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Abstract

We consider the setting of estimating the mean of a random variable by a sequential stopping rule
Monte Carlo (MC) method. The performance of a typical second moment based sequential stopping
rule MC method is shown to be unreliable in such settings both by numerical examples and through
analysis. By analysis and approximations, we construct a higher moment based stopping rule which
is shown in numerical examples to perform more reliably and only slightly less efficiently than the
second moment based stopping rule.

1 Introduction

Given i.i.d. random variables X1, X2, . . . the typical way of approximating their expected value µ = E[X]
using M samples is the sample average

XM :=
M∑

i=1

Xi

M
.

We consider the objective of choosing M sufficiently large so that the error probability satisfies

P
(∣∣∣XM − µ

∣∣∣ > TOL
)
≤ δ, (1)

for some fixed small constants TOL > 0 and δ > 0. Clearly, P
(∣∣∣XM − µ

∣∣∣ > TOL
)

decreases as M

increases, but at the same time the cost of computing XM increases. From an application and cost
point of view it is therefore of interest to derive theory or algorithms that will give upper bounds on M
satisfying (1) that are not far too large. When a-priori information about the distribution of X is available,
for example if X is a bounded r.v. with an explicitly given bound, it is possible to derive good theoretical
upper bounds for M using Hoeffding type inequalities, cf. Hoeffding [7]. In the general case when no
or little information of the distribution is given, little theory is however known, and the typical way of
estimating E[X] using a sufficiently large number of samples M is through a sequential stopping rule.
Below we give the general structure of the class of sequential stopping rules we have in mind.

(I) Generate a batch of M i.i.d. samples X1, X2, . . . , XM.

(II) Infer distributive properties of XM from the generated batch of samples through higher order
sample moments, e.g. the sample mean and the sample variance.

(III) Based on the sample moments, estimate the error probability. When, based on the estimated
probability, (1) is violated, increase the number of samples M and return to step (I).
Else, break and accept M.

Certainly the most natural and important representative of this class of algorithms is given in Algo-
rithm 1. The algorithm estimates the error probability by appealing to the Central Limit Theorem (CLT).
Consequently, it only relies on the sample variance in addition to the sample mean. In particular, the
algorithm only requires mild additional assumptions on X, namely square integrability.

In the literature, various second moment based sequential stopping rules have been introduced to
estimate the steady-state mean of stochastic processes, see for example Law and Kelton [10, 11]
for comparisons of the performance of different stopping rules and Bratley, Bennet, and Fox [2] for an
overview. Second moment based sequential stopping rules generally tend to perform well in the asymp-
totic regime when TOL → 0. In fact, Chow and Robbins [3] proved that under very loose restrictions,
second moment based sequential stopping rules such as Algorithm 1 are asymptotically consistent,
meaning that for a fixed δ,

lim
TOL→0

P
(∣∣∣XM − µ

∣∣∣ > TOL
)

= δ,
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Algorithm 1 Sample Variance Based Stopping Rule
Input: Number of samples M0, accuracy TOL, confidence δ, the cumulative distribution function of
the standard normal distributed r.v. Φ(x).
Output: XM.

Set n = 0, generate Mn samples {Xi}
Mn
i=1 and compute the sample variance

σ2
Mn

:=
1

Mn − 1

Mn∑
i=1

(Xi − XMn )2. (2)

while 2
(
1 − Φ(

√
Mn TOL /σMn )

)
> δ do

Set n = n + 1 and Mn = 2Mn−1.

Generate a batch of Mn i.i.d. samples {Xi}
Mn
i=1.

Compute the sample variance σ2
Mn

as given in (2).

end while
Set M = Mn, generate samples {Xi}

M
i=1 and compute the output sample mean XM. (See Section 2 for

a motivation of the choice of the stopping criterion in the while loop above.)

and in Glynn and Whitt [5] the consistency property is proven to hold for such stopping rules applied
to more general stochastic processes. In the non-asymptotic regime – when TOL and δ are finite –
Hickernell et al. [6] recently developed a second moment based MC method which guarantees to meet
condition (1) under the assumption that an upper bound is given for the kurtosis of the r.v. to be sampled
prior to sampling it. When no moment bounds are given prior to sampling, however, Bahadur and
Savage [1] proved that it is not possible to develop an algorithm guaranteed to meet condition (1). This
is somewhat unsatisfactory as in applications the non-asymptotic regime with little prior information on
the r.v. is a setting we believe is often encountered. While consistency is clearly a reassuring property
in any case, in many situations one is in dire need of quantitative estimates of the error probability
in the non-asymptotic regime, for instance when one tries to optimize the computational cost needed
to meet a certain accuracy target using an adaptive algorithm. We could not find such a quantitative,
non-asymptotic analysis of sequential stopping algorithms like Algorithm 1 in the literature.

