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Abstract

We study a novel method of quasi-phase-matching for third harmonic generation in
a gas cell using the periodic modulation of the gas pressure and thus of the third order
nonlinear coefficient in the axial direction created by an ultrasound wave. Using a compre-
hensive numerical model we describe the quasi-phase matched third harmonic generation
of UV (at 266 nm) and VUV pulses (at 133 nm) by using pump pulses at 800 nm and 400
nm, respectively, with pulse energy in the range from 3 mJ to 1 J. In addition, using chirped
pump pulses, the generation of sub-20-fs VUV pulses without the necessity for an external
chirp compensation is predicted.

1 Introduction

Third harmonic generation (THG) in gases is a method with one of the simplest setup allowing
to generate picosecond and femtosecond pulses in the UV and VUV spectral ranges. Compared
with alternative schemes employing solid-state crystals several disadvantages can be avoided
by using gases such as low damage threshold, strong dispersion, bandwidth limitations and re-
strictions of the spectra to the range above 200 nm. For intensities below the ionization threshold
THG cannot take place for pump beams focused into a gas cell because the emitted third har-
monic (TH) before the focus cancels the one emitted after the focus [1, 2] due to destructive
interference. This problem can be avoided by placing the gas cell before or after the focus [1,2],
by using a differentially pumped gas cell, a narrow gas jet [3], or hollow waveguides [4,5]. THG
during ultrafast ionization with higher efficiencies has been generated by focusing the pump
beam inside a chamber with a noble gas with intensities far in excess of that necessary for ion-
ization [6–8]. TH has also been generated during filamentation of femtosecond pulses in air and
argon [9–14]. Several papers reported that the efficiency of THG in a filament can be increased
by using a second intercepting IR pulse [11–14], which can be explained by the quenching of
interference effects [14].

One of the main difficulties, limiting the efficiency in frequency conversion in the above described
methods is the problem to realize phase-matching. In UV and VUV pulse generation in hollow
waveguides by four-wave mixing phase-matching can be realized using the anomalous dis-
persion of the fiber [15–17]. However, the small diameter of the capillary limits the pulse energy
and leads to more complexity in practical realization. In the case of frequency conversion in solid
nonlinear crystals an alternative approach, quasi-phase matching (QPM), is used. It exploits a
periodic modulation of the nonlinear susceptibility to correct the linear phase mismatch [18,19].
For the application in high-order harmonic generation in gas-filled hollow waveguides QPM was
demonstrated by using modulated hollow-core waveguides [20] or using counter-propagating
light [21,22].
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In this paper, we investigate a novel technic for quasi-phase matching by ultrasound in THG. As
presented in Fig. 1 in this scheme a cell filled with a noble gas is excited by a pump pulse and an
ultrasound wave which modulates the gas pressure and thus the third order nonlinearity of the
gas. For an ultrasound wave-number approximately equal to the module of the linear phase mis-
match between the fundamental and the generated TH QPM can be realized, greatly increasing
the conversion efficiency. Since the beam diameter is not limited as in hollow waveguides, this
method allows the use of very high pump energies with larger diameters for frequency transfor-
mation into the VUV. Here we study THG in an argon-filled cell with the pump wavelength at 800
nm for UV and at 400 nm for VUV pulses generation with moderate and high pump energies
up to the joule level. Using a comprehensive nonlinear model including the influence of disper-
sion, diffraction, third-order nonlinearity, ionization as well as the sound loss, we show that the
conversion efficiency can be increased as a result of QPM. In particular, we show the possibility
that by using pre-chirped femtosecond pump pulses at 400 nm sub-20 fs VUV pulses can be
generated. Intriguingly, due to the normal dispersion of the gas the generated VUV pulse at the
output is nearly unchirped and thus does not need any additional chirp compensation stage.
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Figure 1: QPM for THG using an ultrasound wave. (a) - The basic scheme: the pump with
frequency ω is sent into a tube where an ultrasound wave is exited to achieve the QPM. At the
output, third harmonic 3ω is observed. (b) - Dependence of the ultrasound frequency Ωs on the
pump wavelength λ for THG QPM in argon at 1 atm. (c) - The absorption rate of the ultrasound
wave in argon at the normal conditions in dependence on its frequency Ωs.

