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Abstract

This paper deals with a three-dimensional mixture model describing materials undergoing phase
transition with thermal expansion. The problem is formulated within the framework of generalized
standard solids by the coupling of the momentum equilibrium equation and the flow rule with the
heat transfer equation. A global solution for this thermodynamically consistent problem is obtained
by using a fixed-point argument combined with global energy estimates.

1 Introduction

Shape-memory alloys (SMA) are employed nowadays in a large number of applications in different fields

like biomedical or structural engineering. The increasing interest in SMA materials is deeply simulating

the research on constitutive laws. Many models were developed during the last two decades, see for

instance [Fré90, SMZ98, MiT99, Paw00, HaG02, GMH02, AuP04, GHH07]. These models are able to

reproduce one or both of the well-known SMA behaviors; the pseudo-elasticity and the shape-memory

effect . These two peculiar behaviors allow to include SMA into the smart material category. It is well

known that the temperature plays a crucial role on the mechanical behavior of SMA allowing an austenite-

martensite phase transition (see [Bha03] and the references therein). From a mechanical viewpoint,

these phase transitions can give rise to stress-strain hysteresis loops. Consequently the temperature

should be taken into account in the modelization. Some three-dimensional models for SMA suppose

that the temperature is given a priori as a data (see [Mie07, MiP07]). This assumption is commonly

used in engineering if the characteristic dimension of the material is small in at least one direction.

Then the excessive or missing heat can be balanced through the environment. However many industrial

applications do not fit this dimension property and the description of the mechanical behavior has to be

coupled with the heat transfer equation.

Existence results have already been obtained for some of the previously mentioned models (see for

instance [CoS92, PaZ05, Rou10, PaP11]). In this work, we are interested in a three-dimensional mod-

elization describing austenite-martensite phase transition by using phase fractions. This mixture model is

written in accordance with the formalism of generalized standard materials due to Halphen and Nguyen

(see [HaN75]) and it is composed of the momentum equilibrium equation (1.1a) and the flow rule (1.1b),

coupled with the heat-transfer equation (1.1c).

More precisely we denote by W (e(u), z,∇z, θ) the Helmholtz free energy, depending on the infinites-

imal strain tensor e(u)
def
= 1

2 (∇u+∇uT) ∈ R
3×3
sym for the displacement u : Ω × (0, T ) → R

3, the

internal variable z : Ω × (0, T ) → R
N−1, where N is the total number of phases, i.e. the austen-

ite and all the variants of martensite, and the temperature θ : Ω × (0, T ) → R. Here Ω ⊂ R
3

denotes a reference configuration. We assume that W can be decomposed as W (e(u), z,∇z, θ)
def
=

W1(e(u), z,∇z) −W0(θ) + θW2(e(u), z). This decomposition ensures that entropy separates the

thermal and mechanical variables. Note that θW2(e(u), z) allows for coupling effects between the tem-

perature and the internal variable. Under the assumptions of small deformations, the problem is formu-
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lated as follows

− div(σel+Le(u̇)) = ℓ, (1.1a)

∂Ψ(ż) + Mż + σin ∋ 0, (1.1b)

c(θ)θ̇− div(κ(e(u), z, θ)∇θ)=Le(u̇):e(u̇)+θ∂tW2(e(u), z)+Ψ(ż)+Mż.ż, (1.1c)

where we used the notations σin
def
= DzW (e(u), z,∇z, θ) − div D∇zW (e(u), z,∇z, θ) and σel

def
=

De(u)W (e(u), z,∇z, θ). Here L and M are two viscosity tensors, ℓ is the applied mechanical loading,

c(θ) is the heat capacity, κ(e(u), z, θ) is the conductivity and Ψ is the dissipation potential, which is

assumed to be positively homogeneous of degree 1, i.e., Ψ(γz) = γΨ(z) for all γ ≥ 0. As usual, (˙),

Di
z and ∂ denote the time derivative ∂

∂t , the i-th derivative with respect to z and the subdifferential in the

sense of convex analysis (for more details see [Bre73]), respectively. Moreover e1:e2 and z1.z2 denote

the inner product of e1 and e2 in R
3×3
sym and z1 and z2 in R

N−1.

We establish below a global existence result for such system by using fixed point argument. The paper

is organized as follows. In Section 2, we check the thermodynamic consistency of this model and we

present the mathematical formulation of the problem. Then we reformulate it by applying the enthalpy

transformation. In Section 3, we consider first the system composed by the momentum equilibrium equa-

tion and flow rule for a given temperature θ and we obtain existence and regularity results. Therefore, we

prove, with a fixed point argument, a local existence result in Section 4. Finally a global energy estimate

is established in Section 5 leading to a global existence result for the system (1.1).