In this work we demonstrate by numerical examples that second moment based stopping rules can
fail convincingly in the non-asymptotic regime, especially when the underlying distribution X is heavy-
tailed, see Section 2. We proceed by giving an error analysis of Algorithm 1 specifically in the non-
asymptotic regime. We note a-priori that there are two obvious approximation errors in the underlying
assumptions of Algorithm 1:

(I) The algorithm appeals to the CLT to approximate the tail probabilities for XM even though M is
finite.

(II) In doing so, it uses the sample variance σ2
M instead of the true variance σ2.

To get a hold on the error probability (1) despite the fact that the distribution of the sample mean
XM is unknown, we again appeal to the central limit theorem, but we adjust the estimate by adding a
Berry-Esseen type term, which extends the validity of the estimate to the non-asymptotic case, thereby
dealing with the first approximation error. As the error probability (1) is a tail probability for the dis-
tribution of the sample mean and the Berry-Esseen theorem itself is rather aimed at being sharp at
the center of the distribution, we appeal to non-uniform versions of the Berry-Esseen theorem, see
Theorem 1.1 and Corollary 1.2 below. However, both intuition and numerical tests suggest that the
approximation of the tail probabilities by the non-uniform Berry-Esseen theorem is far too pessimistic
at least when the second approximation error is small, i.e., when the computed sample variance is
actually close to the true variance. In this case, we adjust the normal distribution by a less stringent
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extra term, which is obtained from an Edgeworth expansion of the distribution function of the sample
mean XM, cf. Feller [4].1

Having identified possible origins of failure of Algorithm 1, we propose an improvement of Algorithm 1.
However, this variant requires third and fourth sample moments, see Section 4. Finally, in Section 5,
we test the new algorithm numerically. We find that the new stopping Algorithm 2 indeed satisfies the
desired confidence level δ on the error probability (1) even when δ � TOL.

As already discussed above, we need to approximate the unknown distribution of a sample mean in a
general, non-asymptotic regime. The uniform and non-uniform Berry-Esseen theorems provide quan-
titative bounds for the difference between the true distribution of the sample mean and its asymptotic
limit, namely the normal distribution. The following Berry-Esseen bounds, which can be found in their
classical formulations in Petrov [13], is here presented with the present optimal bound constants.

Theorem 1.1 (Uniform and Non-Uniform Berry-Esseen). Suppose X1, X2, . . . are i.i.d. r.v. with E[X] = 0,

σ2 = Var (X) and β =
E[|X|3]
σ3 < ∞. Then the following uniform bound∣∣∣∣∣∣∣P

 1
σ
√

n

n∑
i=1

Xi < x

 − Φ(x)

∣∣∣∣∣∣∣ ≤ 0.3328 ·
β + 0.429
√

n

holds, cf. Shevtsova [14]. Furthermore, the following non-uniform bound holds∣∣∣∣∣∣∣P
 1
σ
√

n

n∑
i=1

Xi < x

 − Φ(x)

∣∣∣∣∣∣∣ ≤ 18.1139 ·
β

√
n(1 + |x|3)

,

cf. Hickernell et al. [6], and the references therein.

For the purpose of this work, it will be useful to combine the uniform and non-uniform Berry-Esseen
bound as follows.

Corollary 1.2 (Berry-Esseen). Suppose X1, X2, . . . are i.i.d. r.v. with E[X] = 0. Then∣∣∣∣∣∣∣P
 1
σ
√

n

n∑
i=1

Xi < x

 − Φ(x)

∣∣∣∣∣∣∣ ≤ CBE(x, β)
√

n

where the bound function CBE : R→ [0,C0] is defined by

CBE(x, β) := min
(
0.3328 · (β + 0.429), 18.1139 ·

β

(1 + |x|3)

)
.

In the asymptotic regime, the distribution of P
(

1
σ
√

n

∑n
i=1 Xi < x

)
can be expressed by so called Edge-

worth expansions. Here we present the one-term Edgeworth expansion.

