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Abstract

The Doss-Sussmann (DS) approach is used for simulating the Cox-Ingersoll-Ross (CIR) process. The
DS formalism allows for expressing trajectories of the CIR process by solutions of some ordinary differential
equation (ODE) that depend on realizations of the Wiener process involved. Via simulating the first-passage
times of the increments of the Wiener process to the boundary of an interval and solving an ODE, we
approximately construct the trajectories of the CIR process. From a conceptual point of view the proposed
method may be considered as an exact simulation approach.

1 Introduction

The Cox-Ingersoll-Ross process V (t) is determined by the following stochastic differential equation (SDE)

dV (t) = k(λ− V (t))dt+ σ
√
V dw(t), V (t0) = V0, (1)

where k, λ, σ are positive constants, and w is a scalar Brownian motion (see [5]). It is known ([13], [14])
that for V0 > 0 there exists a unique strong solution Vt0,V0(t) of (1) for all t ≥ t0 ≥ 0. The CIR process
V (t) = Vt0,V0(t) is positive in the case 2kλ ≥ σ2 and nonnegative in the case 2kλ < σ2.

The CIR process is used in financial modelling, in particular, as volatility process in the Heston model. As a
matter of fact, (1) does not satisfy the global Lipschitz assumption. The difficulties arising in a simulation method
for (1) are connected with this fact, and with the natural requirement of preserving nonnegative approximations.
A lot of approximation methods for the CIR process are proposed. For an extensive list of articles on this subject
we refer to [3] and [6]. Besides [3] and [6] we also refer to [1, 2, 10, 11], where a number of discretization
schemes for the CIR process can be found. Further we note that in [16] a weakly convergent fully implicit
method is implemented for the Heston model. Exact simulation of (1) is considered in [4, 8] (see [3] as well).

In this paper we consider path-wise approximation of V (t) on an interval [t0, t0+T ] using the Doss-Sussmann
transformation ([7], [18], [17]) which allows for expressing any trajectory of V (t) by the solution of some ordi-
nary differential equation that depends on the realization of w(t). By simulating the first-passage times of the
increments of the Wiener process to the boundary of an interval and solving this ODE, we approximately con-
struct a generic trajectory of V (t). Such kind of simulation is more simple than the one proposed in [4] and
moreover has some other advantages. That said, it should be noted that the original DS results rely on a global
Lipschitz assumption that is not fulfilled for (1). We therefore have introduced a local DS formalism that yields
a corresponding ODE which solutions are defined on random time intervals. If V gets close to zero however,
the ODE becomes intractable for numerical integration and so for the parts of a trajectory V (t) that are close
to zero we are forced to use some other (non DS based) approach. For such parts we here propose to use
exact simulation. Another restriction is connected with the condition α := 4kλ − σ2 ≥ 0 (we note that the
case α ≥ 0 is implied by the above mentioned case 2kλ ≥ σ2 that ensures positivity of V (t)). Apparently the
results here obtained for α ≥ 0 can be carried over to the case where α < 0. However, the case α < 0 will be
considered in a subsequent work.
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The next two sections are devoted to the DS formalism in connection with (1.1) and to some auxiliary propo-
sitions. In Sections 4 and 5 we deal with the one-step approximation and the convergence of the proposed
method, respectively.

2 The Doss-Sussmann transformation

2.1. Due to the Doss-Sussmann approach ([7], [18], [17]), the solution of (1) may be expressed in the form

V (t) = F (X(t), w(t)), (2)

where F = F (x, y) is some deterministic function and X(t) is the solution of some ordinary differential
equation depending on the part w(s), 0 ≤ s ≤ t, of the realization w(·) of the Wiener process w(t).

Let us recall the Doss-Sussmann formalism according to [17], V.28. In [17] one considers the Stratonovich SDE

dV (t) = b(V )dt+ γ(V ) ◦ dw(t). (3)

The function F = F (x, y) is found from the equation

∂F

∂y
= γ(F ), F (x, 0) = x, (4)

and X(t) is found from the ODE

dX

dt
=

1

∂F/∂x(X(t), w(t))
b(F (X(t), w(t)), X(0) = V (0). (5)

Obviously, the solution X(t) of (5) depends on X(0) and on w(s), 0 ≤ s ≤ t, but for convenience we shall
suppress this dependence and write X(t) for short. Equation (1) has the following Stratonovich form

dV = (k(λ− V )− σ2

4
)dt+ σ

√
V ◦ dw(t), (6)

i.e., in (3)-(5) we have

γ(V ) = σ
√
V , b(V ) = k(λ− V )− σ2

4
.