2 Quasi-phase matching using ultrasound

QPM is a technic to correct the phase mismatch between interacting waves without matching
the phase velocities. QPM in periodically poled nonlinear crystals is realized by a nonlinear
structure in which the sign of the nonlinear susceptibility is periodically reversed throughout the
medium [18,19]. However, QPM can also be realized by a periodic modification of the nonlinear
coefficient without sign change. A method for QPM in isotropic gases was described in [23], in
which an ultrasound transducer in a gas cell excites ultrasound waves which periodically change
the pressure or, in other words, the particles number density and therefore the third-order nonlin-
ear susceptibility. The ultrasound wavevector Ks required to achieve QPM of interacting waves
in the cell is approximately equal to the phase-mismatch |∆k| due to dispersion of the corre-
sponding waves. In this paper we study in detail THG as a simplest prototypical interaction (see
Fig. 1). In this case the phase mismatch is given by ∆k = k3ω − 3kω, where kω is the pump
wavevector with the frequency ω and k3ω is the TH wavevector with the frequency 3ω. The
dependence of the ultrasound frequency Ωs = 2π/Ks on the pump wavelength λ = 2π/ω is
shown in Fig. 1(b). As seen for argon QPM for THG with a pump pulse at 800 nm requires an
ultrasound frequency of Ωs ≈ 22 kHz and for a pump pulse at 400 nm we find Ωs ≈ 300 kHz.
For high intensities the Kerr effect introduces an additional phase shift.

Ultrasound waves can be efficiently generated by the application of piezoelectric generators. In
liquids, high power ultrasound waves up to tens of MHz are heavily used in many applications
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in technology, medicine, biology and chemistry [24]. In contrast, in gases typical high-power
ultrasound devices rarely exceed ∼ 40 kHz limit. However, some ultrasonic applications such
as nondestructive testing require airborn ultrasound from 100 kHz up to 1 MHz. In such ap-
plications, the pressure amplitudes p in a pulsed regime can achieve ∼ 10−2 atm inside the
area of ∼ 1 cm2 [25]. Even using relatively common airborn high-power ultrasound source with
frequency around 20 kHz, higher frequencies can be obtained as harmonics of the fundamental
one. In particular, in [26], high power (200 W) cw ultrasound with high pressure level ≈ 160 dB
(this corresponds to p ∼ 10−2 atm) was excited in air at atmospheric pressure for a transducer
with resonant frequency Ωs = 20 kHz. Due to nonlinearities of generation and propagation, the
ultrasound contained higher harmonics; in particular, the contribution of fourth-order harmonic
(Ωs = 80 kHz) in this wave was estimated to be up to ≈ 130 dB (p ≈ 5× 10−4 atm).

The propagation of sound wave in a tube is relatively well studied [27,28]. If the viscous effects
from the walls can be neglected (the case of “wide tube”), the fundamental sonic mode in a
waveguide is homogeneous across the direction transverse to the propagation one. Such mode
have also a free-space dispersion and negligible waveguide-induced losses. In the case when
viscosity effects becomes important (the case of “narrow tube”), the situation changes. Viscosity
leads to the occurring of a boundary layer, with pressure variations decreasing to zero at the
walls, and also to additional losses. The role of viscosity is determined by the so called shear

wave number s = D
2

√
Ωs

ν
[27, 28] where D is the tube diameter, ν is the kinematic viscosity.

Viscosity effects become important for s ≤ 1. For typical parameters considered in the present
article (atmospheric pressure, Ωs = 0.3 MHz) and assuming reasonable tube diameter of ≈
1 cm ( [25]) we obtain s ∼ 3 × 103, that is the approximation of “wide tube” is very well
applicable. For the above mentioned parameters, the losses induced by the tube itself are of
order of 5× 10−2 cm−1, according the model introduced in [28].