Theorem 1.3 (Edgeworth expansion, cf. Feller [4] p. 541). Suppose X1, X2, . . . are i.i.d. r.v. with a
distribution which is not a lattice distribution and E[X] = 0, σ2 = Var (X) and E

[
X3

]
< ∞. Then

P

 1
σ
√

n

n∑
i=1

Xi < x

 = Φ(x) +
(x2 − 1)e−x2/2

6
√

2πn

E
[
X3

]
σ3 + o

(
n−1/2

)
,

uniformly for x ∈ R.
1Note that here we are introducing a gap in the analysis: the estimate based on the non-uniform Berry-Esseen theorem is

reliable in the sense that it always leads to an upper bound of the error probability (1). For the Edgeworth expansion, however,
there might be situations when the true error probability is underestimated, and, consequently, the accuracy target might still
be missed. Numerical evidence, however, suggests that the estimate obtained from solely relying on the non-uniform Berry-
Esseen theorem is usually by orders of magnitude too pessimistic. Apart from intrinsic reasons, one reason might be that the
constants known in the non-uniform Berry-Esseen theorems might be far from being optimal. In the end, we think that the above
compromise between Berry-Esseen type estimations and estimations based on the Edgeworth expansion might be a good
compromise which retains the goal of reliably meeting the accuracy target – except maybe for very extreme situations – while
keeping a certain level of efficiency. We note, however, that it is also possible to construct even more conservative stopping rules
which are only based on the Berry-Esseen theorem.
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2 Stopping rule failures

Suppose we seek to estimate µ = E[X] using Monte Carlo simulation and we actually do know the
variance σ2 = Var (X). As before, our objective is to achieve P

(∣∣∣XM − µ
∣∣∣ > TOL

)
≤ δ, for some fixed,

small constants TOL, δ > 0. The CLT motivates the stopping rule

M =
C2

CLTσ
2

TOL2 , CCLT := Φ−1
(

2 − δ
2

)
, (3)

which would exactly fulfill our objective (1) in the asymptotic regime M → ∞. Of course, this conflicts
with our choice (3) for M, since we treat δ and TOL as finite constants. However, we can still estimate
the probability in (1) using Corollary 1.2 and obtain

P
(∣∣∣XM − µ

∣∣∣ > TOL
)

= P

√M

∣∣∣XM − µ
∣∣∣

σ
>

√
M TOL
σ


≤ 2

1 − Φ

 √M TOL
σ

 + 2CBE

 √M TOL
σ

, β

 1
√

M

= 2(1 − Φ(CCLT)) + 2CBE(CCLT, β)
1
√

M

= δ + 2
CBE(CCLT, β)

σCCLT
TOL

(4)

This means that in the worst case, the actual error probability could be δ + O (TOL) instead of δ.2 For
instance, in situations where the statistical confidence in the result is more stringent than the accuracy
so that δ � TOL, the asymptotically motivated choice of M in (3) could, granted the bound (4) is
sharp, fail to deliver the expected level of confidence. For most r.v. however, the bound (4) is far too
conservative, and one might ask whether it is reasonable to fear underestimating the error probability in
the fashion we have described. The following numerical example shows the existence of r.v. for which
the stopping rule (3) fails in the non-asymptotic regime

Example 2.1. The heavy-tailed Pareto-distribution has the probability distribution function

f (x) =

αxαmx−(α+1) if x ≥ xm

0 else,
(5)

where α, xm ∈ R+ are respectively the shape and the scale parameter. The moments of E[Xn] for the
Pareto r.v. only exists for n < α and, supposing α > 2, its mean and variance are given by

µ =
αxm

α − 1
and σ2 =

x2
mα

(α − 1)2(α − 2)
.

It is further easy to derive that for a Pareto r.v. with α = 3 + γ and 0 < γ < 1,

β =
E
[
|X − µ|3

]
σ3 = O

(
γ−1

)
.

This implies that there exists r.v. for which the second summand of the bound (4) can become arbitrary
large. So for such r.v. the stopping rule (3) might fail. Let us investigate by numerical approximations.
Considering the distribution with α = 3.1 (and xm = 1), yields a heavy-tailed r.v. with known mean,
variance and third moment. For a set of accuracies TOL ∈ [0.05, 0.2] and confidences δ = TOL`, ` = 1
and 2 we have numerically approximated P

(∣∣∣XM − µ
∣∣∣ > TOL

)
≤ δ using, in accordance with (3), the

stopping rule

M =

C2
CLTσ

2

TOL2


The results, illustrated in Figure 1, show that when δ � TOL, the sought confidence is far from met.

2Note that CCLT as defined in (3) grows only very slowly as δ decreases, since we have CCLT <
√

2 log(δ−1). So as a function
of δ, the factor in front of TOL is approximately constant.
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Figure 1: MC estimate using the stopping rule (3) for i.i.d. Pareto r.v. with parameters α = 3.1 and
xm = 1. The quantity P

(∣∣∣XM − µ
∣∣∣ > TOL

)
/δ (blue line) is plotted for the settings δ(TOL) = TOL` with

` = 0.5 (top), ` = 1 (middle), and ` = 2 (bottom). The probability of failure is estimated by pN(TOL) =

N−1 ∑N
i=1 1∣∣∣XM (ωi)−µ

∣∣∣>TOL with N = 107, and the error bars for the estimate of pN by 1.96
√

pN(1 − pN)/N.

