
mization of the objective function L(υ) for a fixed θ . Namely, define

L̆(θ)
def
= max

υ∈Υ
Π0υ=θ

L(υ). (1.2)

Then the profile MLE can be defined as the point of maximum of L̆(θ) :

θ̃ = argmax
θ∈Θ

L̆(θ) = argmax
θ∈Θ

max
υ∈Υ
Π0υ=θ

L(υ).

The test statistic T from (1.1) is also called the semiparametric excess and it can be defined
as

L̆(θ̃)− L̆(θ∗) = max
υ∈Υ

L(υ)− max
υ∈Υ

Π0υ=θ∗

L(υ).

The Wilks result can be rewritten as

2
{
L̆(θ̃)− L̆(θ∗)

} w−→ χ2
p.

The local asymptotic normality (LAN) approach by Le Cam leads to the most general setup in
which the Wilks type results can be established. However, the classical theory of semiparametric
estimation faces serious difficulties when the dimension of the nuisance parameter becomes
large of infinite. The LAN property yields a local approximation of the log-likelihood of the full
model by the log-likelihood of a linear Gaussian model, and this property is only validated in a
root-n neighborhood of the true point. The non- and semiparametric cases require to consider
larger neighborhoods where the LAN approach is not applicable any more. A proper extension of
the Wilks result to the case of a growing or infinite nuisance dimension is quite challenging and
involves special constructions like a pilot consistent estimator of the target, a hardest parametric
submodel as well as some power tools of the empirical process theory; see Murphy and Van der
Vaart (2000) or Kosorok (2005) for a comprehensive presentation.

The recent paper Spokoiny (2012) offers a new look at the classical LAN theory. The basic idea
is to replace the local approximation by local bracketing. Instead of one approximating Gaussian
log-likelihood, one builds two different quadratic processes such that the original log-likelihood
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can be sandwiched between them up to a small error. It appears that the bracketing device can
be applied for much larger neighborhoods than in the LAN approach. In this paper we show
that the local bracketing approach of Spokoiny (2012) can be used for obtaining a version of the
Wilks Theorem in a quite general semiparametric setup avoiding any special construction like
“the hardest parametric submodel”.

Another important issue is that the new approach does not rely on any pilot estimator of the tar-
get. The usual assumption that a consistent pilot estimator is available can be even misleading
in our setup because it separates local and global considerations. This paper attempts to figure
out a list of condition ensuring global concentration and local expansion at the same time. This
particularly allows to address the crucial question of the largest dimensionality or the nuisance
parameter for which the Wilks result still holds. It appears that the profile semiparametric ap-
proach is validated under the constraint p∗3 � n , where p∗ is the full parameter dimension. It
applies even if the dimension p of the target grows with the sample size under the mentioned
constraint. The important identifiability issue is also addressed in a more careful way for the
considered finite sample case.

For the further presentation we have to briefly outline the basic results from Spokoiny (2012).
Introduce the log-likelihood ratio process

L(υ,υ∗) = L(υ)− L(υ∗).

The key bracketing result of Spokoiny (2012) claims that L(υ,υ∗) can be sandwiched on a lo-
cal elliptic set Υ◦(r) around υ∗ by two quadratic in υ processes Lε(υ,υ

∗) and Lε(υ,υ
∗) :

Lε(υ,υ
∗)−♦ε(r) ≤ L(υ,υ∗) ≤ Lε(υ,υ

∗) +♦ε(r), υ ∈ Υ◦(r), (1.3)

where ♦ε(r) > 0 and ♦ε(r) > 0 are small terms. The value r here can be viewed as the
radius of the set Υ◦(r) in the intrinsic semimetric corresponding to the process L(θ) . See
Section B for a precise formulation. This local result is accompanied with the deviation bound of
the form

IP (υ̃ ∈ Υ◦(r)) ≥ 1− e−x,

where x grows almost linearly with r . The bracketing result (1.3) yields a number of important
and informative corollaries. One of them shows that the excess L(υ̃,υ∗) can be approxi-

mated by a quadratic form ‖ξ‖2/2 , where ξ
def
= D−10 ∇L(υ∗) is the normalized score while

D2
0 approximates the total Fisher information matrix. Another important corollary of (1.3) is an

expansion of the quasi MLE υ̃ . The mentioned results can be written in the form∣∣2L(υ̃,υ∗)− ‖ξ‖2
∣∣ ≤ 2∆ε, (1.4)∥∥D0

(
υ̃ − υ∗

)
− ξ
∥∥2 ≤ 2∆ε,

where ∆ε is a random term called the spread which is small with a large probability. In a typical
situation with a correctly specified model, ξ is nearly standard normal and hence, 2L(υ̃,υ∗)
is nearly χ2

p∗ , where p∗ is the full parameter dimension, while the MLE υ̃ is asymptotically
normal and efficient. The expansion (1.4) helps to build likelihood-based confidence sets for the
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true parameter υ∗ . Let χα be the (1 − α) -quantile of the chi-square distribution with p∗

degrees of freedom. Set

E(α)
def
= {υ ∈ Υ : 2L(υ̃,υ) ≤ χα}.

Then (1.4) ensures that the coverage probability IP
(
υ∗ /∈ E(α)

)
is close to α provided that

∆ε is sufficiently small.

This paper aims at establishing a similar statements for the process L̆(θ) from (1.2). In partic-
ular, the Wilks result can be written as

L̆(θ̃)− L̆(θ∗) ∼= ‖ξ̆‖2/2,

where the random p -vector ξ̆ satisfies IEξ̆ = 0 and IE‖ξ̆‖2 ∼= p . The deviation properties
of ‖ξ̆‖2 resemble the ones of a chi-square random variable with p degrees of freedom just as

in the Wilks phenomenon. The expansion of the profile MLE θ̃ reads as

D̆0

(
θ̃ − θ∗

) ∼= ξ̆.

The symmetric matrix D̆2
0 ∈ IRp×p is usually called the influence matrix and it is the covariance

of the efficient influence function; see Kosorok (2005).

Usually in the classical semiparametric setup, the vector υ is represented as υ = (θ,η) ,
where θ is the target of analysis while η is the nuisance parameter. We refer to this situation
as (θ,η) -setup and our presentation follows this setting. An extension to the υ -setup with
θ = Π0υ is straightforward. Also for simplicity we only develop our results for the case that the
full parameter space Υ is a subset of the Euclidean space of dimensionality p∗ . An extension
to an infinite dimensional parameter space is possible but involves a range of technical issues
that have to be done elsewhere.

