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Abstract

We study the initial value problem of a singularly perturbed first order ordinary differ-

ential equation in case that the degenerate equation has a double root. We construct the

formal asymptotic expansion of the solution such that the boundary layer functions decay

exponentially. This requires a modification of the standard procedure. The asymptotic so-

lution will be used to construct lower and upper solutions guaranteeing the existence of a

unique solution and justifying its asymptotic expansion.

1 Introduction. Formulation of the problem

Consider the initial value problem for a scalar singularly perturbed first order ordinary differential

equation

ε2
dy

dx
= f(y, x, ε) , x ∈ I := [0, X], (1)

y(0, ε) = y0 , (2)

where ε is a small positive parameter. The initial value problem (1), (2) is well studied in the

case that the degenerate equation

f(y, x, 0) = 0 (3)

has a simple root y = ϕ(x) for x ∈ I (see [1]). Under the conditions that f and ϕ are

continuously differentiable and satisfy fy(ϕ(x), x, 0) < 0 for x ∈ I , and that y0 belongs to

the region of attraction of ϕ, problem (1), (2) has a unique solution y(x, ε) with the asymptotic

representation

y(x, ε) = ϕ(x) + Π0

( x

ε2

)

+ O(ε) for x ∈ I, (4)

where Π0 is the boundary layer function defined by the initial value problem

dΠ0

dτ
= f

(

ϕ(0) + Π0, 0, 0
)

, τ ≥ 0, Π0(0) = y0 − ϕ(0).

We note (see [1]) that Π0 satisfies the estimate

|Π0(τ)| ≤ c exp(−κτ) for τ ≥ 0. (5)

Here, and in the sequel, c and κ denote suitable positive numbers not depending on ε (by this

way we avoid to introduce indices for each estimate).
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If the function f is sufficiently smooth, then for any natural number n there exists an asymptotic

expansion of the solution y(x, ε) with a reminder term of order O(εn).

In this paper, we study the initial value problem (1) (2) under the condition that ϕ(x) is a double

root of equation (3) for x ∈ I . We note that under the same assumption, in the papers [2, 3]

some boundary value problems have been studied for the differential equation

ε2
d2y

dx2
= f(y, x),

where the function f does not depend on ε. We emphasize that in our case the dependence of

f on ε plays a fundamental role.

For the sequel we assume

(A1). There are sufficiently smooth functions h, ϕ and f1 such that f can be represented in

the form

f(y, x, ε) = −h(x)(y − ϕ(x))2 + εf1(y, x, ε), (6)

where we additionally suppose h(x) > 0 for x ∈ I .

We will prove that under the assumption (A1) and some additional conditions which will be

introduced in the following, problem (1), (2) has for sufficiently small ε a unique boundary layer

type solution y(x, ε) whose asymptotic expansion depends essentially on the function f1.

We distinguish two cases related to the following assumptions:

(A2). f̄1(x) := f1(ϕ(x), x, 0) > 0 for x ∈ I.

(A′

2). f̄1(x) ≡ 0 for x ∈ I , and y = ϕ(x) is a simple root of the equation f1(y, x, 0) = 0.

The first case is studied in sections 2 and 3, the second one is considered in sections 4 and 5.

2 Construction of an asymptotic solution in case f̄1(x) > 0

We suppose that the hypotheses (A1) and (A2) hold true. As in the case of a simple root, we

use the following ansatz for the asymptotic expansion of the solution y(x, ε) of (1), (2)

y(x, ε) = ȳ(x, ε) + Π(τ, ε) (1)

with τ = x/ε2, where ȳ(x, ε) is the regular part and Π(τ, ε) the boundary layer part of the

solution y(x, ε). If we substitute (1) into the differential equation (1) and use the representation

f(y(x, ε), x, ε) = f(ȳ(x, ε) + Π(τ, ε), x, ε)
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= f(ȳ(x, ε), x, ε) + f(ȳ(ε2τ, ε) + Π(τ, ε), ε2τ, ε) − f(ȳ(ε2τ, ε), ε2τ, ε)

we get the following differential equations to determine ȳ and Π:

ε2
dȳ

dx
= f(ȳ, x, ε), (2)

dΠ

dτ
= f(ȳ(ε2τ, ε) + Π, ε2τ, ε

)