The stopping rule fails when P
(∣∣∣XM − µ

∣∣∣ > TOL
)
/δ > 1. We observe that the smaller δ is relative to

TOL, the larger is the probability of failure for the stopping rule.

The demonstrated stopping rule failure motivated us to study and develop ways of constructing more
reliable stopping rules. In Section 3, we first analyze the stopping rule of Algorithm 1, and derive an
approximate upper bound for the failure probability expressed in terms of M,TOL and δ. In Section 4,
we develop a more reliable stopping rule algorithm, which in addition to sampled second moments of
the r.v. in question also depends on sampled third and fourth moments. The paper is concluded with
numerical examples comparing the reliability and computational cost of Algorithm 1 with the stopping
rule developed in Section 4.

3 Error analysis for Algorithm 1

Example 2.1 illustrate that for some r.v. the stopping rule in Algorithm 1 does not meet the accuracy-
confidence constraint (1). To construct a more reliable stopping rule, penalty terms have to be added to
the stopping criterion in Algorithm 1. Some care should be taken to make the penalty terms of the right
size: if too large penalties are added, the new stopping rule will be reliable but very inefficient, while if
too small penalty terms are added, the algorithm will of course be efficient but unreliable.
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In this section, we first derive an approximate upper bound for the failure probability

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

(6)

corresponding to the stopping rule of Algorithm 1 conditional on the (random) final number of sam-
ples M. Clearly, the bound for (6) will also be a r.v. Using the bound for (6), we thereafter construct
reasonable penalty terms to be added to the stopping criterion of our new stopping rule.

As a general idea, we are going to use a weighted average of one very reliable, but typically overly
pessimistic error bound based on the Berry-Esseen theorem, and another error bound based on the
Edgeworth expansion, which is typically too optimistic. The (critical) choice of the weights is based
on the following consideration: If we have successfully estimated the variance of X to high accuracy,
then we give ourselves some leeway for the bias and choose the more optimistic bound. If, on the
other hand, we have already mis-estimated the variance σ2, then we want to be highly conservative
in our conditional bias estimate. Thus, our first step towards an upper bound for (6) is partitioning the
probability (6) into two parts as follows

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

= P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
+ P

(∣∣∣XM − µ
∣∣∣ > TOL

∣∣∣∣M)
P
(
|σ2

M − σ
2| < σ2/2

∣∣∣∣M)
.

(7)

In the next step, we will use two different (asymptotic) error bounds for P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

, a conser-

vative one weighted by P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
and an efficient one weighted by P

(
|σ2

M − σ
2| < σ2/2

∣∣∣∣M)
.

To derive the conservative error bound, we recall that in Algorithm 1 the samples used in the output
estimate XM and for σM are independent of the samples used to determine M. Keeping this in mind,
we derive the following approximate upper bound

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

= P
(∣∣∣Xn − µ

∣∣∣ > TOL
)∣∣∣∣

n=M

/ 2
1 − Φ

 √M TOL
σ

 + CBE

 √M TOL
σ

, β

 1
√

M

 . (8)

Here the Berry-Esseen bound of Corollary 1.2 was used to derive the approximate bound of the last
line.

For the weighting factor, we obtain the following equality

P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
= P

(
|σ2

n − σ
2| ≥ σ2/2

)∣∣∣∣
n=M

.

Furthermore, using Chebycheff’s inequality for k-statistics to bound the variance of the sample vari-
ance, cf. Keeping [9], we derive that

P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
= P

(
|σ2

n − σ
2| ≥ σ2/2

)∣∣∣∣
n=M

≤ 4 E


∣∣∣σ2 − σ2

n

∣∣∣2
σ4


∣∣∣∣∣∣∣∣
n=M

≤ 4
σ4

(
2

M−1 + κ
M

)
σ4 = 4

(
2

M − 1
+
κ

M

)
.

Here κ denotes the kurtosis, i.e.,

κ =
E
[
|X − µ|4

]
σ4 − 3.