Section 2 introduces the objects and tools of the analysis and collects the main results including
an extension of the Wilks Theorem, concentration properties of the profile estimator and the
construction of confidence sets for the “true“ parameter θ∗ . The concentration properties of the
profile MLE are discussed in Section D.1. The appendix collects the conditions and the proofs
of the main results.

2 Main results

This section presents our main results on the semiparametric profile estimator which include the
Wilks expansion of the profile maximum likelihood and the Fisher expansion of the profile MLE
θ̃ . All the results are stated under the same list of conditions that can be found in Section A
of the appendix. As already mentioned, our setup follows Spokoiny (2012). However, at one
point there is an essential difference. The results of Spokoiny (2012) are stated for just one
fixed finite sample. The same continues to hold for the results below. But we are also interested
in understanding what happens if the full dimension p∗ becomes large. For this we consider
below an asymptotic setup with p∗ = pn , where n denotes the asymptotic parameter. It can
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be viewed as the sample size with n → ∞ . We assume that all considered objects depend
on n including the likelihood function, the full parameter set Υ and its dimension p∗ , as well
as all the constants in our conditions. The primary goal of our study is to fix the necessary and
sufficient conditions on growth of pn with n which ensures the Wilks and Fisher results.

Our result apply even if the target parameter θ is of growing dimension. The dimension p can
be of order p∗ . The case with a full dimensional target and low dimensional nuisance is also
included.

2.1 The Wilks and Fisher expansion

This section states the key results in the semiparametric framework which heavily use the local
bracketing idea of Spokoiny (2012). First we introduce the main elements of the bracketing
device. This includes two p∗ × p∗ matrices V2

0 and D2
0 and two constants ε = (δ, %) . The

matrix V2
0 describes the variability of the process L(υ) around the true point υ∗ :

V2
0

def
= Var

{
∇L(υ∗)

}
. (2.1)

The matrix D2
0 is defined similarly to the Fisher information matrix:

D2
0

def
= −∇2IEL(υ∗). (2.2)

Here and in what follows we implicitly assume that the log-likelihood function L(υ) is suffi-
ciently smooth in υ , ∇L(υ) stands for the gradient and ∇2IEL(υ) for the Hessian of the
expectation IEL at υ . It is worth mentioning that the matrices D2

0 and V2
0 coincide if the

model Y ∼ IPυ∗ ∈ (IPυ) is correctly specified and sufficiently regular; see e.g. Ibragimov
and Khas’minskij (1981).

Now we switch to the (θ,η) -setup. Consider the block representation of the vector ∇ def
=

∇L(υ∗) and of the matrices V2
0 from (2.1) and D2

0 from (2.2):

∇ =

(
∇θ

∇η

)
, D2

0 =

(
D2

0 A0

A>0 H2
0

)
, V2

0 =

(
V 2
0 B0

B>0 Q2
0

)
.

Define also the p× p matrix D̆2
0 and p -vectors ∇̆θ and ξ̆ as

D̆2
0 = D2

0 − A0H
−2
0 A>0 ,

∇̆θ = ∇θ − A0H
−2
0 ∇η,

ξ̆ = D̆−10 ∇̆θ.

In what follows, by C we denote a generic fixed constant. For all results presented below we as-
sume a sufficiently large value x to be fixed. It determines our level of overwhelming probability:
a generic random set Ω(x) is of dominating probability if

IP
(
Ω(x)

)
≥ 1− Ce−x.
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Similarly to p∗ , the value x may depend on the asymptotic parameter n and grows to infinity
with n . A particularly relevant choice is x = xn = C log n for a fixed C > 0 . We only require
that xn is not too large, more precisely, x ≤ xc ; see (C.2) from Section C. In the i.i.d. setup
xc is of order n1/2 .

The other important value to be fixed is r0 . This value determines the frontier between local
and global consideration. In the local vicinity Υ◦(r0) of radius r0 we apply a very accurate
local quadratic approximation of the log-likelihood process while outside of this vicinity a much
more rough upper function device can be used; see Section B for more details. The general rule
for the choice of r0 is given by the condition r20 ≥ C0(p

∗ + x) for some specific constant C0
that is independent of p∗ and n ∈ N if ν0/b > 0 is independent of p∗ and n ∈ N (see
Section A). The quality of local quadratic approximation is measured by two functions δ(r) and
ω(r) shown in local conditions (ED1) , (L0) of Section A. More exactly, it can be described
by the quantities τε defined as

τε
def
= δ(r0) + 3ν0a

2ω(r0), (2.3)

where the constants ν0 and a are from conditions (ED1) and (I) in Section A. The sub-
index ε stands for the pair δ(r0), ω(r0) . Our results implicitly assume that τε is small. We
comment on typical behavior of τε is Section 2.2 in context of i.i.d. models.

The first result can be viewed as an extension of the Wilks Theorem.

Theorem 2.1. Assume (ED0) , (ED1) , (L0) , (I) , (Er) and (Lr) with b(r) ≡ b ; see
Section A. Let also τε from (2.3) fulfill τε ≤ 1/2 . Then it holds on a random set Ω(x) of
dominating probability ∣∣2L̆(θ̃,θ∗)− ‖ξ̆‖2

∣∣ ≤ C τε (p∗ + x), (2.4)

Remark 2.1. In the case of the correct model specification with D2
0 = V2

0 , the deviation prop-
erties of the quadratic form ‖ξ̆‖2 = ‖D̆−10 ∇̆θ‖2 are essentially the same as of a chi-square
random variable with p degrees of freedom; see Theorem C.1 in the appendix. In the case of a
possible model misspecification with D2

0 6= V2
0 , the behavior of the quadratic form ‖ξ̆‖2 will

depend on the characteristics of the matrix IB
def
= D−10 V2

0D
−1
0 ; see again Theorem C.1. More-

over, in the asymptotic setup the vector ξ̆ is asymptotically standard normal; see Section 2.2
for the i.i.d. case.

Remark 2.2. The partial maximum likelihood process L̆(θ) can be used for defining the
likelihood-based confidence sets of the form

E(z) = {θ : L̆(θ̃,θ) ≤ z}

for some z > 0 . The bound (2.4) helps to evaluate the coverage probability IP
(
θ∗ /∈ E(z)

)
in terms of deviation probability for the quadratic form ‖ξ̆‖2 ; cf. Corollary 3.2 in Spokoiny
(2012).