− f
(

ȳ(ε2τ, ε), ε2τ, ε
)

=: Πf. (3)

We assume that the regular part ȳ(x, ε) has the asymptotic representation

ȳ(x, ε) ≡ ȳ0(x) +
√

ε ȳ1(x) + ε ȳ2(x) + · · · . (4)

If we substitute (4) and (6) into (2) we get

ε2
d

dx

(

ȳ0 +
√

ε ȳ1 + · · ·
)

= −h(x)
(

ȳ0 +
√

ε ȳ1 + · · · − ϕ(x)
)2

+ε f1(ȳ0 +
√

ε ȳ1 + · · · , x, ε). (5)

The standard procedure to determine the functions ȳi for i = 0, 1, · · · consists in expanding

the right hand side of (5) into a series in
√

ε and in comparing the coefficients related to the

same power of
√

ε on the right and left hand sides of (5). It easy to verify that this procedure

yields only algebraic equations for the determination of the functions ȳi.

For the determination of ȳ0 we obtain the equation

−h(x)
(

ȳ0(x) − ϕ(x)
)2

= 0,

which yields

ȳ0(x) = ϕ(x). (6)

Comparing the coefficients in (5) belonging to ε, we get the equation for ȳ1

0 = −h(x)ȳ2

1(x) + f̄1(x). (7)

According to the assumptions (A1) and (A2), equation (7) has two solutions. We select the

solution

ȳ1(x) =
[

h−1(x)f̄1(x)
]1/2

satisfying

ȳ1(x) > 0 for x ∈ I. (8)

This inequality will be used later.

By the same way, we obtain for the function ȳ2

ȳ2(x) =
1

2
h−1(x)

∂f̄1

∂y
(ϕ(x), x, 0) =:

1

2
h−1(x)f̄1y(x).
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Analogously we can determine the functions ȳi for i = 3, · · · .

If we assume that the boundary layer function Π(τ, ε) has the asymptotic representation

Π(τ, ε) = Π0(τ) +
√

εΠ1(τ) + ε Π2(τ) + · · · (9)

and if we substitute (9) and (6) into (3) we get

d

dτ
(Π0 +

√
εΠ1 + · · · ) = −h(ε2τ)

[

(

Π0 +
√

ε Π1 + · · · )2

+2
√

ε
(

ȳ1(ε
2τ) +

√
ε ȳ2(ε

2τ) + · · ·
)(

Π0 +
√

εΠ1 + · · ·
)

]

(10)

+ε Πf1,

where the expression Πf1 is defined analogously to (3).

If we expand the right hand side of (10) into a series in
√

ε and compare the expressions be-

longing to the same power of
√

ε on the left and right hand sides in (10) we get differential

equations to determine the functions Πi, i = 0, 1, · · · .

In order to derive the corresponding initial conditions we substitute (1) into (2) using the expan-

sions (4) and (9). We get

ȳ0(0) +
√

ε ȳ1(0) + · · ·+ Π0(0) +
√

εΠ1(0) + · · · = y0.

Comparing the coefficients for the same power of
√

ε, we obtain the initial conditions for Πi, i =
0, 1, · · · :

Π0(0) = y0 − ȳ0(0) = y0 − ϕ(0) =: Π0,

Πj(0) = −ȳj(0), j = 1, · · · . (11)

Using the standard procedure, we get from (10) and (11) for the function Π0 the initial value

problem

dΠ0

dτ
= −h(0) Π2

0, τ > 0, Π0(0) = Π0. (12)

Its solution reads

Π0(τ) =
Π0

1 + h(0)Π0 τ
. (13)

We recall that h(0) is positive by assumption (A1). In order to guarantee that Π0 is a boundary

layer function, that is, it decays to zero as τ tends to ∞, we have to suppose that the initial

value Π0 is not negative. For the sequel, we introduce the assumption

(A3). Π0 > 0.