More generally, we might consider Markov’s inequality for a different p than two – for instance, because
the kurtosis fails to be finite. Then we can use

P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
≤ 2p

E
[ ∣∣∣σ2

M − σ
2
∣∣∣p ∣∣∣∣ M

]
σ2p .
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In particular, we are free to choose p < 2, if the fourth moment of the distribution might not exist. We
conclude that

P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
≤ min

(
1, 4

(
2

M − 1
+
κ

M

)
,

2p1

σ2p1
E
[ ∣∣∣σ2

M − σ
2
∣∣∣p1

∣∣∣∣ M
]
, . . . ,

2pn

σ2pn
E
[ ∣∣∣σ2

M − σ
2
∣∣∣pn

∣∣∣∣ M
])
C CP(2, p1, . . . , pn; M), (9)

for some finite sequence p1, . . . , pn > 0, with the natural interpretation of κ = ∞, if fourth moments do
not exist.

Next, we come to the optimistic bound of the error probability

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

based on the Edgeworth expansion given in Theorem 1.3. The mild penalty obtained in this way is of
the form

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

= P

√n

∣∣∣Xn − µ
∣∣∣

σ
>

√
n TOL
σ


∣∣∣∣∣∣∣
n=M

/ 2

1 − Φ

 √M TOL
σ

 +

∣∣∣∣ M TOL2

σ2 − 1
∣∣∣∣ exp

(
−M TOL2

σ2

)
6
√

2πM

∣∣∣∣E[
(X − µ)3

]∣∣∣∣
σ3

 .
(10)

Combining (8), (9) and (10), and noting that for all x ∈ R+ and n ∈ N,∣∣∣x2 − 1
∣∣∣ e−x2/2

6
√

2πn

∣∣∣∣E[
(X − µ)3

]∣∣∣∣
σ3 ≤ CBE(x, β)

1
√

n
,

we obtain the following approximate bound for failing to meet the accuracy of Algorithm 1 conditioned
on the stopped number of samples M:

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)
/ 2

1 − Φ

 √M TOL
σ

 +

+ 2CBE

 √M TOL
σ

, β

 1
√

M
CP(2, p1, . . . , pn; M)

+

∣∣∣∣ M TOL2

σ2 − 1
∣∣∣∣ ∣∣∣∣E[

(X − µ)3
]∣∣∣∣

exp
(

M TOL2

2σ2

)
× 3
√

2πMσ3
(1 −CP(2, p1, . . . , pn; M)) .

(11)

Remark 3.1. The bound from equation (11) is exact up to the higher order terms coming from the
Edgeworth expansion. Note that 1 − CP(2, p1, . . . , pn; M) is not a lower bound for the complimentary

error probability P
(
|σ2

M − σ
2| < σ2/2

∣∣∣∣M)
, so we are even more conservative in our approach.

4 A higher moments based stopping rule

From the approximate stochastic error bound (11) we will in this section construct a new, more reliable
stopping rule with a stopping criterion based on second, third, and fourth moments of the r.v. that is
sampled. The sampled moments our new algorithm will depend on are (here represented in biased
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form)

σM :=

√√√ M∑
i=1

(Xi − XM)2

M
, βM :=

M∑
i=1

|Xi − XM |
3

Mσ3
M

, (12)

β̂M :=
M∑

i=1

(Xi − XM)3

Mσ3
M

, and κM :=
M∑

i=1

(Xi − XM)4

Mσ4
M

− 3.

Replacing moments with sample moments in (11), we obtain a computable approximate stochastic
error bound

P
(∣∣∣XM − µ

∣∣∣ > TOL
∣∣∣∣M)

/ 2
1 − Φ

 √M TOL
σM

 + 2CBE

 √M TOL
σM

, βM

 1
√

M
CP(2, p1, . . . , pn; M)

+

∣∣∣∣ M TOL2

σ2
M
− 1

∣∣∣∣ |̂βM |

exp
(

M TOL2

2σ2
M

)
× 3
√

2πMσ3
M

(1 −CP(2, p1, . . . , pn; M)).

(13)

The resulting approximate stochastic error bound will be implemented as the following stopping crite-
rion in Algorithm 2:

2
1 − Φ

 √M TOL
σM

 + 2CBE

 √M TOL
σM

, βM

 1
√

M
CP(2, p1, . . . , pn)

+

∣∣∣∣ M TOL2

σ2
M
− 1

∣∣∣∣ |̂βM |

exp
(

M TOL2

2σ2
M

)
× 3
√

2πMσ3
M

(1 −CP(2, p1, . . . , pn)) < δ, (14)

where CP(2, p1, . . . , pn) is obtained from CP(2, p1, . . . , pn) by replacing all moments of σ by their empir-
ical counterparts.

We now present the new stopping rule algorithm.

Algorithm 2 Higher Moments Based Stopping Rule
Input: Accuracy TOL, confidence δ, and initial number of samples M0.
Output: XM.