Even in a free space the high frequency ultrasound has noticeable decay, which is in the case
of noble gas can be described by the formula [29,30]:

βs =
Ω2

s

8π2ρ0c3s

(
4

3
η + (γ − 1)

κ

Cp

)
, (1)

where ρ0 is the gas atomic density, cs is the sound speed, κ is the thermal conductivity, η is
the shear viscosity, γ = Cp/Cv is the rate of the heat capacity at constant pressure (Cp) and
constant volume (Cv).

The dependence of the loss coefficient βs on the ultrasound frequency Ωs for argon is shown
in Fig. 1(c). Although the losses given by the classical formula Eq. (1) are underestimated for
liquids and multi-atomic gases, Eq. (1) works still reasonably good for noble gases [29–31].

According to the facts mentioned above, the gas pressure can be described in a simple way as a
decaying plane wave along the propagation axis z: P (x, y, z) = Po+p(x, y)e−βsz cos(KSz).
Here Po is the background pressure and p(x, y) is the ultrasound amplitude, which is constant
inside the tube (

√
x2 + y2 ≡ r < D/2) and zero otherwise (the “wide tube” approximation

discussed above) that is, p(x, y) ≡ p = const.

The propagation of the pump and TH in the gas-filled tube excited by the ultrasound wave can
be described by a comprehensive model taking into account diffraction, dispersion, third-order
nonlinearity, gas ionization effects and periodically changing pressure. Using the slowly varying

3



envelope approximation the amplitudes of the pump Aω(x, y, z, t) and the TH A3ω(x, y, z, t)
as well as the free electron density ρ(x, y, z, t) in time t and space are given by:

∂Aω

∂z
+ M̂ωAω = iγω(z)

{
Aω

(
|Aω|2 + 2 |A3ω|2 − Γω

)
+ A∗2

ω A3ωe
i∆kz

}
, (2)

∂A3ω

∂z
+ M̂3ωA3ω = iγ3ω(z)

{
A3ω

(
|A3ω|2 + 2 |Aω|2 − Γ3ω

)
+ A3

ωe
−i∆kz/3

}
, (3)

∂ρ

∂t
= (ρo(z)− ρ)

(
σKω |Aω|2Kω + σK3ω |A3ω| 2K3ω

)
+

ρ

Ui

(
σω(z) |Aω|2 + σ3ω(z) |A3ω|2

)
.

(4)

Here γm(z) =
3πm2χ(3)(z)

2c2ko
m

is the third order nonlinear coefficient (m = ω and 3ω for

the fundamental and TH, correspondingly); χ(3)(z) is the third-order nonlinear susceptibility,
depending on the pressure P (and hence on z); ∆k is the linear phase mismatch for the gas
pressure P0. M̂ω, M̂3ω and Γω, Γ3ω are defined as:

M̂m = −i (km(z)− ko
m) + νm(z)

∂

∂t
+

igm(z)

2

∂2

∂2t
− i

2km(z)

[
∂2

∂x2
+

∂2

∂y2

]
, (5)

Γm =
σm(z)

2
(1 + iωo

mτc(z)) +
βKm

2
(ρo(z)− ρ) |Am|2Km−2 , (6)

where νω = 0 and ν3ω(z) = 1/Vω(z)− 1/V3ω(z); Vm(z) and gm(z) are the group velocities
and group velocity dispersions of the interacting pulses; km(z) and ko

m are the wave numbers
for the (z-dependent) pressure P and for the background pressure P0, respectively; σm(z)
is the cross section of inverse Bremsstrahlung; τc(z) is the free-carrier collision time; σKm is
the ionization cross section, where Km ≡< Ui/~ωm + 1 > here also Ui is the ionization
potential of the gas; βKm is the multiphoton ionization coefficient, which is defined as βKm =
Km~ωmσKm ; ρo(z) is the density of neutral atoms [32, 33]. The coefficients km(z), γm(z),
Vm(z), gm(z), σm(z), τc(z), are assumed here to be proportional to the pressure (and thus
varying along the z-coordinate) [32–34].

