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Czech Republic

3 Institut für Mathematik
Technische Universität Berlin
Str. des 17. Juni 136
10623 Berlin
Germany
E-Mail: salvi@math.tu-berlin.de

4 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: tilman.wolff@wias-berlin.de

No. 1739

Berlin 2012

2010 Mathematics Subject Classification. 37H10, 60K37, 60J60.

Key words and phrases. Random conductance model, second order discrete elliptic equations with random coeffi-
cients, homogenization theory.

The research of M.B. was partially supported by the NSF grant DMS-1106850 and by GAČR project P201/11/1558. Two
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ABSTRACT. We consider resistor networks on Zd where each nearest-neighbor edge is assigned a
non-negative random conductance. Given a finite set with a prescribed boundary condition, the effective
conductance is the minimum of the Dirichlet energy over functions that agree with the boundary values.
For shift-ergodic conductances, linear (Dirichlet) boundary conditions and square boxes, the effective
conductance scaled by the volume of the box is known to converge to a deterministic limit as the box-
size tends to infinity. Here we prove that, for i.i.d. conductances with a small ellipticity contrast, also
a (non-degenerate) central limit theorem holds. The proof is based on the corrector method and the
Martingale Central Limit Theorem; a key integrability condition is furnished by the Meyers estimate.
More general domains, boundary conditions and arbitrary ellipticity contrasts are to be addressed in a
subsequent paper.

1. INTRODUCTION AND MAIN RESULT

As is well known, most materials, regardless how pure they may seem at the macroscopic level,
have a rather complicated microscopic structure. It may then come as a surprise that physical phe-
nomena such as heat or electric conduction are described so well using differential equations with
smooth, sometimes even constant, coefficients. An explanation for this has been offered by homoge-
nization theory: rapid oscillations at the microscopic level are smoothened out (i.e., homogenized) at
the macroscopic scale; that is, in the limit when the separation between these scales tends to infinity.
Note, however, that this does not mean that the microscopic structure is simply washed out. Indeed,
while it disappears from the structure of the equations, it remains embedded in the values of effective
material constants, e.g., the coefficients.

An illustrative example of a homogenization problem is that of effective conductance. We will formulate
an instance of this problem directly in the setting of resistor networks. Consider the d-dimensional
hypercubic lattice Zd and suppose that each unordered nearest-neighbor edge 〈x,y〉 is assigned a
value axy = ayx ∈ (0,∞) — called the conductance of 〈x,y〉. For a finite set Λ ⊂ Zd , let B(Λ) be
those edges with at least one endpoint in Λ. Given a function f : Zd → R, let

(1.1) QΛ( f ) := ∑
〈x,y〉∈B(Λ)

axy
[

f (y)− f (x)
]2

,

where each pair (x,y) is counted only once. This is the electrostatic (Dirichlet) energy for the poten-
tial f with Dirichlet boundary condition on the boundary vertices of Λ.

Consider now the square box ΛL := [0,L)d ∩Zd . A quantity of prime interest for us is the effective
conductance,

(1.2) C eff
L (t) := inf

{
QΛL( f ) : f (x) = t · x, ∀x ∈ ∂ΛL

}
,

where t ∈Rd and where ∂Λ are those vertices outside Λ that have an edge into Λ. By Kirchhoff’s and
Ohm’s laws (see, e.g., Doyle and Snell [5]), this represents the total electric current flowing through
the network when the boundary vertices are kept at voltage t · x.

For homogeneous resistor networks, i.e., when axy := a for all 〈x,y〉, the infimum (1.2) is achieved by
f (x) := t ·x and so C eff

L (t) = a|t|2Ld(d +o(1)). A question of (reasonably) practical interest is then
what happens when the conductances axy are no longer constant, but remain close to a constant. In
particular, we may assume that they are uniformly elliptic, i.e.,

(1.3) ∃λ ∈ (0,1), ∀〈x,y〉 : λ ≤ axy ≤
1
λ

.

A comparison of QΛ with these axy’s and the homogeneous case shows that C eff
L (t) is still of the order

of |t|2Ld . Moreover, thanks to the choice of the linear boundary condition, by subadditivity arguments
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the limit

(1.4) ceff(t) := lim
L→∞

1
Ld C eff

L (t)

exists almost surely for any ergodic distribution of the conductances. The problem left to resolve is
thus a characterization of the limit value.

Interestingly, ceff(t) can be characterized in large generality: Suppose that axy = axy(ω) is a sample
from a shift-ergodic law P on the product space indexed by edges of Zd . Formally, we denote by B(Zd)
the set of all edges in the lattice, write Ω :=

⊗
B(Zd)[λ ,1/λ ] for the set of configurations satisfying (1.3)

and interpret axy(ω) = ayx(ω) as the coordinate projection on edge 〈x,y〉. As is well known (e.g.,
Jikov, Kozlov and Oleinik [7] with ideas going back to Papanicolaou and Varadhan [14], Kozlov [8] and
Künnermann [9]),

(1.5) ceff(t) = inf
g∈L∞(P)

E
(

∑
x=ê1,...,êd

a0,x(ω)
∣∣t · x+∇xg(ω)

∣∣2).

Here E is expectation with respect to P, the objects ê1, . . . , êd are the unit coordinate vectors in Rd

and ∇xg(ω) := g◦ τx(ω)−g(ω) is the gradient of g in direction of x ∈ Zd with τx denoting the shift
by x; i.e., the map on the probability space such that ayz(τxω) := ax+y,x+z(ω). The quantity on the
right-hand side of (1.5) can be interpreted as the Dirichlet energy density — with the spatial average
naturally replaced by the ensemble average.

Once the (deterministic) leading-order of C eff
L (t) has been identified, the next natural question is that

of fluctuations. It is obvious — e.g., by checking the explicitly computable d = 1 case — that no
universal limit law can be expected for general conductance distributions, but progress could perhaps
be made for the (physically most appealing) i.i.d. case. However, even here establishing just the order
of magnitude of the fluctuations turned out to be an arduous task. Indeed, more than a decade ago
Wehr [18] showed that Var(C eff

L ) ≥ Θ(Ld) but a corresponding upper bound has been furnished
only recently by Gloria and Otto [6]. Both of these results contain important technical caveats: Wehr
requires continuously distributed axy’s while Gloria and Otto express their results under a “massive”
cutoff.

Gloria and Otto [6] drew important ideas from an earlier unpublished note by Naddaf and Spencer [12]
where (optimal) upper bounds on the variance have been derived for certain correlated conductance
laws. The main tool of [12] is the Meyers estimate (cf Meyers [11]), to be used heavily in the present
note as well. From earlier derivations of (suboptimal) variance upper bounds we find worthy of men-
tioning an old paper by Yurinskii [17], cf [6] for a thorough discussion of this work, and a more recent
paper by Benjamini and Rossignol [1]. Indidentally, the Meyers estimate was also invoked in the anal-
ysis of finite-volume approximations to ceff(t) by Caputo and Ioffe [4].

The goal of the present note is to prove that, for i.i.d. conductances which are (deterministically) not
too far from a constant, the asymptotic law of C eff

L (t) is in fact Gaussian. Explicitly, let N (µ,σ2)
denote the normal random variable with mean µ and variance σ2. Then we have:

Theorem 1.1 Suppose the conductances axy are i.i.d. For each d≥ 1, there is λ = λ (d)∈ (0,1)
such that the following holds: If (1.3) is satisfied P-a.s. with this λ , then for each t ∈ Rd there
is σ2

t ∈ [0,∞) such that

(1.6)
C eff

L (t)−EC eff
L (t)

|ΛL|1/2
law−→

L→∞
N (0,σ2

t ).

Moreover, σ2
t > 0 whenever t 6= 0 and the conductance law is non-degenerate.



3

A few remarks are in order:

Remarks 1.2 (1) Notice that the above does not give us much information on the “order
expansion” of C eff

L (t). Indeed, we know that EC eff
L (t) is to the leading order equal to ceff(t)|ΛL|

but when this order is subtracted, the next-order term is (presumably) of boundary size. In
d ≥ 3, this is still larger than the typical size of the fluctuations. What the above does tell us is
the character of the leading order random term.

(2) There is in fact a formula for σ2
t , see Theorem 2.7 below, which also shows that t 7→ σ2

t is of
a bi-quadratic (and thus smooth) form. However, the formula involves complicated conditioning
and does not seem very useful for practical computations.

(3) There is no restriction on the single-conductance law other than (1.3). In particular, P can
have a non-absolutely continuous part including atoms; the support need not be an interval.
Certain technical problems do arise at this level of generality; these are discussed in Section 2.5
which, we believe, is of independent interest.

We prove Theorem 1.1 by a reduction to the Martingale Central Limit Theorem. There are two main
technical ingredients: homogenization theory (which enables a stationary martingale approximation
of C eff

L (t)) and analytical estimates for finite-volume harmonic coordinates (by which we control the
errors in the martingale approximation). The restrictions to rectangular boxes, linear boundary condi-
tions and small ellipticity contrasts permit us to encapsulate the analytical input into a single step, the
Meyers estimate, cf Proposition 2.4 and Theorem 4.4. These restrictions can be relaxed but not with-
out lengthy additional arguments not all of which have been handled satisfactorily at this time. These
are deferred to a follow-up paper.

We remark that two recent preprints have been brought to our attention at the time this work was first
announced in conference talks. First, Nolen [13] has established a normal approximation to the ef-
fective conductance defined over a periodic environment, in the limit when the period tends to infinity.
Second, in a preprint that was posted at the time of writing the present note, Rossignol [15] formulates
and proves a central limit law for the effective resistance for the corresponding problem on a torus.
Rossignol’s setting is based on minimizing the electrostatic energy over currents (rather than poten-
tials) subject to a restriction on the total current flowing around the torus. By a well known reciprocity
relation between effective conductance and resistance, these papers appear to address very similar
problems.

