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Abstract

We consider a class of stochastic processes containing the classical and well-studied

class of Squared Bessel processes. Our model, however, allows the dimension be a func-

tion of the time. We first give some classical results in a larger context where a time-varying

drift term can be added. Then in the non-drifted case we extend many results already

proven in the case of classical Bessel processes to our context. Our deepest result is a de-

composition of the Bridge process associated to this generalized squared Bessel process,

much similar to the much celebrated result of J. Pitman and M. Yor. On a more practical

point of view, we give a methodology to compute the Laplace transform of additive func-

tionals of our process and the associated bridge. This permits in particular to get directly

access to the joint distribution of the value at t of the process and its integral. We finally

give some financial applications to illustrate the panel of applications of our results

Introduction

We will consider in this article a family of stochastic processes which contains the classical

squared Bessel processes. We recall that for δ ≥ 0, a δ-dimensional squared Bessel process

started at x ≥ 0 is defined as the unique strong solution of the stochastic differential equation

dXu = δdu+ 2
√
XudWu and X0 = x ≥ 0

for all u ∈ R+ where (Wu)u≥0 denotes a Brownian motion. There has been a huge number

of publications concerning this class of processes, resulting in many tractable tools for its study.

We refer in particular to Shiga-Watanabe [14], Pitman-Yor [11], Revuz-Yor [13] and Deelstra-

Debaen [4], [5]. A natural extension of this family is to replace the dimension δ by a function of

the time variable. This was done by Carmona in [2], extending some of the previously mentioned

tools to the class of squared Bessel processes with dimension δ which is a time varying function.

A second generalization of this class of processes was done by Deelstra and Delbaen in [3],

[4] and [5]. They introduced a constant drift parameter β and used a dimension δ which may

be stochastic. Indeed, they extend results of existence of the solution of an extended stochastic

differential equation

dXu = (δu + 2βXu)du+ 2
√
XudWu and X0 = x ≥ 0

They proved that the properties of scaling and additivity of the process (Xu) found by Pitman

and Yor in [11] for classical squared Bessel processes stay valid for these extended squared
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Bessel processes. Moreover, Pitman and Yor in [11], using some classical space-time transfor-

mations and Girsanov’s theorem, have shown that the study of squared Bessel processes with

drift can be reduced to the study of the squared Bessel process without drift (i.e. β = 0). This

property is equally true in the case of non-constant dimension. Finally, Delbaen and Shirakawa

in [6] applied the class of squared Bessel processes with time varying dimension δ to the square

root interest rate model.

Hence our contributions are: firstly, we generalize the family of squared Bessel processes to the

class of squared Bessel processes with stochastic dimension (δu) and with a drift parameter

βu which is a function of the time. We will call this kind of process a generalized squared Bessel

process (GBESQ) with stochastic dimension (δu) and with a drift function βu, defined as the

unique solution of the stochastic differential equation

dXu = (δu + 2βuXu)du+ 2
√
XudWu and X0 = x ≥ 0. (0.1)

We establish several classical properties for this generalized process, extending or sometimes

overlapping results from the aforementioned articles. This includes results of existence and

uniqueness of the solution of (0.1); scaling and additivity properties of this solution. We finish by

showing that, as in the two other previously mentioned settings, one can reduce to the situation

β = 0 through a change of law. Therefore we make a more precise study of the un-drifted case

and give some rather tractable tools in order to compute the law of additive functionals of this

process.

We then give a more precise and theoretic version of the last result, in the form of a Lévy-Itô

representation of this process, similar to the one exposed in Pitman and Yor [11]. However due

to the fact that the dimension parameter belongs to a function space and not, as in the classical

setting, to R+, we cannot extend to our case all the results of global monotone coupling that

exist in the classical setting. Our tools rely mostly, apart from the probabilistic tool used in the

setting of Bessel Processes, on functional analysis in order to extend results on the half line to

a functional space. The Fréchet-Riesz representation Theorem is a quite typical example of the

theoretical results we use.

Then we introduce the notion of Generalized Squared Bessel Bridges by conditioning our pro-

cess to its endpoints. We give some extensions of the classical properties of Bessel bridges to

our case, including an extension of the Bessel Bridge decomposition of Pitman and Yor [11].

We use this decomposition in order to give a general formula for the Laplace transform of ad-

ditive functionals of the Bessel bridge. We give an example of how we can use this formula to

get an explicit result. The techniques we use are very tractable and can be applied whenever

one knows how to handle classical Bessel processes. We give a (if not very tractable) complete

formula covering most settings in Appendix A. Our formula contains a power series, the value

of which we are unable to compute explicitly, we however give some estimates on the speed of

convergence of this series.

We conclude this paper by giving some applications to financial mathematics of our results. In-
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deed, we will first give some examples of financial models which are GBESQ. Then, we will give

three examples of applications: first we will give an explicit way to simulate stochastic volatil-

ity model where the volatility process is again a GBESQ, then the evaluation of zero coupon

bond where the interest rate is a GBESQ, and finally, we will give an explicit method to simulate

default times in credit risk model using a stochastic default intensity which is a GBESQ process.

1 Squared Bessel processes with time varying dimension.

1.1 Squared Bessel process

Let
(
Ω, (Ft)t∈[0,T ],P

)
be a filtered probability space and let (Wt)t∈[0,T ] be a Brownian motion

under P. We suppose that the filtration (Ft)t∈[0,T ] is generated by {Ws; 0 ≤ s ≤ t}. We first

recall some results of [13], about squared Bessel processes with constant dimension δ ≥ 0.

Definition 1.1. The squared Bessel process of dimension δ ≥ 0, denoted by BESQδ
x is defined

as the unique strong solution of the stochastic differential equation (SDE)

dXu = δdu+ 2
√
XudWu and X0 = x ≥ 0. (1.2)

In this case Xu ≥ 0, for all u ∈ [0, T ].

We will denote in the sequel byQδx, the law of BESQδ
x. We now recall the property of additivity

of squared Bessel processes which can be found in Theorem 1.2 Chap XI of [13]

Theorem 1.1. For every δ, δ
′ ≥ 0 and x, x

′ ≥ 0, we have

Qδx ⊕Qδ
′

x′
= Qδ+δ

′

x+x′
. (1.3)

1.2 Generalized squared Bessel process (GBESQ)

Let C be the space of continuous functions R+ → R+ and D the space of continuous by part,

measurable and locally bounded functions R+ → R+.

Definition 1.2. For all u ∈ R+ , δ, β ∈ D, we will call the solution in C of the stochastic

differential equation

dXu = (2βuXu + δu) du+ 2
√
XudWu (1.4)

with initial value X0 = x ≥ 0, a generalized squared Bessel process with dimension (δu) and

drift function (βu). We will denote X as a GBESQβ,δ
x .

We will denote by βQδx the law of X andQδx :=0 Qδx.
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Remark 1.1. In the above definition (δu) and (βu) are deterministic functions of the time. It is

obviously possible to extend these definitions to random (δu) and (βu) provided their trajecto-

ries belong almost surely to D, by conditioning on the realization of (δu) and (βu). Thus all the

following result are true conditionally on (δu) and (βu), or, using the typology of random media,

in the "quenchedßetting. It is also straightforward by time restriction of the above SDE that the

solution in this case is progressively measurable with respect to σ((δu)u≤t, (βu)u≤t, (Wu)u≤t).

1.2.1 Existence, unicity and positivity of the solution

We will obtain the uniqueness of the existence of the GBESQ and its positivity for a more general

volatility structure. Indeed, we take the process X given by

dXu = (2βuXu + δu) du+ σ(Xu)dWu (1.5)

where σ : R+ → R+ is a function, vanishing at zero and satisfies the Holder condition, namely

that for all x, y ∈ R+, there exists a constant c such that

|σ(x)− σ(y)| ≤ c
√
|x− y|. (1.6)

Remark 1.2. 1 We can remark that the volatility structure of our GBESQ process (1.4)

satisfies this condition.