Under that assumption, the function Π0 decays to zero of order O( 1

τ
) as τ → ∞, that is, the

decay has power character. We note that in the case that ϕ is a simple root of equation (3), the
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decay of the boundary layer function is of exponential character (see (5)). As we will prove later,

the boundary layer functions Πi, i = 0, 1, · · · , decay in our case also exponentially. Therefore,

we have to modify the standard procedure for deriving the differential equations for the functions

Πi. We do it in the following way: if we compare the coefficients belonging to
√

ε
i
, we take into

account on the right hand side of (10) also the higher order term −2h(0)ȳ1(0)Πi(
√

ε)i+1. Of

course, this term will then be neglected in deriving the differential equation for Πi+1. A con-

sequence of this approach is that the functions Πi will depend also on ε, that is, we get an

asymptotic representation for the solution of (1), (2) in the form

y(x, ε) = ȳ0(x) +
√

ε ȳ1(x) + ε ȳ2(x) + · · ·
+Π0(τ, ε) +

√
εΠ1(τ, ε) + ε Π2(τ, ε) + · · · . (14)

In case i = 0, we get instead of (12) the initial value problem

dΠ0

dτ
= −h(0)

(

Π0 + 2
√

εȳ1(0)
)

Π0, τ ≥ 0, Π0(0, ε) = Π0. (15)

Its solution reads

Π0(τ, ε) =
2
√

εȳ1(0)Π0 exp
(

− 2
√

εȳ1(0)h(0)τ
)

2
√

εȳ1(0) + Π0

(

1 − exp
(

− 2
√

εȳ1(0)h(0)τ
)

) . (16)

By (8) and (A3) we have

Π0(τ, ε) > 0,
∂Π0(τ, ε)

∂τ
< 0 for τ ≥ 0, ε > 0. (17)

Moreover, it can be shown that for given ε > 0 the function Π0 satisfies

Π0(τ, ε) = O
(

exp(−
√

εκτ)
)

as τ tends to ∞, (18)

(19)

Π0(τ, ε) = O
(√

ε exp(−
√

εκτ)
)

for τ ≥ 1√
ε

and τ → ∞.

We emphasize that the exponential decay of Π0 as τ → ∞ is a consequence of taking into

account the term −2
√

εh(0)ȳ1(0), where h(0)ȳ1(0) > 0. We note that this decay is not so

fast as in the case of a simple root ϕ(x) (see(5)).

Using this modified procedure we obtain from (10) and (11) for the determination of Π1 the initial

value problem

dΠ1

dτ
= −2h(0)

(

Π0(τ, ε) +
√

εȳ1(0)
)

Π1, Π1(0, ε) = −ȳ1(0).
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Its solution reads

Π1(τ, ε) = −ȳ1(0) exp
(

− 2h(0)

∫ τ

0

(

Π0(s, ε) +
√

εȳ1(0)
)

ds
)

. (20)

If we represent Π0(τ, ε) in the form (see (15))

Π0(τ, ε) = Π0 exp
(

− h(0)

∫ τ

0

(

Π0(s, ε) + 2
√

εȳ1(0)
)

ds
)

and compare Π0(τ, ε) and Π1(τ, ε), we obtain by taking into account h(0)ȳ1(0) > 0 the

estimate

|Π1(τ, ε)| ≤ c Π0(τ, ε) for τ ≥ 0, ε > 0. (21)

According to the modified procedure, for the determination of the function Π2 we get from (10)

and (11) the initial value problem

(22)

dΠ2

dτ
= −2h(0)

(

Π0(τ, ε) +
√

εȳ1(0)
)

Π2 + π2(τ, ε), Π2(0, ε) = −ȳ2(0),

where

π2(τ, ε) := −h(0)
(

2ȳ2(0)Π0(τ, ε) + Π2

1(τ, ε)
)

+ Π0f1(τ, ε),

Π0f1(τ, ε) := f1(ϕ(0) + Π0(τ, ε), 0, 0)− f1(ϕ(0), 0, 0).

As we have |Π0f1(τ, ε)| ≤ cΠ0(τ, ε) and since Π1 satisfies the estimate (21) we have

|π2(τ, ε)| ≤ c Π0(τ, ε). (23)

The solution of the initial value problem (22) can be represented in the form

Π2(τ, ε) = −ȳ2(0) exp
(

− 2h(0)

∫ τ

0

(

Π0(s, ε) +
√

εȳ1(0)
)

ds
)

+

∫ τ

0

exp
(

− 2h(0)

∫ τ

τ0

(

Π0(s, ε) +
√

εȳ1(0)
)

ds
)

π2(τ0, ε)dτ0. (24)

Taking into account (23) we obtain from (24) the estimate

|Π2(τ, ε)| ≤ c(1 + τ)Π0(τ, ε). (25)

Analogously, we can formulate the initial value problem for Π3 and obtain

|Π3(τ, ε)| ≤ c(1 + τ)Π0(τ, ε).