Let us first consider the simplest approximation assuming an un-depleted pump pulse and ne-
glecting diffraction, dispersion, ionization (Γm = 0) and loss, but taking into account the non-
linear self-phase modulation of the pump. Then, the on-axis QPM condition for the ultrasound
wave vector Ks is:

KS = ∆k + 3γω |Ao
ω|

2 − 2γ3ω |Ao
ω|

2 (7)

where Ao
ω is the field amplitude of the pump at the input. If this condition is fulfilled and the

weak non-phase matched contributions are neglected one obtains for the intensity of the third
harmonic I3ω:

I3ω(z) ≈
cεo(γ3ωpz)

2

12
|Ao

ω|
6 . (8)

Remarkably, I3ω does not depend on the background pressure P0 but only on the ultrasound
amplitude p.

For a more exact treatment we solved Eqs.(2)−(4) numerically using the split-step method [35]
with the fast Fourier transform in time and 2D transverse space dimensions to calculate the

4



linear part of the equations and the fifth-order Runge-Kutta method for the nonlinear one. In
the solution of Eq. (4) the fourth-order Runge-Kutta method were used. The results of numerical
simulations of Eqs. 2-4 for bandwidth-limited femtosecond and chirped picosecond pump pulses
at 800 nm as well as at 400 nm are presented in the Chapter 3.

3 Results and their discussion

3.1 UV pulse generation by using 800 nm pump pulses

First, we studied the proposed method for a bandwidth-limited 800 nm Gaussian pump pulse
with a duration (FWHM) τω = 700 fs, a radius rω = 0.05 cm and an energy 3 mJ (corre-
sponding to the input intensity Io ≈ 1 TW/cm2 and power Pω ≈ 3.97 GW) with a sound
amplitude of p = 0.01 atm. The required ultrasound frequency necessary to fulfill the QPM
condition according Eq. (7) is Ωs = 22.24 kHz. For these parameters the self-focusing dis-
tance is zf ≈ 11.01 m, the critical power of self-focusing is Pcrit ≈ 3.94 GW and the walk-off
length is Lν = τω/ν ≈ 345 m. Therefore one can expect a relatively long propagation distance
without beam collapsing, temporal walk-off or formation of a filament [36]. The results for these
parameters are presented in Fig. 2. Figure 2 (a) shows the results of the analytical formula Eq.
(8) (red dashed curve) and of the numerical simulations (red solid curve) for the efficiency of
THG defined as η3ω(z) =

∫∫∫
|A3ω(z, x, y, t)|2dxdydt/

∫∫∫
|Aω(z = 0, x, y, t)|2dxdydt.

One can see from the Fig. 2(a) that QPM results in the efficient conversion to the TH at the
optimum ultrasound frequency, which is 27 times larger than without ultrasound (green curve).
The self-focusing effect is relatively weak as seen from the evolution of pump intensity (blue
curve in Fig. 2(b)) and beam radius (red curve in Fig. 2(d)), while that spatial profile of the TH
shows a good beam quality (Fig. 2(c)).
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Figure 2: THG for a 0.7 ps pump pulse at 800 nm with 3 mJ energy. In (a) the conversion
efficiency η3ω calculated analytically by Eq. (8) (red-dashed) and numerically (red-solid) in de-
pendence on the propagation distance z (the result in the absence of ultrasound is shown by
the green curve); in (b) the evolution of the peak intensity of the pump (blue) and the TH (red);
in (c) the spatial intensity profile of the TH at the output and in (d) the change of the radii of the
pump (red) and the TH (blue) are presented.

Figure 3 shows the results for the case of a bandwidth-limited pump pulse at 800 nm with a
high energy of 1 J, a duration of τω = 1 ps (transform-limited), a radius of rω = 0.5 cm and a
sound amplitude of p = 0.01 atm. For these parameters one can calculate: Io ≈ 2.4 TW/cm2,
zf ≈ 247 cm, Lν = τω/ν ≈ 487 cm. In this case the power of the pump pulse Pω ≈ 940 GW
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Figure 3: THG for a 1 ps pump pulse at 800 nm with 1 J energy. The description of (a)-(d) and
the curves are analogous as Fig. 2.

is much larger than the critical power of self-focusing Pcrit ≈ 3.94 GW, therefore as seen in Fig.
3(d) after a propagation distance of about 2.5 m the pump beam radius significantly decreases
and its intensity increases. The efficiency increases up to η3ω ≈ 0.12%, but due to the change
of the pump intensity the QPM condition Eq. (7) is violated after this distance. Without ultrasound
(green curve) the efficiency is at ∼ 2.5 m 18 times smaller, but after self-focusing distance it
increases significantly due to the increase of the pump intensity.