The present paper differs from both Nolen [13] and Rossignol [15] mainly in its emphasis on fixed
(Dirichlet), as opposed to periodic, boundary conditions. Indeed, a majority of our technical work is
aimed at controlling the resulting boundary effects. Also the way a Gaussian limit law is established
is quite different: Nolen appeals to a second-order Poincaré inequality, Rossignol uses concentration-
of-measure techniques while we invoke the Martingale Central Limit Theorem. A slight deficiency of
the present work compared to [13] and [15] is the limitation on ellipticity contrast. Nolen overcomes
this by adapting lengthy analytical estimates from Gloria and Otto [6], for Rossignol this seems to
come naturally through the concentration-of-measure approach. While we believe that the Gloria-Otto
machinery applies in our situation as well, in the present paper we decided to sacrifice on generality
somewhat and solve only the simplest non-trivial (yet still physically appealing) case.

2. KEY INGREDIENTS

Here we discuss the strategy of the proof of Theorem 1.1 and state its principal ingredients in the form
of suitable propositions. The actual proofs begin in Section 3.
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2.1 Martingale approximation.

A standard way to control fluctuations of a function of i.i.d. random variables is by way of a martingale
approximation. Let us order the random variables {axy : 〈x,y〉 ∈ B(ΛL)} in any (for now) convenient
way and let Fk to be the σ -algebra generated by the first k of them. (Since we only aim at a distribu-
tional convergence, the σ -algebras may depend on L.) Then

(2.1) C eff
L (t)−EC eff

L (t) =
|B(ΛL)|

∑
k=1

Zk,

where

(2.2) Zk := E
(
C eff

L (t)
∣∣Fk

)
−E
(
C eff

L (t)
∣∣Fk−1

)
.

Obviously, the quantity Zk is a martingale increment. In order to show distributional convergence to
N (0,σ2), it suffices to verify the (Lindenberg-Feller-type of) conditions of the Martingale Central
Limit Theorem due to Brown [3]:

(1) There exists σ2 ∈ [0,∞) such that

(2.3)
1
|ΛL|

|B(ΛL)|

∑
k=1

E(Z2
k |Fk−1) −→

L→∞
σ

2

in probability, and
(2) for each ε > 0,

(2.4)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(

Z2
k 1{|Zk|>ε|ΛL|1/2}

∣∣Fk−1
)
−→
L→∞

0

in probability.

The sums on the left suggest invoking the Spatial Ergodic Theorem, but for that we would need to
ensure that the individual terms in the sum are (at least approximated by) functions that are stationary
with respect to shifts of Zd . This necessitates the following additional input:

(i) a specific choice of the ordering of the edges, and
(ii) a more explicit representation for Zk.

We will now discuss various aspects of these in more detail.

2.2 Stationary edge ordering.

Recall that B(Zd) denotes the set of all (unordered) edges in Zd . We will order B(Zd) as follows:
Let � denote the lexicographic ordering of the vertices of Zd . Explicitly, for x = (x1, . . . ,xd) and
y = (y1, . . . ,yd) we have x � y if either x = y or x 6= y and there exists i ∈ {1, . . . ,d} such that
x j = y j for all j < i and xi < yi. We will write x≺ y if x 6= y and x� y.

For the purpose of defining a stationary ordering of the edges, and also easier notation in some
calculations that are to follow, we now identify B(Zd) with the set of pairs (x, i), where x ∈ Zd and
i ∈ {1, . . . ,d}, so that (x, i) corresponds to the edge between the vertices x and x+ êi. We will then
write

(2.5) (x, i)� (y, j) if

{
either x≺ y
or x = y and i≤ j.

Again, (x, i)≺ (y, j) if (x, i)� (y, j) but (x, i) 6= (y, j). It is easy to check that � is a complete order
on B(Zd). A key fact about this ordering is its stationarity with respect to shifts:
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Lemma 2.1 If (x, i)� (y, j) then also (x+ z, i)� (y+ z, j) for all z ∈ Zd .

Proof. This is a trivial consequence of the definition. �

Now we proceed to identify the sigma algebras {Fk} in the martingale representation above. Recall
that Ω :=

⊗
B(Zd)[λ ,1/λ ] denotes the set of conductance configurations satisfying (1.3). Writing ω

for elements of Ω we use axy = axy(ω), for 〈x,y〉 ∈ B(Zd), to denote the coordinate projection
corresponding to edge 〈x,y〉. Given L ≥ 1, set N := |B(ΛL)| and let b1, . . . ,bN be the enumeration
of B(ΛL) induced by the ordering of edges � defined above. Then we set

(2.6) Fk := σ(ωb : b� bk), k = 1, . . . ,N,

with

(2.7) F0 := σ(ωb : b≺ b1).

By definition F0 is independent of the edges in B(ΛL) while FN determines the entire configuration
in B(ΛL). Note also that Fk includes information about edges that are not in B(ΛL). This will be of
importance once we replace Zk by a random variable that depends on all of ω .

2.3 An explicit form of martingale increment.

Having addressed the ordering of the edges, and thus the definition of the σ -algebras Fk, we now
proceed to derive a more explicit form of the quantity Zk from (2.2). Given ω ∈Ω, define the operator
Lω on (R or Rd-valued) functions on the lattice via

(2.8) (Lω f )(x) := ∑
y : 〈x,y〉∈B(Zd)

axy(ω)
[

f (y)− f (x)
]
.

This is an elliptic finite-difference operator — a random Laplacian — that shows up as the generator of
the random walk among random conductances (see, e.g., Biskup [2] for a review of these connections).
The existence/uniqueness for the associated Dirichlet problem implies that for any finite Λ⊂ Zd there
is a unique ΨΛ : Ω× (Λ∪∂Λ)→ Rd such that x 7→ΨΛ(ω,x) obeys

(2.9)

{
Lω ΨΛ(ω,x) = 0, x ∈ Λ,

Ψ(ω,x) = x, x ∈ ∂Λ.

It is then easily checked that f (x) := t ·ΨΛ(ω,x) is the unique minimizer of f 7→ QΛ( f ) over all
functions f with the boundary values f (x) = t · x for x ∈ ∂Λ. In particular, we have

(2.10) C eff
L (t) = QΛL

(
t ·ΨΛL

)
for all t ∈ Rd . The function x 7→ΨΛ(ω,x) will sometimes be referred to as a finite-volume harmonic
coordinate. (The first line in (2.9) justifies this term.)

The minimum value QΛ(t ·ΨΛ) is a differentiable and concave function of {axy : 〈x,y〉 ∈ B(Λ)}. As
is readily checked,

(2.11)
∂

∂axy
QΛ(t ·ΨΛ) =

[
t ·ΨΛ(ω,y)− t ·ΨΛ(ω,x)

]2
, 〈x,y〉 ∈ B(Λ).

This relation is of fundamental importance for what is to come.

Abusing the notation slightly, let ω1, . . . ,ωN , with N := |B(Λ)|, denote the components of the config-
uration ω over B(Λ) labeled in the order induced by � defined above. Let

(2.12) q(ω1, . . . ,ωN) := QΛ(t ·ΨΛ)
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mark explicitly the dependence of the right-hand side on these variables. The product structure of the
underlying probability measure then allows us to give a more explicit expression for the increment
Zk = Zk(ω1, . . . ,ωk):

(2.13)

Zk =
∫

P(dω
′
k) . . .P(dω

′
N)
[
q(ω1, . . . ,ωk,ω

′
k+1, . . . ,ω

′
N)

−q(ω1, . . . ,ωk−1,ω
′
k, . . . ,ω

′
N)
]

=
∫

P(dω
′
k) . . .P(dω

′
N)
∫

ωk

ω ′k

dω̃k
∂

∂ω̃k
q(ω1, . . . ,ωk−1, ω̃k,ω

′
k+1, . . . ,ω

′
N).

A key point is that the last partial derivative is (modulo notational changes) given by (2.11). In words,
Zk is equal to the modulus-squared of the gradient of t ·ΨΛ over the k-th edge in B(Λ), integrated
over part of the variables.

2.4 Input from homogenization theory.

In order to apply the Spatial Ergodic Theorem to the sums on the left of (2.3–2.4), we will substitute
for Zk a quantity that is stationary with respect to the shifts of Zd . This will be achieved by replacing
the discrete gradient of ΨΛ — which by (2.11) enters as the partial derivative of q in the formula for Zk
— by the gradient of its stationary infinite-volume counterpart, to be denoted by ψ . The existence and
properties of the latter object is quite standard:

Proposition 2.2 (Infinite-volume harmonic coordinate) Suppose the law of the conductances
is (jointly) ergodic with respect to the shifts of Zd and assume (1.3) for some λ ∈ (0,1). Then
there is a function ψ : Ω×Zd → Rd such that

(1) (ψ is Lω -harmonic) Lωψ(ω,x) = 0 for all x and P-a.e. ω .
(2) (ψ is shift covariant) For P-a.e. ω we have ψ(ω,0) := 0 and

(2.14) ψ(ω,y)−ψ(ω,x) = ψ(τxω,y− x), x,y ∈ Zd.

(3) (ψ is square integrable)

(2.15) E
(

∑
x=ê1,...,êd

a0,x(ω)
∣∣ψ(ω,x)

∣∣2)< ∞.

(4) (ψ is approximately linear) The corrector χ(ω,x) := ψ(ω,x)− x satisfies

(2.16) lim
|x|→∞

E
(
|χ(ω,x)|2

)
|x|2

= 0.