The next result presents an expansion of the profile MLE θ̃ .
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Theorem 2.2. Under the conditions of Theorem 2.1, it holds on a random set Ω(x) of domi-
nating probability ∥∥D̆0

(
θ̃ − θ∗

)
− ξ̆
∥∥2 ≤ C τε (p∗ + x). (2.5)

Remark 2.3. One can use the expansion (2.5) for describing the concentration probability for
elliptic sets

A(z) =
{
θ : ‖D̆0(θ − θ∗)‖ ≤ z

}
;

cf. Corollary 3.5 in Spokoiny (2012).

In the next section the result (2.5) is used to show asymptotic normality and efficiency of the
profile estimator in the i.i.d. setting and under the correct model specification.

2.2 The i.i.d. case and asymptotic efficiency

Here we briefly discuss the implications of our general results to the case with Y = (Y1, . . . , Yn)>

where observations Yi are i.i.d. from a measure P . The parametric assumption means P =
Pυ∗ ∈ (Pυ,υ ∈ Υ ) for a given parametric family (Pυ) , where Υ is a subset of the Euclidean
space IRp∗ . We assume that (Pυ) obeys the regularity conditions listed in Section 5.1 of
Spokoiny (2012). By `(y,υ) we denote the log-density of Pυ w.r.t. some dominating measure
µ0 . For simplicity of comparison with the classical results we do not discuss the model misspec-
ification issue, i.e. the parametric assumption is correct. However, an extension to the case of
a misspecified model is straightforward. We utilize that V2

0 = D2
0 = nF , ω(r) = ω∗r/n1/2 ,

δ(r) = δ∗r/n1/2 , and g = g1
√
n ; see Lemma 5.1 in Spokoiny (2012). Here F is the Fisher

information matrix of the family (Pυ) at the point υ∗ , and ω∗ , δ∗ , and g1 are some positive
constants.

It is shown in Spokoiny (2012) that the full parameter υ∗ can be well estimated provided that
p∗/n is sufficiently small. More precisely, the concentration property for the set Υ◦(r) requires
r2 ≥ Cp∗ for a fixed C , while the local bracketing device is validated up to the spread ∆ε(r)
which is of order p∗δ(r) � p∗r/n1/2 � p∗3/2/n1/2 . The range of applicability for the proposed
approach can be informally defined by the rule “the spread is smaller than the value of the
problem”, where the value of the problem is understood as the expected excess. If the full
parameter υ is estimated, the value of the problem is of order p∗ leading to the constraint
“ p∗/n is small”. If the target parameter is of dimension p , then the value of the problem is also
of order p leading to the constraint “ p∗3/2/(n1/2p) is small”.

Now we specify the results in the (θ,η) semiparametric setup. To state the result we only need
a version of the identifiability condition (I) on the marginal distribution. Let F be the Fisher
information matrix of the family (Pυ) at the true point υ∗ . Consider its block representation

F =

(
Fθθ Fθη

F>θη Fηη

)
.

The required identifiability condition reads as follows:
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(ι) There is a constant ρ < 1 such that

‖F−1/2θθ FθηF−1ηηF>θηF
−1/2
θθ ‖∞ ≤ ρ. (2.6)

Also define

F̆ def
= Fθθ − FθηF−1ηηF>θη.

The presented result admits that the full dimension p∗ grows with the sample size but slower
than n1/3 . The result is applicable even in the case when the target dimension also depends
on the sample size.

Theorem 2.3. Let Y1, . . . , Yn be i.i.d. IPυ∗ and let (ed0) , (ed1) , (`0) , (eu) , and (`u) with
b(u) ≡ b of Spokoiny (2012) hold. In addition, assume (ι) ; see (2.6). Define for x = xn ≤
n1/3

βn
def
= (p∗ + xn)3/2/n1/2.

It holds on the a set Ω(xn) of dominating probability:∥∥(nF̆)1/2
(
θ̃ − θ∗

)
− ξ̆
∥∥2 ≤ Cβn,∣∣2L̆(θ̃,θ∗)− ‖ξ̆‖2
∣∣ ≤ Cβn.

Moreover, the p -vector ξ̆
def
= F̆−1/2

(
∇θ − FθηF−1ηη∇η

)
is asymptotically standard normal as

n→∞ . This yields the asymptotic efficiency of the profile MLE θ̃ .

2.3 Critical dimension

This section discusses the issue of a critical dimension. Namely we assume that the full di-
mension p∗ grows with the sample size n and write p∗ = pn . Theorem 2.3 requires that
pn = o(n1/3) . Here we show that this condition is critical for the class of models satisfying
the conditions of Section A. Namely, we present an example in which the behavior of the profile
MLE θ̃ heavily depends on the value βn =

√
p3n/n ≥ β > 0 . The conditions of Section A

are satisfied such that if βn → 0 we derive asymptotic efficiency of θ̃ . At the same time, if
βn ≥ β > 0 , then the MLE θ̃ is not anymore root-n consistent. For technical reasons we as-
sume that pn/

√
n → 0 which is no restriction as it is easy to find examples that do not admit

an efficient profile if p2n/n9 0 . Let a random vector X ∈ IRpn follow X ∼ N(υ∗, n−1IIpn) .
Take for simplicity υ∗ = 0 and let IP = IP0 mean the distribution of X . Introduce a special
set S ⊂ IRpn with

S
def
=
{
υ = (υ1, . . . , υpn) : υ1 =

z

2

√
βn/n, z ∈ Z

}
∩Υ◦

(√
2pn/n+

1

2

√
βn/n

)
. (2.7)
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We denote by Sδ its δ -vicinity:

Sδ
def
= {υ : d(υ, S) < δ},

where d(υ, S) is the Euclidean distance from the point υ to the set S . Also Scδ stands for the
complement of Sδ . Below we fix δ = 1/n . Consider a special parametric quasi log-likelihood
ratio L(υ, 0) defined as

L(υ, 0) = nX>υ − n‖υ‖2/2 + nf(υ)‖υ‖3.

Here f : IR 7→ IR is a smooth function with

f(υ) =

{
1 υ ∈ S,

0 υ ∈ Scδ.

Below we consider the problem of estimating the first component θ
def
= υ1 ∈ IR . Since by

assumption pn/
√
n → 0 it holds for n large enough and for any υ with ‖υ‖2 ≤ 4pn/n +

βn/n that n‖υ‖2/2 ≥ nf(υ)‖υ‖3 and thus

argmax
υ

IEL(υ) = argmin
υ

{
n‖υ‖2/2− nf(υ)‖υ‖3

}
= 0.

It is easy to see that all conditions from Section A are satisfied with τεpn ∼= β
1/2
n and

D2
0 = V2

0 = nIIpn .

