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Abstract

In this study systems of coupled thin-film models for two immiscible liquid polymer

layers on a solid substrate that account for interfacial slip and intermolecular forces are

derived. On the scale of tens to hundred nanometers such two-layer systems are suscept-

able to instability and may rupture and dewet. The stability of the two-layer system and its

significant dependence on the order of magnitude of slip is investigated via these thin-film

models. With no-slip at both, the liquid-liquid and liquid-solid interface and polymer layers

of comparable thickness, the dispersion relation typically shows two local maxima, one in

the long-wave regime and the other at moderate wavenumbers. The former is associated

with perturbations that mainly affect the gas-liquid interface and the latter with higher rel-

ative perturbation amplitudes at the liquid-liquid interface. Slip at the liquid-liquid interface

generally favors the former perturbations. However, when the liquid-liquid and the liquid-

solid interface exhibit large slip, the maxima shift to small wavenumbers for increasing slip

and hence may significantly change the spinodal patterns.

1 Introduction

The stability of thin liquid films is of great interest in many technological applications involv-

ing lubricants and coatings. In particular, when the thickness of the films is on the micro- to

nanoscale, bulk and surface stresses compete with intermolecular forces and may lead to com-

plex wetting or dewetting dynamics. Understanding and controlling this dynamics is fundamental

in nanoscale design and functionalisation of surfaces for numerous applications ranging from

optoelectronics to biotechnology. However, while stability, rupture and dewetting processes of

liquid films from solid substrates have been investigated intensively experimentally and theo-

retically during the past decades, there are comparatively fewer studies for two-layer immisci-

ble liquid films. Moreover, two-layer liquid films have a far richer dynamics and potentially more

complex morphological structures even when both liquid layers are Newtonian. Here, apart from

differences in thickness and density of the two layers, additional parameters such as the ratio of

the viscosities of both liquids, and the ratio of interfacial tensions can play the dominant role on

the morphological structure.

Some of these effects are explored in an early experimental and theoretical study on liquid-

liquid dewetting in Brochard-Wyart at al. [1]. Two-layer system were investigated by linear sta-

bility analysis as well as numerical simulations including rupture In a series of publications by

Pototsky et al. [2, 3], Fisher & Golovin [4, 5], Bandyopadhyay et al. [6, 7] and Craster & Matar [8]

in the framework of lubrication theory. Also, stationary droplet solutions for liquid-liquid systems

and their stability have been studied numerically for the coupled sytem of thin film equations

by Pototsky et al. [3]. Many more studies are found in a recent comprehensive review on both

single and two-layer systems by Craster & Matar [9], illustrating of the extent of work in this field.
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Interestingly, interfacial slip between immiscible, liquid polymer layers has not been taken into

account in the framework of two-layer thin-film models, even though already the work by Lin [10]

suggested the possibility of interfacial slip, and a number of experimental studies have demon-

strated clear evidence of slip at polymer-polymer interfaces. Most importantly, we mention here

the coextrusion experiments by Zhao & Macosko [11] that exhibit slip, in particular between

polystyrene (PS) and polymethylmethacrylat (PMMA) interfaces, also more recent measure-

ments by Zeng et al. [12], and in liquid two-layer systems of PS dewetting from PMMA by Lin et

al. [13]. On the other hand, the intensely investigated slip phenomena for thin polymer films on

solid substrates, for example as it occurs when a polymer film dewets a hydrophobically coated

substrate, has often been decribed by a Navier-Slip condition, relating the lateral velocity along

the substrate to the shear rate u = b uz with the extrapolation length b being a measure of the

slip length. In fact, b is an apparent slip length being a measure of an underlying microscopic

mechanism. A well-known example is the case of polymer melts dewetting from a monolayer

of polymer chains grafted on a substrate, for which Brochard & De Gennes [14] showed that b

can be derived from microscopic consideration as a coil-stretch transition into a disentangled

state with much lower Rouse friction, and hence viscosity, within a very thin layer near the sub-

strate. Other mechanisms corresponding to other liquid-solid systems exhibiting apparent slip

are described in Léger [15] and the review by Lauga et al. [16].

While these results are of fundamental importance, they have also led to the derivation of new

thin-film models, in particular for dewetting polymer melts, that take into account apparent slip

of various orders of magnitude. The investigations by Kargupta et al. [17] showed a strong

dependence of the time scale of rupture and density of holes of the typically unstable polymer

film. In Münch et al. [18] and Fetzer et al. [19] it was shown that the dynamics and morphology

of dewetting rims may even be controlled by slippage. Their models systematically explained

experimetal results on the shape of the rim that were previuously attributed to viscoelastic effects

[20, 21] and moreover established a new experimental method for assessing slip in thin polymer

films [22, 23].

Thin-film models for immiscible polymer layers taking into account orders of magnitude of in-

terfacial slip are the main topic of this study and make use of the theories and analysis of the

microscopic mechanisms at the polymer-polymer interface under shearing motion. The deriva-

tion of apparent slip at polymer-polymer interfaces has been developed in work by Goveas &

Fredrickson [24], Adhikari & Goveas [25] extending earlier work by De Gennes, Brochard-Wyart

and Ajdari [26, 27, 28] for unentangled polymer, entangled polymer, dilute polymer emulsions,

as well as for cases when both liquid layers are Newtonian. In essence, the repulsive forces

within a thin interfacial region of two immiscible polymer films introduce higher shear rates and

hence an apparent velocity discontinuity leading to the concept of apparent slip.

As for single polymer layers on a solid substrate, the dimension-reduced thin film models allow

for the systematic analysis of early to long-time dynamics and the numerical simulation of the

morphological evolution and stability analysis of the interfaces. After the derivation of the thin film

models that take account of orders of magnitude of slip, we will focus on the stability analysis

about flat constant interfaces. The main tasks here are to determine the dispersion relations

and the dominant spinodal wavelength and to determine the mode of the perturbation of the

two interfaces, such as zig-zag or varicose. Because the base states are constant it is straight
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Figure 1: Sketch of a two-layer system

forward, though lengthy, to carry out a linear stability analysis for the underlying Stokes problem,

which is included in an appendix. This was done with the aim to assure that the stability results

for the new thin-film models are obtained as limiting cases of the underlying stability problem for

the Stokes equations.