Proof. Properties (1-3) are standard and follow directly from the construction of ψ (which is done,
essentially, by showing that a minimizing sequence in (1.5) converges in a suitable L2-sense; see,
e.g., Biskup [2, Section 3.2] for a recent account of this). As to (4), a moment’s thought reveals that
it suffices to show this for x of the form nêi, where n→ ±∞. This follows from the Mean Ergodic
Theorem, similarly as in [2, Lemma 4.8]. �

The replacement of (the gradients of) ΨΛ by ψ necessitates developing means to quantify the resulting
error. For this we introduce an Lp-norm on functions f : Ω× (Λ∪∂Λ)→ Rd by the usual formula

(2.17) ‖∇ f‖Λ,p :=
(

1
|Λ| ∑
〈x,y〉∈B(Λ)

E
∣∣ f (ω,y)− f (ω,x)

∣∣p)1/p

.
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Analogously, we also introduce a norm on functions ϕ : Ω×Zd → Rd by

(2.18) ‖∇ϕ‖p :=
(

∑
x=ê1,...,êd

E
∣∣ϕ(ω,x)−ϕ(ω,0)

∣∣p)1/p
.

Here we introduced the symbol ∇ f for an Rd-valued functions the i-th component of which at x is
given by ∇i f (x) := f (x + êi)− f (x) — abusing our earlier use of this notation. It is reasonably well
known, albeit perhaps not written down explicitly anywhere, that the gradients of ΨΛ and ψ are close
in ‖ · ‖Λ,2-norm:

Proposition 2.3 Suppose the law P on conductances {axy} is ergodic with respect to shifts
of Zd and obeys (1.3) for some λ ∈ (0,1). Then

(2.19)
∥∥∇(ΨΛL−ψ)

∥∥
ΛL,2 −→L→∞

0.

As we will elaborate on later (see Remark 4.3), this is exactly what is needed to establish the rep-
resentation (1.5) for the limit value ceff(t) of the sequence L−dC eff

L (t). However, in order to validate
the conditions (2.3–2.4) of the Martingale Central Limit Theorem, more than just square integrability is
required. For this we state and prove:

Proposition 2.4 (Meyers estimate) Suppose P is ergodic with respect to shifts. For each d ≥ 1,
there is λ = λ (d) ∈ (0,1) such that if (1.3) holds P-a.s. with this λ , then for some p > 4,

(2.20) ‖∇ψ‖p < ∞

and

(2.21) sup
L≥1

∥∥∇(ΨΛL−ψ)
∥∥

ΛL,p < ∞.

Proposition 2.4 is the sole reason for our restriction on ellipticity contrast. We believe that, on the basis
of the technology put forward in Gloria and Otto [6], no such restriction should be needed. To attest
this we note that versions of the above bounds actually hold uniformly for a.e. ω ∈Ω satisfying (1.3);
i.e., for norms without the expectation E. In addition, from [6, Proposition 2.1] we in fact know (2.20)
for all p ∈ (1,∞) when d ≥ 3.

2.5 Perturbed corrector and variance formula.

Unfortunately, a direct attempt at the substitution of (the gradients of) ΨΛ by ψ in (2.13) reveals
another technical obstacle: As (2.13) relies on the Fundamental Theorem of Calculus, the replacement
of ΨΛ by ψ requires the latter function to be defined for ω that may lie outside of the support of P.
This is a problem because ψ is generally determined by conditions (1-4) in Proposition 2.2 only on a
set of full P-measure. Imposing additional assumptions on P — namely, that the single-conductance
distribution is supported on an interval with a bounded and non-vanishing density — would allow us
to replace the Lebesgue integral in (2.13) by an integral with respect to P(dω̃k) and thus eliminate
this problem. Notwithstanding, we can do much better by invoking a rank-one perturbation argument
which we describe next.

Fix an index i ∈ {1, . . . ,d} and recall the notation ∇i f (x) := f (x + êi)− f (x). For a vertex x ∈ Zd

and a finite set Λ⊂ Zd satisfying x ∈ Λ or x+ êi ∈ Λ, let g
(i)
Λ

(ω,x) be defined by

(2.22) g
(i)
Λ

(ω,x)−1 := inf
{

QΛ( f ) : f (x+ êi)− f (x) = 1, f∂Λ = 0
}
,
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where 0−1 := ∞. Note that (2.13) and (2.11) ask us to understand how ∇iΨΛ(ω,x) changes when
the coordinate of ω over 〈x,x + êi〉 is perturbed. Somewhat surprisingly, this change takes a purely
multiplicative form:

Proposition 2.5 (Rank-one perturbation) Let Λ ⊂ Zd be finite and x,y ∈ Λ be nearest neigh-
bors; y = x + êi for some i ∈ {1, . . . ,d}. For any ω,ω ′ that agree everywhere except at edge
b := 〈x,y〉,

(2.23) ∇iΨΛ(ω ′,x) =
[
1− (ω ′b−ωb)g

(i)
Λ

(ω ′,x)
]
∇iΨΛ(ω,x).

For the prefactor we alternatively get

(2.24) 1− (ω ′b−ωb)g
(i)
Λ

(ω ′,x) = exp
{
−
∫

ω ′b

ωb

dω̃b g
(i)
Λ

(ω̃,x)
}

,

where ω̃ coincides with ω except at b, where it equals ω̃b. In particular, 1−(ω ′b−ωb)g
(i)
Λ

(ω ′,x)
is bounded away from 0 and ∞ uniformly in ω ∈Ω and Λ⊂ Zd .

It is worthy of noting that (2.23) is a special case of a more general rank-one perturbation formula; cf
Lemma 5.1, which may be of independent interest. Incidentally, such formulas have proved extremely
useful in the analysis of random Schrödinger operators. The Λ ↑ Zd-limit of the right-hand side can
now be controlled uniformly in ω ∈Ω:

Proposition 2.6 Suppose (1.3) holds for some λ ∈ (0,1). Then Λ 7→ g
(i)
Λ

(ω,x) is non-decreasing
and bounded away from zero and infinity uniformly in Λ⊂ Zd and ω ∈Ω. In particular, for all
ω ∈Ω and all x ∈ Zd the limit

(2.25) g(i)(ω,x) := lim
Λ↑Zd

g
(i)
Λ

(ω,x)

exists and satisfies

(2.26) g(i)(ω,x)−1 = inf
{

QZd( f ) : f (x+ êi)− f (x) = 1, |supp( f )|< ∞
}
,

where supp( f ) := {x ∈ Zd : f (x) 6= 0}. In particular, (ω,x) 7→ g(i)(ω,x) is stationary in the
sense that g(i)(τzω,x+ z) = g(i)(ω,x) holds for all ω ∈Ω and all x,z ∈ Zd .

Before we wrap up the outline of the proof of Theorem 1.1, let us formulate a representation for
the limiting variance σ2

t from Theorem 1.1: For x ∈ Zd and i ∈ {1, . . . ,d}, let b denote the edge
corresponding to the pair (x, i) and let

(2.27) h(ω,x, i) :=
∫

P(dω
′
b)
∫

ωb

ω ′b

dω̃b
[
1− (ω̃b−ωb)g(i)(ω̃,x)

]2
,

where ω̃ is the configuration equal to ω except at b, where it equals ω̃b. Define the matrix Ẑ(x, i) :=
{Ẑ jk(x, i)} j,k=1,...,d by the quadratic form

(2.28)
(
t, Ẑ(x, i)t

)
:= E

(
h(·,x, i)

∣∣∇i(t ·ψ)(·,x)
∣∣2 ∣∣∣σ(ωb′ : b′ � (x, i)

))
,

where (x, i) represents the edge 〈x,x+ êi〉 and t ∈ Rd . Then we have:

Theorem 2.7 (Limiting variance) Under the assumptions of Theorem 1.1, the matrix elements
of Ẑ(x, i) are square integrable. In particular, σ2

t from Theorem 1.1 is given by

(2.29) σ
2
t =

d

∑
i=1

E
((

t, Ẑ(0, i)t
)2
)
, t ∈ Rd.
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As an inspection of (2.28) reveals, the limiting variance is thus a bi-quadratic form in t. Although
concisely written, the expression is not very useful from the practical point of view; particularly, due to
the unwieldy conditioning in (2.28). The representation using the h-function also adds to this; it is no
longer obvious, albeit still true, that

(2.30) E
(
(t, Ẑ(x, i)t)

∣∣∣σ(ωb′ : b′ ≺ (x, i)
))

= 0,

i.e., that (t, Ẑ(x, i)t) is a martingale increment. A question of interest is whether an expression can be
found for σ2

t that is more amenable to computations.

2.6 Outline.

The proofs (and the rest of the paper) are organized as follows. In Section 3 we assemble the in-
gredients — following the steps outlined in the present section — into the proof of Theorems 1.1
and 2.7. In Section 4 we then show that the finite-volume harmonic coordinate approximates its full
lattice counterpart in an L2-sense as stated in Proposition 2.3 and establish the Meyers estimate from
Proposition 2.4. A key technical tool is the Calderón-Zygmund regularity theory and a uniform bound
on the triple gradient of the Green’s function of the simple random walk in finite boxes. Finally, in Sec-
tion 5, we prove Propositions 2.5 and 2.6 dealing with the harmonic coordinate over environments
perturbed at a single edge.

3. PROOF OF THE CLT

In this section we verify the conditions (2.3–2.4) of the Martingale Central Limit Theorem and thus
prove Theorems 1.1 and 2.7. All derivations are conditional on Propositions 2.3–2.6 the proofs of
which are postponed to later sections. Throughout we will make use of the following simple but useful
consequence of Hölder’s inequality:

Lemma 3.1 For any p′ > p > 2, α := 2
p

p′−p
p′−2 and β := p′

p
p−2
p′−2 ,∥∥∇(ΨΛL−ψ)

∥∥
ΛL,p ≤

∥∥∇(ΨΛL−ψ)
∥∥α

ΛL,2

∥∥∇(ΨΛL−ψ)
∥∥β

ΛL,p′.