Therefore, the results from Section 2.1 yield efficiency of the profile MLE θ̃ if p3n/n → 0 .
Moreover, it is straightforward to see that

D̆0 =
√
n, ∇̆(L− IEL) = ∇θ(L− IEL) = nX1, and ξ̆ =

√
nX1.

It follows similarly to Theorem 2.1 that if β2
n = p3n/n→ 0 then

‖D̆0(θ̃ − θ∗)− ξ̆‖ =
√
n|υ̃1 −X1| → 0.

The next result shows that in the case when βn =
√
p3n/n is not small, the profile MLE θ̃ is

not root-n consistent.

Theorem 2.4. Suppose that βn → (6c)2 for some c > 0 . Let also n be large enough to
ensure

21/3 − 1

21/6

√
pn/n ≥

1

2
(pn/n)3/4 .

There exists a positive α > 0 such that it holds with a probability exceeding α

‖D̆0(θ̃ − θ∗)− ξ̆‖ ≥
1

6
β1/2
n − 1√

n
≥ c− on(1).
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If βn →∞ , then

‖D̆0(θ̃ − θ∗)− ξ̆‖
IP−→ +∞,

where
IP−→ means convergence in probability.

A Appendix

The appendix collects our conditions and proofs of the main results.

We adopt the conditions from Section 2 of Spokoiny (2012) with the obvious change of notations.
The local conditions only describe the properties of the process L(υ) for υ ∈ Υ◦(r0) with
some fixed value r0 . The global conditions have to be fulfilled on the whole Υ . We start with
the local conditions.

(ED0) There exists a constant ν0 > 0 , a positive symmetric p∗ × p∗ matrix V2
0 satisfying

Var{∇ζ(υ∗)} ≤ V2
0 , and a constant g > 0 such that for all |µ| ≤ g

sup
γ∈IRp

log IE exp

{
µ
〈∇ζ(υ∗),γ〉
‖V0γ‖

}
≤ ν20µ

2

2
.

(ED1) For all 0 < r < r0 , there exists a constant ω(r) ≤ 1/2 such that for all υ ∈ Υ◦(r)
and |µ| ≤ g

sup
γ∈IRp

log IE exp

{
µ
〈γ,∇ζ(υ)−∇ζ(υ∗)〉

ω(r)‖V0γ‖

}
≤ ν20µ

2

2
.

(L0) There exists a symmetric p∗ × p∗ -matrix D2
0 such that such that it holds on the set

Υ◦(r0) for all r ≤ r0 ∣∣∣∣∇IEL(υ,υ∗)−D2
0(υ − υ∗)

‖D0(υ − υ∗)‖

∣∣∣∣ ≤ δ(r).

This condition together with the identity ∇IEL(υ∗) = 0 implies∣∣∣∣ −2IEL(υ,υ∗)

‖D0(υ − υ∗)‖2
− 1

∣∣∣∣ ≤ δ(r).

The global conditions are:

(Lr) For any r > r0 there exists a value b(r) > 0 , such that

−IEL(υ,υ∗)

‖V0(υ − υ∗)‖2
≥ b(r).

11



(Er) For any r ≥ r0 there exists a constant ν0 > 0 and a constant g(r) > 0 such that

sup
υ∈Υ◦(r)

sup
µ≤g(r)

sup
γ∈IRp

log IE exp

{
µ
〈∇ζ(υ),γ〉
‖V0γ‖

}
≤ ν20µ

2

2
.

Our results are stated for g(r) ≡ g > 0 , however, an extension to the case g(r) → 0 can
be made similarly to Spokoiny (2012).

Finally we specify the regularity conditions. We begin by representing the information and the
covariance matrices in block form:

D2
0 =

(
D2

0 A0

A>0 H2
0

)
, V2

0 =

(
V 2
0 B0

B>0 Q2
0

)
.

The identifiability conditions in Spokoiny (2012) ensure that the matrix D0 is positive and sat-
isfies a2D2

0 ≥ V2
0 for some a > 0 . Here we restate these conditions in the special block form

which is specific for the (θ,η) -setup.

(I) There are constants a > 0 and ρ < 1 such that

a2D2
0 ≥ V 2

0 , a2H2
0 ≥ Q2

0, a2D2
0 ≥ V2

0. (A.1)

and

‖D−10 A0H
−2
0 A>0D

−1
0 ‖∞ ≤ ρ. (A.2)

The quantity ρ bounds the angle between the target and nuisance subspaces in the tangent
space. The regularity condition (I) ensures that this angle is not too small and hence, the
target and nuisance parameters are identifiable. In particular, the matrix D̆2

0 is well posed
under I .

The bounds in (A.1) are given with the same constant a only for simplifying the notation. One
can show that the last bound on D2

0 follows from the first two and (A.2) with another constant
a′ depending on a and ρ only.

B Bracketing and upper function devices

This section briefly overviews the main constructions of Spokoiny (2012) including the brack-
eting bound and the upper function results. The bracketing bound describes the quality of
quadratic approximation of the log-likelihood process L(υ) in a local vicinity of the point υ∗ ,
while the upper function method is used to show that the full MLE υ̃ belongs to this vicinity with
a dominating probability. Given r > 0 , define the local set

Υ◦(r)
def
=
{
υ : (υ − υ∗)>V2

0(υ − υ∗) ≤ r2
}
.

12



For ε = (δ, %) , define the bracketing quadratic processes Lε(υ,υ
∗) and Lε(υ,υ

∗) :

Lε(υ,υ
∗)

def
= (υ − υ∗)>∇L(υ∗)− ‖Dε(υ − υ∗)‖2/2,

D2
ε

def
= D2

0(1− δ)− %V2
0, (B.1)

and accordingly for ε = −ε = (−δ,−%) . The next result restates the local bracketing bound
of Spokoiny (2012) in the semiparametric framework. The imposed conditions and the involved
constants ν0 , δ(r) , and ω(r) are explained in Section A. The presented results implicitly
assume that p∗ is large, x is large as well to ensure that e−x is negligible. A proper choice is
x = Cp∗ for a fixed C .

Theorem B.1 (Spokoiny (2012), Theorem 3.1). Assume (ED1) and (L0) . Let for some r ,
the values % ≥ 3ν0 ω(r) and δ ≥ δ(r) be such that D2(1− δ)− %V2

0 ≥ 0 . Then

Lε(υ,υ
∗)−♦ε(r) ≤ L(υ,υ∗) ≤ Lε(υ,υ

∗) +♦ε(r), υ ∈ Υ◦(r),

where the random variables ♦ε(r),♦ε(r) fulfill on a random set Ω(x) of dominating proba-
bility

♦ε(r) ≤ C % (p∗ + x), ♦ε(r) ≤ C % (p∗ + x). (B.2)

In fact, Theorem 3.1 of Spokoiny (2012) states the following bound:

IP
{
%−1♦ε(r) ≥ z(Q, x)

}
≤ exp

(
−x
)
.

with Q = 2.4p∗ and

z(Q, x) =

{ (
1 +
√
x + Q

)2
if 1 +

√
x + Q < g

ν0{
1 + ν0

g
(x + Q) + g

2ν0

}2
otherwise.