Now we estimate the product τΠ0(τ, ε) by exploiting the relation (16). Using the notation z :=
2h(0)

√
εȳ1(0)τ we get from (16)

τΠ0(τ, ε) ≤
1

h(0)

z exp(−z)

1 − exp(−z)
.
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Taking into account the inequality

z

1 − exp(−z)
≤ (1 + z) for z > 0,

it holds

τΠ0(τ, ε) ≤ c̃(1 + z) exp(−z) ≤ c exp(−
√

εκτ). (26)

Hence, all constructed boundary layer functions Πi(τ, ε) satisfy the estimate

|Πi(τ, ε)| ≤ c exp(−
√

εκτ) for τ ≥ 0, i = 0, 1, 2, 3.

For i ≥ 4, the corresponding estimates are not so sharp, e.g. it holds

|Π4(τ, ε)| ≤ c(1 + τ)2Π0 ≤
c√
ε

exp(−
√

εκτ).

In the sequel we restrict ourselves to an asymptotic approximation of the solution y(x, ε) con-

taining three regular terms ȳi(x) and four boundary layer terms Πk(τ, ε).

3 Justification of the asymptotics in case f̄1(x) > 0

We define the function Y3 by

Y3(x, ε) :=
3

∑

i=0

εi/2
(

ȳi(x) + Πi(τ, ε)
)

+ ε2Π4(τ, ε). (1)

By means of this function we will construct lower and upper solutions for the initial value problem

(1), (2).

A function Y with the properties

10. Y (0, ε) ≤ y0,

20. The expression

LεY (x, ε) :=

ε2
dY (x, ε)

dx
+ h(x)

(

Y (x, ε) − ϕ(x)
)2 − ε f1(Y (x, ε), x, ε)

satisfies

LεY (x, ε) ≤ 0 for x ∈ I

is called a lower solution to the initial value problem (1), (2).
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For Y (x, ε) we make the ansatz

Y (x, ε) = Y3(x, ε) − Aε2, (2)

where A is some positive number. We will prove that for some sufficiently large A (not depending

on ε) and for sufficiently small ε, the function Y (x, ε) satisfies the conditions 10 and 20.

From (2), (1) and (11) we get

Y (0, ε) = y0 − (A + ȳ4(0))ε2,

which is less than y0 for sufficiently large A, that is, condition 10 is fulfilled.

Concerning the expression LεY (x, ε) we have

LεY (x, ε) = ε2
d

dx

3
∑

i=0

(
√

ε)iȳi(x) +
d

dτ

4
∑

i=0

(
√

ε)iΠi(τ, ε)

+h(x)
[

3
∑

i=1

(
√

ε)iȳi(x) − Aε2

]2

h(ε2τ)
[(

4
∑

i=0

(
√

ε)iΠi(τ, ε)
)2

+ 2
(

3
∑

i=0

(
√

ε)iȳi(ε
2τ) − Aε2

)

4
∑

i=0

(
√

ε)iΠi(τ, ε)
]

−εf1

(

3
∑

i=0

(
√

ε)iȳi(x) − Aε2, x, ε
)

−ε
[

f1

(

3
∑

i=0

(
√

ε)i
(

ȳi(ε
2τ) + Πi(τ, ε)

)

+ ε2Π4(τ, ε) − Aε2, ε2τ, ε
)

−f1

(

3
∑

i=0

(
√

ε)iȳi(ε
2τ) − Aε2, ε2τ, ε

)]

.