Set n = 0, generate i.i.d. samples {Xi}
Mn
i=1 and compute the sample moments σMn , βMn

, β̂Mn and κMn

and all (other) moments needed for CP according to (12).

while Inequality (14) is not fulfilled. do

Set n = n + 1 and Mn = 2Mn−1.

Generate Mn i.i.d. samples {Xi}
Mn
i=1 and compute the sample moments σMn , βMn

, and κMn and all
(other) moments needed for CP.

end while

Set M = Mn, generate i.i.d. samples {Xi}
M
i=1 and return the sample mean XM.

Remark 4.1. The reasoning in Section 3 could also be used to construct alternative stopping rule algo-

rithms. For instance, instead of using the respective probabilities for misestimation ofσ, P
(
|σ2

M − σ
2| ≥ σ2/2

∣∣∣∣M)
and P

(
|σ2

M − σ
2| < σ2/2

∣∣∣∣M)
as respective weights for the conservative and the optimistic bound for the

misestimation error probability for the mean µ itself, we could also take the argument more literally and
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use the pessimistic error bound if we have misestimated the variance and the optimistic one other-
wise, i.e., using random indicator functions instead of their expectations as weights. We leave this as a
remark.

5 Numerical experiments

In the numerical experiments we will estimate the mean of four differently distributed r.v. by using
three different stopping rules: the sample variance based stopping rule in Algorithm 1, the new higher
moments based stopping rule in Algorithm 2 and the stopping rule recently introduced by Hickernell et
al. [6] which they prove performs reliably, with guaranteed conservative fixed width confidence intervals,
provided an upper bound for the kurtosis of the sampled r.v. is known prior to sampling.

5.1 Experimental setup and implementational details

The distributions of the r.v. we will consider will be the light-tailed Uniform, the Exponential, the heavy-
tailed Normal-inverse Gaussian and the heavy-tailed Pareto distribution. The initial number of samples
used in Algorithm 1 and 2 is set to M0 = 32 for all experiments. The version of Algorithm 2 we will
implement for these experiments uses the only sample moments defined in (12), i.e., CP = CP(2; M).
For the implementation of Hickernell et al.’s algorithm an upper bound on the kurtosis is required, so
we will assume the exact kurtosis of the r.v. is known prior to sampling and set the “variance inflation
factor” C = 1.1, cf. [6]. Let us stress that the assumption of knowing the exact value of kurtosis prior to
sampling is only made in the runs for Hickernell et al.’s algorithm, and due to this, its performance is
presented in a slightly more favorable light than Algorithm 1 and 2’s.

For each of the three algorithms we will numerically estimate the probability of failure P
(∣∣∣XM − µ

∣∣∣ > TOL
)

by the MC outer loop

pN(TOL, δ) := N−1
N∑

i=1

1∣∣∣XM (ωi)−µ
∣∣∣>TOL (15)

on a 100 × 100 grid of (TOLi, δ j) ∈ [10−2, 10−1] × [10−3, 10−1] values where TOLi = 10−(1+i/99) and
δi = 10−(1+2i/99) for i = 0, 1, . . . , 99. The number of outer loop samples N we are able to use in an
experiment will depend on both the cost of sampling the given r.v. and the cost of the used stopping
algorithm. The error in estimating the probability of failure by pN(TOL, δ) is estimated by the standard
deviation approximation of a sampled Bernoulli r.v.√

pN(TOL, δ)(1 − pN(TOL, δ))
√

N
.

At (TOLi, δ j) points where for a given algorithm pN(TOLi, δ j)/δ j > 1, that algorithm is considered unre-
liable. So to visualize the domain of reliability for an algorithm we plot the function pN/δ. Furthermore,
Table 1 provides the following values

max
i, j=0,1,...,99

pN(TOLi, δ j)
δ j

, and max
i, j=0,1,...,99

√
pN(TOLi, δ j)(1 − pN(TOLi, δ j))

√
Nδ j

(16)

as estimates of an algorithm’s maximum unreliability and the uncertainty in the unreliability estimate,
respectively.

The computer code for the algorithms is written in the Java programming language and uses the
“Stochastic Simulation in Java” library to sample the r.v. in parallel with the LFSR258 pseudo random
number generator, cf. [12]. The experiments were run in parallel using 8 threads on an Intel Xeon(R)
CPU X5550, 2.67GHz, and plots are made in Python using the open source plotting library Matplotlib,
cf. [8].
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5.2 Results

Figures 2, 3, 4, and 5 visualize the results of the numerical experiments and Table 1 contains numerical
and parameter values used in the experiments.