Under the assumption that g is sufficiently large, that is, g/ν0 � p∗ , we can apply z(Q, x) ≈
x + Q ≤ C(p∗ + x) , and the result of Theorem B.1 follows.

The bracketing result of Theorem B.1 is local in the sense that it only applies for υ ∈ Υ◦(r) .
Following to the general approach of Spokoiny (2012) we accompany it with the large deviation
bound on the concentration probability IP

(
υ̃ ∈ Υ◦(r)

)
when the local radius r exceeds some

level r0 which has to be sufficiently large, namely r20 ≥ Cp∗ . We adopt the upper function
approach from Spokoiny (2012); cf. Corollary 4.4 therein. Again the constants g(r) and b(r)
are introduced in Section A.

Theorem B.2 (Spokoiny (2012), Theorem 4.1). Suppose (Er) and (Lr) with b(r) ≡ b . If
for r ≥ r0 , the following conditions are fulfilled:

1 +
√
x + Q ≤ 3ν20g(r)/b,

6ν0
√
x + Q ≤ rb, (B.3)
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then υ̃ ∈ Υ◦(r0) on a random set Ω(x) of dominating probability. The same bound holds for
the probability υ̃θ∗ ∈ Υ◦(r0) where υ̃θ∗ maximizes L(υ,υ∗) subject to Π0υ = θ∗ :

υ̃θ∗
def
= argmax

υ∈Υ
Π0υ=θ∗

L(υ,υ∗).

Remark B.1. The condition (B.3) helps to understand which r0 ensures prescribed concentra-
tion properties of υ̃ and υ̃θ∗ . Namely, if g(r) is large enough, then (B.3) follows from the
bound

r0 ≥ 6b−1ν0
√
x + Q.

C Deviation bounds for quadratic forms

The following general result from Spokoiny (2013) helps to control the deviation for quadratic
forms of type ‖IBξ‖2 for a given positive matrix IB and a random vector ξ . It will be used
several times in our proofs. Suppose that

log IE exp
(
γ>ξ

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g. (C.1)

For a symmetric matrix IB , define

p = tr(IB2), v2 = 2 tr(IB4), λ∗
def
= ‖IB2‖∞

def
= λmax(IB

2).

We suppose that λ∗ ≤ 1 , otherwise we should replace everywhere IB with IB/λ∗ .

Let g be shown in (C.1). Define ωc by the equation

ωc(1 + ωc)

(1 + ω2
c )

1/2
= gp−1/2.

Define also µc = ω2
c/(1 + ω2

c ) ∧ 2/3 . Note that ω2
c ≥ 2 implies µc = 2/3 . Further define

y2c = (1 + ω2
c )p, 2xc = µcy

2
c + log det{IIp − µcIB2}. (C.2)

Theorem C.1 (Spokoiny (2013)). Let ξ fulfill (C.1) with g2 ≥ 2p . Then we have for x ≤ xc
with xc from (C.2):

IP
(
‖IBξ‖2 ≥ z(x, IB)

)
≤ 2e−x + 8.4e−xc ,

z(x, IB)
def
=

{
p + 2vx1/2, x ≤ v/18,

p + 6x v/18 < x ≤ xc.

For x > xc

IP
(
‖IBξ‖2 ≥ zc(x, IB)

)
≤ 8.4e−x, zc(x, IB)

def
=
∣∣yc + 2(x− xc)/gc

∣∣2.
14



It appears that the bound is slightly different in two zones separated by some specific value xc
from (C.2). It is large in typical situations as xc ∼= g (it is of order

√
n in the i.i.d. case). For

x ≤ xc , we obtain the same type of bounds as in the Gaussian case, for x > xc they are a bit
worse.

D Proofs

This section collects the proofs of the results in chronological order.

D.1 Proof of Theorem 2.1

Define the m×m matrices H2
ε and H2

ε by

H2
ε = H2

0 (1− δ)− %Q2
0, H2

ε = H2
0 (1 + δ) + %Q2

0;

cf. (B.1). Below we fix some constant r which is assumed to be large enough for ensuring the
dominating probability for the concentration event Cε(r) defined as

Cε(r)
def
=
{
‖V0(υ̃ − υ∗)‖ ≤ r, ‖V0(υ̃θ∗ − υ∗)‖ ≤ r,

‖V0D
−2
ε ∇‖ ≤ r, ‖Q0H

−2
ε ∇η‖ ≤ r

}
.

(D.1)

Note that the conditions ‖V0(υ̃ − υ∗)‖ ≤ r and ‖V0(υ̃θ∗ − υ∗)‖ ≤ r can be represented
as {υ̃ ∈ Υ◦(r)} and {υ̃θ∗ ∈ Υ◦(r)} . Similar representation holds for

υ̃ε
def
= D−2ε ∇ = argmin

υ
Lε(υ,υ

∗),

η̃ε
def
= H−2ε ∇η = argmin

υ∈Υ
Π0υ=θ∗

Lε(υ,υ
∗).

For instance,
{
‖V0D

−2
ε ∇‖ ≤ r

}
=
{
υ̃ε ∈ Υ◦(r)

}
. Later we show that a proper choice of

r ensures a dominating probability of the random set Cε(r) ; see Section D.1.

We first show that the bound (2.4) is fulfilled on the set Cε(r) from (D.1) with

∆+
ε (r) = ♦ε(r) +♦ε(r) +

τε
1− τε

∥∥D−10 ∇
∥∥2 +

τε
1 + τε

∥∥H−10 ∇η

∥∥2, (D.2)

∆−ε (r) = ♦ε(r) +♦ε(r) +
τε

1 + τε

∥∥D−10 ∇
∥∥2 +

τε
1− τε

∥∥H−10 ∇η

∥∥2. (D.3)

In analogy with Spokoiny (2012), the quantity ∆ε(r) with

∆ε(r) = ∆+
ε (r) +∆−ε (r)

= 2♦ε(r) + 2♦ε(r) +
2τε

1− τ 2ε

(∥∥D−10 ∇
∥∥2 +

∥∥H−10 ∇η

∥∥2) , (D.4)
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can be called the semiparametric spread. It can be seen as a payment for the bracketing device.
Below we show that ∆ε(r) ≤ C τε (p∗ + x) with a dominating probability.