After some cumbersome calculations and using the equations for ȳi(x) and Πi(τ, ε) we get

LεY (x, ε) = O(ε5/2) − 2h(x)ȳ1(x)A
(

1 + O(
√

ε)
)

ε5/2

+O(ε4)A2 + O(ε2)Π0(τ, ε) − 2h(0)AΠ0(τ, ε)
(

1 + O(
√

ε)
)

ε2,

where the expressions O(εi/2), i = 1, 4, 5, 8 do not depend on A. Hence, we have

LεY (x, ε) = ε5/2

[

− 2h(x)ȳ1(x)A
(

1 + O(
√

εA)
)

+ O(1)
]

(3)

+ε2Π0(τ, ε)
{

− 2h(0)A
(

1 + O(
√

ε)
)

+ O(1)
}

.

Because of h(x) > 0, ȳ1(x) > 0 and Π0(τ, ε) > 0, it follows from (3) that for sufficiently

large A and sufficiently small ε the inequality LεY (x, ε) < 0 is valid, that is, the condition 20 is

satisfied.

Therefore, the function Y (x, ε) defined in (2) is a lower solution of the initial value problem (1),

(2).
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Remark 3.1 If Y3(x, ε) would not contain the term ε2Π4(τ, ε), then the last term in the curly

bracket in (3) would read O(1 + τ) instead of O(1). In that case, the term −2h(0)A could not

guarantee that the expression in the curly bracket is negative for large τ .

Analogously can be proved that the function Y (x, ε)

Y (x, ε) := Y3(x, ε) + Aε2
(4)

is an upper solution of (1), (2) for sufficiently large A and sufficiently small ε.

It is well-known [4] that the existence of a lower solution and of an upper solution to the initial

value problem (1), (2) implies the existence of a unique solution y(x, ε) satisfying

Y (x, ε) ≤ y(x, ε) ≤ Y (x, ε) for x ∈ I.

Furthermore, we obtain from (2) and (4) the relation

y(x, ε) = Y3(x, ε) + O(ε2) for x ∈ I. (5)

Therefore, we have proved the following result

Theorem 3.2 Suppose the assumptions (A1), (A2), (A3) are satisfied. Then for sufficiently

small ε the initial value problem (1), (2) has a unique solution y(x, ε) with the asymptotic rep-

resentation (5).

Corollary 3.3 From the relation (5) we obtain

y(x, ε) = Yk(x, ε) + O(ε
k+1

2 ) for x ∈ I,

where

Yk(x, ε) =

k
∑

i=0

εi/2
(

ȳi(x) + Πi(τ, ε)
)

, k = 0, 1, 2.

Remark 3.4 It can be easily shown that outside the boundary layer, that is in the interval [δ, X],
where δ is any small positive fixed number, the solution y(x, ε) has for any natural number k
the asymptotic representation

y(x, ε) =

k
∑

i=0

(
√

ε)iȳi(x) + O(ε
k+1

2 ).

4 Construction of the asymptotic solution in case f̄1(x) ≡ 0

We keep the hypotheses (A1) and (A3), but the assumption (A′

2) will be replaced by the

stronger condition

9



(A′′

2).

f1(y, x, ε) = (y − ϕ(x))g(y, x) + εf2(y, x, ε), (1)

where g and f2 are sufficiently smooth functions satisfying

ḡ(x) := g(ϕ(x), x) > 0 for x ∈ I.

In that case, it turns out that the asymptotics of the solution of the initial value problem (1), (2)

also exhibits boundary layer character, but the asymptotic expansion takes place in powers with

respect to ε and not in powers with respect to
√

ε as in the case before, that is, we have

y(x, ε) = ȳ0(x) + εȳ1(x) + · · ·+ Π0(τ, ε) + εΠ0(τ, ε) + · · · , (2)

where τ = x/ε2. By means of the standard procedure for the determination of the coefficient

functions we obtain ȳ0(x) = ϕ(x), and the function ȳ1(x) satisfies the quadratic equation

ϕ′(x) = −h(x)ȳ2

1 + ḡ(x)ȳ1 + f̄2(x), (3)

where f̄2(x) := f2(ϕ(x), x, 0).

For the sequel we assume

(A4). The equation (3) has two different real solutions ȳ11(x) and ȳ12(x), where

ȳ11(x) < ȳ12(x) for x ∈ I. (4)

For the following we choose

ȳ1(x) = ȳ12(x).

We note that the sum of the roots of equation (3) is h−1(x)ḡ(x). Hence, by the assumptions

(A1) and (A′′

2), we have ȳ11(x) + ȳ12(x) > 0. Taking into account (4), it holds ȳ1(x) > 0 for

x ∈ I which we need later.

