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Modelling, Analysis and Simulation of Stochastic 
Innovation Diffusion 

HENRI SCHURZ* 

Weierstrass Institute for Applied Analysis and Stochastics 
Mohrenstr. 39, Berlin 10117, Germany 

Abstract 

The well-known BASS model for description of diffusion of innovations has been eztensively investigated 
within deter~inistic framework. One of the basic processes in modelling of these diffusions concerns with 
the propagation through word of mouth which is inherently nonlinear. As a more realistic modelling, the 
diffusion of an innovation in the presence of uncertainty is generally formulated in terms of nonlinear 
stochastic differential equations {SDEs). At first we discuss well-posedness, regularity {boundedness) 
and uniqueness of solutions of these SDEs. However, an e:z;plicit e:z;pression for analytical solution 
itself is not available. Accordingly one has to resort to numerical solution of SD Es for studying various 
aspects like the time-development of growth patterns, ezit frequencies, mean passage times and impact of 
advertising policies. In this respect we present some basic aspects of numerical analysis of these random 
eztensions of the BASS model, e.g. numerical regularity and mean square convergence. Therein the 
problem of numerical movement within reasonable boundaries {nu.,;,,erical solution on bounded manifolds) 
plays a significant role, in particular on intervals with reflecting or absorbing .barriers, whereas the 
discretization of the state space {continuous time version of the set of possible adopters of the innovation) 
is circumvented. Such a study brings out salient features of the stochastic models (as e.g. boundedness 
of equilibria, faster initial adoption or earlier peak sales in comparison with deterministic model). To 
this end we shall provide discrete time estimations of the moment evolution and path wise solutions based 
on Balanced implicit methods (see Mil'shtein et al. {1992)). 

Keywords. Innovation diffusion; Bass model; Stochastic differential equations; Algebraic constraints; 
Regularity; Lyapunov-type methods; Numerical methods; Balanced implicit methods; Numerical regu-
larization; Boundedness; Mean square convergence. 

*This paper represents an extended version of that which is being printed in proceedings of ICIAM'95, Hamburg, in spe-
cial issue 3 1Applied Stochastics and Optimization' of Zeitschrift fiir Angewandte Mathematik und Mechanik (ZAMM), pre-
sented at minisymposium 'Nonlinear Modelling of Innovation Diffusions' organized by Dr. Hans Babovsky {WIAS,Berlin). 





1. Introduction to General Model 

Nonlinear innovation diffusions play a significant role in Marketing and Social Sciences, e.g. see (3], [10] 
or [15]. One of the commonly accepted models is the BASS MODEL. Bass [4] suggested to model how 
a product, technology, news, ideas, rumours, etc. diffuse in a given deterministic media. This model 
admits to describe the numb.er of adoptions Xt in terms of nonlinear differential equations. Bass model is 
purely deterministic and only lives within algebraic constraints by its own nature. In reality of Marketing 
Sciences, this diffusion of innovation undergoes environmental and parametric noise which can be also 
interpreted as an expression of a certain amount of uncertainty in modelling real phenomena. Stochastic 
generalizations of Bass model in terms of nonlinear Stochastic Differential Equations (SDEs), e.g. see 
Karmeshu et al. [7], have recently led to 

(1) 

driven by a given standard Wiener process Wt, starting in Xo EID= [O, M] C lR.1, where p, q, M, G' are 
positive and a, {3 nonnegative real parameters. There p can be understood as coefficient of innovation, 
q as coefficient of immitation and M as total adoption size. However, in view of marketing issues, 
model (1) makes only sense within deterministic algebraic constraints. This fact generally leads ta 
Stochastic Differential Aigebraic Equations (SDAEs) with nonanticipating boundary conditions. In 
the following exposition we study regularity (boundedness on ID) of both exact and numerical solutions 
of (1). Eventually we construct a numerical solution which exclusively possesses values in ID and is mean 
square converging with order 'Y = 0.5 towards the exact solution. Note that usual numerical _methods 
as most-used Euler method fail to live a.s. on bounded domain ID for any choice of constant step sizes 
(for examples see [18]). Besides, socalled 'higher order methods', as systematically developed in [21], 
can not be applied to general model ( 1), since they require too much boundedness and smoothness on 
drift and diffusion coefficients of SDEs, what is not given within the general framework of model (1). 