We start with some technical results about the maximum of the upper and lower quadratic

processes Lε(υ,υ
∗) and Lε(υ,υ

∗) . Remind the notation ∇ def
= ∇L(υ∗) .

Lemma D.1. It holds

sup
υ

Lε(υ,υ
∗) =

1

2

∥∥D−1ε ∇
∥∥2, sup

υ
Lε(υ,υ

∗) =
1

2

∥∥D−1ε ∇
∥∥2, (D.5)

where supυ means the maximum over all υ ∈ IRp∗ . Moreover, on the random set
{
‖V0D

−2
0 ∇‖ ≤

r
}

it holds

sup
υ∈Υ◦(r)

Lε(υ,υ
∗) = sup

υ
Lε(υ,υ

∗) =
1

2

∥∥D−1ε ∇
∥∥2.

Proof. The identity (D.5) directly follows by maximizing the quadratic expression

Lε(υ,υ
∗) = (υ − υ∗)>∇− ‖Dε(υ − υ∗)‖2/2,

with the maximum at υ = υ∗ + D−2ε ∇ . Similarly, the maximum of Lε(υ,υ
∗) is achieved at

υ = υ∗ + D−2ε ∇ ∈ Cε(r) which is within Υ◦(r) under the condition

‖V0D
−2
ε ∇‖ ≤ ‖V0D

−2
0 ∇‖ ≤ r.

This yields the claim.

The next lemma states similar results for the constrained maximum of Lε and Lε subject

to Π0υ = θ∗ . The proof is the same as for Lemma D.1. Remember the notation ∇θ
def
=

∇θL(υ∗) , ∇η
def
= ∇ηL(υ∗) . We also use the block representation of D2

0 :

D2
0 =

(
D2

0 A0

A>0 H2
0

)
.

Lemma D.2. It holds

sup
υ:Π0υ=θ∗

Lε(υ,υ
∗) =

1

2

∥∥H−1ε ∇η

∥∥2, (D.7)

Moreover, it holds on the random set
{
‖Q0H

−2
0 ∇η‖ ≤ r

}
sup

υ∈Υ◦(r):Π0υ=θ∗
Lε(υ,υ

∗) = sup
υ:Π0υ=θ∗

Lε(υ,υ
∗) =

1

2

∥∥H−1ε ∇η

∥∥2.
Further, define the process

L(υ,υ∗) = (υ − υ∗)>∇− ‖D0(υ − υ∗)‖2/2.
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Remember the definition of ∇̆θ and D̆2
0 :

∇̆θ
def
= ∇θ − A0H

−2
0 ∇η,

D̆2
0

def
= D2

0 − A0H
−2
0 A>0 .

Lemma D.3. It holds on the random set
{
‖V0D

−2
0 ∇‖ ≤ r, ‖Q0H

−2
0 ∇η‖ ≤ r

}
sup
υ

L(υ,υ∗) = sup
υ∈Υ◦(r)

L(υ,υ∗) =
1

2

∥∥D−10 ∇
∥∥2,

sup
υ∈Υ◦(r):Π0υ=θ∗

L(υ,υ∗) = sup
υ:Π0υ=θ∗

L(υ,υ∗) =
1

2

∥∥H−10 ∇η

∥∥2,
sup
υ

L(υ,υ∗)− sup
υ:Π0υ=θ∗

L(υ,υ∗) =
1

2

∥∥D̆−10 ∇̆θ

∥∥2. (D.8)

Proof. First consider the adaptive cases with A0 = 0 yielding D̆2
0 = D2

0 and ∇̆θ = ∇θ .
Then the process L(υ,υ∗) can be decomposed as

L(υ,υ∗) = (θ − θ∗)>∇θ −
1

2
‖D0(θ − θ∗)‖2

+ (η − η∗)>∇η −
1

2
‖H0(η − η∗)‖2,

and the partial optimization subject to θ = θ∗ yields the results (D.6) and (D.7). Note that the
constrained maximum is attained at η = η∗ +H−20 ∇η .

The general case can be reduced to the adaptive one by the change of variable. With γ
def
=

η − η∗ +H−20 A>0 (θ − θ∗) , one can represent L(υ,υ∗) in the form

L(υ,υ∗) = (θ − θ∗)>∇̆θ − ‖D̆0(θ − θ∗)‖2/2 + γ>∇η − ‖H0γ‖2/2,

which corresponds to the decomposition in the adaptive case.

On the random set {υ̃ ∈ Υ◦(r), υ̃θ∗ ∈ Υ◦(r)} , it holds

L̆(θ̃,θ∗) = L̆(θ̃)− L̆(θ∗) = sup
υ∈Υ◦(r)

L(υ,υ∗)− sup
υ∈Υ◦(r):Π0υ=θ∗

L(υ,υ∗).

Theorem B.1 implies

sup
υ∈Υ◦(r)

Lε(υ,υ
∗)−♦ε(r) ≤ sup

υ∈Υ◦(r)
L(υ,υ∗) ≤ sup

υ∈Υ◦(r)
Lε(υ,υ

∗) +♦ε(r). (D.9)

The same bound applies to the maximum taken over the subset {υ ∈ Υ◦(r) : Π0υ = θ∗} .
By Lemmas D.1 and D.2, on the random set Cε(r) , one can replace the sup of Lε(υ,υ

∗) over
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Υ◦(r) by the sup over the whole vector space IRp∗ . Putting all the obtained bounds together
yields

L̆(θ̃,θ∗) ≥ sup
υ

Lε(υ,υ
∗)− sup

υ:Π0υ=θ∗
Lε(υ,υ

∗)−♦ε(r)−♦ε(r),

L̆(θ̃,θ∗) ≤ sup
υ

Lε(υ,υ
∗)− sup

υ:Π0υ=θ∗
Lε(υ,υ

∗) +♦ε(r) +♦ε(r).
(D.10)

Define

�ε
def
= sup

υ
Lε(υ,υ

∗)− sup
υ

L(υ,υ∗),

�ε
def
= sup

υ
L(υ,υ∗)− sup

υ
Lε(υ,υ

∗).

Lemmas D.1 implies

2�ε =
∥∥D−1ε ∇

∥∥2 − ∥∥D−10 ∇
∥∥2,

2�ε =
∥∥D−10 ∇

∥∥2 − ∥∥D−1ε ∇
∥∥2.