For the Pareto distributed r.v. considered in Figure 2, we see that while Algorithm 2 is reliable every-
where, Algorithm 1 is not reliable in the region where TOL is large and δ � TOL. Furthermore, the
complexity of Algorithm 2 is only slightly higher than Algorithm 1’s. (Hikcernell et al.’s algorithm requires
an upper bound on the kurtosis prior to sampling to be applicable, so that algorithm is not applicable in
this experiment.)

For the Normal-inverse Gaussian distributed r.v. studied in Figure 3, we see that Algorithm 1 is unreli-
able in the region where TOL is large. Algorithm 2 and Hickernell et al.’s algorithm are on the other hand
both very reliable. Hickernell et al.’s algorithm does however seem to be more reliable than is required,
and due to this overkill the complexity of Hickernell et al.’s algorithm is much higher than Algorithm 2’s.
The Normal-inverse Gaussian distributed r.v. is quite expensive to generate computationally, therefore
we have had to reduce the number of outer samples N substantially in this experiment.

For the uniformly and exponentially distributed r.v. studied in Figure 4 and 5, respectively, all three
algorithms are reliable and Algorithm 1 and 2 perform very similarly in terms of reliability. We also see
that for both of these experiments the complexity measured in terms of the average number of r.v. used
to generate XM is very similar for Algorithm 1 and 2. This observation is at odds with the corresponding
measured average computer run times given in Table 1 which show Algorithm 2’s average run time
is considerably longer than Algorithm 1’s. The reason for the disagreement between the complexity
measurements and the run time measurements is that for uniformly distributed r.v. (and to some weaker
degree also for exponentially distributed r.v.) the generation of r.v. is not so costly for the computer
program, and therefore do also other arithmetical operations contribute considerably to the run time of
the computer program in these experiments.

We further note that the complexity contours of Algorithm 1 and 2 in the figures seem proportional to

M̃(TOL, δ) =

(
Φ−1(1 − δ/2)

TOL

)2

,

up to rounding. This property, which by the CLT is expected in the asymptotic regime, can be verified
by comparing the contour of the function M̃(TOL, δ) to the complexity contour of Algorithm 1 and 2,
respectively. The sharp changes in complexity that we observe in the contour plots for Algorithm 1
and 2, especially visible in Figure 4 and 5, are due to the doubling procedure (Mn = 2Mn−1) which is
implemented in these two algorithms.
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Algorithm performance
Considered r.v. Algorithm N max pN/δ max(pN(1 − pN)/N)1/2/δ runtime/N
Pareto, cf. Figure 2 Alg 1 106 3.47 0.058804 0.134328s
(σ = 1 and κ = ∞) Alg 2 106 0.688217 0.021043 0.189814s
Normal-inv. Gaussian Alg 1 4 × 105 11.897500 0.171435 2.772212s
cf. Figure 3 Alg 2 4 × 105 0.757546 0.031652 2.768470s
(σ = 1, κ = 123) Hick. et al.’s 2 × 104 0.000602 0.000602 71.960966s

Uniform U(−
√

3,
√

3), Alg 1 4 × 106 0.971062 0.015194 0.015740s
cf. Figure 4 Alg 2 4 × 106 0.971051 0.015192 0.045130s
(σ = 1 and κ = −6/5) Hick. et al.’s 4 × 105 0.274425 0.003862 0.088797s
Exponential λ = 1, Alg 1 2 × 106 0.921406 0.019866 0.041282s
cf. Figure 5 Alg 2 2 × 106 0.913977 0.018935 0.071302s
(σ = 1 and κ = 6) Hick. et al.’s 2 × 105 0.205100 0.003412s 0.212759s

Table 1: We compare the reliability and complexity of three MC algorithms approximating the mean
of given r.v. The function pN(TOL, δ) is an esitmate of the probability of failure and N is the number
samples samples used to compute pN , cf. (15). The values max pN/δ and max(pN(1 − pN)/N)1/2/δ
estimates of the maximum unreliability its uncertainty, cf. (16). The expression runtime/N is an estimate
of the average time it takes for one thread of the implemented computer program of to compute a single
output XM at all points (TOLi, δ j), i, j = 0, 1, . . . , 99.