2 This class of processes was studied by Deelstra in [3] with a constant drift β and a

dimension δ such that
∫ t

0
δudu <∞ for all t ∈ R+.

3 If δ is in D then δ satisfies point 2.

Proposition 1.1. Let β and δ be in D and σ a function satisfying (1.6), then for every x ≥ 0

there is a unique solution Xt of the stochastic differential equation (1.5) such that X0 = x.

Proof. The proof follows from Theorem 3.2.1 in [3]. Whereas as we said in Remark 1.2 point 2.

our model has a non constant drift term. But since β is in D, then it is locally bounded. Hence

we can work with this new drift in the proof of Theorem 3.2.1 and obtain the same result.

To obtain the positivity of this solution, we will use a comparison result.

Proposition 1.2. Let X1 and X2 be two solution of (1.5) with dimension δ1 ∈ D and δ2 ∈ D
and respectively initial state x1 > 0 and x2 > 0. We suppose too, that the processes X1 and

X2 are associated with the same Brownian motion (Wu) and the same drift β ∈ D. If for all

u ≥ 0 we have x2 ≥ x1 and δ2
u ≥ δ1

u a.s., then for every u ≥ 0, we have

P
[
X2
u ≥ X1

u

]
= 1.
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Proof. We will again follow the proof of Theorem 3.2.2 in [3] with a non constant drift β using

the fact that βu is in D for all u ∈ [0, T ].

Corollary 1.1. The process X is always positive.

Proof. This follows directly from the Proposition 1.2. Indeed, taking X1
0 = 0 and δ1 ≡ 0, then

the unique solution of (1.5) is given by X1 ≡ 0. Then taking X2 an other solution of (1.5) such

that X2
0 ≥ X1

0 = 0 and δ2
u ≥ δ1

u ≡ 0 a.s. we obtain that X2
u ≥ 0 a.s.

Remark 1.3. Hence taking for all u ∈ [0, T ], σ(Xu) = 2
√
Xu, then we have that the stochastic

differential equation (1.4) admits a unique positive solution.

1.3 Results about GBESQ

We come back now to our GBESQ process given as the unique solution of the stochastic differ-

ential equation (1.5).

Proposition 1.3. Let (X
(δ)
u )u∈[0,T ] and (Y

(δ
′
)

u )u∈[0,T ] be two independent generalized squared

Bessel processes with time varying dimension δu, δ
′
u ≥ 0 with the same drift βu which is a

bounded function and initial states x, x
′ ≥ 0. Then

{X(δ)
u + Y (δ

′
)

u ; 0 ≤ u,X
(δ)
0 = x, Y

(δ
′
)

0 = x
′} law= {H(δ+δ

′
)

u ; 0 ≤ u,H
(δ+δ

′
)

0 = x+ x
′},
(1.7)

where H is an other GBESQ with stochastic dimension δu + δ
′
u, with drift equal to βu and initial

state x+ x
′
. In other words,

βQδx ⊕β Qδ
′

x′ =β Qδ+δ′x+x′ . (1.8)

Proof. We proceed similarly to the proof of Theorem 1.2 of [13] which is done for simple squared

Bessel processes. Let W and W
′

be two independent linear Brownian motion. Let X and Y

defined by (1.4) as the corresponding two solutions for (x, β, δ) and (x
′
, β, δ

′
) and set H=X+Y.

Then for any u ∈ [0, T ],

Hu = x+ x
′
+

∫ u

0

2βs (Xs + Ys) ds+

∫ u

0

(
δs + δ

′

s

)
ds+ 2

∫ u

0

(√
XsdWs +

√
YsdW

′

s

)
.

Let W
′′

be a third Brownian motion independent of W and W
′
. The process ζ defined by

ζu =

∫ u

0

1{Hs>0}

√
XsdWs +

√
YsdW

′
s√

Hs

+

∫ u

0

1{Hs=0}dW
′′

s

is a linear Brownian motion since 〈ζ, ζ〉u = u and we have

Hu = (x+ x
′
) +

∫ u

0

2βs (Xs + Ys) ds+

∫ u

0

(
δs + δ

′

s

)
ds+ 2

∫ u

0

√
Hsdζs

Hu = (x+ x
′
) +

∫ u

0

(
2βsHs +

(
δs + δ

′

s

))
ds+ 2

∫ u

0

√
Hsdζs,

which completes the proof.
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Proposition 1.4. For all u ∈ [0, T ], If X is aGBESQβ,δ
x (i.e.X0 = x), then for any c > 0, the

process 1
c
Xcu is again a GBESQcβ

′
,δ
′

x
c

with δ
′
u = δcu and β

′
u = βcu. In terms of distribution,

this reformulates to
βQδx

(
1

c
Xc ·

)
=cβ(c ·) Qδ(c ·)x/c .

Proof. We know that Xu = x +
∫ u

0
δsds +

∫ u
0

2βsXsds + 2
∫ u

0

√
XsdWs.. So by a change

of variable in this stochastic integral, we obtain

Xu = x+

∫ u
c

0

cδcvdv +

∫ u
c

0

2cβcvXcvdv + 2

∫ u
c

0

√
XcvdWcv.

Hence

1

c
Xu =

x

c
+

∫ u
c

0

δcvdv +

∫ u
c

0

2βcvXcvdv + 2

∫ u
c

0

1

c

√
XcvdWcv,

1

c
Xu =

x

c
+

∫ u
c

0

δcvdv +

∫ u
c

0

2βcvXcvdv + 2

∫ u
c

0

√
1

c
Xcv

1√
c
dWcv,

1

c
Xcu =

x

c
+

∫ u

0

δcvdv +

∫ u

0

2βcvXcvdv + 2

∫ u

0

√
1

c
Xcv

1√
c
dWcv.

Moreover, we know that if for all u ∈ [0, T ], Wu is a Brownian motion then, for all c > 0,
1√
c
dWcu is again a Brownian motion. Hence this stochastic differential equation becomes

1

c
dXcu = (2βcuXcu + δcu) du+ 2

√
1

c
XcudW̃u =

(
2cβcu

1

c
Xcu + δcu

)
du+ 2

√
1

c
XcudW̃u.

Consequently, the result follows from the uniqueness of the solution to this stochastic differential

equation.

1.3.1 Removal of the drift term.

We now give a generalization of the change of law property which can be found in [11]. This

proposition allows us to vanish the deterministic drift function. Let X be a GBESQ0,δ
x and

for t ∈ R+ define the process Y by Yt =
∫ t

0
βs
√
XsdWs, where the function β is in D and

assume moreover that β is differentiable. Then the continuous local martingale defined by

Zt = E(Yt) = exp

{
Yt −

1

2
〈Y, Y 〉t

}
is equal to

Zt = exp

{∫ t

0

βs
√
XsdWs −

1

2

∫ t

0

β2
sXsds

}
= exp

{
1

2

[∫ t

0

2βs
√
XsdWs +

∫ t

0

βsδsds−
∫ t

0

βsδsds−
∫ t

0

β2
sXsds

]}
= exp

{
1

2

[∫ t

0

βs

(
δsds+ 2

√
XsdWs

)
−
∫ t

0

βsδsds−
∫ t

0

β2
sXsds

]}
.
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Since X is a GBESQ0,δ
x , we obtain that

Zt = exp

{
1

2

[∫ t

0

βsdXs −
∫ t

0

βsδsds−
∫ t

0

β2
sXsds

]}
. (1.9)

By integrating by parts, we have

βtXt = β0X0 +

∫ t

0

βsdXs +

∫ t

0

Xsdβs = β0X0 +

∫ t

0

βsdXs +

∫ t

0

Xsβ
′

sds.