Equation (4) thus becomes
∂F

∂y
= σ
√
F , F (x, 0) = x, x > 0,

whence
F (x, y) = (

√
x+

σ

2
y)2. (7)

Due to (5) we get

dX

dt
= [−σ

2

4
+ k(λ− (

√
X +

σ

2
w(t))2)]

√
X√

X + σ
2w(t)

, X(0) = V (0). (8)

From (2), (7), and the solution of (8), we formally obtain the solution V (t) of (1):

V (t) = (
√
X(t) +

σ

2
w(t))2. (9)
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2.2. Since the Doss-Sussmann results rely on a global Lipschitz assumption that is not fulfilled for (1), solution
(9) has to be considered only formally. In this section we therefore give a direct proof of the following more
precise result.

Proposition 1 Let X(0) = V (0) > 0. There exists a stopping time τ > 0 such that equation (8) has a
unique positive solution X(t) on the interval [0, τ) and the solution V (t) of (1) is expressed by formula (9) on
this interval.

Proof. Let (w(t), V (t)) be the solution of the SDE system

dw = dw(t), dV = k(λ− V )dt+ σ
√
V dw(t), (10)

which satisfies the initial conditions w(0) = 0, V (0) > 0. Let us introduce the stopping time τ > 0 defined by

τ := inf{t : V (t) · (
√
V (t)− σ

2
w(t)) = 0}.

We note that in the case 2kλ ≥ σ2 the stopping time is equal to

τ = inf{t :
√
V (t)− σ

2
w(t) = 0}

because V (t) > 0 for any t ≥ 0.

Now let us consider the function

Z(t) = (
√
V (t)− σ

2
w(t))2, 0 ≤ t < τ.

Clearly, Z(t) > 0 on [0, τ), and √
Z(t) =

√
V (t)− σ

2
w(t) > 0,

whence √
V (t) =

√
Z(t) +

σ

2
w(t) > 0. (11)

Due to Itô’s formula, we get

dZ(t) = [−σ
2

4
+ k(λ− V (t))] ·

√
V (t)− σ

2w(t)√
V (t)

dt. (12)

By substituting (11) in (12) we see that Z(t) is a positive solution of (8) on [0, τ). The formula (9) then follows
from (11). The uniqueness of X(t) follows from the uniqueness of V (t).

2.3. So far we were starting at the moment t = 0. It is useful to consider the Doss-Sussmann transformation
with an arbitrary initial time t0 > 0 (which even may be a stopping time, for example, 0 ≤ t0 < τ ). In this case
we obtain instead of (8) for X = X(t; t0),

dX

dt
= [−σ

2

4
+ k(λ− (

√
X +

σ

2
(w(t)− w(t0)))

2)]

√
X√

X + σ
2 (w(t)− w(t0))

, (13)

t0 ≤ t < t0 + τ, X(t0; t0) = V (t0),
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and
V (t) = (

√
X(t; t0) +

σ

2
(w(t)− w(t0)))

2, t0 ≤ t < t0 + τ, (14)

with
t0 + τ := inf{t : V (t) · (

√
V (t)− σ

2
(w(t)− w(t0))) = 0, t > t0}.

2.4. Let us return to equation (8). It becomes “bad” (in the sense of numerical integration) for t close to τ (of
course, under t < τ ). If in addition V (t) is close to zero, then the Doss-Sussmann approach has rather limited
potential. However, if V (t) is not close to zero, then we can pass to equation (13) for next constructing V (t)
according to (14).

So, we have established that
X(t) = (

√
V (t)− σ

2
w(t))2,

where (w(t), V (t)) is a solution of (10), is differentiable function for any realization w(·). Clearly, for any
appropriate function f(x) the function f(X(t)) is differentiable in t as well. In particular, let us consider the
function

Y (t) :=
√
X(t) =

√
V (t)− σ

2
w(t), 0 ≤ t < τ.

From (8) we get

dY

dt
=

α

Y + σ
2w(t)

− k

2
(Y +

σ

2
w(t)), Y (0) =

√
V (0), (15)

α :=
4kλ− σ2

8
.