In the sequel we also use the relation

a(x) := 2ȳ1(x) − h−1(x)ḡ(x) = 2ȳ12(x) − (ȳ11(x) + ȳ12(x))

= ȳ12(x) − ȳ11(x) = ȳ1(x) − ȳ11(x) > 0 for x ∈ I, (5)

which follows from (4).

By the procedure described above we may determine successively further regular coefficient

functions, especially we get

ȳ2(x) = [h(x)a(x)]−1
(

ḡy(x)ȳ2

1(x) + f̄2y(x)ȳ1(x) + f̄2ε(x) − ȳ′

1(x)
)

,

where the function a is defined in (5).
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The equations for the boundary layer functions Πi(τ, ε) can be obtained from an equation of

the type (10). Taking into account (1) and (2), this equation reads in our case

d

dτ
(Π0 + εΠ1 + · · · ) = −h(ε2τ)

[

(

Π0 + εΠ1 + · · · )2

+2
(

εȳ1(ε
2τ) + · · ·

)(

Π0 + εΠ1 + · · ·
)

]

+ε(Π0 + εΠ1 + · · · )g(ϕ(ε2τ) + εȳ1(ε
2τ) + · · · + Π0 + εΠ1 + · · · , ε2τ)

+ε
(

εȳ1(ε
2τ) + · · ·

)

Πg + ε2Πf2. (6)

According to our modified standard procedure we get from (6) for Π0 the differential equation

dΠ0

dτ
= −h(0)

(

Π0 + 2εȳ1(0)
)

Π0, (7)

which is an analog to equation (15). The solution of this equation satisfying the condition (11)

can be represented by means of the expression (16) if we replace there
√

ε by ε.

The differential equation to determine Π1 reads

(8)

dΠ1

dτ
= −2h(0)

(

Π0(τ, ε) + εȳ1(0)
)

Π1 + g(ϕ(0) + Π0(τ, ε), 0)Π0(τ, ε).

From the estimate

|g(ϕ(0) + Π0(τ, ε), 0)Π0(τ, ε)| ≤ cΠ0(τ, ε)

we get that the solution of (8) with the initial condition Π1(0, ε) = −ȳ1(0) satisfies

|Π1(τ, ε)| ≤ c(1 + τ)Π0(τ, ε). (9)

If we compare this estimate with that one in (21) we see that in (9) the additional term cτΠ0(τ, ε)
occurs, that is, the estimate (9) is weaker than the corresponding one in (21). This fact implies

some difficulties for the construction of lower and upper solutions. To overcome these problems

we proceed as follows. We add the term g(ϕ(0)+Π0(τ, ε), 0)Π0(τ, ε) arising in the right hand

side of (8) to the right hand side in (7) taking into account that this term occurs in (6) with the

factor ε. Thus, we obtain instead of (7) the equation

dΠ0

dτ
= −h(0)

(

Π2

0 + 2εȳ1(0)Π0

)

+ εg(ϕ(0) + Π0, 0)Π0. (10)

Taking into account the relation

g(ϕ(0) + Π0(τ, ε), 0) = ḡ(0) + Π0g,

where

ḡ(0) = g(ϕ(0), 0), Π0g = g(ϕ(0) + Π0(τ, ε), 0) − g(ϕ(0), 0) = g∗

uΠ0(τ, ε)

(g∗

u denotes the derivative taken at some intermediate point), then equation (10) can be rewritten

in the form

dΠ0

dτ
= −h(0)

[

(1 + εg∗

u)Π
2

0 + εa(0)Π0

]

, (11)

11



where a(0) = 2ȳ1(0) − h−1(0)ḡ(0) > 0 (see (5)).

Since g∗

u depends on Π0, we are not able to give the exact expression for the solution of (11)

satisfying the initial condition (11). But because of the same structure of the right hand sides of

the differential equations (11) and (7), we can conclude that the behavior of the solution Π̃(τ, ε)
of the initial value problem (11), (11) is qualitatively the same as that of the solution Π0(τ, ε) of

the problem (7), (11). It is easy to derive the estimate

|Π̃0(τ, ε) − Π0(τ, ε)| ≤ cε exp(−εκτ).