Hence by substituting this expression in (1.9) we obtain

Zt = exp

{
1

2

[
βtXt − β0X0 −

∫ t

0

Xsβ
′

sds−
∫ t

0

βsδsds−
∫ t

0

β2
sXsds

]}
= exp

{
1

2

[
βtXt − β0X0 −

∫ t

0

βsδsds−
∫ t

0

(
β
′

s + β2
s

)
Xsds

]}
.

If we show that Zt is a true-martingale then we will can apply the change of law formula given

by the following proposition

Proposition 1.5.

Zt :=
βQδx
Qδx

= exp

{
1

2

[
βtXt − β0X0 −

∫ t

0

βsδsds−
∫ t

0

(
β
′

s + β2
s

)
Xsds

]}
. (1.10)

In fact, since X0,δ
s is positive for s ∈ [0, T ] and β ∈ D, so β is locally bounded. We have that(

β
′
s + β2

s

)
≥ 0 then the local-martingale Zt is bounded, therefore it is true-martingale.

1.4 Some law results

Starting from now and having in mind the previous result, we will always assume that the drift

term is zero. We first recall a result from [2], Proposition 3.4

Proposition 1.6. If δ ∈ D and µ is a positive Radon measure on [0, a[, then

Qδ
x

[
exp

(
−
∫ a

0

Xudµ(u)

)]
= exp

(x
2

Φ
′

µ(0)
)

exp

(
1

2

∫ a

0

Φ
′
µ(u)

Φµ(u)
δudu

)
,

where Φµ is the (well and uniquely defined) solution in the distribution sense of

Φ
′′

= Φµ. (1.11)

which is positive, non-increasing on [0,∞[ and follows the initial condition Φµ(0) = 1.
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Remark 1.4. 1 With straightforward calculation, we can obtain a extended version of this

result with non zero drift term, namely

βQδx
[
exp

(
−
∫ a

0

Xudµ(u)

)]
= exp

(x
2

Φ
′

µ(0)
)

exp

(
1

2

∫ a

0

Φ
′
µ(u)

Φµ(u)
δudu

)
,

where Φµ the unique solution of the differential equation, in the distribution sense,

dµu =
Φ
′′
u

2Φu

du+ βu
Φ
′
u

Φu

du (1.12)

which is positive, non-increasing on [0,∞[ and follows the initial condition Φµ(0) = 1.

2 All these results could be extended under proper assumptions to measures without com-

pact support. As our goal is to study the Bessel bridge, we feel free to do this restriction.

The previous form gives a precise explicit expression for the Laplace transform of additive func-

tional of the generalized squared Bessel. However in practical cases this explicit form is rather

difficult to use. We give a more abstract form which, surprisingly, suits better our goals, and

allows us to introduce some notations.

Proposition 1.7. LetXδ be a generalized squared Bessel process with dimension δ and started

in x. If δ ∈ D and µ is a positive Radon measure with compact support on R+, then there exist

a constant Aµ and a function Bµ : R+ → R+ such that

Qδx
[
exp

(
−
∫ ∞

0

Xudµ(u)

)]
= Axµ exp

{∫ ∞
0

Bµ(u)δudu

}
.

Proof. It is a trivial corollary of Proposition 1.6.

Remark 1.5. Note that, by taking δ constant, the Aµ term is the same as in Corollary 1.3 of

page 440 of [13].

We can apply this formula to measures of the form µt := λεt, where εt stands for the Dirac

measure in t. Our strategy to compute Aµt and Bµt will be to take well-chosen test values and

functions for x and δ. Taking δ = 1, Aµt was computed in [13], page 441, and is equal to

Aµt = e−
λ

1+2λt . (1.13)

To get access to Bµt , we take x = 0 and use test functions of the form δ = χ[b,∞] where χ

denotes the indicator function. For such δ and x = 0, the generalized squared Bessel process

is easily described: indeed it is identically equal to 0 for 0 ≤ t ≤ b and then evolutes like a

8



squared Bessel process with dimension 1 started at 0, that is, the square of a standard Brownian

motion. Therefore straightforward computations imply

Qχ[b,∞]

0

[
exp

{
−
∫
Xudµt

}]
= E0

[
e
−λB2

(t−b)+
]

=
1√

1 + 2λ(t− b)+
. (1.14)

(for the last equality see for example p441 of [13].) On the other hand this is also equal to

exp
{∫∞

b
Bµ(u)

}
. Taking the log and then the derivative with respect to b, then bringing ev-

erything together, we get the following result :

Corollary 1.2. Under the statement of the Proposition 1.7, we have

Qδx
[
e−λXt

]
= exp

{
− λx

1 + 2λt

}
exp

{
−
∫ t

0

λδu
1 + 2λ(t− u)

du

}
.

This is the Laplace transform of the transition Kernel ofQδx. In the case of constant δ an inverse

to this transform can be computed and therefore an expression of the transition Kernel, it is

however not generally possible for any δ. We give in Remark 3.8 a simplification of this formula

in the case of piecewise constant δ, and in section 5.1 some hints on how to overcome this

issue in numerical simulations.

2 The Levy-Itô Representation of GBESQ

We now turn to the so-called Levy-Itô representation. For a motivation of such representation

we refer to §4 of [11].

Theorem 2.2. 1 There exists a unique measure M on C such that for every random vari-

able I on C of the form I =
∫
Xtµ(dt), with µ a positive Radon measure with compact

support on (0,∞) and every α > 0, denoting byMu the distribution of (X(t−u)+ , t ≥ 0)

for (Xt, t ≥ 0) distributed according to M we get

Qδx
[
e−αI

]
= exp

{(
xM +

∫ ∞
0

δuMudu

)(
e−αI − 1

)}
. (2.15)

Moreover M corresponds to the 0M of Theorem 4.1 of [11].

2 For any δ ∈ D, there exists a R+ → C process (Y δ
x , x ≥ 0) such that

Y δ
x = Y 0

x + Y δ
0 =: Yx + Y δ, (2.16)

where (Yx, x ≥ 0) and (Y δ, δ ∈ D) are independent, Yx is as in Theorem 4.1. of [11]

and Y δ is distributed according toQδ0.
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Remark 2.6. 1 This theorem should be understood as a Lévy-Khinchine formula on C .

For more on this we refer to §4 of [11]. We also refer to §3 of [11] for background on

the measure M . In short, M is the excursion law associated to the zero diffusion Q0
x

renormalized so that its entrance law is given by

M(Xt ∈ dx) =
dx

(2t)2
e−

x
2t .

In particular the associated transition kernel starting for any strictly positive time is the

same as the one of the squared Bessel process of dimension 0.

2 We also recall the expression of Yx from [11]. Namely,

Yx(0) = x, Yx =
∑
v≤x

∆v on (0,∞),

where ∆v is a Poisson point process on C with Poisson measure M . Note that, due

to the form of M , the sum in the last expression is actually infinite, however, for every

finite t, the set of ∆v such that ∆v(t) > 0 is finite and its cardinality follows a Poisson

distribution of parameter x
2t
.

3 In [11], the representation in terms of a Poisson point process is also valid for δ. However

we do not have such a representation in our setting and believe it is a difficult question. It

is however not needed for our purpose.

Proof of Theorem 2.2: First, we would like to prove (2.15). It is clear that both terms are multi-

plicative in δ and positive. The form in Proposition 1.6 also easily imply that the left hand side

is continuous in δ with respect to the infinite norm. The continuity of the right hand side follows

easily once one knows that
∫∞

0
δuMudu

(
e−αI − 1

)
is finite, which is easily deduced from

Theorem 4.1. of [11]. Hence we just need to prove it for well chosen test function. We take for

test functions the functions that are constant on an interval and equal to zero outside. It is easy

to see that such function form a generating family of D. Indeed it is rather easy to see that any

constant by parts can be constructed as a sum of such functions. The fact that constant by part

functions are dense in D is classical.