Define now

αε
def
=
∥∥D0D

−2
ε D0 − IIp∗

∥∥
∞ ,

αε
def
=
∥∥IIp∗ −D0D

−2
ε D0

∥∥
∞ .

The regularity conditions (I) a2D2
0 ≥ V2

0 implies for D2
ε = D2

0(1− δ)− %V2
0

D2
0(1− τε) ≤ D2

ε ≤ D2
0,

D2
0 ≤ D2

ε ≤ D2
0(1 + τε).

with τε = δ + %a−2 so that the quantities αε and αε satisfy

αε ≤
1

1− τε
− 1 =

τε
1− τε

, αε ≤ 1− 1

1 + τε
=

τε
1 + τε

.

This yields

2�ε ≤ αε

∥∥D−10 ∇
∥∥2, 2�ε ≤ αε

∥∥D−10 ∇
∥∥2.

Similarly by using the result of Lemma D.2

�ε,1
def
= sup

υ:Π0υ=θ∗
Lε(υ,υ

∗)− sup
υ:Π0υ=θ∗

L(υ,υ∗)

=
1

2

(∥∥H−1ε ∇η

∥∥2 − ∥∥H−10 ∇η

∥∥2) ≤ αε

2

∥∥H−10 ∇η

∥∥2,
�ε,1

def
= sup

υ:Π0υ=θ∗
L(υ,υ∗)− sup

υ:Π0υ=θ∗
Lε(υ,υ

∗)

=
1

2

(∥∥H−10 ∇η

∥∥2 − ∥∥H−1ε ∇η

∥∥2) ≤ αε

2

∥∥H−10 ∇η

∥∥2.
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Further, (D.10) and (D.8) yield

L̆(θ̃,θ∗) ≥ 1

2

∥∥D̆−10 ∇̆θ

∥∥2 −�ε −�ε,1 −♦ε(r)−♦ε(r),

L̆(θ̃,θ∗) ≤ 1

2

∥∥D̆−10 ∇̆θ

∥∥2 + �ε + �ε,1 +♦ε(r) +♦ε(r).

The proof of (D.2) and (D.3) is completed.

The next step is to bound the spread ∆ε(r) from (D.4). The error terms ♦ε(r) and ♦ε(r)
follow the bound (B.2) of Theorem B.1 and they are of order %(p∗ + x) . Further we have to
show that τε‖D−10 ∇‖2 is small relative to ‖ξ̆‖2 and similarly for τε‖H−10 ∇η‖2 . Theorem C.1

provides a general deviation probability bound for such quadratic forms. In particular, for IB
def
=

D−10 V2
0D
−1
0 and x ≤ xc

IP
(
‖D−10 ∇‖2 > z(x, IB)

)
≤ 2e−x + 8.4e−xc ,

where z(x, IB) ≤ tr(IB) + 6x and the constant xc is large; see Section C for a precise
formulation. Under the regularity condition (I) it holds tr(IB) ≤ a2p∗ . A similar bound holds
for ‖H−10 ∇η‖2 . We conclude that the spread ∆ε(r) can be bounded with a probability of
order 1− e−x by C τε(p

∗ + x) for a fixed constant C .

Further we have to show that the random set Cε(r) from (D.1) is of dominating probability if
r2 = C(p∗ + x) for a proper constant C . By definition

Cε(r) =
{
υ̃ ∈ Υ◦(r), υ̃θ∗ ∈ Υ◦(r), ‖V0D

−2
ε ∇‖ ≤ r, ‖Q0H

−2
ε ∇η‖ ≤ r

}
.

Theorem B.2 yields

IP
{
υ̃ 6∈ Υ◦(r)

}
+ IP

{
υ̃θ∗ /∈ Υ◦(r)

}
≤ 2e−x.

To control the probability IP
(
‖V0D

−2
ε ∇‖ > r

)
we apply Corollary C.1 with

IB = D−10 V2
0D
−1
0 , .

With the definitions from Section C

IP
(
‖V0D

−2
ε ∇‖ > r

)
≤ IP

(
‖D−1ε ∇‖ × ‖V0D

−1
ε ‖∞ > r

)
≤ IP

(
‖D−10 ∇‖ × ‖V0D

−1
0 ‖∞ ≥ (1− τε)r

)
≤ IP

(
‖D−10 ∇‖ ≥ (1− τε)r/a

)
≤ IP

{
‖D−10 ∇‖2 ≥ z(x, IB)

}
< e−x + 8.4e−xc ,

provided that r2 > a4(1 − τε)−2(p∗ + 6x) and x ≤ xc . By similar arguments with IBη =
H−10 Q2

0H
−1
0 in place of IB

IP
(
‖Q0H

−2
ε ∇ε‖ > r

)
< e−x + 8.4e−x

η
c .
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Putting the obtained bounds together shows that for x ≤ xc and r20 ≥ C1(p
∗ + x) , it holds

1− IP
(
Cε(r0)

)
≤ C2e

−x,

for some fixed constants C1 and C2 depending on τε and a only. This completes the proof.

D.2 Proof of Theorem 2.2

We show that

2∆∗ε(r)
def
=

2∆ε(r)

1− τε
+

τε
1− τε

∥∥D−10 ∇
∥∥. (D.11)

First we derive the expansion for the whole parameter vector υ . On the set Cε(r) , the brack-
eting bound (D.9) and (D.5) imply

L(υ̃,υ∗) ≥ sup
υ

Lε(υ,υ
∗)−♦ε(r)

= ‖D−1ε ∇‖2/2−♦ε(r)

≥ ‖D−1ε ∇‖2/2−♦ε(r)−�ε −�ε .

The bracketing bound (D.9) applied at υ̃ implies

L(υ̃,υ∗) ≤ Lε(υ̃,υ
∗) +♦ε(r).

These two bounds together yield by the definition of Lε(υ,υ
∗)

(υ̃ − υ∗)>∇− 1

2

∥∥Dε(υ̃ − υ∗)
∥∥2 ≥ 1

2
‖D−1ε ∇‖2 −♦ε(r)−♦ε(r)−�ε −�ε,

and thus∥∥Dε(υ̃ − υ∗)−D−1ε ∇
∥∥2 ≤ 2

{
�ε + �ε +♦ε(r) +♦ε(r)

}
≤ 2∆ε . (D.12)

The condition (I) implies the inequality
∥∥D−10 D2

εD
−1
0

∥∥
∞ ≥ 1− τε and hence,∥∥D0D

−2
ε D0

∥∥
∞ ≤ (1− τε)−1.