2. Analytical Nonregularity and Regularity 

At first we recall the notion of regularity of continuous time stochastic processes. Let ID C JR.d be a fixed 
closed domain. Note, for simplicity, we exclusively consider deterministic domains ID in this exposition. 

Definition 1. A continuous time stochastic process {X(t), t ~ O} is called regular on ID (or 
regular with respect to ID) iff IP (X(t) EID) = 1 Vt~ O, otherwise nonregular with respect to ID. 

2.1. Nonregularity of Additive Noise. Intuitively clear, at first we rigorously show that exact 
solution of SDEs (1) with additive noise (i.e. a= {3 = 0) leaves the bounded domain ID= [O, M]. That 
is, one has to impose algebraic constraints on SDEs (1) which leads to formulation of SDAEs. For this 
purpose we make use of STOCHASTIC LYAPUNOV-TYPE METHODS. Note that there is an alternative 
to them given by Feller (see [6]), however only for classification of boundary conditions in IR.1 . Let 
ra,:z: = r 61:z:(ID) be the random time of first exit of stochastic process X(t) from domain ID, starting in 
X(s) = z EID at initial times E [O, +oo). In passing, this random variable is a stopping time with 
respect to natural filtration :Ft = G'( {Wu : 0 ~ u ~ t} ). 

Theorem 1. Assume that {X(t), t ~ O} satisfies SDE {1} with exponent a= {3 = 0 and initial 
value X(O) = z EID= [O, M]. 
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Then {X(t), t ~ O} is nonregular with respect to ID. More precisely speaking, 

\lz EID 3K = K(x) : 0 5 K(x) < +oo \Is~ 0 \It> s + K(z) 

IP (r"•=(ID) < t) > 0. (2) 

Proof. Define drift a(x) = (p + i.£-x)(M - x) and diffusion b(x) =er. Introduce the Lyapunov 
function V(x) = 1 + x 2 , z EID. Note, equ~tion (1) is well-defined, has unique a~d bounded solution up 
to random time r"•=(ID), due to Lipschitz continuity and (linear) boundedness of drift a(x) and diffusion 
b( x) on ID. Let £ denote the generator of diffusion process Xt, i.e. 

a a 1 2 a2 

£ = at+ a(z) az + 2b (z) 8x2 • 

Then it holds V(z) E C 2 (ID), 1 5 V(z) 5 1 + M 2 and £V(z) ~ c · V(z) where c = cr2 /(1 + M 2 ) and 
x E ID. Fix initial time s ~ 0 and introduce new Lyapunov function W( t, x) := exp( -c( t - s)) V ( x) 
for all t ~ s ~ O, x EID. It follows £W(t, x) ~ 0. After applying Dynkin's formula (Ito formula) one 
obtains lE W(t, Xt) ~ V(x) where X, = x EID is deterministic! This fact leads to 

1 (supyElD V(y)) 1 + M2 (1 + M 2
) t-s 5 ~ln V(x) = cr2 ln l+x2 =: K(x) 'v't~s~O. 

Therefore ~ (r"•=(ID) - s) 5 K(x). Returning to the key assertion of Theorem 1, we finally notice 

IP (r"•:i:(ID) - s ~ t - s) 

< 1 K(x) 
-lE (r"•:i:(ID) - s) 5 -- < 1 if t > s + K(x). <> t-s t-s 

2.2. Regularity of Some Parametric-SDEs. Otherwise there is a quite general class of SDEs (1) 
which provides regular stochastic processes with respect to domain ID= [O, M]. 

Theorem 2. Under the presumption a~ 0,{3 ~ 1, the stochastic process {X(t),t ~ O} 
governed by {1) is regular on ID = [O, M], i.e. it holds IP (X(t) E [O, M]) = 1 Vt ~ 0. Moreover, 
regularity on ID implies boundedness, uniqueness and Markov property of the e2;act solution of {1). 

Re mar k . The proof of Theorem 2 is done using a method described in Khas 'minskij [8]. 
However, the 'art of this technique' consists of finding an appropriate Lyapunov function! 