More precisely, let δ := dχ[a,b]. We can easily see that for such δ,Xt is identically zero on [0, a]

then evolves like a d-dimensional squared Bessel process on [a, b], then like a 0-dimensional

squared Bessel process. It is the clear that by a shifting of time we can reduce to the case

a = 0. The Markov property implies:

Qδx
[
e−αI

]
= Qdx

[
exp

{
−α
∫ b

0

Xtdµ(t)

}
E0
Xb

[
exp

{
−α
∫ ∞

0

Xtdµ(t+ b)

}]]
.

We write I1 :=
∫ b

0
Xtdµ(t) and I2 =

∫∞
0
Xtdµ(t + b). Then the previous expression can be

written

Qδx
[
e−αI

]
= Qdx

[
e−αI1Q0

Xb

[
e−αI2

]]
. (2.17)
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Theorem 4.1 of [11] implies that the previous expression is equal to

Qdx
[
e−α(I1+XbM(e−αI2−1))

]
.

Denoting by I ′1 the function on C defined by

I ′I((Xt)t≥0) = I1((Xt)t≥0) +XbM(e−αI2 − 1))

and applying once again Theorem 4.1. of [11], we get

Qδx
[
e−αI

]
= exp

{(
xM + d

∫ ∞
0

Mudu

)
(e−αI

′
1 − 1)

}
.

It is clear from the previous form of I ′1 that for every u > b, Mu(e
−αI′1 − 1) = 0, therefore the

last expression can be reduced to

Qδx
[
e−αI

]
= exp

{(
xM + d

∫ b

0

Mudu

)
(e−αI

′
1 − 1)

}
.

We now want to prove that the above expression equals

exp

{(
xM + d

∫ b

0

Mudu

)
(e−αI − 1)

}
.

For this we only need to prove that for every 0 ≤ u < b,

Mu(e
−αI′1 − 1) = Mu(e

−αI − 1).

We get this basically by doing the previous computations backward. Indeed

Mu(e
−αI′1 − 1)) = Mu

[
exp

{
−α
∫ b

0

Xtdµ(t)

}
exp{XbM(e−αI2 − 1}} − 1

]
= Mu

[
exp

{
−α
∫ b

0

Xtdµ(t)

}
Q0
Xb

[
exp{−α

∫ ∞
0

Xtdµ(t+ b)}
]
− 1

]
= Mu

[
exp

{
−α
∫ ∞

0

Xtdµ(t)

}
− 1

]
,

where we used in the second line Theorem 4.1 of [11] and in the third line the Markov property

for Mu and the fact that, by definition of M , for u < b, the transition kernel of Mu for times

greater than d is equal to the transition kernel ofQ0
x.

Now we need to show (2.16): it is trivial, just by taking Yx as in [11] and any independent

δ−squared Bessel process started at zero for Y δ. Then Proposition 1.3 gives the result.
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3 Bessel bridge Decomposition

We now turn to our main interest, namely the squared Bessel bridge with non-constant dimen-

sion. We define for δ ∈ D the law

Qδ,tx→y := Qδ(.|X0 = x,Xt = y). (3.18)

In all the result we are going to mention, we are only interested in the trajectory up to time

t ∈ [0, T ] of the Bessel bridge. So with a slight abuse of notation we will consider Qδ,tx→y as a

probability measure onC([0, t], R+).We will also make use of the time reversed Bessel bridge,

namely we call Q̂ the Q distribution of (X(t − s))0≤s≤t. In particular it is easily seen that we

have

Lemma 3.1. Let X be a GBESQδ,x such that for t ≥ 0, Xt = y, then we have that

Q̂δ,tx→y = Qδ̂,ty→x,

where δ̂(s) = δ(t− s).

We also restrict to the case where δ is not equal to zero excepted on a discrete set of points,

as it will be the case in financial applications. This is only to ensure that for every y ≥ 0, the

conditioning event in (3.18) has zero probability. It will also ensure that the distributionQδ,tx→y is

continuous with respect to (x, y).

We recall that, by definition,Q0,t
0→y is the time reversal ofQ0,t

y→0. We first give a "bridge"version

of the additivity property.

Proposition 3.8. Let δ, δ′ be in D, then

Qδ,tx→0 ⊕Q
δ′,t
y→0 = Qδ+δ

′,t
x+y→0.

Remark 3.7. In this setting there is no straightforward representation in term of the uncon-

ditioned process in the sense of (5.a) of [11], whereas doubtless a careful application of the

arguments of [18] should lead to some similar (but not equal) result. This is however not needed

for the above proposition to be true.

Proof of Proposition 3.8. This is directly obtained by conditioning the statement of Proposition

1.3, using the (obvious) fact that, for X and Y two R+-valued processes, the events {Y (t) +

X(t) = 0} and {X(t) = 0, Y (t) = 0} are equal.

We are aiming at obtaining an extended Bessel bridge decomposition. Firstly, we need some

notation and an introductory Lemma. We denote by L−1f the inverse Laplace transform of f .

And we call

F t
δ (λ) = exp

{
− λx

1 + 2λt

}
exp

{
−
∫ t

0

λδu
1 + 2λ(t− u)

du

}
. (3.19)
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Lemma 3.2. Let

btδ,x,y(n) :=
(x/(2t))n

n!
L−1F t

δ+2n(y)∑∞
k=0

(x/(2t))k

k!
L−1F t

δ+2k(y)
,

then btδ,x,y(n) is the distribution of U given

X∗ +X1 + · · ·+XU = y,

where U ∼ Poisson(x/(2t)), Xi ∼ exp(1/(2t)) are i.i.d. random variables and X∗ is a

random variable independent of U and Xi and its Laplace transform is given by F t
δ (λ).

Proof. By simple computation one gets that the Laplace transform of X1 is equal to

exp

{
−
∫ t

0

2λ

1 + 2λ(t− u)
du

}
=

1

1 + 2tλ
.

We deduce that, conditionally on U = n, the Laplace transform of X∗ + X1 + · · · + XU is

equal to F t
δ+2n(λ). The continuous version of the Bayes Formula then gives the result.

Then we obtain the extended Bessel bridge decomposition

Theorem 3.3. For every δ ∈ D, x ∈ R+, y ∈ R+,

Qδ,tx→y = Q0,t
x→0 ⊕Q

0,t
0→y ⊕Q

δ,t
0→0 ⊕

∞∑
n=0

btδ,x,y(n)Q4n,t
0→0,

where the last term on the right is the mixture of the laws Q4n,t
0→0, n = {0, 1, . . . } with weights

given by btδ,x,y(n).

Proof. Using point 2. of Remark 2.6, we get that, for Y δ
x ∼ Qδx,

Y δ
x = Y 0

x + Y δ
0 ,

where the two processes are independent, Y δ
0 ∼ Qδ0 and

Y 0
x =

∑
v≤x

∆v,

where ∆v is a Poisson point process with measure M . We separate as in [11] this sum in two,

keeping on one side the terms which are zero at t and on the other side the terms which are

positive at t, we get that

Y δ
x = Y 0

x0 + Y 0
x+ + Y δ

0 ,

where the three processes are independent,

Y 0
x0 ∼ Q

0,t
x→0,

13



and

Y 0
x+ =

U∑
i=0

Zi,

where U is a Poisson(x/(2t)) variable independent of everything else and Zi are i.i.d. trajec-

tories whose distribution is given by M conditioned on Xt > 0 and renormalized. We condition

on the values of Zi and Y δ
0 at time t. Conditionally on U = u, and Zi(t) = zi, ∀i ≤ U, it is

shown in [11] that

Zi ∼ Q4,t
0→zi = Q0,t

0→zi +Q4,t
0→0.