Although there are number of potential combinations of slip conditions for different orders of

magnitude at the solid substrate and the liquid-liquid interface, we analyse here two models,

which show most clearly the significant impact of interfacial slip on the stability behavior of the

liquid-liquid system. In particular, we discuss the case when strong-slip conditions are imposed

at both interfaces, with a strong coupling of the dynamics of the interfaces. We note, that for

other combinations, such as weak- or no-slip at the solid substrate and strong-slip at the liquid-

liquid interface, the systems of thin-film equations decouple.

2 Formulation

The basic situation where two liquid layers are deposited on a solid substrate is depicted in

fig. 1. Coordinates are introduced with the x-axis pointing in the lateral direction, along the flat

solid substrate, and the z axis pointing normal to it. The solid-liquid interface is located at z = 0

and the liquid-liquid and liquid-gas interface at z = h1(x, t) and z = h2(x, t), respectively, where

t denotes time. The variables ui, wi and pi denote the lateral and vertical velocity components,

and the pressure, respectively in the i-th layer, with i = 1, 2. The viscosity is denoted by µi,

i = 1, 2 for the two layers. Surface tension for the liquid-liquid and liquid-gas interface are given

by σ1 and σ2, respectively.

In both layers, we have the Navier-Stokes and mass conservation equations for incompressible

Newtonian liquids,

ρ
dui

dt
= −∂xpi + µi (∂xxui + ∂zzui) , (2.1a)

ρ
dwi

dt
= −∂zpi + µi (∂xxwi + ∂zzwi) , (2.1b)

∂xui + ∂zwi = 0, (2.1c)

where d/dt is the material derivate in each layer, d/dt = ∂t + ui∂x + wi∂z , and i = 1, 2. For

simplicity, we assume that both layers have the same density ρ. At the substrate z = 0, we
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impose the Navier-slip condition with slip-length b1 and the impermeability condition,

u1 = b1∂zu1, w1 = 0. (2.2a)

The free surface z = h2(x, t) evolves with the flow according to the kinematic condition,

(0, ∂th2) · n2 = (u2, w2) · n2, (2.2b)

and the tangential and normal stress condition, which are, respectively,

n2 ·
(

Π2 + φ′(h)I
)

· t2 = 0, (2.2c)

n2 ·
(

Π2 + φ′(h)I
)

· n2 = σ2κ2 · n2. (2.2d)

Similarly, at the liquid-liquid interface z = h1(x, t), we have the kinematic condition, tangential

and normal stress condition, and the impermeability and slip condition with slip length b, which

are, respectively,

(0, ∂th1) · n1 = (u1, w1) · n1, (2.3a)

n1 ·
(

Π1 − Π2−φ′(h)
)

· t1 = 0, (2.3b)

n1 ·
(

Π1 − Π2−φ′(h)
)

· n1 = σ1κ1 · n1, (2.3c)

(u2 − u1, w2 − w1) · n1 = 0, (2.3d)

(u2 − u1, w2 − w1) · t1 = b

(

1

µ1
+

1

µ2

)

n1 · Π2 · t1. (2.3e)

Here we denote the thickness of the top layer by

h(x, t) = h2(x, t) − h1(x, t), (2.4)

the stress and strain tensors in the i-th layer i = 1, 2, by

Πi = −piI + µ2γ̇i, where γi = ∂juik + ∂kuij , (2.5)

and the unit tangential and normal vectors and curvature of the two interfaces i = 1, 2 by

ni =
(−∂xhi, 1)

√

1 + (∂xhi)
2
, ti =

(1, ∂xhi)
√

1 + (∂xhi)
2
, κi = ∇ · ni. (2.6)

We focus on a situation where the the contributions to the surface forces from the interaction

with the solid substrate can be neglected, but the interaction with the bottom layer is relevant

and can drive spinodal dewetting. Since these interactions decrease with the thickness of the

bottom and the top layer, respectively, this can be achieved, for example, by considering thin

enough top layers and only moderately thin bottom layers. The intermolecular potential for the

interactions is thus given by

φ(h) =
8

3
φ∗

[

1

8

(

h∗
h

)8

− 1

2

(

h∗
h

)2
]

. (2.7)

The h−2 term represents the disjoining pressure contribution from the van-der-Waals forces

that promotes dewetting, while the h−8 term is relevant only at very small thicknesses and is

stabilising. In fact, the potential has a minimum φ∗ < 0 at h = h∗.
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2.1 Nondimensional Problem

Let H denote the typical thickness of the upper layer, i.e. of h2 − h1, and let L, U and P be a

characteristic lateral length, velocity and pressure scale. We introduce these scalings via

x = Lx̃, z = Hz̃, hi = Hh̃i, b = Hb̃, b1 = Hb̃1,

ui = Uũi, wi = Ww̃i, t =
L

U
t̃,

pi = P p̃i, φ′ = Pφ̃′.















(2.8)

and then drop ’∼’. A pressure scale is set by the derivative of the intermolecular potential. The

choice

P =
8

3

φ∗
H
, (2.9)

results in a particularly simple form for φ′,

φ′(h) =
1

ε

[

−
( ε

h

)9
+

( ε

h

)3
]

, where ε =
h∗
H
. (2.10)

For the equations in the bulk of the liquid layers, we obtain

ε` Re
du2

dt
= −α ε`∂xp2 + ε2`∂xxu2 + ∂zzu2, (2.11a)

ε2` Re
dw2

dt
= −α∂zp2 + ε3`∂xxw2 + ε`∂zzw2, (2.11b)

0 = ∂xu2 + ∂zw2, (2.11c)

ε` Re
du1

dt
= −α ε`∂xp1 + µ

(

ε2`∂xxu1 + ∂zzu1

)

, (2.11d)

ε2` Re
dw1

dt
= −α∂zp1 + µ

(

ε3`∂xxw1 + ε`∂zzw1

)

, (2.11e)

0 = ∂xu1 + ∂zw1. (2.11f)