Proof. Define drift a(z) = (p+ ifx)(M-x) and diffusion b(x) = crxa(M-x).B. Take sequence of 
open domains IDn := (exp(-n),M-exp(-n)),n E JN. Then, equation (1) is well-defined, has unique, 
bounded and Markovian solution up to random time r"•:i:(ID71 ), due to Lipschitz continuity and (linear) 
boundedness of drift a(x) and diffusion b(x) on ID71 • Now, use Lyapunov function V(x) defined on ID 
via 

1 1 
V(z) = l+x2 +ln(l+-)+ln(l+-M ). z -z 

Fix initial times~ 0 and introduce new Lyapunov function W(t, z) via W(t, x) = exp(-c(t - s))V(x) 
for all (t,z) E [s,+oo)xID where c = cr2 /(1 + M 2). Then V(z), W(t,x) E C1•2 ([s,+oo)xIDn)· Define 
ItO-differential operator (generator of diffusion process Xt) 

It holds V(x) ~ 1, inf V(y) > n, 
yElD\JD,.. 

2 

£V(x) 5 c · V(z) Vz EID. 



Therefore one may conclude that .CW(t, z) ~ O, since .CV(z) ~ c·V(z). Introduce Tn = min(r11=(IDn), t). 
After applying Dynkin's formula (Ito formula), one finds that IE W( Tn, X,..,J ~ V(z) (X, = z is deter-
ministic!), hence 

IE exp(c(t - Tn))V(X,..,J ~ exp(c(t - s))V(z). 

Using this fact, one estimates 

IP ( a :c(ID ) ) IP ( ) ( ( V(X,.. .... (10 )) T I n < t = Tn < t =IE lfr,.<t ~IE exp ct - Tn)). . ... . ll,-,,,<t 
mfyeID\ID,. V(y) 

V(X,..,.) 
< IE exp(c(t - Tn)) · . f V( ) 

m yE1D\1D,. y 

V(z) 
< exp(c(t- s)) ·. f () 

m yElD\ID,. V y 

< exp(c(t - s)) · V(z) --+ O, 
n n -t +oo 

for all fixed t E [s, +oo ), where JI(.) represents the indicator function ~f subscribed random set. Conse-
quently 

Eventually, uniqueness and Markov property of the solution Xt is obtained by a result from Khas'minskij 
[8]. 0 

3. Numerical Regularization via Balanced Implicit Methods 

Numerical regularization is generally aiming at construction of convergent and appropriately bounded 
numerical solutions for SDEs. In anology to regularity of continuous time processes we introduce the 
notion of regularity of discrete time stochastic processes. 

Definition 2. A random sequence '(Yi)ielN is called regular on (or regular with respect to given 
domain) ID C IR.d iff IP (Yi EID)= 1 Vi E lN, otherwise nonregular. 

Throughout this paper we only consider such random sequences which have a direct link to numerical 
solution of SDEs. That is that one interpretes random values Yi as values of an approximation Y for 
exact solution X at times ti E [O, T]. For example, Balanced Implicit Methods (BIMs) (see [12]) 
provide schemes to construct such sequences. For other methods and details, e.g. see [2], [9], [11], 
[13], [14], [17], [19], [20] and [21]. BIMs turn out to be somehow efficient to guarantee both convergence 
towards exact solution and some algebraic constraints on numerical solutions, i.e. to guarantee numerical 
regularity. For general exposition in this respect, see [18]. The following BIM solves the problem of 
numerical regularization on the bounded domain ID= [O, M], provided that a~ 1,/3 ~ 1. Take 

q . 
Yn + (p+ MYn)(M -Yn)~n +o.Yna(M-Yn)P~Wn (3) 

+ uKYna- 1(M - Yn)'6- 1 l~Wnl(Yn - Yn+i), 

where K = K(M) is an appropriate positive constant and Yo EID= [O, M] (a.s.). Then it holds 

Theorem 3. The random sequence (Yn)nelN governed by {3} is regular on ID= [O,M] if 

1 
Yo E [O, M](a.s.), K(M) ~ M» O, a~ 1, /3 ~ 1, 0 < ~n ~ p+ q (Vn E lN). 
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Proof. Use induction on n E lN. Then, after explicit rewriting of (3), one finds the following 
estimation of an upper bound 

since p 5 1 if K(M) ~Mand Don 5 1/(p + q). Otherwise, nonnegativity of Yn+1 follows from 

if K = K(M) ~ M. Consequently, we have IP ( 0 5 Yn 5 M) = 1 Vn E 1N. 0 

Rem ark . The boundedness of this sequence of numerical values turns out to be essential for 
both the interpretability within the framework of Marketing issues and the proof of rates of convergence. 
Note, STOCHASTIC ADAPTATION of step sizes would form an alternative to fixed constant step size 
selection (as above) within simulation studies. However, then one has to find a truncation procedure to 
g1:1arantee finiteness of corresponding algorithms, in particular for long term runs on computers! 
Sequence (Yn)nelN following (3) with conditions of Theorem 3 and a E [O, 1) is also regular on ID. 
However, the weights c(z) = uK(M)za- 1(M - z).B-l are unbounded functions on ID in this case. Then 
one obtains boundedness of numerical increments, but we suspect to loose convergence speed with such 
methods (Open question - Who knows the right answer?)! 