3.2 VUV pulse generation by using 400 nm pump pulses

Using THG with pump pulses at 400 nm allows frequency transformation into the VUV spectral
range at 133 nm. Nowadays, generation of such pump pulses with high energy by second
harmonic generation in nonlinear crystals from near-infrared ones is a standard method. Here
we study THG with a bandwidth-limited pump pulse at 400 nm with 0.3 mJ energy, duration of
τω = 1.4 ps, beam radius of rω = 0.03 cm, pump intensity Io ≈ 1.4 TW/cm2 and sound
amplitude of p = 0.01 atm. As one can see from the Fig. 4, the conversion efficiency increases
up to the propagation length of about 50 cm. The saturation of THG is caused by the strong self-
focusing effect with the formation of a filament. The strong increase of the pump intensity leads
to the violation of the optimum QPM condition, which terminates the frequency conversion.
Figure 4 (b) and (d) illustrates the well known dynamics of the formation of a filament after
approximately ∼ 50 cm propagation. As seen the combined action of the optical Kerr effect,
multiphoton absorption and ionization leads to focusing and defocusing cycles with very small
quasi-periodicity [36]. This highly dynamic process leads to aperiodic spikes in the free electron
density (Fig. 4. (c)) and recurrent, aperiodic intensity variations (Fig. 4 (b)) of the fundamental
(blue curve) and the TH (red curve). The resolution in the numerical simulation of Fig. 4. is about
0.2 mm.

Next, we investigate TGH with a higher pump energy of 0.1 J with the duration of τω = 1 ps,
radius rω = 0.1 cm (Io ≈ 6 TW/cm2) and the sound wave amplitude p = 0.01 atm. As can
be seen from the Fig. 5. the conversion efficiency of THG up to ≈ 0.02% can be obtained.
However, in this case a multifilamentation takes place. It appears because the input peak power
(Pω ≈ 93 GW) is much larger than the critical power (Pcrit ≈ 0.9 GW) [36].
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Figure 4: THG for a 1.4 ps pump pulse at 400 nm with 3 mJ energy. In (a) the conversion
efficiency calculated analytically by Eq. (8) (dashed) and numerically (solid); in (b) the evolution
of the peak intensity of the fundamental (blue) and the TH (red); in (c) the maximum electron
density and in (d) the change of radii of the fundamental (red) and the TH (blue) are presented.

Figure 5: THG for a 1 ps pump pulse at 400 nm with 0.1 J energy. In (a) the conversion efficiency
calculated analytically by Eq. (8) (dashed) and numerically (solid); in (b) the evolution of the peak
intensity of the fundamental (blue) and the TH (red); in (c) the spatial intensity profile of the TH
at the output are presented.
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3.3 Sub-20 fs VUV pulse generation by using chirped 400 nm pump pulses

The method under consideration can be combined with a stretching of the pump pulses to
much longer durations. This allows to reduce the peak intensity to a range where deleterious
nonlinear effects do not play a role. Using negatively chirped pump pulses the generated chirp
of the TH can be compensated by normal dispersive elements. In the simulation shown in Fig. 6
and Fig. 7 we assume a negatively chirped pump pulse with a duration of τω = 1 ps and 0.3
mJ energy obtained after phase-modulation from a bandwidth-limited one of 20 fs duration. The
beam radius is rω = 0.25 cm, the input intensity is Io ≈ 2.87 TW/cm2 and the sound amplitude
is p = 0.01 atm. As one can see, the conversion efficiency is limited to the same level as in the
previous example. However, the duration of both pump and TH pulses decrease significantly
because of chirp compensation due to propagation in the normal-dispersive argon gas (Fig.
7(a)). The duration of the generated VUV pulse at 133 nm is reduced down to 18 fs (Fig. 7(c))
and its pulse energy is ∼ 3 µJ. This self-compression is caused by a chirp compensation during
propagation due to normal dispersion of the gas.
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Figure 6: THG for a negatively chirped pump with the energy of 3 mJ. (a) The THG efficiency
η3ω in dependence on z; (b) Peak intensity of the fundamental (blue) and the TH (red) pulses
versus z; (c) Spatial profile of the TH at the output; (d) Change of radii of the fundamental (red)
and TH (blue) with z.
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Figure 7: Evolution of the pulse duration (a) as well as the spectral (b) and temporal (c) shapes
of the TH pulse at the output for the parameters of Fig.6. Blue and red curves in (a) refer to the
fundamental and the TH pulses, respectively. In (c) blue curve represents the phase of the TH.