Analogously, in connection with (13), we get for

Y = Y (t; t0) :=
√
X(t; t0) =

√
V (t)− σ

2
(w(t)− w(t0))), t0 ≤ t < t0 + τ,

the equation

dY

dt
=

α

Y + σ
2 (w(t)− w(t0))

− k

2
(Y +

σ

2
(w(t)− w(t0))), (16)

Y (t0; t0) =
√
V (t0), t0 ≤ t < t0 + τ.

Clearly,

V (t) = (Y (t; t0) +
σ

2
(w(t)− w(t0)))

2, t0 ≤ t < t0 + τ. (17)

Remark 2 One can derive equations (15) and (16) after applying the Lamperti transformation U(t) =
√
V (t)

to (1) (see [6]), that yields the following SDE with additive noise

dU = (
α

U
− k

2
U)dt+

σ

2
dw, U(0) =

√
V (0), (18)

and then apply the Doss-Sussmann transformation to (18).
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3 Auxiliary propositions

3.1. Let us consider the set of solutions of (16) under σ = 0. That is, the solutions of the ordinary differential
equations

dy0
dt

=
α

y0
− k

2
y0, y0(t0) = y0 > 0, t ≥ t0 ≥ 0, (19)

which are given by

y0(t) = yt0,y0(t) = [y20e
−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2, t ≥ t0. (20)

In the case α > 0, i.e., 4kλ > σ2, we have: If y0 >
√

2α/k then yt0,y0(t) ↓
√

2α/k as t → ∞, and if
0 < y0 <

√
2α/k then yt0,y0(t) ↑

√
2α/k as t→∞. Further, y0(t) =

√
2α/k is a solution of (19).

In the case α = 0, the solution yt0,y0(t) ↓ 0 under t → ∞ for any y0 > 0. We note that the case α ≥ 0 is
more general than the case 2kλ ≥ σ2 (we recall that in the latter case V (t) > 0, t ≥ t0).

In the case α < 0, the solution yt0,y0(t) is convexly decreasing, attains zero at the moment t̄ given by

t̄ = t0 +
1

k
ln
y20 − 2α/k

−2α/k
, (21)

and y′t0,y0(t̄) =∞.

3.2. Our next goal is to obtain some estimates for solutions of the equation

dy

dt
=

α

y + σ
2ϕ(t)

− k

2
(y +

σ

2
ϕ(t)), y(t0) = y0, t0 ≤ t ≤ t0 + θ (22)

(cf. (16)), where ϕ(t) is a continuous function satisfying the inequality

| ϕ(t) |≤ r, t0 ≤ t ≤ t0 + θ ≤ t0 + T. (23)

In what follows we deal with the case

α =
4kλ− σ2

8
≥ 0. (24)

Lemma 3 Let α ≥ 0. Let yi(t), i = 1, 2, be two solutions of (22), (23) such that yi(t) + σ
2ϕ(t) > 0 on

[t0, t0 + θ]. Then
| y1(t)− y0(t) |≤| y1(t0)− y0(t0) |, t0 ≤ t ≤ t0 + θ. (25)

Proof. We have

d(y1(t)− y0(t))2 = 2(y1(t)− y0(t))

×
(

α

y1(t) + σ
2ϕ(t)

− k

2
(y1(t) +

σ

2
ϕ(t))− α

y0(t) + σ
2ϕ(t)

+
k

2
(y0(t) +

σ

2
ϕ(t))

)
, so
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(y1(t)− y0(t))2 = (y1(t0)− y0(t0))2

+2

∫ t

t0

[−α (y1(s)− y0(s))2

(y0(s) + σ
2ϕ(s))(y1(s) + σ

2ϕ(s))
− k

2
(y1(s)− y0(s))2]ds

≤ (y1(t0)− y0(t0))2,

from which (25) follows.

3.3. Let us consider along with (19) and (22) the equations

dy

dt
=

α

y + σ
2 r
− k

2
(y +

σ

2
r), y(t0) = y0, (26)

dy

dt
=

α

y − σ
2 r
− k

2
(y − σ

2
r), y(t0) = y0. (27)

Let us further suppose that
y0 ≥ η ≥ σr > 0, (28)

and let us denote the solutions of (19), (22), (26), and (27) respectively by y0(t), y(t), y−(t), and y+(t). The
solution y0(t) is given by (20). Using (20) we derive straightforwardly that

y−(t) = [(y0 +
σ

2
r)2e−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2 − σ

2
r, t0 ≤ t ≤ t0 + θ, (29)

y+(t) = [(y0 −
σ

2
r)2e−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2 +

σ

2
r, t0 ≤ t ≤ t0 + θ. (30)