Thus, as the main part of the boundary layer asymptotics we can take the solution Π̃0(τ, ε) of

the problem (11), (11), and the problem to determine the function Π1(τ, ε) takes the form

(12)

dΠ1

dτ
= −h(0)

[

(

2 + εk(τ, ε)
)

Π̃0(τ, ε) + εa(0)
]

Π1, Π1(0, ε) = −ȳ1(0),

where

k(τ, ε) = h−1(0)
(

gy

(

ϕ(0) + Π̃0(τ, ε), 0
)

+ gy

(

ϕ(0) + θΠ̃0(τ, ε), 0
)

)

,

0 < θ < 1. We denote the solution of the initial value problem (12) by Π̃1(τ, ε). It holds

(13)

Π̃1(τ, ε) = −ȳ1(0) exp
(

− h(0)

∫ τ

0

[

(

2 + εk(s, ε)
)

Π̃0(s, ε) + εa(0)
]

ds
)

.

If we rewrite Π̃0(τ, ε) in the form

Π̃0(τ, ε) = Π0 exp
(

− h(0)

∫ τ

0

[

(1 + εg∗

u)Π0(s, ε) + εa(0)
]

ds
)

and compare this expression with the expression (13) for Π̃1(τ, ε), we obtain the estimate

|Π̃1(τ, ε)| ≤ cΠ̃0(τ, ε),

that is, after replacing the equations (7) and (8) by the equations (11) and (12), we have derived

for Π̃1(τ, ε) an inequality of type (21).

We define the function Π2(τ, ε) as solution of the initial value problem

dΠ2

dτ
= −h(0)

[

(

2 + εk(τ, ε)
)

Π̃0 + εa(0)
]

Π2 + π2(τ, ε),

Π2(0, ε) = −ȳ2(0), (14)

where

π2(τ, ε) :=

−h(0)
(

Π̃2

1(τ, ε) + 2ȳ1(0)Π̃1(τ, ε) + 2ȳ2(0)Π̃0(τ, ε) + 2εȳ′

1(0)τΠ̃0(τ, ε)
)

−h′(0)τ
(

Π̃2

0(τ, ε) + 2εȳ1(0)Π̃0(τ, ε)
)

+gy(ϕ(0) + Π̃0(τ, ε), 0)
(

ȳ1(0) + ϕ′(0)ετ
)

Π̃0(τ, ε)

+ȳ1(0)Π0g + ε gx(ϕ(0) + Π̃0(τ, ε), 0)τΠ̃0 + Π0f2.
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We note that the expression for π2(τ, ε) contains some terms of order O(ετΠ̃0). The explana-

tion to include these terms into the differential equation for Π2 will be given in Remark 5.1.

For the function π2 there holds the estimate

|π2(τ, ε)| ≤ c(1 + ετ)Π̃0(τ, ε).

Therefore, the solution Π̃2(τ, ε) of the initial value problem (14), which can be represented by

means of an expression of type (24), satisfies the estimate

|Π̃2(τ, ε)| ≤ c(1 + τ + ετ 2)Π̃0(τ, ε).

Since we have τΠ̃0(τ, ε) ≤ exp(−εκτ) (this can be shown in the same way as we proved the

estimate (26)), it holds finally

|Π̃2(τ, ε)| ≤ exp(−εκτ).

For the following we restrict ourselves to the terms ȳi and Πi with i = 0, 1, 2.

5 Justification of the asymptotics in case f̄1(x) ≡ 0

We introduce the notation

Y2(x, ε) :=
2

∑

i=0

εi
(

ȳi(x) + Π̃i(τ, ε)
)

.

A lower solution to the initial value problem (1), (2) will be constructed in the form

Y (x, ε) = Y2(x, ε) − Aε3, (1)

where A is some positive number. We have

Y (0, ε) = Y2(0, ε) − Aε3 = y0 − Aε3 < y0,

that is, the condition 10 for a lower solution is fulfilled (see section 3).