This and (D.12) provide ∥∥D0(υ̃ − υ∗)−D0D
−2
ε ∇

∥∥2 ≤ 2∆ε

1− τε
.

Similarly∥∥D0D
−2
ε ∇−D−10 ∇

∥∥ =
∥∥(D0D

−2
ε D0 − IIp∗

)
D−10 ∇

∥∥ ≤ τε
1− τε

∥∥D−10 ∇
∥∥.
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Putting together the last two bounds yields

∥∥D0(υ̃ − υ∗)−D−10 ∇
∥∥ ≤ √ 2∆ε

1− τε
+

τε
1− τε

∥∥D−10 ∇
∥∥.

It remains to note that for any u ∈ IRp , η ∈ IRm , and w = (u,η) ∈ IRp∗ , it holds with

γ
def
= η +H−20 A>0 u ∈ IRm∥∥D0w‖2 =

∥∥D̆0u
∥∥2 +

∥∥H0γ
∥∥2 ≥ ∥∥D̆0u

∥∥2. (D.13)

Also we use Π0D
−2
0 ∇ = D̆−20 ∇̆ .This implies for w = υ̃ − υ∗ by (D.13)∥∥D̆0(θ̃ − θ∗)− D̆−10 ∇̆

∥∥ =
∥∥D̆0(θ̃ − θ∗ − D̆−20 ∇̆)

∥∥ ≤ ∥∥D0(w −D−20 ∇)
∥∥,

and the assertion (D.11) follows.

D.3 Proof of Theorem 2.3

Choose xn →∞ and xn = o(n1/3) , e.g. xn = C log(n) . Then βn → 0 and IP (Ω(xn))→
1 . Moreover, in the i.i.d. setting xc ∼= g ∼=

√
n and thus xn ≤ xc . Similarly for n large enough

with r20 = r20(xn) = C(p∗ + xn)

τε ∼= r0/
√
n ∼=

√
(p∗ + xn)/n < n−1/3 ≤ 1/2.

Also the i.i.d. structure of the data yields

D̆2
0 = nF̆.

Now Theorems 2.1 and 2.2 can be applied yielding the first statement of the theorem. It remains
to check asymptotic standard normality of the sum

ξ̆ = (nF̆)−1/2∇̆ = (nF̆)−1/2
n∑
i=1

∇̆i,

with

∇̆i
def
= ∇θ`(Yi,υ)− FθηF−1ηη∇η`(Yi,υ).

The result follows from the central limit theorem because Cov(∇̆i) = F̆ for all i .

D.4 Proof of Theorem 2.4

The first step of the proof shows that for n large enough, the MLE υ̃ ∈ IRpn belongs with
probability close to one to the δ = 1/n vicinity Sδ of the set S from (2.7). The second step

is to show that with a probability exceeding a fixed constant α > 0 , the profile MLE θ̃ differs
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significantly from X1 which is the profile MLE in the linear Gaussian model. The third step
focuses on the case βn →∞ .

1. First we show that for n large enough, the MLE υ̃ ∈ IRpn lies in Sδ with probability close
to one. For this we check that the maximum of L(υ) on Scδ is smaller than a similar maximum
on S for “typical” values of X and n large enough. Indeed, for any point υ ∈ Scδ

L(υ, 0) ≤ max
υ∈Scδ

L(υ, 0) = max
υ∈Scδ

{
nX>υ − n‖υ‖2/2

}
≤ max

υ∈IRpn

{
nX>υ − n‖υ‖2/2

}
=
n

2
‖X‖2.

Further, introduce a random set of “typical” values X :

C1
def
=

{
X :

1

2

(pn
n

)3/2
< ‖X‖3 <

(
2pn
n

)3/2

, and |X1| ≤ 1

}
.

It is straightforward to see that IP
(
X ∈ C1

)
is exponentially close to one for n large. Below

we assume that X ∈ C1 and study the value L(υ, 0) for υ ∈ S . Let also n be large
enough to ensure that

21/3 − 1

21/6

(pn
n

)1/2
≥ 1

2

(pn
n

)3/4
=

1

2

√
βn/n. (D.14)

Introduce XS as the closest point in S to X with |υ1| ≥ |X1| . This point always exists by
the definition of S . Denote

δ(X) = ‖X −XS‖ = |X1 − υ1|.

By construction of S , it holds δ(X) ≤ 0.5
√
βn/n for X ∈ C1 . For n satisfying (D.14) this

also yields
[
‖X‖ − δ(X)

]3 ≥ 1/2‖X‖3 . Now we have for X ∈ C1

max
υ∈S

L(υ, 0) ≥ L(XS, 0)

≥ n‖X‖2 − n|X1|δ(X)− n

2

{
‖X‖2 − 2|X1|δ(X) + δ2(X)

}
+n
{
‖X‖2 − 2|X1|δ(X) + δ2(X)

}3/2
≥ n

2
‖X‖2 − nδ2(X) + n

{
‖X‖ − δ(X)

}3
>
n

2
‖X‖2 − βn

4
+
n

2
‖X‖3 > n

2
‖X‖2 = max

υ∈Scδ
L(υ, 0).

This implies υ̃ ∈ Sδ .

2. Now we discuss the case when β2
n = p3n/n → (6c)4 for some c ≥ 0 and show that the

profile MLE θ̃ deviates significantly from X1 on a random set of positive probability. Define for
each n ∈ N

Cn
def
= C1 ∩

{
‖X −XS‖ ≥

1

6

√
βn/n

}
= C1 ∩

{
|X1 −XS,1| ≥

1

6

√
βn/n

}
.
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It is easy to see that IP (Cn) ≥ α for some fixed α > 0 and all n . It remains to note that on
the set Cn it holds under (D.14)

‖D̆0(θ̃ − θ∗)− ξ̆‖ =
√
n|υ̃1 −X1|

≥
√
n|X1 −XS,1| −

√
n/n

≥ 1

6
β1/2
n − 1√

n
→

{
∞ p3n/n→∞,
c p3n/n→ (6c)4,

which yields the claim.

3. Finally consider the case when βn → ∞ . Fix any sequence cn such that cn → 0 and
c2nβn →∞ , e.g. cn = β

−1/4
n . Consider the random set

Cn
def
= C1 ∩

{
‖X −XS‖ ≥

cn
6

√
βn/n

}
= C1 ∩

{
|X1 −XS,1| ≥

cn
6

√
βn/n

}
.

Then IP (Cn)→ 1 and on Cn

‖D̆0(θ̃ − θ∗)− ξ̆‖ ≥
cn
6
β1/2
n − 1√

n
→∞,

as required.
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