Summing this, we get that, conditionally on U = u, and Zi(t) = zi, ∀i ≤ U with
∑
zi = z,

Y 0
x+ ∼ Q

0,t
0→z +Q4u,t

0→0.

On the other hand conditionally on U = u, and Zi(t) = zi, ∀i ≤ U, using time reversal and

Proposition 3.8,

Y δ
x ∼ Q

δ,t
0→y−z = Qδ,t0→0 ⊕Q

0,t
0→y−z.

Putting everything together, we get that conditionally on U ,

Qδ,tx→y = Qδ,t0→0 ⊕Q
0,t
x→0 ⊕Q

0,t
0→y ⊕Q

4u,t
0→0.

On the other hand, conditionally on Y , Y δ
0 (t) has Laplace transform F t

δ (λ) and Zi(t) are

independent random variable with law exp {1/(2t)} Therefore, using Lemma 3.2, we get the

result.

Remark 3.8. The expression in Lemma 3.2 is fairly general, however in most practical ap-

plications δ is constant by parts. We thus give a simpler expression in this case. Indeed, let

0 = τ0 < τ1 · · · < τn = t be an increasing sequence of times such that on each [τi, τi+1), δ

is constant equal to δi, then

F t
δ = exp

{
− λx

1 + 2λt

} n−1∏
i=0

(
1 + 2λ(t− τi+1)

1 + 2λ(t− τi)

)δi/2
.

3.1 About the coefficients in the Bessel bridge decomposition

The main difference between the classical setting and ours is the fact that the coefficients

btδ,x,y(n) are not as explicit. However they can be computed for given values of δ. For numerical

purposes it is interesting to have a bound on the speed of decay of these terms. We have the

following result:

Proposition 3.9. Let δ ∈ D, d = inf [0,t] δ and x, y ∈ R+, then for every increasing function

f : N 7→ R+, and with ν = d/2− 1 and z =
√
xy,

∞∑
k=0

btδ,x,y(k)f(k) ≤
∞∑
k=0

βν,z(k)f(k), (3.20)
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where

βν,z(k) =
(z

2

)2n+ν 1

Γ(n+ ν + 1)Iν(z)n!

are the coefficients of the Bessel(ν, z) distribution (Iν(z) stands for the modified Bessel func-

tion). In particular the power series associated to the btδ,x,y(k) has an infinite radius of conver-

gence.

Remark 3.9. The philosophy of this proposition is that, when one wants to compute quantities

related to the Bessel bridge, the truncation arguments used in the classical setting are also valid

in our setting.

Proof. From the representation of Lemma 3.2, it is clear that btδ,x,y(k) is the distribution of a

variable U which is negatively correlated with X∗, the distribution of the generalized squared

Bessel process at time t. Proposition 1.3 implies that we can couple the generalized squared

Bessel process of dimension δ with a classical squared Bessel process of dimension d, the

first one being always bigger than the second one. From this we deduce that the distribution of

U for δ is dominated by the distribution for d. This distribution is computed in [11], (5.j) and is

the Bessel(ν, z) distribution. The result follows easily. In particular the parameter t does not

intervene, as it simplifies between α and λ in [11], (5.j).

4 Laplace transform formula associated to extended Bessel

bridges.

We are now interested in computing the Laplace transform of some functionals of the Brownian

bridge. We first deal with the simpler case of the bridge to zero. In this case, because additivity

holds, things are simpler. We have the following:

Proposition 4.10. For every Radon measure µ on [0, t], there exist A0(α) and a function

Bα
0 (u) : [0, t]→ R depending on µ such that

Qδ,tx→0

[
exp

(
−
∫ t

0

αXudµ(u)

)]
= (A0(α))x exp

{∫ t

0

Bα
0 (u)δudu

}
.

Remark 4.10. Note that, for t = 1, A0(α) is as in in (5.d’) of [11]. We will give an example of

explicit computation of A0(α) and Bα
0 (u) in Theorem 4.4.

Proof. We first assume that the function Φ defined by (1.11) is such that
∫ t

0

(
Φ′

Φ

)2
du < ∞.

Using Proposition 3.8, it is easy to check that

φ(x, δ) := − logQδ,tx→0

[
exp

(
−
∫ t

0

αXudµ(u)

)]
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is additive in both terms, therefore φ(x, δ) = φ(x, 0) + φ(0, δ), and φ(x, 0) being linear, it is

necessarily of the form φ(x, 0) = a0x. We now want to show that

φ(0, δ) = − logQδ,t0→0

[
exp

(
−
∫ t

0

αXudµ(u)

)]
is of the form

∫∞
0
Bα

0 (u)δudu. To show this we need to apply the Fréchet-Riesz representation,

which states (in our context) that any continuous linear form on the Hilbert space L2([0, t])

is of the above mentioned form. So, keeping in mind that D is a dense subset of L2([0, t]),

the only thing we need is to show that φ(0, δ) is continuous with respect to the L2 norm on

[0, t]. As we now it is linear, it suffices to show that it is bounded on the unit ball. By proposition

1.6, and the Cauchy-Schwartz inequality, we now that it is true for the unconditioned process,

as by assumption Φ′

Φ
is square integrable. Therefore the result holds as a consequence of the

following coupling result, whose interest goes further than the context of this proof.

Lemma 4.3. For every δ ∈ D, x ∈ R+, there exist a (R+×R+) valued process (Xs, X
0
s )s∈[0,t]

such that

Xs ∼ Qδx, X0
s ∼ Q

δ,t
x→0, and X0

s ≤ Xs a.s., ∀0 ≤ s ≤ t.

Before giving the proof of this lemma we finish the proof of Proposition 4.10. We only need

to get rid of the assumption
∫ t

0

(
Φ′

Φ

)2
du < ∞. First note that by definition of Φ, for all ε,∫ t−ε

ε

(
Φ′

Φ

)2
du < ∞. We deduce from the same arguments as above that for all ε, there exist

Bα,ε
0 such that

Qδ,tx→0

[
exp

(
−
∫ t−ε

ε

αXudµ(u)

)]
= (A0(α))x exp

{∫ t−ε

ε

Bα,ε
0 (u)δudu

}
.

From this it is clear that for ε′ < ε, the restriction to [ε, t−ε] ofBα,ε′

0 isBα,ε
0 .We can accordingly

defineBα
0 on (0, t) such that the restriction to [ε, t−ε] ofBα

0 isBα,ε
0 .One can then easily check

that Bα
0 verifies the statement of Proposition 4.10.

We now turn to the Proof of Lemma 4.3.

Proof of Lemma 4.3. The proof follows a standard scheme, see for example pages 205-206

of [7]. The idea is to express the conditioned process as a solution of a SDE whose terms

are smaller than the SDE defining the unconditioned process, and then apply the Comparison

Theorem of [17] to prove the existence of a coupling.

We have first that for s ≤ t, denoting by qt(x, y) the transition kernel associated to Qδx. Using

1.3, we can write

qt(x, y) =
(
q0
t (x, .) ? q

δ
t (0, .)

)
(y), (4.21)

where ? stands for the convolution, and q0
t is the transition kernel of the 0-dimensional squared

Bessel Process. In particular

qt(x, 0) = q0
t (x, 0)qδt (0, 0). (4.22)
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We have

dQδ,tx→0

dQδx

∣∣∣∣∣
Fs

=
qt−s(Xs, 0)

qt(x, 0)
= exp (log qt−s(Xs, 0)− log qt(x, 0)) .