Due to the comparison theorem for ODEs (see, e.g., [9], Ch. 3), the inequality

α

y + σ
2 r
− k

2
(y +

σ

2
r) ≤ α

y + σ
2ϕ(t)

− k

2
(y +

σ

2
ϕ(t)) ≤ α

y − σ
2 r
− k

2
(y − σ

2
r),

which is fulfilled on [t0, t0 + θ] in view of (23), implies that

y−(t) ≤ y(t) ≤ y+(t), t0 ≤ t ≤ t0 + θ. (31)

The same inequality holds for y(t) replaced by y0(t). We thus get

| y(t)− y0(t) |≤ y+(t)− y−(t), t0 ≤ t ≤ t0 + θ. (32)

Proposition 4 Let α =
4kλ− σ2

8
≥ 0, the inequalities (23) and (28) be fulfilled, and a positive number η in

(28) be fixed. Let θ ≤ T. Then there exists a numberC > 0, which is independent of t0, y0, and of r (provided
r ≤ η/σ) such that

| y(t)− y0(t) |≤ Crθ, t0 ≤ t ≤ t0 + θ. (33)

Proof. We estimate the difference y+(t)− y−(t). It holds,

y+(t) = z−(t) +
σ

2
r, y−(t) = z+(t)− σ

2
r,

y+(t)− y−(t) = σr − (z+(t)− z−(t)), (34)
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where

z±(t) = [(y0 ±
σ

2
r)2e−k(t−t0) +

2α

k
(1− e−k(t−t0))]1/2.

Further,

z+(t)− z−(t) =
(z+(t))2 − (z−(t))2

z+(t) + z−(t)
=

2y0σre
−k(t−t0)

z+(t) + z−(t)
. (35)

Using the inequality (a2 + b)1/2 ≤ a+ b/2a for any a > 0 and b ≥ 0, we get

z+(t) ≤ (y0 +
σ

2
r)e−

k
2
(t−t0) +

α

k

(1− e−k(t−t0))
(y0 + σ

2 r)e
− k

2
(t−t0)

,

z−(t) ≤ (y0 −
σ

2
r)e−

k
2
(t−t0) +

α

k

(1− e−k(t−t0))
(y0 − σ

2 r)e
− k

2
(t−t0)

,

whence

z+(t) + z−(t) ≤ 2y0e
− k

2
(t−t0) +

α

k

(1− e−k(t−t0))
e−

k
2
(t−t0)

2y0

(y20 −
σ2

4
r2)

.

Therefore

1

z+(t) + z−(t)
≥ 1

2y0e
− k

2
(t−t0)

1− α

k(y20 −
σ2

4
r2)

(ek(t−t0) − 1)

 .

From (35) we have that

z+(t)− z−(t) ≥ σre−
k
2
(t−t0)

1− α

k(y20 −
σ2

4
r2)

(ek(t−t0) − 1)


and so due to (34) we get,

0 ≤ y+(t)− y−(t) ≤ σr(1− e−
k
2
(t−t0)) +

ασr

k(y20 −
σ2

4
r2)

(e
k
2
(t−t0) − e−

k
2
(t−t0)).

Since 1− e−qϑ ≤ qϑ for any q ≥ 0, ϑ ≥ 0, and y20 −
σ2

4
r2 ≥ 3

4
η2 under (28), we obtain

0 ≤ y+(t)− y−(t) ≤ σrk

2
(t− t0) +

4ασr

3kη2
e

k
2
(t−t0)k(t− t0).

From this and (32), (33) follows with C =
σk

2
+

4ασ

3η2
e

k
2
T .
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4 One-step approximation

Let tm, t0 ≤ tm < t0 + T, be a stopping time, and V (tm) be a known value. Knowing Y (tm; tm) =√
V (tm), consider the following analogue of equation (16), the equation for Y (t; tm) on some interval [tm, tm+

θm],

dY

dt
=

α

Y + σ
2 (w(t)− w(tm))

− k

2
(Y +

σ

2
(w(t)− w(tm))), (36)

Y (tm; tm) =
√
V (tm), tm ≤ t ≤ tm + θm.