At the free surface z = h2 we get for the normal, tangential and kinematic condition, respectively

p2 − φ′(h) +
∂xxh2

[

1 + ε2` (∂xh2)
2
]3/2

= 2
ε`
α

[

1 − ε2` (∂xh2)
2
]

∂zw2 −
[

∂zu2 + ε2`∂xw2
]

∂xh2

1 + ε2` (∂xh2)
2

, (2.11g)

[

∂zu2 + ε2`∂xw2

] [

1 − ε2` (∂xh2)
2
]

− 4ε2`∂xu2∂xh2 = 0, (2.11h)

∂th2 = w2 − u2∂xh2. (2.11i)

For the boundary condition at the free liquid-liquid interface z = h1 we get for the normal,

tangential and kinematic condition, respectively

p1 − p2 + φ′(h) + σ
∂xxh1

[

1 + ε2` (∂xh1)
2
]3/2

= 2
ε`
α

[

1 − ε2` (∂xh1)
2
]

∂z (µw1 − w2) −
[

∂z (µu1 − u2) + ε2`∂z (µw1 − w2)
]

∂xh1

1 + ε2` (∂xh1)
2 , (2.11j)
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[

∂z (µu1 − u2) + ε2`∂x (µw1 − w2)
] [

1 − ε2` (∂xh1)
2
]

− 4ε2`∂x (µu1 − u2) ∂xh1 = 0, (2.11k)

∂th1 = w1 − u1∂xh2. (2.11l)

The impermeability condition between the upper and lower liquid layer is given by

(w2 − w1) − (u2 − u1) ∂xh1 = 0. (2.11m)

The slip condition at the liquid-liquid interface becomes

(u2 − u1) + ε2` (w2 − w1) ∂xh1

= b
µ+ 1

µ

[

∂zu2 + ε2`∂xw2
]

[

1 − ε2` (∂xh1)
2
]

− 4ε2`∂xu2∂xh1
√

1 + ε2` (∂xh1)
2

, (2.11n)

and the boundary conditions (impermeability and Navier-slip) at the substrate are

w1 = 0, u1 = b1∂zu1. (2.11o)

Here we denote

ε` =
H

L
, Re =

ρUH

µ2
, µ =

µ1

µ2
, σ =

σ1

σ2
, α =

PH

µ2U
. (2.12)

When balancing equation (2.11g), we have set, without loss of generality,

σ2H

PL2
= 1 (2.13)

Together with (2.9), we then find

ε` =
H

L
=

√

8

3

φ∗
σ2
. (2.14)

Throughout this paper, we assume that ε` � 1, and derive thin film equations for the profiles

h2 and h1 for various degrees of slip at the solid-liquid and the liquid-liquid interfaces. Different

magnitudes of the slip lengths will require different choices for α in terms of the small param-

eter ε`. We will treat µ and σ as order one parameters. For many systems, such as dewetting

micro- and nanoscopic polymer films, inertia is negligibly small. Therefore, we will only cover

the case Re= 0, but remark that keeping inertia can be done easily for the strong-slip models in

appropriate regimes of Re, analogous to one layer models [18].

3 Thin-film models

3.1 Weak-slip case

In this section we assume that during the dewetting motion of the upper layer from the lower

layer will exhibit no-slip at the interface z = h1, i.e. we set b1 = 0 in (2.11o), and we wish to
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vary slip at the liquid-liquid interface. We will refer to the resulting thin film model as the no-slip

weak-slip model (NS-WS model). In this case the flow is driven by the lateral pressure gradient

∂xp acting on the dominant viscous term ∂zzu2 in (2.11a). Thus we balance the two by letting

α =
1

ε`
, (3.1)

which fixes the velocity scale and thus the capillary number in terms of ε`,

Ca =
µ2U

σ2
= ε3` . (3.2)

The corresponding leading order problem in (2.11) can then be integrated and reduced to the

system of partial differential equations for h2(x, t) and h1(x, t) using the kinematic conditions

(2.11i) and (2.11l). The derivation is a straight forward variation of the case where there is no-

slip at both interfaces, see e.g. [2, 8]. Here we find it more convenient to write the thin-film model

as a system for h1(x, t) and h(x, t) = h2(x, t) − h1(x, t). To do this note that

∂th = −∂x

∫ h2

h1

u2 dz, (3.3)

and obtain

∂th1 =
1

µ
∂x

[

h3
1

3
∂xp1 +

h2
1

2
h∂xp2

]

, (3.4a)

∂th = ∂x

[(

1

3
h3 +

µ+ 1

µ
b h2

)

∂xp2 +
1

µ

h2
1

2
h∂xp1 +

1

µ
h1h

2∂xp2

]

, (3.4b)

where

∂xp1 = − (σ + 1) ∂x

(

∂xxh1 +
1

σ + 1
∂xxh

)

, (3.4c)

∂xp2 = −∂x

(

σ

σ + 1
∂xxh− φ′(h)

)

+
1

σ + 1
∂xp1. (3.4d)

This can be written as

∂th = ∂x (Q · ∂xp) , (3.5a)

where h denotes the vector (h1(x, t), h(x, t)), p = (p1(x, t), p2(x, t)), and Q the mobility matrix

given by

Q =
1

µ













h3
1

3

h2
1h

2

h2
1h

2

µ

3
h3 + (µ+ 1) b h2 + h1h

2













. (3.5b)

7



Note also, that (3.4c) and (3.4d) are equivalent to

∂xp2 = −∂x
(

∂xxh2 − φ′(h)
)

(3.6a)

∂xp1 = −∂x
(

σ∂xxh1 + φ′(h)
)

+ ∂xp2 = −∂x (σ∂xxh1 + ∂xxh2) (3.6b)

3.2 Strong-slip case

We now assume that during the dewetting motion of the upper from the lower layer there is sig-

nificant slip at both the solid substrate and the liquid-liquid interface. The systematic derivation

of one-layer thin film models for different regimes of slip at the substrate [18] has shown that the

case of strong slip, where the dimensionless slip length is O(ε−2
` ), represents a distinguished

limit. It leads to a particularly rich model that incorporates the effect of elongational stresses.