We write h(x, s) = log qt−s(x, 0). We now from (4.22) that

h(x, s) = h0(x, s) + hδ(0, s), (4.23)

where hδ(x, s) corresponds to the squared Bessel process of dimension δ.

From this form it is obvious that the derivative of h with respect to x does not depend on δ,

therefore is equal to its value for the 0−dimensional squared Bessel process, that is 1
2(s−t) (see

[7] for details), and in particular the second derivative with respect to x is 0 . We have thus,

applying Itô’s formula that

dQδ,tx→0

dQδx

∣∣∣∣∣
Fs

= exp

(
−
∫ s

0

1

2(t− u)
dXu +

∫ s

0

dh

ds
(Xu, u)du

)
.

Using once more (4.23) we see that dh
ds

can be decomposed into a part which only depends on

δ and another one which only depends on x. Putting everything together we get

dQδ,tx→0

dQδx

∣∣∣∣∣
Fs

= exp

(
−
∫ s

0

1

2(t− u)
dXu +

∫ s

0

Xu

2(t− u)2
du+

∫ s

0

dhδ

ds
(0, u)du)

)
.

We do not need to compute the last term in the exponential, indeed it is a deterministic term,

and we now that the Radon derivative is a martingale, therefore its value is imposed by this

condition. Recalling that by definition

dXu = δudu+ 2
√
XudWu,

and replacing in the above expression, we have

dQδ,tx→0

dQδx

∣∣∣∣∣
Fs

= exp

(
−
∫ s

0

√
Xu

(t− u)
dWu,+

∫ s

0

Xu

2(t− u)2
du+ a deterministic function of s

)
.

As Xs −
∫ s

0
δudu is a martingale (under Qδx), and keeping in mind that the deterministic term

is imposed by the martingale condition, we have:

dQδ,tx→0

dQδx

∣∣∣∣∣
Fs

= E
(
−
∫ s

0

√
Xu

(t− u)
dWu

)
.

Girsanov’s Theorem then implies that, underQδ,tx→0,

dXt = δudu+ 2
√
XudWu −

2Xu

t− u
du.

Therefore we obtain the result by an application of the Comparison Theorem of [17].
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We deduce from Proposition 4.10 and Theorem 3.3 the following

Corollary 4.3. Let for µ a Radon measure on [0, t], I =
∫
Xdµ, A0(α), Bα

0 (u) : R+ → R
as in Proposition 4.10, and Â0(α) be theA0(α) for the image of µ under the map s→ (t−s),

let also B0(α) = exp
{∫ t

0
Bα

0 (u)du
}

then we have

Qδ,tx→y(e−αI) = A0(α)xÂ0(α)y exp

{∫ t

0

Bα
0 (u)δudu

}( ∞∑
n=0

btδ,x,y(n)B0(α)4n

)
.

We now give explicit computations when µ is the Lebesgues measure on [0, t].

Theorem 4.4. Let X be a GBESQδ
x and let β =

√
2αt, then we have

Qδ,tx→y(e−α
R t
0 Xsds) = exp

{
(x+ y)

2t
(1− β coth β)

}
exp

{∫ t

0

(
1

2(t− u)
−
√

2α

2
coth(

√
2α(t− u))

)
δudu

}(
∞∑
n=0

btδ,x,y(n)

(
β

sinh β

)2n
)
.

Proof. Here µ is invariant under the map s→ (t− s), so that Â0(α) = A0(α). Corollary 3.3

on page 465 of [13] gives for t = 1, b ∈ R+ and constant δ that

Qδ,1x,0
[
exp

(
−b

2

2

∫ 1

0

Xsds

)]
=

(
b

sinh b

) δ
2

exp
(x

2
(1− b coth b)

)
.

Taking first α := b2

2
, then although this expression is given for t = 1 we can extend it to [0, t]

using the fact that, for δ constant,

Qδ,tx→0

(
e−α

R t
0 Xsds

)
= Qδ,tx→0

(
e−αt

R 1
0 Xstds

)
= Qδ,1x/t→0

(
e−αt

2
R 1
0 Xsds

)
,

where first, we made a change of variable and then used the scaling of Bessel processes.

Hence taking y = 0 and δ = 0, we obtain the expression of A0(α)

A0(α) = exp
1

2t

{
1−
√

2αt coth
√

2αt
}
. (4.24)

And taking y = 0 and x = 0 we obtain the expression of B0(α)

B0(α) =

√ √
2αt

sinh
√

2αt
. (4.25)

In order to computeBα
0 (u), we take as before test functions for δ, namely we assume δ = χ[s,t],

with 0 < s < t. We have by the same arguments as before

Q1,1
0→0

(
e−α

R t
0 Xsds

)
= Q1,(t−s)

0→0

(
e−α

R t−s
0 Xudu

)
= Q1,(t−s)

0→0

(
e−α(t−s)

R 1
0 Xv(t−s)du

)
.
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By scaling, this is equal to B1
0(α(t − s)2), where B1

0(α) is the value of B0(α) for t = 1. On

the other hand it is equal to exp (
∫ t
s
Bα

0 (u)du). Then straightforward computations give

Bα
0 (u) =

1

2(t− u)
−
√

2α

2
coth(

√
2α(t− u)).

This, together with the previous computations, gives the result. Note that Bα
0 (u) is not defined

for u = t, however it is clearly integrable on [0, t].

Remark 4.11. The previous computations may be easily applied to get formulas for general

additive functionals of the GEBSQ. We skip for the moment these tedious computations, but

give the complete result in Appendix A

5 Some applications

As we said in the introduction, our work was motivated by applications to Finance. Indeed, our

class of GBESQ contains various financial models. Hence we can give an answer to many

financial mathematical problems using our Bessel bridge decomposition and Laplace transform

formula results applied to particular GBESQ. We begin thus by giving some financial models

which are in the class of GBESQ.

Ornstein-Uhlenbeck (OU): Let (Vt)t∈[0,T ] following an Ornstein-Uhlenbeck model given by

dVt = µVtdt+ σdWt with V0 = x. (5.26)

Then we have the classical representation in term of GBESQ given by

Vt = eµt
[
X

(
−σ2

2µ

(
e−2µt − 1

))] 1
2

(5.27)

and X is a GBESQδ,x̃ with dimension δ = 1 and initial value x̃ = x2.

Cox Ingersoll Ross (CIR): Let (Vt)t∈[0,T ] be a CIR process then it is the solution of the stochas-

tic differential equation

dVt = (α− βVt)dt+ σ
√
VtdWt with V0 = x.

where α ∈ R+, β ∈ R, σ > 0. Then we have by a time space transformation the

classical representation in term of GBESQ given by

Vt = e−βtX

(
σ2

4β

(
eβt − 1

))
(5.28)

and X is a GBESQδ,x such that

dXt = δdt+ 2
√
XtdW̃t

with a constant dimension δ = 4α
σ2 and W̃

(
σ2

4β

(
eβt − 1

))
=
∫ t

0
σ
2
e
βs
2 dWs.

19



Constant elasticity of variance model (CEV): Let (Vt)t∈[0,T ] following a Constant elasticity

of variance model (CEV) given by

dVt = µVtdt+ σV ρ
t dWt with 0 ≤ ρ < 1 and V0 = x. (5.29)

where µ represents the instantaneous mean, σV ρ
t the instantaneous variance of V and

ρ is called the elasticity factor. In the limiting case, ρ = 1, the CEV model returns to the

classical Black and Scholes model. In the case where ρ = 0, it is the Ornstein-Uhlenbeck

model and if ρ = 1
2
, it is a Cox-Ingersoll-Ross (CIR) model without mean reverting. Then

we obtain that

Vt = eµt
[
X

(
(ρ− 1)σ2

2µ

(
e2(ρ−1)µt − 1

))] 1
2(1−ρ)

(5.30)

and X is a GBESQδ,x̃ with dimension δ = 2ρ−1
ρ−1

and initial value x̃ = x−2(ρ−1).