Proof. Apply Hölder’s inequality to the function f := |∇(ΨΛL−ψ)|. �

Assume now the setting developed in Section 2; in particular, the ordering of edges and sigma-
algebras Fk from Section 2.2 and the martingale increment Zk from (2.2) and its representation (2.13)
from Section 2.3. In analogy with equation (2.27), we also define

(3.1) hΛ(ω,x, i) :=
∫

P(dω
′
b)
∫

ωb

ω ′b

dω̃b
[
1− (ω̃b−ωb)g

(i)
Λ

(ω̃,x)
]2

,

where b := 〈x,x + êi〉 and ω̃ is the configuration equal to ω except at b, where it equals ω̃b. By
Proposition 2.5, we may write the martingale increment Zk as

(3.2) Zk = E
(

hΛ(·,xk, ik)
∣∣∇ik(t ·ΨΛ)(·,xk)

∣∣2 ∣∣∣Fk

)
,

where xk and ik are the vertex and the edge direction corresponding to bk, i.e., bk = 〈xk,xk + êik〉.
Recall also the notation for Ẑ(x, i) from (2.28) and note that this is well defined and finite P-a.s. thanks
to the estimate (2.20) and boundedness of h.
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Proposition 3.2 (Martingale CLT — first condition) Assume that the premises (and thus con-
clusions) of Propositions 2.3–2.6 hold. Then

(3.3)
1
|ΛL|

|B(ΛL)|

∑
k=1

E(Z2
k |Fk−1) −→

L→∞

d

∑
i=1

E
((

t, Ẑ(0, i)t
)2
)

in P-probability.

Proof. Fix t ∈Rd . Thanks to Lemma 2.1 and Proposition 2.2(2), for each i∈ {1, . . . ,d}, the collection
of conditional expectations

(3.4)

{
E
((

t, Ẑ(x, i)t
)2
∣∣∣σ(ωb : b≺ (x, i)

))
: x ∈ Zd

}
is stationary with respect to the shifts on Zd and, by Proposition 2.4, uniformly in L1(P). Labeling the
edges in B(ΛL) according to the complete order �, the Spatial Ergodic Theorem yields

(3.5)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(
(t, Ẑ(xk, ik)t)2∣∣Fk−1

)
−→
L→∞

d

∑
i=1

E
((

t, Ẑ(0, i)t
)2
)

with the limit P-a.s. and in L1(P). To see how this relates to our claim, abbreviate

Ak := hΛL(·,xk, ik)
∣∣∇ik(t ·ΨΛL)(·,xk)

∣∣2,(3.6)

Bk := h(·,xk, ik)
∣∣∇ik(t ·ψ)(·,xk)

∣∣2,(3.7)

and denote

RL,k := E
[
E
[
Ak
∣∣Fk

]2−E
[
Bk
∣∣Fk

]2∣∣∣Fk−1

]
.(3.8)

By (3.2) we have Zk = E(Ak
∣∣Fk), while (2.28) reads (t, Ẑ(xk, ik)t) = E(Bk

∣∣Fk). Hence, as soon
as we show that

(3.9)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(
|RL,k|

)
−→
L→∞

0,

in P-probability, the claim (3.3) will follow.

The proof of (3.9) will proceed by estimating E|RL,k| which will involve applications of the Cauchy-
Schwarz inequality (in order to separate terms) and Jensen’s inequality (in order to eliminate condi-
tional expectations). First we note

(3.10) E|RL,k| ≤
(
E
[
(Ak−Bk)2])1/2

(
E
[
(Ak +Bk)2])1/2.

Writing Ak = Bk +(Ak−Bk) and noting (a+b)2 ≤ 2a2 +2b2 tells us

(3.11) E
[
(Ak +Bk)2]≤ 2E

[
(Ak−Bk)2]+8E

(
B2

k
)
.

Summing over k and applying Cauchy-Schwarz, we find that

(3.12)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(
|RL,k|

)
≤
√

α
(
2α +8β

)
,

where

(3.13) α :=
1
|ΛL|

|B(ΛL)|

∑
k=1

E
[
(Ak−Bk)2] and β :=

1
|ΛL|

|B(ΛL)|

∑
k=1

E(B2
k).

By inspection of (3.12) we now observe that it suffices to show that β stays bounded while α tends to
zero in the limit L→ ∞.
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The boundedness of β follows from (2.20) and the fact that h(·,x, i) is bounded; indeed, these yield
E(|Bk|2) ≤ ‖h‖2

∞|t|4‖∇ψ‖4
4 uniformly in k and L. Concerning the terms constituting α , using (a +

b)2 ≤ 2a2 +2b2 we first separate terms as

(3.14) E
[
(Ak−Bk)2]≤ 2E

(∣∣hΛL(·,xk, ik)
∣∣2∣∣ |∇ik(t ·ΨΛL)(·,xk)|2−|∇ik(t ·ψ)(·,xk))|2

∣∣2)
+ 2E

(∣∣hΛL(·,xk, ik)−h(·,xk, ik)
∣∣2∣∣∇ik(t ·ψ)(·,xk)

∣∣4).
Since hΛ is uniformly bounded, the average over k of the first term is bounded by a constant times the
product of (‖∇ΨΛL‖ΛL,4 +‖∇ψ‖ΛL,4)2 and ‖∇(ΨΛL−ψ)‖2

ΛL,4. The latter tends to zero as L→ ∞

by Proposition 2.4, Proposition 2.3 and Lemma 3.1 (with the choices p := 4 and p′ > 4 but sufficiently
close to 4).

For the second term in (3.14) we pick p > 4 and use Hölder’s inequality to get

(3.15)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(∣∣hΛL(·,xk, ik)−h(·,xk, ik)

∣∣2∣∣∇ik(t ·ψ)(·,xk)
∣∣4)

≤ |t|4 ‖∇ψ‖4
ΛL,p

(
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(∣∣hΛL(·,xk, ik)−h(·,xk, ik)

∣∣2q
))1/q

,

where q satisfies 4/p + 1/q = 1. The norm of ‖∇ψ‖ΛL,p is again bounded by Proposition 2.4 as long
as p is sufficiently close to 4; to apply (2.20), we need to invoke the stationarity of ∇ψ to bound
‖∇ψ‖ΛL,p ≤C‖∇ψ‖p.

For the second term in (3.15) we first need to show that for each ε > 0 there is N ≥ 1 so that for all
ω ∈Ω,

(3.16) dist`1(Zd)(x,Λ
c
L)≥ N ⇒

∣∣hΛL(ω,x, i)−h(ω,x, i)
∣∣< ε.

For this we use that

(3.17)
∣∣hΛ(ω,x, i)−h(ω,x, i)

∣∣≤C
∫ 1/λ

λ

dω̃b
∣∣g(i)

Λ
(ω̃,x)−g(i)(ω̃,x)

∣∣
for some constant C = C(λ ) < ∞. To estimate the right-hand side, by the monotonicity of Λ 7→
g

(i)
Λ

(ω̃,x) and its stationarity with respect to shifts, we have

(3.18)
∣∣g(i)

Λ
(ω,x)−g(i)(ω,x)

∣∣≤ ∣∣g(i)
ΛN

(τxω,0)−g(i)(τxω,0)
∣∣, ω ∈Ω,

as soon as the box x + ΛN ⊂ Λ. The implication (3.16) then follows via (3.17) by the fact that the
difference on the right-hand side of (3.18) converges to zero uniformly in ω ∈Ω.

We now bound the second term in (3.15) as follows. The terms for which xk is at least N steps away
from ΛL are bounded by ε thanks to (3.17); the sum over the remaining terms is of order NLd−1

thanks to the uniform boundedness of hΛ−h. Hence, in the limit L→ ∞, the second term in (3.15) is
of order ε

1/q; taking ε ↓ 0 shows that α tends to zero as L→ ∞. This finishes the proof of (3.9) and
the whole claim. �

Proposition 3.3 (Martingale CLT — second condition) Assume that the premises (and thus
conclusions) of Propositions 2.3–2.6 hold. Then for each ε > 0,

(3.19)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(

Z2
k 1{|Zk|>ε|ΛL|1/2

∣∣Fk−1
)
−→
L→∞

0,

in P-probability.
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Proof. This could be proved by strengthening a bit the statement of Proposition 3.2 (from squares of
the Z’s to a slightly higher power), but a direct argument is actually easier.

First we note that it suffices to show convergence in expectation. Let p > 4 be such that the statements
in Proposition 2.4 hold. By Chebyshev we have

(3.20) E
(

Z2
k 1{|Zk|>ε|ΛL|1/2

)
≤
( 1

ε|ΛL|1/2

) p−4
2 E
(

Zp/2
k

)
.

Since hΛL is bounded, Jensen’s inequality yields

(3.21) E
(

Zp/2
k

)
≤CE

([
E
(∣∣∇ik(t ·ΨΛ)(·,xk)

∣∣2 ∣∣∣Fk

)]p/2
)
≤CE

(∣∣∇ik(t ·ΨΛ)(·,xk)
∣∣p).

It follows that

(3.22)
1
|ΛL|

|B(ΛL)|

∑
k=1

E
(

Zp/2
k

)
≤C|t|p‖∇ΨΛL‖

p
ΛL,p.

The right-hand side is bounded uniformly in L. Using this in (3.20), the claim follows. �

We can now finish the proof of our main results:

Proof of Theorems 1.1 and 2.7 from Propositions 2.3–2.6. The distributional convergence in (1.6)
is a direct consequence of the Martingale Central Limit Theorem whose conditions (2.3–2.4) are es-
tablished in Propositions 3.2 and 3.3. The limiting variance σ2

t is given by the right-hand side of (3.3),
in agreement with (2.29). It remains to prove that σ2

t > 0 whenever t 6= 0 and the law P is non-
degenerate.