We therefore consider strong slip at both z = 0 and z = h1 and introduce slip parameters of

O(ε−2
` ) at the bottom and liquid-liquid interface, respectively

b1 =
β1

ε2`
, b =

β

ε2`
. (3.7)

Also, guided by the derivation [18], the plug-flow scaling in both layers leads to Ca = ε` and

thus here α = ε`. Expanding all dependent variables in terms of ε2` , we find that to leading

order, the lateral velocity fields ui turn out to be constant in z, i.e. we have plug flow in both

layers. To obtain closed form thin-film models for h, h1 and the lateral velocities u1 and u2 the

derivation needs to consider also the problem to O(ε2` ) in order to obtain solvability conditions.

The resulting velocity fields and the leading order film profiles h1(x, t) and h(x, t) satisfy the

following system of equations,

0 = −∂x(−(σ + 1)∂xxh1 − ∂xxh) +
4µ

h1
∂x(∂xu1h1) +

µ(u2 − u1)

(µ+ 1)βh1
− µ u1

β1h1
, (3.8a)

∂th1 = −∂x(h1u1), (3.8b)

0 = −∂x(φ′(h) − ∂xxh1 − ∂xxh) +
4

h
∂x[∂xu2h] −

µ(u2 − u1)

(µ+ 1)βh)
, (3.8c)

∂th = −∂x(hu2). (3.8d)

We avoid interruption of the flow of argument and include the details of the derivation of this new

model in appendix B.

4 Linear stability

4.1 Dispersion relation for the no-slip weak-slip model

We investigate the stability of the stationary solution with two flat interfaces. Since we have

assumed in the non-dimensionalisation (2.8) that the length scale H is the typical thickness of
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the top liquid layer, the base state is given by

h1(x, t) = h0
1, h(x, t) = 1.

We introduce normal mode perturbations according to

h1(x, t) = h0
1 + δχ1 exp(jkx+ ωt), h(x, t) = 1 + δ(χ2 − χ1) exp(jkx+ ωt),

where j =
√
−1 is the imaginary unit, k the wavenumber and ω the growth rate of the normal

mode perturbation, respectively, and 0 < δ � 1. The notation is chosen to be consistent with

expansions where perturbations δχ1 exp(jkx + ωt) and δχ2 exp(jkx+ ωt) are applied to h1 and

h2, respectively. Substituting this into (3.4) after eliminating p1 and p2, expanding to first order

in terms of δ, and dropping the superscript ‘0’, we obtain the following eigenproblem for the

eigenvalue ω and the eigenvector χ̄ = (χ1, χ2 − χ1),

ωχ̄ = −k2QEχ̄ (4.1)

where Q is the mobility matrix (3.5b) with h = 1, and

E =







(σ + 1)k2 k2

k2 k2 + φ′′(1)






. (4.2)

Therefore, the dispersion relation is given by

ω1,2 = −k
2

2
Tr(Q̄E) ± k2

√

Tr(Q̄E)2

4
−Det(Q̄E). (4.3)

For each value of k, there two eigenvalues. These always turned out to be real, and then have

different sign if detE < 0. In fact, one eigenvalue is positive (and the other negative) if k < kc,

and both are stable for k > kc, where the “cut-off” wavenumber kc is obtained from the condition

detE = 0 with the result

kc =

[

σ + 1

σ

]1/2

. (4.4)

4.1.1 No slip: b = 0.

To provide a baseline, we first investigate how the dispersion relations and the corresponding

perturbations of the two interfaces are affected by different thicknesses h1 of the lower layer in

the case when there is no slip at all, b = 0. In many practical situations, the surface tension of

the liquid-liquid interface is lower by an order of magnitude than of the gas-liquid interface. We

therefore choose a small value for σ = 0.1. For simplicity, we assume that the two liquids have

the same viscosity, i.e. µ = 1. Moreover, the value of |φ′′(1)| can be scaled out of the problem by

rescaling k = |φ′′(1)|1/2k̃ and ω = |φ′′(1)|2ω̃, thus, we can set φ′′ = −1 without losing generality.

With these parameters, kc = 3.32.
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Figure 2: Dispersion relations (left column ((a), (c), (e))) and components of the perturbation

vector (right column ((b), (d), (f))) for no-slip at both interfaces. The film thickness of the bottom

layer is varied from top to bottom, with h1 = 0.1, 0.01 in the top row, h1 = 1 in the middle

and h1 = 10, 100 in the bottom row. Arrows point in the direction of larger h1. Values for other

parameters are stated in the main text. The two components χ1 and χ2 of the perturbation

vector correspond to perturbations of the liquid-liquid and gas-liquid interface, and have been

normalised so that χ2
1 + χ2

2 = 1.
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For moderate thickness of the lower layer (h1 = 1), the most prominent feature to observe

are the two maxima in the dispersion relation in fig. 2(c), suggesting a bimodal instability with

two different wavelengths. Such a dispersion relation with two maxima was also observed by

Pototsky et al. [2] for a situation with three interaction potentials and no-slip at both interfaces.

Inspection of the components of the perturbation vector χ̄ reveals a transition in the shape of

the perturbed layers as k increases from the range where ω has its first maximum to where it

has the second maximum. For k less than about one, the shape of the perturbation is zig-zag

like (both interfaces are perturbed in the same direction), and for k larger than about one, it

is varicose. However, the modes are quite asymmetric. For the k ≥ 2 , the gas-liquid is only

weakly perturbed and in fact the relative amplitude compared to the perturbation of the liquid-

liquid interface tends to zero if σ is made smaller. This is plausible, since σ → 0 implies a

very stiff gas-liquid interface, σ2 � σ1. For longer wavelengths, surface tension should be less

important at both interfaces, so that the stability is governed by the intermolecular forces and

geometrical constraints i.e. the presence of a solid substrate below the bottom layer. The latter

is expected to have a stronger suppressing effect on the liquid-liquid interface deformation, thus

for k < 1, the gas-liquid interface is perturbed more strongly than the liquid-liquid interface.