It is supposed that √
V (tm) ≥ η ≥ σr. (37)

Due to (17), the solution V (t) of (1) on [tm, tm + θm] is expressed by the formula√
V (t) = Y (t; tm) +

σ

2
(w(t)− w(tm)), tm ≤ t ≤ tm + θm. (38)

Though equation (36) is (just) an ODE, it is not easy to solve because of the non-smoothness of w(t). We
obtain an approximation ym(t) of Y (t; tm) according to Proposition 4. To this aim we simulate the point (tm +
θm, w(tm + θm)−w(tm)), where tm+1 := tm + θm is the first-passage time of the Wiener process w(t)−
w(tm) to the boundary of the interval [−r, r]. Therefore | w(t)−w(tm) |≤ r on [tm, tm+ θm] and the value
w(tm+1)− w(tm) is either equal to −r or to +r. For simulating θm we use the distribution function

P(t) := P (τ < t),

where τ is the first-passage time of a Wiener process W (t) to the boundary of the interval [−1, 1] (see details
in [15], Ch. 5, Sect. 3 and Appendix A3).

It may happen that tm + θm > t0 + T, i.e., the m-th step is the last one. In such a case we simulate
w(t0 + T )− w(tm) using the known conditional probability (see [15], Ch. 5, Sect. 3 and Appendix A3)

Q(β; t) := P (W (t) < β/ |W (s) |< 1, 0 < s < t,

where −1 < β ≤ 1.

We set tν+1 = tm+1 = t0 + T , where ν + 1 is a random number of steps for approximating V (t) on the
whole interval [t0, t0 + T ], and (without confusion) we may introduce a new θm := t0 + T − tm.

Application of Proposition 4 yields

| Y (t; tm)− ym(t) |≤ Crθm, tm ≤ t ≤ tm + θm = tm+1, (39)

where ym(t) is the solution of the problem

dym
dt

=
α

ym
− k

2
ym, ym(tm) = Y (tm; tm) =

√
V (tm),

that is given by (20) with (t0, y0) = (tm,
√
V (tm)). We so have√

V (t) = Y (t; tm) +
σ

2
(w(t)− w(tm)) = ym(t) +

σ

2
(w(t)− w(tm)) + ρm(t),

8



where due to (39),
| ρm(t) |≤ Crθm. (40)

Now introduce the approximation
√
V̄ (t) of

√
V (t) on [tm, tm + θm],√

V̄ (t) := ym(t) +
σ

2
(w(t)− w(tm)), tm ≤ t ≤ tm + θm. (41)

We have that | w(t) − w(tm) |< r for tm ≤ t < tm + θm = tm+1, | w(tm+1) − w(tm) |= r if
tm+1 < t0 + T, and | w(tm+1) − w(tm) |< r if tm+1 = t0 + T. Thus, the one-step approximation (41) is
constructed for t = tm+1 by√

V̄ (tm+1) := ym(tm+1) +
σ

2
(w(tm+1)− w(tm)). (42)

Note that using the conditional probabilityQ, one obtains from (41)
√
V̄ (t′) for any t′ ∈ [tm, tm + θm].

Since √
V (t) =

√
V̄ (t) + ρm(t), tm ≤ t ≤ tm + θm = tm+1, (43)

we get the following proposition (see (40)).

Proposition 5 The one-step error ρm(t) of the one-step approximation (41) is estimated by Crθm.

In the next section we show that the global error on the interval [t0, t0 + T ] is evaluated by the sum of these
errors, i.e., by

∑ν
m=0Crθm = Cr

∑ν
m=0 θm = CrT, hence the global error tends to zero when r → 0. We

further note that Eθv = r2, the random number of steps ν is finite with probability one, and Eν = O(1/r2).

5 Convergence theorem

Let us now proceed with simulating the solution of (1) on the interval [t0, t0 + T ] in the case α ≥ 0. Suppose
we are given V (t0), η, and r such that √

V (t0) ≥ η ≥ σr.

Moreover, we suppose that the inequality √
V̄ (tm) ≥ η ≥ σr (44)

will be fulfilled for the next approximations V̄ (tm), so that Proposition 4 may be applied.

For the initial step we use the one-step approximation according to the previous section. We obtain (see (42)
and (43)) √

V̄ (t1) = y0(t1) +
σ

2
(w(t1)− w(t0)),√

V (t1) =
√
V̄ (t1) + ρ0(t1),

where | ρ0(t1) |≤ Crθ0.
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For the first step we use the expression√
V (t) = Y (t; t1) +

σ

2
(w(t)− w(t1)), (45)

where Y (t; t1) is the solution of the problem (see (36))

dY

dt
=

α

Y + σ
2 (w(t)− w(t1))

− k

2
(Y +

σ

2
(w(t)− w(t1))), (46)

Y (t1; t1) =
√
V (t1), t1 ≤ t ≤ t1 + θ1.