Extended CIR: Let (Vt)t∈[0,T ] following an extended Cox Ingersoll Ross model which is given

by the solution of the stochastic differential equation (SDE)

dVt = (αt − βtVt)dt+ σt
√
VtdWt with V0 = x. (5.31)

where αt, βt ≥ 0 and σt > 0 are time-varying functions and σt is continuously differen-

tiable with respect to t ∈ [0, T ]. Now, we recall Corollary 3.1 of [15].

Corollary 5.4. We have

Vt = exp

(
−
∫ t

0

βudu

)
X

(
1

4

∫ t

0

σ2
u

θu
du

)
, (5.32)

where X is a GBESQδ,x̃ with time varying dimension δt = 4(α◦ν−1)t
(σ2◦ν−1)t

with νt :=

1
4

∫ t
0
σ2
u

θu
du, θt = exp

(
−
∫ t

0
βudu

)
and initial value x̃ := x

θ0
= x.

Hence, the class of GBESQ contains a large class of standard (financial) models

Remark 5.12. We see from these example that one needs in many occasions to evaluate the

law of functionals of the form
∫ t

0
g(s)Xf(s)ds for various functions g and f (with f increasing),

for X being a GEBSQ or a Generalized Bessel bridge. Laplace transform of these quantities

can be computed using the results of Remark 1.4 or alternatively Appendix A, using the simple

argument that, by change of variable,∫ t

0

g(s)Xf(s)ds =

∫ f(t)

f(0)

g(f−1(s)))

f ′(f−1(s))
Xsds.
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5.1 Generating values of Xt given X0 and its Laplace transform.

Let X be a GBESQδ,x. Our aim is to obtain a sample of generating values of Xt for t ∈
[0, T ] assuming that with know X0 = x and that we have an explicit formula of the Laplace

transform of Xt. A classic way to do this is to inverse the Laplace transform formula. But in

our case the Laplace transform formula we obtained in Corollary 1.2 is not easy to inverse. So

we need an other method to generate a sample of values of Xt. One can use for example the

method developed by Ridout in [12] which allows to generate sample of random numbers from a

distribution specified by its Laplace transform (without having to inverse the Laplace transform).

Hence, as we can evaluate explicitly the Laplace transform of X assuming X0 = x with our

Corollary 1.2 and simplification given by Remark 3.8, one can apply the method of Ridout in

[12] to obtain a sample of values of Xt for any t ∈ [0, T ].

This method also permits to jointly simulate Xt (for a fixed t) and any additive functional of

Xs, 0 ≤ s ≤ t without simulating the whole process. To do this first simulate Xt through its

Laplace transform, then plug this value into the formula of Appendix A and repeat the process.

We give an example in Section 5.2

5.2 Simulation of integrate process conditioning to its starting and end-

ing points.

In this application, we follow results found by Broadie and Kaya in [1] and extended by Glasser-

man and Kim in [8]. We will apply the same idea but using our more general framework. Indeed,

assume that we would like to simulate a stochastic volatility model given for all t ∈ [0, T ] ,

δ ∈ D by

dSt = µtStdt+
√
Vt

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, S0 = s, (5.33)

dVt = δtdt+ 2
√
VtdW

1
t , V0 = x. (5.34)

where W 1 and W 2 are two independent standard Brownian motion, Xt is a Markov jump

process on finite space S := {1, 2, . . . , K} and ρ ∈ [−1, 1]. So the stochastic volatility

process is a GBESQδ,x. Let for all t ∈ [0, T ] the solution of the first stochastic differential

equation in (5.33):

St = S0 exp

(∫ t

0

µsds−
1

2

∫ t

0

Vsds+ ρ

∫ t

0

√
VsdW

1
s +

√
1− ρ2

∫ t

0

√
VsdW

2
s

)
.

Moreover
∫ t

0

√
VsdW

1
s = 1

2

(
Vt − V0 −

∫ t
0
δsds

)
. Then we have that log

(
St
S0

)
is condition-

ally normal given
∫ t

0
Vsds, Vt and V0. Hence

log

(
St
S0

)
∼ N

(∫ t

0

µsds−
1

2

∫ t

0

Vsds−
ρ

2

(
Vt − V0 −

∫ t

0

δsds

)
, (1− ρ2)2

∫ t

0

Vsds

)
.
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Moreover we can sample Vt using again method stated in subsection 5.1. Hence we can obtain

a sample of couple (V0, Vt). Then the problem of exact simulation of our model (5.33) is reduced

to the problem of sampling from (∫ t

0

Vsds|V0, Vt

)
.

Since V is a GESQδ
x, we know by Theorem 3.3 that for every δ ∈ D, x ∈ R+, y ∈ R+, there

exist processes X1, X2, X3 and X4 such that(∫ t

0

Vsds|V0 = x, Vt = y

)
= X1 +X2 +X3 +X4, (5.35)

where X1 ∼ Q0,t
x→0, X2 ∼ Q0,t

0→y, X3 ∼ Qδ,t0→0 and X4 ∼
∑∞

n=0 b
t
δ,x,y(n)Q4n,t

0→0. Moreover,

depending on the GBESQ V chosen, we can use Theorem 4.4 or Remark 5.12 and Propo-

sition 3.9 to have a way of sampling from
(∫ t

0
Vsds|V0, Vt

)
; and so an exact simulation of our

stochastic model (5.33).

5.3 Evaluation of Bond price in a credit notation model with regime switch-

ing

Assume that we are under an equivalent risk neutral probability P̃ , then from the general asset

pricing theory, we have that the discount bond price B(T ) at time 0 with maturity T > 0 of an

interest rate r is given by

B(T ) = Ẽ
[
exp

(
−
∫ T

0

rsds

)
|r0 = r

]
(5.36)

Let the process r be given by the solution of the stochastic differential equation given by (5.31),

we assume that the value of the parameters (αt, σt) is function for all t ∈ [0, T ] of the value

of an exogenous continuous time on finite state Markov chain (S)t∈[0,T ]. Moreover, we assume

that βt ≡ 0. Hence the Markov chain S takes value in S := {1, 2, . . . , N} and could represent

the credit notation of a firm A given by a credit notation entity. Then the process r could be the

spread of the firm A and we would like to evaluate the price at time t ∈ [0, T ] of a bond of

this firm with maturity T > 0. (See Goutte and Ngoupeyou in [10] for more details about this

defaultable regime switching modeling). Hence our model becomes

drt = α(St)dt+ σ(St)
√
rtdWt, r0 = r (5.37)

and so α, β and σ are piecewise continuous functions.

Remark 5.13. 1 The fact that we assume that S is a exogenous Markov chain implies that

S is independent of the Brownian motion W for all t ∈ [0, T ].
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2 Assuming that S is exogenous has a economic sense, indeed in representation (5.37)

there is two source of randomness, firstly the market risk modeled by the Brownian motion

W and secondly an external expertise risk factor S given by an external entity of the firm

A. This could be the credit notation representing the wealth at time t ∈ [0, T ] of the firm

A or an indicator of the wealth of the global international economy at time t.