For small values of the thickness of the lower layer, h1 = 0.1 and h1 = 0.01, we expect the

impact of geometric constraints to be more relevant closer to the substrate. Indeed, for k less

than about one, the zig-zag mode in fig. 2(b) is more asymmetric than previously in fig. 2(d),

with χ2 = O(h2
1), so that in the limit h1 → 0, only the gas-liquid interface is perturbed. We

then have a transition in the relative amplitudes for k between one and two as before. In fact,

the relative amplitudes for larger k are very similar to those in fig. 2(d). However, if we look

at the dispersion relation fig. 2(a), the growth rates for k > 1 are small, so that the range of

wave-numbers where the perturbations predominantly affect the bottom (liquid-liquid) interface

are nearly stable. Thus, the geometric constraints suppress the instability in this range of k and

eliminate one of the maxima present for moderate h1. For k < 1, the shape of the perturbation

suggest a behaviour as in a one-layer system and indeed, an asymptotic analysis shows that

for h1 � 1, one eigenvalue is

ωasy = −1

3
k2(k2 − 1) (4.5)

to leading order, the other is zero (i.e. not order one in h1). The relation (4.5) has its maximum at

the wavenumber k =
√

1/2 and its cut-off wavenumber at 1. The top eigenvalue ω1 approaches

ωasy from above for k < 1 and the zero eigenvalue, for k > 1. It therefore has its maximum near

k =
√

1/2 and is nearly zero, but still positive, for k > 1 up to kc, after which it is stable (i.e.

negative).

For large h1 = 10 and h1 = 100, the other maximum in the dispersion relation wins, see fig. 2(e).

For the wave-numbers where it is located, the shape of the perturbation is that of a varicose

mode where the perturbation affects both interfaces in opposite directions. However, due to the

smallness of σ, the gas-liquid interface is much stiffer than the liquid-liquid interface thus the

effect of the perturbation on the former is small. In the long wave regime, the shape of the

perturbations is zig-zag like and is increasingly symmetric i.e. it affects both interfaces equally

well as h1 → ∞. The region of k with the zig-zag shape in fig. 2(f) is thinner than for previously

discussed h1, of order O(h
−1/2
1 ). Notice that growth rates in this regime for k are small compared

to the maximum rates achieved for k > 1.
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Summarising, we have for moderate thickness h1 and small σ, i.e. relatively soft liquid-liquid

interface, a bimodal instability. The longer-wave maximum corresponds to a one-layer model

where the perturbations occur mainly at the liquid-gas interface while they are inhibited at the

liquid-liquid interface due to the constraints from the presence of the substrate. The shorter-

wave maximum corresponds to the dominant mode of a one-layer system of thickness h = 1

with two interfaces at a distance from any solid substrate. The instability is dominant at the

softer i.e. the liquid-liquid interface. The lower surface tension of this interface determines the

preferred wavelength.

4.1.2 General b.

We now investigate how the dispersion relation and perturbation shapes change, for moderate,

small and large h1, if b is increased. All other parameter values are retained from the previous

numerical experiments. Starting with h1 = 1, in fig. 3(d), we notice that the components of the

perturbation vector shown in (b) change comparatively little. The transition from an asymmetric

zig-zag to an asymmetric varicose shape at k = 1 . . . 2 that was already observed for b = 0

persists for larger slip. At the upper end of the k shown, the graphs for χ1 and χ2 are very

similar. The strongest dependence on b is seen for k < 1, where χ1 → 0 as b → ∞, i.e. the

already weak coupling between the interfaces is further diminished.

In the dispersion relation fig. 3(c), increasing b increases ω (notice the scaling of ω with (1 + b)).

This is to be expected, since this decreases friction, which accelerates the evolution of the

instability. However, the values for ω with k less than about one increase like ∝ b for b → ∞,

while the increase of ω for wavenumbers larger than one is smaller. This is not surprising, since

the lower-k instability mainly involves the gas-liquid interface (as seen in (b)), for which the

friction reduction is stronger than for the liquid-liquid interface which is more directly affected by

the no-slip condition at the solid substrate. The preferential increase of the growth rates allows

the lower-k instability to eventually overtake the larger-k instability.

For small h1 = 0.1, we therefore expect that the lower-k instability is further reinforced. Indeed,

the dispersion relation in fig. 3(a) does not change qualitatively with increasing b, except that the

maximum growth rates increase approximately linearly in b for larger slip lengths. The shape of

the perturbations are hardly affected by changes in b over two orders of magnitude, as shown

in fig. 3(b), where the lines for χ1 and for χ2 for the different b nearly coincide.

The effect of increasing b is more dramatic for larger h1. For h1 = 10 and b = 0, the dispersion

relation fig. 3(e) has only one maximum at k larger than one, with a preferential perturbation

of the liquid-liquid interface (see fig. 3(f)). As b is increased, the lower-k maximum appears

again, for the instability that mainly affects the gas-liquid interface. Thus, we recover a bimodal

situation. As b is increased even further, the lower-k maximum eventually dominates. Thus we

transition from a shorter wavelength peturbation that affects mainly the liquid-liquid interface to

a longer wavelength perturbation of predominantly the gas-liquid interface simply by increasing

the slip length.
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Figure 3: Dispersion relations (left column ((a), (c), (e))) and components of the perturbation

vector (right column ((b), (d), (f))) for no slip at the solid-liquid and weak slip at the liquid-liquid

interface. Each panel shows graphs for different slip length b = 0, 1, 10, 100. The bottom row has

two additional values, b = 1000 and 104. All arrows point in the direction of increasing b. From

top to bottom, the thickness changes from h1 = 0.1 (top), to h1 = 1 (middle) and h1 = 10 (bottom

row). Values for other parameters are stated in the main text. Notice that ω has been rescaled

by 1+ b in the left column. The two components χ1 and χ2 of the perturbation vector correspond

to perturbations of the liquid-liquid and gas-liquid interface, and have been normalised so that

χ2
1 + χ2

2 = 1. increasing b.
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4.2 Dispersion relation for the strong-slip strong-slip thin film model

We use the same base state and perturbations for the film h1 and h as in section 3.2. For the

the velocities u1 and u2, the base state is zero and thus the perturbed field is

u1(x, t) = δu1
1 exp(jkx+ ωt), u2(x, t) = δu1

2 exp(jkx+ ωt).