In addition to boundedness, we can show convergence of numerical sequences towards the exact solution 
as mesh of discretization tends to zero. For this purpose, mean square convergence is examined along 
any sequence (TJ = TJA([O, T]))A>O of discretizations of fixed, finite time-intervals [O, T] when maximum 
step size 

tends to zero. The CRITERION OF NUMERICAL MEAN SQUARE CONVERGENCE is given by 

VT> 0 3K = K(T) VD. < 8 VTJ = TJA([O, T]) sup IE llX(ti) - Yill 2 5 K fl 2
-Y (4) 

t,e,., 

where 'Y is said to be the order (rate) of mean square convergence of numerical sequence (Yi)ielN 
.(numerical method, scheme, solution). 

Theorem 4. The numerical sequence (Yn)nelN governed by (3) is mean square converging with 
order 'Y = 0.5 towards the e~act solution X(t) of {1}, at least when a,{3 ~ 1 and Yo = X(O) E ID = 
[O, M](a.s.). 

Proof. Take any TJA([O, T]) with fl 5 d = min{l, 1/(p+ q)}. Note that drift and diffusion 
coefficient of SDE (1) are bounded and Lipschitz continuous on ID= [O, M]. Thus, in view of Theorem 
2, classical requirements for existence and uniqueness of strong solution of SDEs are satisfied, cf. [1], 
[5], [6], [16]. Let Xt,:c(t + h) deno~e the solution of SDE (1) at time t + h where 0 5 h 5 fl, starting in 
X(t) = Xt,:c(t) = z at any time t E [O, T- h], for any z EID. In a similar notation, let Yt,:c(t + h) be 
the integral representation of one-step approximation belonging to scheme (3), starting in Yt,:c(t) = z 
at any time t E [O, T- h]. Now verify 

and (5) 
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(6) 

where Pl ~ 1.5 = P2 + 0.5 > P2 = LO as local rates. Finally apply a generalization of Mil'shtein's main 
convergence theorem (see appendix) to the case of SDEs on bounded manifolds in order to obtain 

\It E [O, T] IE IXo,::(t) - Yo,::(t)l2 ~ K 3 ~2P (7) 

where p = 0. 5 as global rate (order) of mean square convergence. Note that K 1 , K 2 and K 3 are only 
positive real constants which may depend on the finite terminal time T, but not ori intermediate time 
t, not on f:l. or h. 0 

)(( t:) 

18700 

St.opped. evolution or the nwraber of adopt.ions XU:> 
wl'th additive noise at 98"/. - threshold. 

Figure 1. Stopped trajectories for additive noise with large intensity u = 1000. 

4. Simulation Results 

In this section we carry out some simulation studies using parameters which are close to those in Mahajan 
and Wind [10]. There, for example for a data set belonging to a sale of room air conditioners, one has 

.estimated parameters asp = 0.0094 and q = 0.3748, based on the maximum adoption M = 1.87·107. 

Throughout the simulations we will use the same coefficients p of innovation and q of immitation, but we 
slightly reduce the total size of possible adoptions to M = 18700, just for computational simplification. 
The initial adoption is set to be zo = 50 and zo = 187, resp. For this parameter constellation, in figures 
1 and 2 temporal evolutions of dynamics .(1) are plotted. Figure 1 displays a collection of trajectories 
for the model with additive noise (i.e. a = {3 = 0) stopped at 90 % levels. Figure 2 shows the mean 
evolution of adoption and its confidence intervals using Stratonovich and Ito interpretation compared 
with that of deterministic adoption. We observe a significant difference between different calculis and 
to deterministic adoption process. Thus the choice of stochastic calculi is very sensitive for SDEs on 
bounded manifolds. In principle, one notices a faster initial adoption under stochasticity compared 
to that of deterministic model. Besides, one can prove that 'stochastic equilibration' (i.e. process in 
which steady states are asymptotically reached) within Ito interpretation takes place below deterministic 
equilibrium z* = M. Note, this is converse to that of Stratonovich interpretation, due to the positive 
difference of drift functions. In passing, stochasticity also leads to earlier time T* of inflection ( = time-
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point where derivative of adoption takes its maximum), i.e. earlier peak sales (in mean sense), which 
represent an important assertion for the marketing process and strategies. 