Further, by using the differential equations for ȳi and Π̃i, it is not difficult to derive in analogy to

(3) the following relation

LεY = ε4

[

− h(x)a(x)A(1 + O(εA)) + O(1)
]

+ε3Π̃0(τ, ε)
{

− 2h(0)A(1 + O(ε)) + O(1)
}

. (2)

As we have h(x) > 0, a(x) > 0 (see assumption (A1) and (5)) and Π̃0(τ, ε) > 0, we get from

(2) for sufficiently large A and sufficiently small ε the inequality LεY < 0, that is, the condition

20 for a lower solution is satisfied (see section 3). Hence, for sufficiently large A and sufficiently

small ε, the function Y (x, ε) defined in (1) is a lower solution for the initial value problem (1),

(2).
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Remark 5.1 If we would not include terms of the order O(ετΠ̃0) into the expression of the

function π2(τ, ε), then these terms multiplied by ε2 would arise in the expression for LεY such

that the last term in the curly braces on the right hand side of (2) would have the order O(τ)
and not the order O(1). Thus, for any chosen A, the expression in the curly brackets can be

positive for sufficiently large τ .

Analogously we can prove that for sufficiently large A and sufficiently small ε the function

Y (x, ε) := Y2(x, ε) + Aε3

is an upper solution for the initial value problem (1), (2). Thus, we have the following result

Theorem 5.2 Assume the hypotheses (A1), (A
′′

2), (A3), (A4) to be valid. Then for sufficiently

small ε the initial value problem (1), (2) has a unique solution y(x, ε) satisfying

y(x, ε) = Y2(x, ε) + O(ε3) for x ∈ I. (3)

Corollary 5.3 For k = 0, 1, we get from (3)

y(x, ε) = Yk(x, ε) + O(εk+1) for x ∈ I,

where

Yk(x, ε) :=
k

∑

i=0

εi
(

ȳi(x) + Π̃i(τ, ε)
)

, k = 0, 1.

Remark 5.4 Outside the boundary layer, that is for x ∈ [δ, X], we have for any natural number

k

y(x, ε) =
k

∑

i=0

εiȳi(x) + O(εk+1).

6 Example

Consider the initial value problem

ε2
dy

dx
= −(1 + x)(y + 2x)2 + ε(y + 2x) + ε2y3, x ∈ I := [0, X],

y(0, ε) = 1. (1)

We have the case f̄1(x) ≡ 0. Compared with (6) and (1), it holds

h(x) ≡ 1 + x, g(y, x) ≡ 1, f2(y, x) ≡ y3.

Using the algorithm for the construction of an asymptotic expansion described in section 4, we

get

ȳ0(x) = ϕ(x) ≡ −2x,
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and the equation for the determination of ȳ1(x) reads

(1 + x)ȳ2

1 − ȳ1 − 2 − 8x3 = 0.

This equation has two different solutions. As ȳ1(x) we choose the larger solution

ȳ1(x) =
1 +

√

1 + 8(1 + x)(1 + 4x3)

2(1 + x)

satisfying ȳ1(x) > 0 for x ∈ I .

For the determination of the boundary layer function Π̃0(τ, ε) we obtain the initial value problem

dΠ̃0

dτ
= −(Π̃2

0 + 3εΠ̃0), Π̃0(0, ε) = 1.

Its solution reads

Π̃0(τ, ε) =
3ε exp(−3ετ)

3ε +
(

1 − exp(−3ετ)
) .

For Π̃1(τ, ε) we get the initial value problem

dΠ̃1

dτ
= −2(Π̃0(τ, ε) + 3ε)Π̃1, Π̃1(0, ε) = −ȳ1(0) = −2

whose solution Π̃1(τ, ε) can be given explicitly

Π̃1(τ, ε) = − 18ε2 exp(−3ετ)
[

3ε +
(

1 − exp(−3ετ)
)

]2
.

It is also not difficult to determine ȳ2(x) and Π̃2(τ, ε). If we restrict ourselves on terms of zeroth

and first order, then the solution y(x, ε) of (1) can be represented for x ∈ I in the form

y(x, ε) = −2x + ε
1 +

√

1 + 8(1 + x)(1 + 4x3)

2(1 + x)
+

+
3ε exp(−3x

ε
)

3ε +
(

1 − exp(−3x
ε

)
)

[

1 − 6ε2

3ε +
(

1 − exp(−3x
ε

)
)

]

+ O(ε2).
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