However, in contrast to the initial step, the value
√
V (t1) is unknown and we are forced to use

√
V̄ (t1) instead.

Therefore we introduce Ȳ (t; t1) as a solution of the equation (46) with initial data Ȳ (t1; t1) =
√
V̄ (t1).

We have that | Y (t1; t1)− Ȳ (t1; t1) |=|
√
V (t1)−

√
V̄ (t1) |= | ρ0(t1) |≤ Crθ0. Hence, due to Lemma 3,

| Y (t; t1)− Ȳ (t; t1) |≤| ρ0(t1) |≤ Crθ0, t1 ≤ t ≤ t1 + θ1. (47)

Denote t2 := t1 + θ1, where t1 + θ1 is the first-passage time of the Wiener process w(t) − w(t1) to the
boundary of the interval [−r, r]. To find Ȳ (t; t1) for t1 ≤ t ≤ t2 let us consider together with equation (46) the
following equation

dy1
dt

=
α

y1
− k

2
y1, y1(t1) = Ȳ (t1; t1) =

√
V̄ (t1).

Due to Proposition 4 it holds

| Ȳ (t; t1)− y1(t) |≤ Crθ1, t1 ≤ t ≤ t1 + θ1,

and so by (47) we have

| Y (t; t1)− y1(t) |≤ Cr(θ0 + θ1), t1 ≤ t ≤ t1 + θ1.

We also have (see (45))√
V (t) = Y (t; t1) +

σ

2
(w(t)− w(t1)) = y1(t) +

σ

2
(w(t)− w(t1)) + ρ1(t),

where
| ρ1(t) |≤ Cr(θ0 + θ1), t1 ≤ t ≤ t1 + θ1.

Next, we introduce √
V̄ (t) := y1(t) +

σ

2
(w(t)− w(t1)), t1 ≤ t ≤ t1 + θ1.

We have √
V (t) =

√
V̄ (t) + ρ1(t), t1 ≤ t ≤ t1 + θ1,

and √
V̄ (t2) = y1(t2) +

σ

2
(w(t2)− w(t1)).

We thus get
√
V̄ (t2) such that

|
√
V (t2)−

√
V̄ (t2) |=| ρ1(t2) |≤ Cr(θ0 + θ1).
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Knowing
√
V̄ (t2) we are ready for the second step. Proceeding just in the same way we get

√
V̄ (tm+1) after

m-th steps such that

|
√
V (tm+1)−

√
V̄ (tm+1) |=| ρm(tm+1) |≤ Cr

m∑
i=0

θi ≤ CrT, (48)

where ρm(t) is the accumulated error after m-th steps (we note that ρm(t) is the one-step error on the m-th
step assuming V̄ (tm) = V (tm)).

So, under the assumption (44) we obtain the estimate (48) and thus have justified the convergence of the pro-
posed method. Assumption (44) cannot always be realized however. The next theorem shows that if a trajectory
of V (t) under consideration is positive on [t0, t0 + T ], then (44) can be realized. We recall that in the case
2kλ ≥ σ2 almost all trajectories are positive.

Theorem 6 Let 4kλ ≥ σ2 (i.e., α ≥ 0). Then for any positive trajectory V (t) > 0 on [t0, t0 + T ] there exist
η and r0 such that (44) is fulfilled for this η and any r ≤ r0. Hence the estimate (48) holds and in the case
2kλ ≥ σ2 the proposed method is convergent.

Proof. Let us define
µ := min

t0<t<t0+T

√
V (t), and set

η =
µ

2
, r0 = min(

µ

2σ
,
µ

2CT
).

Let r ≤ r0. Clearly, r ≤ µ/2σ = η/σ. Due to (48), we have

|
√
V (tm+1)−

√
V̄ (tm+1) |≤ CrT ≤

µ

2
.

Since
√
V (tm+1) ≥ µ, we get

√
V̄ (tm+1) ≥ µ/2 = η, i.e., (44) is fulfilled.

Remark 7 In practice it is important to develop a way for continuing simulations in cases where V̄ (tm+1) is
very small. In this respect one can propose different procedures. For instance, one can proceed with exact
simulations keeping in mind existence of some relieved schemes for small V (see [3]). Of course, any of such
proposals require special consideration.
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