After expanding, the perturbations of the velocity fields can be eliminated and one obtains the

eigenvalue problem

ωχ̄ = k2Q1T
−1Q2Eχ̄, (4.6)

where χ̄ = (χ1, χ2 − χ1), and the matrices are

Q1 =

[

h1 0

0 1

]

, Q2 =

[

β1(µ+ 1)βh1 0

0 (µ+ 1)β

]

, E =







(σ + 1)k2 k2

k2 k2 + φ′′(1)






, (4.7)

and

T =

[

−4µβ1(µ+ 1)βh1k
2 − µβ1 − µ(µ+ 1)β µβ1

µ −4(µ+ 1)βk2 − µ

]

. (4.8)

Therefore, the dispersion relation is given by

ω1,2 = −k
2

2
Tr(Q̄E) ± k2

√

Tr(Q̄E)2

4
−Det(Q̄E), (4.9)

where Q̄ = −Q1T
−1Q2.

For the parameters, we assume µ = 1 and σ = 0.1 as before, h1 = 10, and vary β and β1.

As before, the value of |φ′′(1)| can be set to φ′′(1) = −1, since by rescaling k = |φ′′(1)|1/2k̃,

ω = |φ′′(1)|2ω̃, β = β̃/|φ′′(1)|, we can remove φ′′(1) from the dispersion relation.

For β = 0.05, we have, for very small slip parameters at the solid substrate, a bimodal situation.

As β1 is increased, the larger-k maximum dominates, i.e. the instability that mainly affects the

liquid-liquid interface in an asymmetric varicose shape. Notice that for the larger β1, a very

long wave number local maximum emerges in the dispersion relation that is associated with an

increasingly symmetric zig-zag shape of the perturbation.

For β = 0.5 and β = 5, the situation is similar, except that for the smallest β1 shown, the

dispersion relation has its global maximum in the lower k range where the perturbation only

involves the gas-liquid interface. As β1 is increased, the larger-k maximum takes over with a

perturbation that mainly affects the liquid-liquid interface. For very small k, we again observe

the emergence of a local maximum as β1 is increased.

5 Conclusions and Outlook

In this study we have demonstrated, by contrasting two thin-film models for liquid-liquid systems,

one in the weak-slip regime and the other in the strong-slip regime, the strong influence of slip on
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Figure 4: Dispersion relations (left column) and components of the perturbation vector at both

interfaces (right column) for h1 = 10 and for β = 0.05, 0.5, and 5, from top to bottom. Each

subfigure shows the results for different values of β1 = 10−4, 10−3, 0.01, 0.1, 1, 10, with the

arrows pointing in the direction of increasing β1. Values for other parameters are stated in the

main text. The two components χ1 and χ2 of the perturbation vector correspond to perturbations

of the liquid-liquid and gas-liquid interface, and have been normalised so that χ2
1 + χ2

2 = 1.

15



0 4
k

0

0.2

ω

h
1
=1, β=0.5

h
1
=10, β=0.5

h
1
=1, β=5

h
1
=10, β=5

Figure 5: The effect of varying the thickness of the bottom layer for two different values of the

slip parameter at the liquid-liquid interface. The other slip parameter is β1 = 0.001, and the

parameters are as before µ = 1, σ = 0.1, h = 1, and φ′′(1) = −1.

the dispersion relations and the dominant shape of the perturbations - i.e how the two interfaces

are deformed. It clearly demonstrates that including slip and choosing the appropriate thin film

model is vital for comparisons with experimental data and interpreting as well as controlling

pattern formation in such systems.

Stability can also be explored directly by linearising and using normal modes for the full model

using the Stokes equations. This leads to a more complicated eigenvalue problem for the growth

rate that is derived in appendix A, equations (A.7) to (A.16). Numerical solutions of this problem

(through a solver for generalised eigenproblems) give the growth rate over the entire parameter

space, and by taking corresponding limits the dispersion relations for the thin film models in this

paper can be recovered, and further limiting cases can be identified.

In summary, we have demonstrated that increasing slip at the solid substrate generally promotes

perturbations of the liquid-liquid relative to the gas-liquid interface, while increasing slip at the

liquid-liquid interface favors perturbations at the gas-liquid interface.

If the bottom film layer is thick enough, the preferred wavelength perturbation predominantly

affects the liquid-liquid interface, since the maximum of the dispersion relation corresponds to

wavenumbers where χ1 is larger (see figs. 2(e,f)). This interface is softer, i.e. easier to deform

than the gas-liquid interface, due to its lower surface tension. The preferred wavelength is de-

termined by the smaller surface tension of this interface. If h1 is decreased, this instability is

suppressed. Instead, another maximum of the dispersion relation at smaller wavenumbers ap-

pears and eventually becomes dominant (fig. 2(a)). The case of moderate film thickness h1 in

fig. 2(c) shows both maxima simultaneously. This trend observed for no-slip at the solid-liquid

and liquid-liquid interface persists for weak-slip at the liquid-liquid interface, and also for strong

slip at both interfaces. Increasing slip at the liquid-liquid interface (and no or fixed slip at the

solid substrate) delays the transition in the dispersion relation from one dominant maximum to

the other as the thicknesses h1 is increased. This is also illustrated by fig. 5. For the smaller slip
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β = 0.5, the line with h1 = 10 has two maxima with the one to the right (k > 1) being the larger

one. In contrast, for β = 5, a second maximum is just about to form in the graph for h1 = 10, and

is clearly dominated by the maximum at k < 1.

Changing the slip length at the liquid-liquid interface in the weak-slip regime typically does not

have a strong effect on the preferred wave length. In contrast, for strong slip at both interfaces,

increasing the slip parameter tends to shift the location of the maxima to lower values, com-

pare figs. 4(a), (c), (e). For one-layer films with strong slip at the liquid-solid interface, a similar

tendency and the contrast with weak slip has been observed previously [17, 29].

This paper has focused on the derivation of thin film models for two slip regimes, in order to

contrast the different qualitative signatures of the corresponding stability problems. Further in-

teresting combinations of weak-slip, strong-slip as well as intermediate-slip conditions at the

interfaces are possible and their impact on patterns and dewetting dynamics will be discussed

in future investigations. In addition, the instability discussed here typically gives rise to rupture.