Suppose on the contrary that σ2
t = 0. Then for each i we would have E((t, Ẑ(0, i)t)2) = 0 and thus

(t, Ẑ(0, i)t) = 0 P-a.s. Denoting b := 〈0, êi〉, (2.27–2.28) imply that, for P-a.e. ωb,

(3.23)
∫

P(dω
′
b)
∫

ωb

ω ′b

dω̃b E
([

1− (ω̃b−ωb)g
(i)
Λ

(ω̃,0)
]∣∣∇i(t ·ψ)(ω,0)

∣∣2∣∣∣F(0,i)

)
= 0,

where F(0,i) := σ(ωb). Let Ω1 ⊂ [λ ,1/λ ] be the set of ωb where this holds. The expectation in (3.23)
is independent of ω ′b; subtracting the expression for two (generic) choices of ωb in Ω1 then shows
that the inner integral must vanish for all ωb,ω

′
b ∈ Ω1. But (2.24) tells us that the prefactor in square

brackets, and thus the conditional expectation, is non-negative. In light of P(Ω1) = 1 and the fact that
Ω1 contains at least two points, this can only happen when

(3.24) ∇i(t ·ψ)(·,0) = 0, P-a.s. for all i = 1, . . . ,d.

But then ceff(t) = 0, which cannot hold for t 6= 0 when (1.3) is in force. �

4. THE MEYERS ESTIMATE

The goal of this section is to give proofs of Propositions 2.3 and 2.4. The former is a simple con-
sequence of the Hilbert-space structure underlying the definition of a harmonic coordinate; the latter
(to which this section owes its name) is a far less immediate consequence of the Calderón-Zygmund
regularity theory for singular integral operators.

4.1 L2 bounds and convergence.

Recall our notation Lω for the operator in (2.8). We begin by noting an explicit representation of the
minimum of f 7→ Qλ ( f ) as a function of the (Dirichlet) boundary condition:
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Lemma 4.1 Let Λ ⊂ Zd be finite and fix an ω ∈ Ω. Then there is K : ∂Λ× ∂Λ→ [0,∞),
depending on Λ and ω , such that for any h that obeys Lωh(x) = 0 for x ∈ Λ,

(4.1) QΛ(h) =
1
2 ∑

x,y∈∂Λ

K(x,y)
[
h(y)−h(x)

]2
.

Moreover, K(x,y) = K(y,x) for all x,y ∈ ∂Λ and

(4.2) ∑
y∈∂Λ

K(x,y) = ∑
z∈Λ

〈x,z〉∈B(Λ)

axz

for all x ∈ ∂Λ.

Proof. “Integrating” by parts we obtain

(4.3)
QΛ(h) =−∑

y∈Λ

h(y)(Lωh)(y)+ ∑
y∈∂Λ,x∈Λ

〈x,y〉∈B(Λ)

axy
[
h(y)−h(x)

]
h(y).

Employing the fact that h is Lω -harmonic, the first sum drops out. For the second sum we recall that
h(x) = ∑z∈∂Λ pΛ(x,z)h(z), where pΛ(x,z) is the discrete Poisson kernel which can be defined by
pΛ(x,z) := Px

ω(Xτ∂Λ
= z) for τ∂Λ denoting the first exit time from Λ of the random walk in conduc-

tances ω . Now set

(4.4) K(y,z) := ∑
x∈Λ

〈x,y〉∈B(Λ)

axy pΛ(x,z)

and note that ∑z∈∂Λ K(y,z) = ∑x∈Λ,〈x,y〉∈B(Λ) axy. It follows that

(4.5) ∑
y∈∂Λ,x∈Λ

〈x,y〉∈B(Λ)

axy
[
h(y)−h(x)

]
h(y) = ∑

y,z∈∂Λ

K(y,z)
[
h(y)−h(z)

]
h(y).

The representation using the random walk and its reversiblity now imply that K is symmetric. Sym-
metrizing the last sum then yields the result. �

Remark 4.2 We note that Lemma 4.1 holds even for vector valued functions; just replace
[h(y)− h(x)]2 by the norm square of h(y)− h(x).This applies to several derivations that are to
follow; a point that we will leave without further comment.

We can now prove Proposition 2.3 dealing with the convergence of ∇ΨΛ to ∇ψ in ‖ · ‖Λ,2-norm, as
Λ := ΛL fills up all of Zd .

Proof of Proposition 2.3. Abbreviate h(x) := ψ(ω,x)−ΨΛL(ω,x). The bound (1.3) implies

(4.6)
∥∥∇(ΨΛL−ψ)

∥∥2
ΛL,2 ≤

1
λ

1
|ΛL|

E
(

∑
〈x,y〉∈B(ΛL)

axy
∣∣h(y)−h(x)

∣∣2).

Let f : Λ∪∂Λ→ Rd be the minimizer of

(4.7) inf
{

∑
〈x,y〉∈B(ΛL)

∣∣ f (y)− f (x)
∣∣2, f (z) = χ(z) for all z ∈ ∂ΛL

}
.
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Since h is the minimizer of the corresponding Dirichlet energy with conductances {axy} and boundary
condition χ , we get using (1.3)

(4.8)

∑
〈x,y〉∈B(ΛL)

axy
∣∣h(y)−h(x)

∣∣2 ≤ ∑
〈x,y〉∈B(ΛL)

axy
∣∣ f (y)− f (x)

∣∣2
≤ 1

λ
∑

〈x,y〉∈B(ΛL)

∣∣ f (y)− f (x)
∣∣2.

Writing the last sum coordinate-wise and applying Lemma 4.1, we thus get

(4.9) ∑
〈x,y〉∈B(ΛL)

axy
∣∣h(y)−h(x)

∣∣2 ≤ 1
2λ

∑
x,y∈∂ΛL

K(x,y)
∣∣χ(ω,y)−χ(ω,x)

∣∣2,
where the kernel K(x,y) pertains to the homogeneous problem, i.e., the simple random walk. Note
that these bounds hold for all configurations satisfying (1.3).

By shift covariance and sublinearity of the corrector (cf Proposition 2.2(2,4)), for each ε > 0 there is
A = A(ε) such that

(4.10) E
(∣∣χ(·,x)−χ(·,y)

∣∣2)≤ A+ ε|x− y|2.

Using this and (4.9) in (4.6) yields

(4.11)
∥∥∇(ΨΛL−ψ)

∥∥2
ΛL,2 ≤

1
2λ 2

1
|ΛL| ∑

x,y∈ΛL

K(x,y)
(
A+ ε|x− y|2

)
.

But ∑y∈∂ΛL K(x,y)≤ 1 for each x∈ ∂ΛL while ∑x,y∈∂ΛL K(x,y)|x−y|2 is, by Lemma 4.1, the Dirich-
let energy of the function x 7→ x for conductances all equal to 1. Hence, the last sum in (4.11) is
bounded by A|∂ΛL|+ ε|B(ΛL)|. Taking L→ ∞ and ε ↓ 0 finishes the proof. �

Remark 4.3 As alluded to in the introduction, the L2-convergence ∇ΨΛL →∇ψ permits us to
prove the formula (1.5) for ceff(t). The argument is similar to (albeit much easier than) what we
used in the proof of Proposition 3.2. Indeed, we trivially decompose

(4.12) C eff
L (t) = QΛL

(
t ·ΨΛL

)
= QΛL(t ·ψ)+

(
QΛL

(
t ·ΨΛL

)
−QΛL(t ·ψ)

)
.

The stationarity of the gradients of ψ and the Spatial Ergodic Theorem imply

(4.13)
1
|ΛL|

QΛL(t ·ψ) −→
L→∞

E
(

∑
x=ê1,...,êd

a0,x(ω)
∣∣t ·ψ(ω,x)

∣∣2),

for any ergodic law P on conductances. The expression on the right coincides with the infimum
in (1.5). (There is no gradient on the right-hand side of (4.13) because ψ(ω,0) := 0.) It remains
to control the difference on the extreme right of (4.12). Using Cauchy-Schwarz,

(4.14)
E
∣∣QΛ

(
t ·ΨΛ

)
−QΛ(t ·ψ)

∣∣
|Λ|

≤ |t|2
∥∥∇(ΨΛ−ψ)

∥∥2
Λ,2 +2|t|2‖∇ψ‖2

∥∥∇(ΨΛ−ψ)
∥∥

Λ,2.

By Proposition 2.3, the right-hand side tends to zero as Λ := ΛL increases to Zd . Since we know
that |ΛL|−1C eff

L (t) is bounded and converges almost surely (e.g., by the Subadditive Ergodic
Theorem), the limit value ceff(t) thus satisfies (1.5). Note that Proposition 2.3, and thus all the
above, holds for any shift-ergodic (elliptic) law on conductances.
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4.2 The Meyers estimate in finite volume.

Key to the proof of Proposition 2.4 is the Meyers estimate. The term owes its name to Norman Mey-
ers [11] who discovered a bound on Lp-continuity (in the right-hand side) of the solutions of Pois-
son equation with second-order elliptic differential operators in divergence from, provided the asso-
ciated coefficients are close to a constant. The technical ingredient underpinning this observation is
the Calderón-Zygmund regularity theory for certain singular integral operators in Rd . (Incidentally, as
noted in [11], Meyers’ argument is a generalization of earlier work of Boyarskii, cf [11, ref. 2 and 3]
for systems of first-order PDEs and a version of his result was also derived, though not published, by
Calderón himself; cf [11, page 190]).

To ease the notation, in addition to (2.18), we will use the notation ‖ f‖p also for the canonical norm
in `p(Λ),

(4.15) ‖ f‖p :=
(

∑
x∈Λ

∣∣ f (x)∣∣p)1/p
,

throughout the rest of this section.

Let us review the gist of Meyers’ argument for functions on Zd . Our notation is inspired by that used
in Naddaf and Spencer [12] and Gloria and Otto [6]. A general form of the second order difference
operator L in divergence form is

(4.16) L := ∇
? ·A ·∇,

where A = {Ai j(x) : i, j = 1, . . . ,d, x ∈ Zd} are x-dependent matrix coefficients, ∇ f (x) is a vector
whose i-th component is ∇i f (x) := f (x + êi)− f (x) and ∇? is its conjugate acting as ∇?

i f (x) :=
f (x)− f (x− êi). The above L is explicitly given by

(4.17) (L f )(x) =
d

∑
i, j=1

(
Ai, j(x)

[
f (x+ êi)− f (x)

]
−Ai, j(x− ê j)

[
f (x+ êi− ê j)− f (x− ê j)

])
.