Let us denote by S the historical values of S, i.e. S := (St; t ∈ [0, T ]). Using (5.32), we have

that

rt = X

(
1

4

∫ t

0

σ2
sds

)
where X is a GBESQδ,x̃ with time varying dimension δt = 4(α◦ν−1)t

(σ2◦ν−1)t
with νt := 1

4

∫ t
0
σ2
sds

and initial value x̃ = r. Hence we have two different ways to evaluate

BA(T ) = Ẽ
[
exp

(
−
∫ T

0

rsds

)
|r0 = r; S

]
Firstly, we can use the Proposition 1.6 and solve the corresponding equation (1.11). Or we can

use our Bessel Bridge decomposition to jointly sample the final value of the process X and the

Laplace transform. Indeed, by Remark 5.12, we have in this model that

f(t) = νt :=
1

4

∫ t

0

σ2
sds and rt = Xf(t) (5.38)

and g(.) ≡ 1. So we can apply Theorem A.6, which is the extended version of our Theorem

4.4, to evaluate the Laplace transform of
∫ t

0
Xf(s)ds using our extended Bessel bridge decom-

position where we take for Radon measure µ the measure given for all t ≥ 0 by:

dµ(t) =
1

f ′(f−1(t))
dt.

Hence to apply this result, we need to have a sample of value of rT = Xf(T ) with respect

to the starting point r0 = X0 := x and the law of the associated GBESQ for r. For this

we will use the method stated in subsection 5.1 since we have a Laplace transform formula

expression given in Corollary 1.2. Moreover the quantity btδ,x,y(n) given by Lemma 3.2 is in this

case simpler since we have Remark 3.8. Finally these allow us to obtain an evaluation of the

Bond price BA(T ) at time zero of the firm A using Monte Carlo.

5.4 Simulation of the default time in credit risk model

We work in the model of construction of Cox processes with a given stochastic intensity λ.

Hence we denote by λ a stochastic default intensity of a firm or country A. We assume for all

t ∈ [0, T ] that
∫ t

0
λsds < ∞ and that

∫∞
0
λsds = ∞. Then the default time τ of the firm or
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country A is a real random variable which is given by the first time when the increasing process∫ t
0
λsds is below a uniform random variable U independent with λ. Hence we get

τ := inf

{
t ≥ 0; exp

(
−
∫ t

0

λsds

)
≤ U

}
. (5.39)

So to simulate the default time requires to simulate the stochastic default intensity λ together

with its time integral. Hence assuming that λ is a GBESQδ,x, we can use again our Bessel

bridge decomposition given in Theorem 3.3, our Laplace transform formula given in Corollary

1.2 and the method stated in subsection 5.1, to do this.

A Laplace transform of additive functionnals of the GEBSQ

In this appendix we give an explicit formula for the Laplace transform of additive functionals of

the Generalized Bessel bridge. We first recall Corollary 4.3:

Corollary 4.3. Let for µ a Radon measure on [0, t], Iµ =
∫
Xdµ, A0(α), Bα

0 (u) : R+ → R
as in Proposition 4.10, and Â0(α) be theA0(α) for the image of µ under the map s→ (t−s),

let also B0(α) = exp
{∫ t

0
Bα

0 (u)du
}

then we have

Qδ,tx→y(e−αIµ) = A0(α)xÂ0(α)y exp

{∫ t

0

Bα
0 (u)δudu

}( ∞∑
n=0

btδ,x,y(n)B0(α)4n

)
.

The idea, used before, is to take test functions for δ to get the explicit value ofA0(α) andBα
0 (u).

We recall the result in the case of Standard Bessel Process, as given for example on page 465

of [13], in the proof of Theorem 3.2., taking y = 0 and recalling that limx→0
Iν(xy)
Iν(x)

= yν ,

Theorem A.5. In the case of constant dimension δ, we have

Qδ,1x→0[e−Iµ ] = exp

{
1

2

(
Fµ(0) + 1− 1∫ 1

0
φµ(s)−2ds

)
x

}(
1∫ 1

0
φµ(s)−2ds

)δ/2

,

where, as usual, φµ is the unique solution of φ′′ = µφ which is positive, non increasing and

such that φµ(0) = 1; and Fµ = φ′

φ
.

We first extend this formula to bridges of arbitrary length (keeping for the moment δ constant).

Let µ be a positive Radon measure on [0, t]. We have by change of variable, then scaling,

Qδ,tx→y(e−Iµ) = Qδ,tx→0(e−
R t
0 Xsdµ(s)) = Qδ,tx→0(e−

R 1
0 Xtstdµ(ts)) = Qδ,1x/t→0(e−

R 1
0 Xst

2dµ(ts)).

By Theorem A.5, we deduce that

Qδ,tx→0[e−Iµ ] = exp

{
1

2

(
Fµ(0) + 1− 1∫ 1

0
φµ(s)−2ds

)
x

t

}(
1∫ 1

0
φµ(s)−2ds

)δ/2

,
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where φµ is the unique solution of φ′′ = t2µ(t·)φ. It is clear that φµ = φtµ(t·), where φtµ is

the unique solution of φ′′ = µφ which is positive, non increasing and such that φtµ(0) = 1.

Expressing the previous result in term of φtµ we have, with obvious notations,

Qδ,tx→0[e−Iµ ] = exp

{
1

2

(
F t
µ(0) +

1

t
− 1∫ t

0
φtµ(s)−2ds

)
x

}(
t∫ t

0
φtµ(s)−2ds

)δ/2

.

We deduce from this expression that A0(1) = exp 1
2

(
F t
µ(0) + 1

t
− 1R t

0 φ
t
µ(s)−2ds

)
. We also

deduce that Â0(1) = exp 1
2

(
F̂ t
µ(0) + 1

t
− 1R t

0 φ̂
t
µ(s)−2ds

)
, where φ̂tµ is the unique solution of

φ′′ = µ(t− ·)φ which is positive, non increasing and such that φ̂tµ(0) = 1; and F̂ t
µ =

φ̂tµ
′

φ̂tµ
.

We now turn to the computation of B1
0(u). For this take δ = χ[b,t]. We have as previously

explained,

exp

{∫ t

b

Bα
0 (u)du

}
= Q1,t−b

0→0

[
e−

R t−b
0 Xsdµ(s+b)

]
=

(
t− b∫ t−b

0
φt,bµ (s)−2ds

)1/2

,

where φt,bµ is the unique solution of φ′′ = µ(b+ ·)φ which is positive, non increasing and such

that φt,bµ (0) = 1. therefore φt,bµ =
φtµ(b+.)

φtµ(b)
. Therefore we have

exp

{∫ t

b

B1
0(u)du

}
= Q1,t−b

0→0

[
e−

R t−b
0 Xsdµ(s+b)

]
=

(
t− b

φtµ(b)2
∫ t
b
φtµ(s)−2ds

)1/2

. (A.40)

We take the logarithm and differentiate with respect to b to get:

B1
0(u) =

1

2(t− u)
+ F t

µ(u)−
φtµ(u)−2

2
∫ t
u
φtµ(s)−2ds

.

Finally, using (A.40), we have

B0(1) = exp

{∫ t

0

B1
0(u)du

}
=

(
t∫ t

0
φtµ(s)−2ds

)1/2

.

Finally, putting everything together, we have:

Theorem A.6.

Qδ,tx→y(e−Iµ) = exp
x

2

(
F t
µ(0) +

1

t
− 1∫ t

0
φtµ(s)−2ds

)
exp

y

2

(
F̂ t
µ(0) +

1

t
− 1∫ t

0
φ̂tµ(s)−2ds

)

exp

{∫ t

0

(
1

2(t− u)
+ F t

µ(u)−
φtµ(u)−2

2
∫ t
u
φtµ(s)−2ds

)
δudu

} ∞∑
n=0

btδ,x,y(n)

(
t∫ t

0
φtµ(s)−2ds

)2n
 ,
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where φtµ is the unique solution of φ′′ = µφ which is positive, non increasing and such that

φtµ(0) = 1, φ̂tµ is the unique solution of φ′′ = µ(t − ·)φ which is positive, non increasing and

such that φ̂tµ(0) = 1; and F t
µ =

φtµ
′

φtµ
, F̂ t

µ =
φ̂tµ
′

φ̂tµ
.
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