In the presence of slip, the self similar solutions have a rich structure even for a one-layer film

[30]. We expect that for the two-layer case, this will compound with the additional degrees of

freedom arising from the presence of two deformable interfaces.

A Dispersion relations for the Stokes equations

We start the stability analysis with the Stokes equations

0 = −∂xpi + µi (∂xxui + ∂zzui) (A.1a)

0 = −∂zpi + µi (∂xxwi + ∂zzwi) (A.1b)

0 = ∂xui + ∂zwi (A.1c)

and the boundary conditions from the previous sections. In order to simplify our problem we

introduce the stream functions Ψ1 and Ψ2 with

ui =
∂Ψi

∂z
, wi = −∂Ψi

∂x
(i = 1, 2). (A.2)

Plugging this into the Stokes equations we obtain two biharmonic equations,

∂4
xΨi + 2∂2

x∂
2
zΨi + ∂4

zΨi = 0 (i = 1, 2). (A.3)

Linear stability is carried out by introducing small perturbations

[

Ψi, h1 − h0
1, h2 − h0

2, pi − p0i , φ− φ0

]

= δ
[

ψi(z), χ, 1,Π(z), (1 − χ) φ′
∣

∣

h0

]

exp(jkx+ωt) (A.4)

around the base state

Ψi = 0, hi = h0
i , h0 = h0

2 − h0
1, pi = p0i , φ|h0 = φ0.

where ω and k are the growth coefficient and the wavenumber and obtain

∂4
zψi − 2k2∂2

zψi + k4ψi = 0, (A.5)
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with the general solutions

ψi(z) = ui1 exp(kz) + ui2z exp(kz) + ui3 exp(−kz) + ui4z exp(−kz). (A.6)

where the coefficients are determined by using the boundary conditions. First, slip at z = 0 leads

to

(k − b1k
2)u11 + (1 − 2b1k)u12 − (k + b1k

2)u13 + (1 + 2b1k)u14 = 0 (A.7)

while impermeability simply reads

u11 + u13 = 0. (A.8)

At the free surface z = h2 the kinematic condition becomes

kekh0
2u21 + kh0

2e
kh0

2u22 + ke−kh0
2u23 + kh0

2e
−kh0

2u24 = jδω (A.9)

the tangential stress condition

kekh0
2u21 + (kh0

2 + 1)ekh0
2u22 + ke−kh0

2u23 + (kh0
2 − 1)e−kh0

2u24 = 0. (A.10)

At the liquid-liquid interface z = h1, the kinematic condition now reads

kekh0
1u11 + kh0

1e
kh0

1u12 + ke−kh0
1u13 + kh0

1e
−kh0

1u14 = jχδω (A.11)

the tangential stress condition

µ1[ke
kh0

1u11 + (kh0
1 + 1)ekh0

1u12 + ke−kh0
1u13 + (kh0

1 − 1)e−kh0
1u14] (A.12)

−µ2[ke
kh0

1u21 + (kh0
1 + 1)ekh0

1u22 + ke−kh0
1u23 + (kh0

1 − 1)e−kh0
1u24] = 0.

The impermeability condition is equivalent to

kekh0
1u21 + kh0

1e
kh0

1u22 + ke−kh0
1u23 + kh0

1e
−kh0

1u24 = jχδω (A.13)

and finally, the slip condition

kekh0
1u11 + (kh0

1 + 1)ekh0
1u12 − ke−kh0

1u13 − (kh0
1 − 1)e−kh0

1u14 (A.14)

+k(2b∗k − 1)ekh0
1u21 + (kh0

1 + 1)(2b∗k − 1)ekh0
1u22

+k(2b∗k + 1)e−kh0
1u23 + (kh0

1 − 1)(2b∗k + 1)e−kh0
1u24 = 0.

where b∗ = (1 + µ2/µ1)b. For the solution of this algebraic system we put into the remaining

boundary conditions, namely the normal stress conditions at z = h2

jµ2[2k
2ekh0

2u21 + 2k2h0
2e

kh0
2u22 − 2k2e−kh0

2u23 − 2k2h0
2e

−kh0
2u24]

= δ(σ2k
2 + (1 − χ) φ′′

∣

∣

h0) (A.15)

anda z = h1

jµ1[2k
2ekh0

1u11 + 2k2h0
1e

kh0
1u12 − 2k2e−kh0

1u13 − 2k2h0
1e

−kh0
1u14] (A.16)

−jµ2[2k
2ekh0

1u21 + 2k2h0
1e

kh0
1u22 − 2k2e−kh0

1u23 − 2k2h0
1e

−kh0
1u24]

= δ(σ1χk
2 − (1 − χ) φ′′

∣

∣

h0).
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B Derivation of the thin film model for strong-slip at the liquid-

liquid and solid-liquid interface

We expand the variables in (2.11) as

(u1, w1, u2, w2) =
(

u
(0)
1 , w

(0)
1 , u

(0)
2 , w

(0)
2

)

+ ε2`

(

u
(1)
1 , w

(1)
1 , u

(1)
2 , w

(1)
2

)

+O
(

ε4`

)

, (B.1a)

(p1, p2) =
(

p
(0)
1 , p

(0)
2

)

+ ε2`

(

p
(1)
1 , p

(1)
2

)

+O
(

ε4`

)

, (B.1b)

(h1, h2) =
(

h
(0)
1 , h

(0)
2

)

+ ε2`

(

h
(1)
1 , h

(1)
2

)

+O
(

ε4`

)

, (B.1c)

and consider in turn the leading and next order problem in ε`.

Leading order problem.