Now, if A is close to identity, it makes sense to write

(4.18) L = ∆+∇
? · (A− id) ·∇,

where we noted that the standard lattice Laplacian ∆ corresponds to ∇? · id ·∇. This formula can be
used as a starting point of perturbative arguments.

Consider a finite set Λ⊂ Zd and let g : Λ∪∂Λ→ Rd . Let f be a solution to the Poisson equation

(4.19) −L f = ∇
? ·g, in Λ,

with f := 0 on ∂Λ. Employing (4.18), we can rewrite this as

(4.20) −∆ f = ∇
? ·
[
g+(A− id) ·∇ f

]
.

The function on the right has vanishing total sum over Λ and hence it lies in the domain of the inverse
(∆)−1

Λ
of ∆ with zero boundary conditions. Taking this inverse followed by one more gradient, and

denoting

(4.21) KΛ := ∇(−∆)−1
Λ

∇
?,

this equation translates to

(4.22) ∇ f = KΛ ·
[
g+(A− id)∇ f

]
.

A first noteworthy point is that this is now an autonomous equation for ∇ f . A second point is that, if
‖KΛ‖p is the norm of KΛ as a map (on vector valued functions) `p(Λ)→ `p(Λ), we get

(4.23) ‖∇ f‖p ≤ ‖KΛ‖p‖A− id‖∞‖∇ f‖p +‖KΛ‖p‖g‖p.
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Assuming ‖KΛ‖p‖A− id‖∞ < 1 this yields

(4.24) ‖∇ f‖p ≤
‖KΛ‖p‖g‖p

1−‖KΛ‖p‖A− id‖∞

.

The perturbative nature of the condition ‖KΛ‖p‖A− id‖∞ < 1 is further highlighted by the fact that it
also ensures the very existence of a unique solution ∇ f to (4.22) via a contraction argument; (4.24)
then implies the continuity of g 7→ ∇ f in `p(Λ).

The aforementioned general facts are relevant for us because Lω is of the form (4.16). Indeed, set
Ai j(x) := δi jax,x+êi and note that (4.17) reduces to (2.8). The finite-volume corrector

(4.25) χΛ(ω,x) := ΨΛ(ω,x)− x

then solves the Poisson equation

(4.26) −Lω χΛ = ∇
? ·g, where g(x) := (ax,x+ê1, . . . ,ax+êd).

This is bounded uniformly so, in order to have (4.24) for all finite boxes, our main concern is the
following claim:

Theorem 4.4 For each p∈ (1,∞), the operator KΛL is bounded in `p(ΛL), uniformly in L≥ 1.

Proof of Proposition 2.4 from Theorem 4.4. Let p∗> 4. Since (in our setting) ‖A− id‖∞≤ λ−1−1,
we may choose λ ∈ (0,1) close enough to one so that supL≥1 ‖KΛL‖p∗‖A− id‖∞ < 1. From the
above derivation it follows

(4.27) sup
L≥1
‖∇χΛL‖ΛL,p∗ < ∞.

We claim that this implies

(4.28) ‖∇χ‖p < ∞, p < p∗.

Indeed, pick α > 0 and note that, for any ε ∈ (0,α),

(4.29) ∑
x∈ΛL

1{|∇χ(·,x)|>α} ≤ ∑
x∈ΛL

1{|∇χΛL(·,x)|>α−ε}+ ∑
x∈ΛL

1{|∇χΛL(·,x)−∇χ(·,x)|>ε}.

Taking expectations and dividing by |ΛL|, the left hand side becomes P(|∇χ(·,0)| > α), while the
second sum on the right can be bounded by ε−2‖∇χΛL −∇χ‖2

ΛL,2, which tends to zero as L→ ∞

by Proposition 2.3. Applying Chebyshev’s inequality to the first sum on the right and taking L→ ∞

followed by ε ↓ 0 yields

(4.30) P
(
|∇χ(·,0)|> α

)
≤ 1

α p∗ sup
L≥1
‖∇χΛL‖

p∗
ΛL,p∗.

Multiplying by α p−1 and integrating over α > 0 then proves (4.28).

Returning to the claims in Proposition 2.4, inequality (4.28) is a restatement of (2.20). Since (4.27–
4.28) imply the uniform boundedness of ‖∇(χΛL−χ)‖ΛL,p, for each p < p∗, Lemma 3.1 then shows
‖∇(χΛL−χ)‖ΛL,p→ 0, as L→ ∞ for all p < p∗. This proves (2.21) as well. �

4.3 Interpolation.

In the proof of Theorem 4.4 we will follow the classical argument spelled out in Chapter 2 (specifically,
proof of Theorem 1 in Section 2.2) of Stein’s book [16]. The reasoning requires only straightforward
adaptations due to discrete setting and finite volume, but we still prefer to give a full argument to keep
the present paper self-contained. A key idea is the use of interpolation between the strong `2-type



17

estimate (Lemma 4.5) and the weak `1-type estimate for KΛL (Lemma 4.6). Both of these of course
need to hold uniformly in L≥ 1.

Lemma 4.5 For any finite Λ⊂ Zd , the `2(Λ)-norm of KΛ satisfies ‖KΛ‖2 ≤ 1.

Proof. Let H be a Hilbert space and T a positive self-adjoint, bounded and invertible operator. Then
for all h ∈H ,

(4.31)
(
h,T−1h

)
= sup

g∈H

{
2(g,h)− (g,T g)

}
.

We will apply this to H given by the space (of R-valued functions) `2(Λ), T := ε−∆ and h := ∇? · f
for some f : Λ→ Rd with zero boundary conditions outside Λ. Then

(4.32)

(
∇

? · f ,(ε−∆)−1
∇

? · f
)

= sup
g∈`2(Λ)

{
2(g,∇? · f )− ε(g,g)+(g,∆g)

}
= sup

g∈`2(Λ)

{
2(∇g, f )− ε(g,g)− (∇g,∇g)− ( f , f )

}
+( f , f )

= sup
g∈`2(Λ)

{
−(∇g− f ,∇g− f )

}
+( f , f )

≤ ( f , f ),

where we used that ∇? is the adjoint of ∇ in the space of Rd-valued functions `2(Λ) and where the
various inner products have to be interpreted either for R-valued or Rd-valued functions accordingly.
Taking ε ↓ 0, the left-hand side becomes ( f ,KΛ · f ). The claim follows. �

The second ingredient turns out to be technically more involved.

Lemma 4.6 KΛL is of weak-type (1-1), uniformly in L > 1. That is, there exists K̂1 such that,
for all L > 1, f ∈ `1(ΛL) and α > 0,

(4.33)
∣∣{z ∈ ΛL : |KΛL f (z)|> α}

∣∣≤ K̂1
‖ f‖1

α
.

Deferring the proof of this lemma to the end of this section, we now show how this enters into the proof
of Theorem 4.4.

Proof of Theorem 4.4 from Lemma 4.6. We follow the proof in Stein [16, Theorem 5, page 21]. We
begin with the case 1 < p < 2. Let f ∈ `p(ΛL) and pick α > 0. Let f1 := f 1{| f |>α} and f2 :=
f 1{| f |≤α}. Then

(4.34)
∣∣{z ∈ ΛL : |KΛL f (z)|> 2α}

∣∣≤ ∣∣{z ∈ ΛL : |KΛL f1|> α}
∣∣

+
∣∣{z ∈ ΛL : |KΛL f2|> α}

∣∣.
Lemmas 4.5 and 4.6 then yield

(4.35)
∣∣{z ∈ ΛL : |KΛL f (z)|> α}

∣∣≤ K̂1
‖ f1‖1

α
+ K̂2

‖ f2‖2

α2 ,
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with K̂1 and K̂2 independent of L. Multiplying by α p−1 and integrating, we infer

(4.36)

‖KΛL f‖p
p = p

∫
∞

0
α

p−1∣∣{z ∈ ΛL : |KΛL f (z)|> α}
∣∣dα

≤ p∑
z

∫
∞

0

(
K̂1α

p−2| f (z)|1{| f |>α}+ K̂2α
p−3| f (z)|2 1{| f |≤α}

)
dα

= pK̂1 ∑
z
| f (z)|

∫ | f (z)|
0

α
p−2 dα + pK̂2 ∑

z
| f (z)|2

∫
∞

| f (z)|
α

p−3 dα

=
pK̂1

p−1 ∑
z
| f (z)|p +

pK̂2

2− p ∑
z
| f (z)|p,

proving the assertion in the case 1 < p < 2.

For p ∈ (2,∞), the fact that KΛ is obviously symmetric implies that ‖KΛ‖p = ‖KΛ‖q, where q is
the index dual to p. Hence supL≥1 ‖KΛL‖p < ∞ for all p ∈ (1,∞). �

It remains to prove Lemma 4.6. The strategy is to represent the operator using a singular kernel that
has a “nearly `1-integrable” decay. Let GΛ(x,y) be the Green’s function (i.e., inverse) of the Laplacian
on Λ with zero boundary condition.

Lemma 4.7 The operator KΛ admits the representation

(4.37) êi ·
[
KΛ · f (x)

]
= ∑

y∈Λ

d

∑
j=1

[
∇

(1)
i ∇

(2)
j GΛ(x,y)

]
f j(y),

where the superscripts on the ∇’s indicate which of the two variables the operator is acting on.

Proof. Since both GΛ and f vanish outside Λ, we have

(4.38)

êi ·
[
KΛ · f (x)

]
=∇i

(
∑
y∈Λ

GΛ(·,y)
(
∇

? · f
)
(y)
)
(x)

= ∑
y∈Zd

((
GΛ(x+ êi,y)−GΛ(x,y)

) d

∑
j=1

[ f j(y− êk)− f j(y)]
)

=
d

∑
j=1

∑
y∈Zd

(
GΛ(x+ êi,y+ ê j)−GΛ(x,y+ ê j)

)
f j(y)

−
d

∑
j=1

∑
y∈Zd

(
GΛ(x+ êi,y)−GΛ(x,y)

)
f j(y).