Finally, we study chirped THG in the high energy regime with chirped pump pulses at 400
nm and the energy of 0.1 J, radius of rω = 0.1 cm and the input peak intensity Io ≈ 6
TW/cm2. The pump pulse duration is 1 ps stretched by a phase-modulation from 50 fs (Io ≈
119 TW/cm2). The ultrasound amplitude is p = 0.01 atm. Figure 8 shows the results of the
numerical simulations for this case. Up to the length of 40 cm the efficiency increases due to
QPM by ultrasound and the rapid increase of the pump intensity because of self-focusing (Fig.
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8(a) and (b)). Here we also see that the TH beam is split into two main filaments and a weak
background (Fig. 8(c)). The temporal shape of the TH pulse at the output remains relatively
well-defined, with a pulse duration as small as 16 fs (see Fig. 8(d)).

Figure 8: THG for a negatively chirped pump with energy of 100 mJ using . (a) THG efficiency
in dependence on z; (b) Peak intensity of the fundamental (blue) and the TH (red); (c) Spatial
profile of the TH at the output; (d) Temporal shape of the TH at the output.

4 Conclusions

In conclusion, in this paper we numerically studied quasi-phase matching of THG in a cell filled
with a noble gas in which, by a piezoelectric transducer, an ultrasound wave is generated,
changing periodically the gas pressure and therefore the third-order nonlinear coefficient in
the axial direction. In this scheme quasi-phase matching is realized by choosing an appropriate
ultrasound frequency in the range from 22 kHz to 300 kHz compensating the phase-mismatch
between the pump pulse and its TH. Using a comprehensive numerical model taking into ac-
count third-order nonlinearity, multi-photon ionization, plasma effects, dispersion, diffraction and
the modulation of the pressure by the ultrasound, we studied UV pulse generation at 266 nm
with 800 nm pump and VUV pulse generation at 133 nm by 400 nm pump pulses with moderate
(3 mJ) as well as with high pulse energy (0.1-1 J). This method can also be used for the gen-
eration of ultrashort VUV pulses by ultrashort chirped pump pulses stretched to a longer pulse
duration to avoid walk-off and destructive nonlinear effects. By using negatively chirped pump
pulses the chirp of both the pump pulse and the TH can be compensated during propagation
by the normal dispersion of the gas. We predict that in such way almost bandwidth-limited VUV
pulses at 133 nm with a duration below 20 fs can be generated without the need of external
chirp compensation at the output.

Despite of the conceptual simplicity of the proposed method for frequency conversion in gases,
we found important physical limitations restricting the efficiency of THG. The main problem
is that if the intensity of the pump pulse is changed during propagation due to self-focusing
or other effects, the effective ultrasound frequency for QPM is also modified. This leads to a
cessation of further increase of the TH. In a similar way for higher pump intensities ionization
of the gas results in a plasma contribution to the refractive index also influencing the optimum
ultrasound frequency. As a result the effective interaction length is restricted by these effects,
resulting in rather small conversion efficiency, depending on the working conditions. In principle
these effects can be compensated at least partially by using a gas cell with varying background
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pressure in the axial direction or using ultra-sound waves containing several frequencies. The
study of such modified scheme is beyond the scope of the present work. Finally, it should be
noted that this method of QPM in isotropic gases by using of ultrasound can also be applied for
other nonlinear processes such as four-wave mixing or high-order harmonic generation. These
issues will be studied in forthcoming work.
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