0 = ∂zzu
(0)
2 , (B.2a)

0 = −∂zp
(0)
2 + ∂zzw

(0)
2 , (B.2b)

0 = ∂xu
(0)
2 + ∂zw

(0)
2 , (B.2c)

0 = ∂zzu
(0)
1 , (B.2d)

0 = −∂zp
(0)
1 + µ∂zzw

(0)
1 , (B.2e)

0 = ∂xu
(0)
1 + ∂zw

(0)
1 , (B.2f)

For the boundary condition at the free surface z = h
(0)
2 we get for the normal, tangential and

kinematic condition, respectively

p
(0)
2 − φ′(h(0)) + ∂xxh

(0)
2 − 2

(

∂zw
(0)
2 − ∂zu

(0)
2 ∂xh

(0)
2

)

= 0, (B.2g)

∂zu
(0)
2 = 0, (B.2h)

∂th
(0)
2 = w

(0)
2 − u

(0)
2 ∂xh

(0)
2 , (B.2i)

For the boundary condition at the free liquid-liquid interface z = h
(0)
1 we get for the normal,

tangential and kinematic condition, respectively

p
(0)
1 − p

(0)
2 + φ′(h(0)) + σ ∂xxh

(0)
1

− 2
[(

µ∂zw
(0)
1 − ∂zw

(0)
2

)

−
(

µ∂zu
(0)
1 − ∂zu

(0)
2

)

∂xh
(0)
1

]

= 0, (B.2j)

∂z

(

µu
(0)
1 − u

(0)
2

)

= 0, (B.2k)

∂th
(0)
1 = w

(0)
1 − u

(0)
1 ∂xh

(0)
1 . (B.2l)

The impermeability condition at z = h
(0)
1 between the two liquid layers is given by

(

w
(0)
2 − w

(0)
1

)

−
(

u
(0)
2 − u

(0)
1

)

∂xh
(0)
1 = 0 (B.2m)
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The slip condition at the liquid-liquid interface z = h
(0)
1 is

u
(0)
2 = β

µ+ 1

µ
∂zu

(0)
2 . (B.2n)

For the boundary conditions at the substrate we assume impermeability and no slip

w
(0)
1 = 0, (B.2o)

∂zu
(0)
1 = 0. (B.2p)

From (B.2d), (B.2p) and (B.2a), (B.2h) we conclude

u
(0)
1 = u

(0)
1 (x, t), (B.3a)

u
(0)
2 = u

(0)
2 (x, t), (B.3b)

thus the horizontal velocity components are independent of z. Using this in (B.2f), (B.2o) and

(B.2c), (B.2m) we find

w
(0)
1 = −z∂xu

(0)
1 , (B.4a)

w
(0)
2 = −

(

z − h
(0)
1

)

∂xu
(0)
2 − ∂xu

(0)
1 h

(0)
1 + (u

(0)
2 − u

(0)
1 )∂xh

(0)
1 . (B.4b)

Using (B.2e), (B.2j) and (B.2b), (B.2g) we find

p
(0)
1 + 2µ∂xu

(0)
1 + ∂xxh

(0)
2 + σ∂xxh

(0)
1 = 0, (B.5a)

p
(0)
2 − φ′

(

h(0)
)

+ 2∂xu
(0)
2 + ∂xxh

(0)
2 = 0, (B.5b)

hence, also independent of z.

Next order problem. To close the problem to leading order and determine an equation for u
(0)
1

and u
(0)
2 , we need to consider the problem to next order. We will formulate here only the equa-

tions that are required to accomplish the task of fixing these leading order velocity components.

The next order upper and lower layer equations in the bulk are

0 = −∂xp
(0)
2 + ∂xxu

(0)
2 + ∂zzu

(1)
2 , (B.6a)

0 = −∂zp
(1)
2 + ∂xxw

(0)
2 + ∂zzw

(1)
2 , (B.6b)

0 = ∂xu
(1)
2 + ∂zw

(1)
2 , (B.6c)

0 = −∂xp
(0)
1 + µ∂xxu

(0)
1 + µ∂zzu

(1)
1 , (B.6d)

0 = −∂zp
(1)
1 + µ∂xxw

(0)
1 + µ∂zzw

(1)
1 , (B.6e)

0 = ∂xu
(1)
1 + ∂zw

(1)
1 . (B.6f)

The next order tangential stress boundary condition at liquid-gas interface z = h
(0)
2 are

∂zu
(1)
2 + ∂xw

(0)
2 − 4∂xu

(0)
2 ∂xh

(0)
2 = 0, (B.6g)

∂z

(

µu
(1)
1 − u

(1)
2

)

+ ∂x

(

µw
(0)
1 − w

(0)
2

)

− 4∂x

(

µu
(0)
1 − u

(0)
2

)

∂xh
(0)
1 = 0. (B.6h)
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At the liquid-liquid interface z = h
(0)
1 we have

u
(0)
2 − u

(0)
1 = β

µ

µ+ 1

[

∂zu
(1)
2 + ∂xw

(0)
2 − 4∂xu

(0)
2 ∂xh

(0)
1

]

, (B.6i)

and at the solid substrate z = 0,

u
(0)
1 = β1∂zu

(1)
1 . (B.6j)

In the above equations, we have already made use of the fact that u
(0)
1 and u

(0)
2 do not depend

on z and dropped all derivatives of these variables with respect to z.

Integrating now (B.6a) and (B.6d), we obtain

∂z u
(1)
2

∣

∣

∣

h
(0)
2

− ∂z u
(1)
2

∣

∣

∣

h
(0)
1

= −h(0)
(

−∂xp
(0)
2 + ∂xxu

(0)
2

)

, (B.7a)

∂z u
(1)
1

∣

∣

∣

h
(0)
2

− ∂z u
(1)
1

∣

∣

∣

h
(0)
1

= −h(0)
1

(

−∂xp
(0)
1 + µ∂xxu

(0)
1

)

. (B.7b)

The pressure terms on the right hand side can be eliminated by using (B.5a) and (B.5b). The

terms in the left hand side can be expressed in terms of the leading order solutions u
(0)
2 , u

(0)
2 ,

h
(0)
1 and h

(0)
2 by first using (B.6g), (B.6h), (B.6i) and (B.6j), then eliminating the occuring w

(0)
2

and w
(0)
1 via the solutions (B.4a) and (B.4b). This yields the equations (3.8a) and (3.8c). The

other two equations, (3.8b) and (3.8d), are obtained by integrating (B.2c) and (B.2f), and using

the conditions (B.2i), (B.2l), (B.2m), (B.2p).
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