This is exactly the claimed expression. �

Crucial for the proof of the weak-(1,1) type in Lemma 4.6 is an integrable decay estimate on the
gradient of the kernel of the operator KΛ:

Proposition 4.8 There exists C > 0 independent of L such that

(4.39)
∣∣∇(2)

i ∇
(1)
j ∇

(2)
k GΛL(x,y)

∣∣≤ C
|x− y|d+1

for all x,y ∈ ΛL and i, j,k ∈ {1, . . . ,d}.
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Although (4.39) is certainly not unexpected, and perhaps even well-known, we could not find an exact
reference and therefore provide an independent proof in Section 4.4. With this estimate at hand, we
can now turn to the proof of Lemma 4.33.

Proof of Lemma 4.6 from Proposition 4.8. To ease the notation, we will write Λ := ΛL (note that all
bounds will be uniform in L) and, resorting to components, write KΛ for the scalar-to-scalar operator

with kernel K
(i, j)

Λ
(x,y) := ∇

(1)
i ∇

(2)
j GΛ(x,y) for some fixed i, j ∈ {1, . . . ,d}. For the most part, we

adapt the arguments in Stein [16, pages 30-33].

Take some function f : Λ→ R, extended to vanish outside Λ, and pick α > 0. Consider a partition
of Zd into cubes of side 3r, where r is chosen so large that 3−rd‖ f‖1 ≤ α . Naturally, each of the
cubes in the partition further divides into 3d equal-sized sub-cubes of side 3r−1, which subdivide
further into sub-cubes of side 3r−2, etc. We will now designate these to be either good cubes or bad
cubes according to the following recipe. All cubes of side 3r are ex definitio good. With Q being one
of these sub-cubes of side 3r−1, we call Q good if

(4.40)
1
|Q| ∑z∈Q

∣∣ f (z)∣∣≤ α,

and bad otherwise. For each good cube, we repeat the process of partitioning it into 3d equal-size
sub-cubes and designating each of them to be either good or bad depending on whether (4.40) holds
or not, respectively. The bad cubes are not subdivided further.

Iterating this process, we obtain a finite set B of bad cubes which covers the (bounded) region B :=⋃
Q∈B Q. We define G := Zd \B, the good region, and note that

(4.41)
∣∣ f (z)∣∣≤ α, z ∈ G,

and

(4.42) α <
1
|Q| ∑z∈Q

∣∣ f (z)∣∣≤ 3d
α, Q ∈B,

where the last inequality is due to the fact that the parent cube of a bad cube is good. Next we define
the “good” function

(4.43) g(z) :=

{
f (z), z ∈ G
1
|Q|∑z∈Q f (z), z ∈ Q ∈B.

The “bad” function, defined by b := f −g, then satisfies

(4.44)

b(z) = 0, z ∈ G,

∑
z∈Q

b(z) = 0, Q ∈B.

Since KΛ f = KΛg+KΛb, as soon as

(4.45)
∣∣{z : |KΛg(z)|> α/2}

∣∣≤ K̂1‖ f‖1

2α
AND

∣∣{z : |KΛb(z)|> α/2}
∣∣≤ K̂1‖ f‖1

2α
,

the desired bound (4.33) will hold. We will now show these bounds in separate arguments.
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Considering g first, we note that ‖g‖2
2 is bounded by a constant times α‖ f‖1. Indeed, for z ∈ B let Qz

denote the bad cube containing z. Then

(4.46)

∑
z∈Zd

g(z)2 = ∑
z∈G

f (z)2 + ∑
z∈B

g(z)2

≤ α ∑
z∈G

∣∣ f (z)∣∣+ ∑
z∈B

( 1
|Qz| ∑

y∈Qz

f (z)
)2

≤ α‖ f‖1 +3d
α ∑

z∈B

1
|Qz| ∑

y∈Qz

∣∣ f (z)∣∣
≤ (3d +1)α‖ f‖1

by using (4.41) on G and (4.42) on B. By Chebychev’s inequality and Lemma 4.5,

(4.47)
∣∣{z : |KΛg(z)|> α}

∣∣≤ ‖KΛg‖2
2

α2 ≤
(3d +1)‖KΛ‖2

2 ‖ f‖1

α
.

Note that this yields an estimate that is uniform in Λ := ΛL because ‖KΛ‖2 ≤ 1 by Lemma 4.5.

Let us turn to the estimate in (4.45) concerning b. Let {Qk : k = 1, . . . , |B|} be an enumeration of the
bad cubes and let bk := b1Qk be the restriction of b onto Qk. Abusing the notation to the point where
we write KΛ(x,y) for the kernel governing KΛ, from (4.44) we then have

(4.48) KΛbk(z) = ∑
y∈Qk

[
KΛ(z,y)−KΛ(z,yk)

]
b(y),

where yk is the center of Qk (remember that all cubes are odd-sized). Let Q̃k denote the cube centered
at yk but of three-times the size — i.e., Q̃k is the union of Qk with the adjacent 3d − 1 cubes of the
same side. The bound now proceeds depending on whether z ∈ Q̃k or not.

For z 6∈ Q̃k, the distance between z and any y ∈ Qk is proportional to the distance between z and yk.
Proposition 4.8 thus implies

(4.49)
∣∣KΛ(z,y)−KΛ(z,yk)

∣∣≤C
diam(Qk)
|z− yk|d+1 , z 6∈ Q̃k.

Moreover, thanks to (4.43),

(4.50) ∑
y∈Qk

|b(y)| ≤ ∑
y∈Qk

(
| f (y)|+ |g(y)|

)
≤ 2 ∑

y∈Qk

| f (y)|.

Using these in (4.48) yields

(4.51) |KΛbk(z)| ≤C
diam(Qk)
|z− yk|d+1 ∑

y∈Qk

| f (y)|.

Summing over all z 6∈ Q̃k and taking into account that |z− yk| ≥ diam(Qk) for z ∈ Q̃k, we conclude

(4.52)

∑
z∈Λ\Q̃k

|KΛbk(z)| ≤C diam(Qk) ∑
y∈Qk

| f (y)| ∑
z : |z−yk|≥diam(Qk)

1
|z− yk|d+1

≤ C̃ ∑
y∈Qk

| f (y)|

for some constant C̃. Setting B̃ :=
⋃

k Q̃k and summing over k, we obtain

(4.53) ∑
z∈Λ\B̃

|KΛb(z)| ≤ C̃ ∑
y∈B
| f (y)| ≤ C̃‖ f‖1,
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which by an application of Chebychev’s inequality yields

(4.54)
∣∣{z ∈ Λ\ B̃ : |KΛb(z)| ≥ α}

∣∣≤ C̃‖ f‖1

α
.

i.e., a bound of the desired form.

To finish the proof, we still need to take care of z ∈ B̃. Here we get (and this is the only step where we
are forced to settle on weak -type estimates),

(4.55)

∣∣{z ∈ B̃ : |KΛb(z)| ≥ α}
∣∣≤ |B̃| ≤ 3d

∑
k
|Qk|

≤ 3d
∑
k

1
α

∑
z∈Qk

∣∣ f (z)∣∣≤ 3d‖ f‖1

α
.

The bound (4.33) then follows by combining (4.47), (4.54) and (4.55). �

4.4 Triple gradient of finite-volume Green’s function.

In order to finish the proof of Theorem 4.4, we still need to establish the decay estimate in Proposi-
tion 4.8. This will be done by invoking a corresponding bound in the full lattice and reducing it onto
a box by reflection arguments. (This is the sole reason why we restrict to rectangular boxes; more
general domains require considerably more sophisticated methods.)

For ε > 0, let Gε denote the Green’s function associated with the discrete Laplacian ∆ on Zd with
killing rate ε > 0, i.e., Gε(·, ·) is the kernel of the bounded operator (ε − ∆)−1 on `2(Zd). This
function admits the probabilistic representation

(4.56) Gε(x,y) =
∞

∑
k=0

Px(Xk = y
)

(1+ ε)k+1 ,

where X is the simple random walk and Px is the law of X started at x. This function depends only on
the difference of its arguments, so we will interchangeably write Gε(x,y) = Gε(x−y). We now claim:

Lemma 4.9 There exists Ĉ > 0 such that, for all ε > 0, all i, j,k ∈ {1, . . .d} and all x 6= 0,

(4.57)
∣∣∇i∇ j∇kGε(x)

∣∣≤ Ĉ
|x|d+1 .

Sketch of proof. This is a mere extension (by adding one more gradient) of the estimates from in
Lawler [10, Theorem 1.5.5]. (Strictly speaking, this theorem is only for the transient dimensions but,
thanks to ε > 0, the same proofs would apply here.) The main idea is to use translation invariance
of the simple random walk to write Gε(x) as a Fourier integral and then control the gradients thereof
under the integral sign. We leave the details as an exercise to the reader. �

We now state and prove a stronger form of Proposition 4.8.

Lemma 4.10 There exists C > 0 such that, for all L > 1, ε > 0 and arbitrary i, j,k ∈ {1, . . .d},

(4.58) |∇(2)
i ∇

(1)
j ∇

(2)
k Gε

Λ(x,y)| ≤ C
|x− y|d+1

for all x,y ∈ Λ and all i, j,k ∈ {1, . . . ,d}. Here, the superscripts on the operators indicate the
variable the operator is acting on.
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Proof. Throughout, we fix L ∈ N and denote Λ := ΛL. The proof is based on the Reflection Principle
for the simple random walk on Zd . To start, denote Λ0 := Zd−1×N (abusing our earlier notation),

write X (d) for the d-th component of X and let τ0 := inf{k ≥ 0: X (d)
k = 0}. For y ∈ Λ0 with com-

ponents y = (y1, . . . ,yd), put r0(y) := (y1, . . . ,−yd). The Green’s function Gε
Λ0

on Λ0 with zero
boundary condition is given by

(4.59) Gε
Λ0

(x,y) =
∞

∑
k=0

(1+ ε)−k−1Px(Xk = y,τ0 > k
)
.