11



Figure 2: (Pareto Distribution) We sample a Pareto distributed r.v. with parameters α = 3.1 and
xm = (α − 1)

√
(α − 2)/α. Top two plots: Plots of pN(TOL, δ)/δ, cf. (15), where where XM respectively

is computed by Algorithm 1 in the top plot, Algorithm 2 in the bottom plot. We consider the algorithm
unreliable at (TOL, δ) points where pN/δ > 1. The bottom two plots are corresponding plots of the
respective algorithms’ complexity in terms of the average number of r.v. samples required to generate
XM at the given (TOL, δ).
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Figure 3: (Normal-inverse Gaussian Distribution) We sample a Normal-inverse Gaussian distributed
r.v. with parameters α = 3, β =

√
α2 − 1, γ = 1, δ = α−2, and mu = −β/γ. This yields a r.v. with standard

deviation σ = 1 and κ = 223. Top three plots: Plots of pN(TOL, δ)/δ, cf. (15), where samples of XM

respectively are computed by Algorithm 1 in the top plot, Algorithm 2 in the middle plot, and Hickernell
et al.’s algorithm in the bottom plot. We consider the algorithm unreliable at (TOL, δ) points where
pN/δ > 1. The bottom three plots are corresponding plots of the respective algorithms’ complexity in
terms of the average number of r.v. samples required to generate XM at the given (TOL, δ) point.
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Figure 4: (Uniform Distribution) We sample a U(−
√

3,
√

3) uniformly distributed r.v. Top three plots:
Plots of pN(TOL, δ)/δ, cf. (15), where samples of XM respectively are computed by Algorithm 1 in the
top plot, Algorithm 2 in the middle plot, and Hickernell et al.’s algorithm in the bottom plot. We consider
the algorithm unreliable at (TOL, δ) points where pN/δ > 1. The bottom three plots are corresponding
plots of the respective algorithms’ complexity in terms of the average number of r.v. samples required
to generate XM at the given (TOL, δ) point.
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Figure 5: (Exponential Distribution) We sample an exponentially distributed r.v. with µ = 1. Top three
plots: Plots of pN(TOL, δ)/δ, cf. (15), where samples of XM respectively are computed by Algorithm 1
in the top plot, Algorithm 2 in the middle plot, and Hickernell et al.’s algorithm in the bottom plot.
We consider the algorithm unreliable at (TOL, δ) points where pN/δ > 1. The bottom three plots are
corresponding plots of the respective algorithms’ complexity in terms of the average number of r.v.
samples required to generate XM at the given (TOL, δ) point.
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6 Conclusion

We have shown that second moment based sequential stopping rules such as Algorithm 1 run the risk
of using too few samples in MC estimates, especially when sampling heavy-tailed r.v. in settings with
very stringent confidence requirements, i.e., δ � TOL. Algorithm 2, a higher moment based stopping
rule algorithm is proposed in this work, and, according to the numerical examples of Section 5, our
new stopping rule performs much more reliable than Algorithm 1 while only moderately increasing the
computational cost. In short, we believe that our new stopping rule presented in Algorithm 2 is well
worth considering in settings with heavy tailed r.v. and/or δ � TOL.

Note that our analysis of the original Algorithm 1 critically depends on three main ingredients:

(I) a general, non-asymptotic estimate of the tail probabilities for the sample mean XM, for which
we used either the non-uniform Berry-Esseen theorem given in Corollary 1.2 or the Edgeworth
expansion given in Theorem 1.3,

(II) a choice between the more conservative Berry-Esseen bound and the approximate Edgeworth
bound made depending on whether the sample variance of the samples used to generate the
output MC estimate is close to, or far from the true variance,

(III) an estimate of the conditional distribution function of the sample variance given the output M of
the stopping algorithm given in (9).

There is clearly room for improvement in all these steps. First of all, the second ingredient above is
dangerous as we do not know how to estimate the correlation between XM and the events |σ2

M −σ
2| >

σ2/2 and |σ2
M−σ

2| ≤ σ2/2. This is problematic, as these approximations can potentially have the wrong
sign, i.e., it is possible that the right-hand sides of (8) and (10) are smaller than their respective left-hand
sides even though we actually seek upper bounds. It is however our hope that these approximation
errors are compensated by the the overly pessimistic non-uniform Berry-Esseen estimate and by using
Chebychev’s inequality to bound the conditional distribution function of the sample variance. Even
though the numerical evidence obtained in Section 5 seems to confirm that the compensations work
well, we would prefer an analysis in which each estimation step can be controlled, at least in the sense
that we indeed obtain an upper bound for the error probability.

To a lesser extent, it is not clear that the truncation of the o
(
n−1/2) of the Edgeworth expansion will lead

to an upper bound for the error probability, either. In this case, the approximation error is however of
higher order, so a stronger case can be made on why the effect will finally be negligible. In fact, when
we used truncated Edgeworth expansion also for the estimation of (8) – instead of the non-uniform
Berry-Esseen theorem – then the corresponding stopping rule turned out to be not much more reliable
than Algorithm 1, indicating that there is a delicate balance between reliability in meeting the accuracy
target (1) and maintaining an acceptable efficiency.
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