E tX<t>J 

18700 

10000 

J>euLD.tiDll frcci. the l!MMn adoption 
with cl1£f'u.aian exponent alpha= 1.8 

XCB> = 187 

T*<I to> = D .~ 

O.J{l!::..~~~~t--~~~-+~~~~-t-~~~~-+-~~~~-t--:-t~i.- t 
0 10 25 

Figure 2. Mean adoption, confidence intervals and times T* of inflection with exponent a= {3 = 1.0 
and u = .0.02. 

5. Appendix: A Generalization of Main Mean Square Convergence Theorem 

Under classical requirements on boundedness and smoothness of drift and diffusion coefficients, there 
is a general theorem of Mil'shtein [11] which admits to verify global rates (orders) of mean square 
convergence. This statement is given when both discrete and contfouous time stochastic processes are 
living on the whole IR.d, i.e. without any algebraic constraints. In a straight forward way one can 
generalize this theorem to the following one in case of algebraic restrictions. Let ID be any closed 
subdomain of IR.d. Fix a finite terminal time T > 0. Let Xt,:J:(t + h) and Yt,:l!(t + h) be the integral 
representations of exact and numerical solution as above, resp. Without loss of geneFality, II· II denotes 
Euclidean vector norm. 

Theorem 5. Assume that 1E llX(O)ll2 • < +oo and there are real, positive constants K1 = 
K1(T), K2 = K2(T), P1 ~ P2 + 0.5,P2 ~ 0.5 such that for all z EID, for all h with 0 ~ h ~ 8 ~ 1, for 
all t E [O, T - h] it holds 

JP (Xt,:(t + h) EID) = JP (Yt,:(t + h) EID) = 1, 

llIE (Xt,:(t + h) - Yt,:l!(t + h))ll ~ K1 hP1 

1E llXt,:(t + h) - Yt;:(t + h)ll2 ~ K2 h2
P2 

and 

(8) 

(9) 

(10) 

Then the numerical solution yA belonging to one-step appro:cimation Yt,:l!(t + h) is mean square con-
verging with global order p = P2 - 0.5 towards the e~act solution of SDE dXt a(t, Xt) dt + 
}:j=1 bi ( t, Xt )dW/ under linear-polynomial growth and Lipschitz continuity of its drift a( t, z) and dif-
fusion functions bi(t, z) on ID, where (W/);=1,2, ••• ,m are m mutually independent Wiener processes (also 
independent of random variable X(O) = Xo EID J. 
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Proof. Analogously to that in [11]. 0 

6. Summary and Remarks 

For adequate modelling of diffusion of innovation in Marketing Sciences, for stochastic interest rates 
in Mathematical Finance, for population dynamics in Biology (cf. concept of permanence), etc., 
one has to consider the problem of regular stochastic processes, both in continuous and discrete 
time. In general it leads to the mathematical treatment of Stochastic Differential Algebraic Systems 
(SDASs). Classification of boundary conditions and stochastic Lyapunov-Type Methods are the 
right tools to study and explain the behaviour of stochastic dynamics with algebraic constraints. For 
adequate numerical treatment, the class of Balanced Implicit Methods (BIMs) seems to be quite 
promissing in order to guarantee both boundedness, stability and convergence with acceptable rates of 
consistency and convergence. 

Further studies concerning (stochastic) diffusion of innovation can easily bring out interesting marketing 
issues, e.g. effects of pulsing policies (i.e. pulsing advertisement by pulsing parameters p and q). Some 
mathematical clarification of well-posedness, regularity and adequate numerical solution remains open 
for future research (e.g. when a,{3 E (0,1)). Besides, a comparison with real data is necessary.for 
practical evaluation of the herein suggested models. Another interesting task would be to clarify the 
problem 'Stochastic ver.sus Deterministic Modelling'. Also, a generalization to multi-dimensional 
models, to more complex domains ID C lR d and to ~ncorporation of stochastic boundary conditions is 
left to future. Some of the open questions will be touched in a forthcoming paper by Karmeshu and 
Schurz (1995). 

Summarizing results, it ·is definitiyely worth to consider uncertainty in models of Marketing 
Sciences, not only for replication of the very erratic behaviour of nature. 
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