The Reflection Principle tells us that, for x,y ∈ Λ0,

(4.60) Px(Xk = y,τ0 ≤ k
)

= Px(Xk = r0(y),τ0 ≤ k
)

= Px(Xk = r0(y)
)

and so

(4.61)

Gε
Λ0

(x,y) = Gε(x,y)−
∞

∑
k=0

(1+ ε)−k−1Px(Xk = y,τ0 ≤ k
)

= Gε(x,y)−
∞

∑
k=0

(1+ ε)−k−1Px(Xk = r0(y)
)

= Gε(x,y)−Gε(x,r0(y)).

This holds for all x,y ∈ Λ0 and extends even to y ∈ Λ0∪∂Λ0, as is easy to check.

Next, consider Λ1 := Zd−1×{0, . . . ,L} and set τL := inf{k ≥ 0: X (d)
k = L}. In analogy with r0(y)

we define rL(y) := (y1, . . . ,2L− yd). The Reflection Principle again yields

(4.62) Px(Xk = y,τ0 > k,τL ≤ k
)

= Px(Xk = rL(y),τ0 > k
)

and so

(4.63)

Gε
Λ1

(x,y) =
∞

∑
k=0

(1+ ε)−k−1Px(Xk = y,τ0 > k,τL > k
)

= Gε
Λ0

(x,y)−
∞

∑
k=0

(1+ ε)−k−1Px(Xk = y,τ0 > k,τL ≤ k
)

= Gε
Λ0

(x,y)−Gε
Λ0

(
x,rL(y)

)
.

In conjunction with (4.61), we thus obtain

(4.64)
Gε

Λ1
(x,y) = Gε

Λ0
(x,y)−Gε

Λ0

(
x,rL(y)

)
= Gε(x,y)−Gε

(
x,r0(y)

)
−Gε

(
x,rL(y)

)
+Gε

(
x,r0 ◦ rL(y)

)
for all x ∈ Λ1 and y ∈ Λ1∪∂Λ1.

Proceeding by induction along coordinate directions, we may progressively confine all coordinates of
the random walk and obtain a representation for the corresponding Green’s function in Λ in terms of
its full-lattice counterpart. Indeed,

(4.65)

Λd := {0, . . . ,L}d,

Λi := Zd−i×{0, . . . ,L}i, i = 1, . . . ,d−1,

Λ0 := Zd,
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and denoting by r(i)
0 , resp., r(i)

L , i = 1, . . . ,d, the reflections in the planes with the i-th coordinate equal
to zero, resp., L, we get in analogy with (4.64) the relation

(4.66)
Gε

Λi
(x,y) =Gε

Λi−1
(x,y)−Gε

Λi−1

(
x,r(i)

0 (y)
)

−Gε
Λi−1

(
x,r(i)

L (y)
)
+Gε

Λi−1

(
x,r(i)

0 ◦ r(i)
L (y)

)
.

Solving the recursion, this leads to

(4.67) Gε
Λ(x,y) = ∑

R∈R
(−1)|R|Gε

(
x,R1 ◦ · · · ◦Rd(y)

)
,

where R :=
⊗d

i=1
{

id,r(i)
0 ,r(i)

L ,r(i)
0 ◦ r(i)

L
}

is the set of all possible reflections that may occur and

|R| := ∑
d
i=1(1Ri=r(i)

0
+1

Ri=r(i)
L

) has the same parity as the number of reflections involved.

From (4.67) and Lemma 4.9, we thus obtain

(4.68)
∣∣∇(2)

i ∇
(1)
j ∇

(2)
k Gε

Λ(x,y)
∣∣≤ ∑

R∈R

∣∣∇?
i ∇ j∇

?
jG

ε(x−R(y))
∣∣≤ ∑

R∈R

Ĉ
|x−R(y)|d+1 .

Since, |x−R(y)| ≥ |x− y| when x,y ∈ Λ, and |R|= 2d , the result follows. �

We are now ready to complete the proof of Theorem 4.4:

Proof of Proposition 4.8. Although the ε ↓ 0 limit of Gε exists only in d ≥ 3, for gradients we have
∇G(x,y) = limε↓0 ∇Gε(x,y) in all d ≥ 1. Since the bound in Lemma 4.10 holds uniformly in ε > 0,
we get the claim in all d ≥ 1. �

5. PERTURBED HARMONIC COORDINATE

In this section we will prove Propositions 2.5 and 2.6. Abusing our earlier notation, let

(5.1) GΛ(x,y;ω) = (−Lω)−1(x,y)

denote the Green’s function in Λ with Dirichlet boundary condition for conductance configuration ω .
(Thus, the simple-random walk Green’s function from Section 4 corresponds to ω := 1.) The Green’s
function is the fundamental solution to the Poisson equation, i.e.,

(5.2)

{
−LωGΛ(x,z,ω) = δx(z) if z ∈ Λ,

GΛ(x,z,ω) = 0, if z ∈ ∂Λ,

where δx(z) is the Kronecker delta. Note that GΛ is defined for all ω ∈ Ω. The solution to (5.2) is
naturally symmetric,

(5.3) GΛ(x,y;ω) = GΛ(y,x;ω), x,y ∈ Λ,

and so we can extend it to a function on Λ∪∂Λ by setting GΛ(x, ·;ω) = 0 whenever x ∈ ∂Λ. Here
is a generalized form of the representation (2.23):

Lemma 5.1 (Rank-one perturbation) For a finite Λ⊂Zd let x,y∈Λ be nearest neighbors. For
any ω,ω ′ such that ω ′b = ωb except at b := 〈x,y〉, and any z ∈ Λ∪∂Λ,

(5.4) ΨΛ(ω ′,z)−ΨΛ(ω,z)

=−(ω ′xy−ωxy)
[
GΛ(z,y;ω

′)−GΛ(z,x;ω
′)
][

ΨΛ(ω,y)−ΨΛ(ω,x)
]
.
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Proof. Suppose ω,ω ′ ∈ Ω are such that ω ′ equals ω except at the edge b := 〈x,y〉, where ω ′b :=
ωb + ε . Define the function ΦΛ : Λ∪∂Λ→ Rd by

(5.5) ΦΛ(z) := ΨΛ(ω,z)− ε
[
GΛ(z,y;ω

′)−GΛ(z,x;ω
′)
][

ΨΛ(ω,y)−ΨΛ(ω,x)
]
.

We claim that

(5.6) Lω ′ΦΛ = 0 in Λ.

Since for z ∈ ∂Λ we have ΦΛ(z) = ΨΛ(ω,z) = z, this will imply ΦΛ(·) = ΨΛ(ω ′, ·) thanks to the
uniqueness of the solution of the Dirichlet problem.

In order to show (5.6), we first use (5.2–5.3) to get

(5.7) Lω ′ΦΛ(z) = Lω ′ΨΛ(ω,z)− ε
[
δy(z)−δx(z)

][
ΨΛ(ω,y)−ΨΛ(ω,x)

]
.

To deal with the term Lω ′ΨΛ(ω,z), we think of of Lω ′ as a matrix of dimension |Λ|. For its coeffi-
cients Lω(z,z′) := 〈δz,Lωδz′〉`2(Λ) we obtain

(5.8) Lω ′(z,z′) = Lω(z,z′)+ ε
[
δy(z)−δx(z)

][
δy(z′)−δx(z′)

]
.

Using that LωΨΛ(ω,z) = 0 for z ∈ Λ, we now readily confirm (5.6). �

Proof of Proposition 2.5. Set y := x+ êi and denote ∇i f (z) := f (z+ êi)− f (z). Lemma 5.1 shows

(5.9) ∇iΨΛ(ω ′,x) =
[
1− (ω ′b−ωb)∇

(1)
i ∇

(2)
i GΛ(x,x,ω ′)

]
∇iΨΛ(ω,x),

where the superindices on ∇ indicate which variable is the operator acting on. The prove the claim we
need to show

(5.10)
[
∇

(1)
i ∇

(2)
i GΛ(x,x,ω)

]−1 = inf
{

QΛ( f ) : f (y)− f (x) = 1, f∂Λ = 0
}
,

where the conductances in QΛ correspond to ω . For this, let f be the minimizer of the right-hand side.
The method of Largrange multiplies shows

(5.11) −Lω f (z) = α
[
δy(z)−δx(z)

]
.

Thanks to (5.2), this is solved by

(5.12) f (z) = α
[
GΛ(y,z;ω)−GΛ(x,z;ω)

]
= α∇

(1)
i GΛ(x,z;ω)

which in light of the constraint f (y)− f (x) = 1 gives α = [∇(1)
i ∇

(2)
i GΛ(x,x,ω)]−1. Since also

QΛ( f ) = 〈 f ,−Lω f 〉`2(Λ), (5.11) gives QΛ( f ) = α and so (5.10) holds. The correspondence (2.23)
then follows from (5.9–5.10); the identity (2.24) results by differentiation of the left-hand side with
respect to ω ′b. �

Finally, it remains to establish the limit (2.25), including all of its stated properties:

Proof of Proposition 2.6. Thanks to ellipticity restriction(1.3), we have a bound on this quantity in
terms of the lattice Laplacian. This shows that, for some c = c(λ ) ∈ (0,1),

(5.13) c < ∇
(1)
i ∇

(2)
i GΛ(x,x,ω ′) < 1/c

uniformly in Λ. Moreover, Λ 7→ ∇
(1)
i ∇

(2)
i GΛ(x,x,ω ′) is obviously non-decreasing in Λ and so the

limit exists. The formula (2.26) and the claimed stationarity then follow as well. �
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