2 Mechanical model and mathematical formulation

We give here a rigorous justification of the thermodynamic consistency of the system (1.1). Let us define

the specific entropy s via the Gibb’s relation s
def
= −DθW (e(u), z,∇z, θ) and the internal energy

Win(e(u), z,∇z, θ)
def
= W (e(u), z,∇z, θ) + θs where we recall that W is the Helmholtz free energy.

Then the entropy equation is given by θṡ − div(κ(e(u), z, θ)∇θ) = ξ where ξ = Le(u̇):e(u̇) +
Mż.ż + Ψ(ż) ≥ 0 is the dissipation rate. We can check that the second law of thermodynamics is

satisfied if θ > 0. Indeed, we may divide the entropy equation by θ, and, assuming that the system is

thermally isolated, we obtain

∫

Ω
ṡdx =

∫

Ω

div(κ(e(u), z, θ)∇θ)

θ
dx+

∫

Ω

Le(u̇):e(u̇)+Mż.ż+Ψ(ż)

θ
dx

=

∫

Ω

κ(e(u), z, θ)∇θ·∇θ

θ2
dx+

∫

Ω

Le(u̇):e(u̇)+Mż.ż+Ψ(ż)

θ
dx ≥ 0.

Next we differentiate Win(e(u), z,∇z, θ) with respect to time, and we integrate over Ω. By using the

entropy equation, we find

∫

Ω
Ẇin(e(u), z,∇z, θ)dx =

∫

Ω
De(u)W (e(u), z,∇z, θ):e(u̇)dx

+

∫

Ω
DzW (e(u), z,∇z, θ).ż dx+

∫

Ω
D∇zW (e(u), z,∇z, θ)·∇żdx

+

∫

Ω
(div(κ(e(u), z, θ)∇θ)+Le(u̇):e(u̇)+Mż.ż+Ψ(ż))dx.

(2.1)
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We recalculate the left hand side of (2.1) by using (1.1a) and (1.1b). More precisely, we test (1.1a) with

u̇ and (1.1b) with ż. Reminding that Ψ is positively homogeneous of degree 1, we get

∫

Ω
De(u)W (e(u), z,∇z, θ):e(u̇)dx+

∫

Ω
Le(u̇):e(u̇)dx =

∫

Ω
ℓ·u̇dx (2.2)

and ∫

Ω
DzW (e(u), z,∇z, θ).ż dx+

∫

Ω
D∇zW (e(u), z,∇z, θ)·∇żdx

+

∫

Ω
Mż.żdx+

∫

Ω
Ψ(ż)dx = 0.

(2.3)

Then we insert (2.2) and (2.3) into (2.1), and we obtain

∫

Ω
Ẇin(e(u), z,∇z, θ)dx =

∫

Ω
ℓ·u̇dx+

∫

∂Ω
κ(e(u), z, θ)∇θ·ηdx,

which means that the total energy balance can be expressed in terms of the internal energy, as the sum

of power of external load and heat. Finally, we have s
def
= DθW0(θ)−W2(e(u), z) and we may deduce

from the entropy equation that the heat-transfer equation (1.1c) holds with the heat capacity given by

c(θ) = θD2
θW0(θ).

We will focus on the case where

W1(e(u), z,∇z)
def
= 1

2E(e(u)−E(z)):(e(u)−E(z)) + ν
2 |∇z|

2 +H1(z),

W2(e(u), z)
def
= αtr(e(u)) +H2(z).

Here α ≥ 0 is the isotropic thermal expansion coefficient, E is the elastic tensor, Hi, i = 1, 2, are

two hardening functionals, ν > 0 is a coefficient that measures some non local interaction effect for the

internal variable z and E(z) is the effective transformation strain of the mixture given by

E(z)
def
=

N−1∑

k=1

zkEk +
(
1−

N−1∑

k=1

zk
)
EN (2.4)

whereEk is the transformation strain of the phase k. In the systems described in [MiT99, Mie00, HaG02,

GMH02, MTL02, GHH07], the temperature-dependent hardening functional H(z, θ) is the sum of a

smooth part w(z, θ) and the indicator function of the set [0, 1]N−1 . Following the ideas proposed in

[MiP07], we will consider here a regularization given by

Hδ(z, θ)
def
= w(z, θ) +

N−1∑

k=1

((−zk)+)4+((zk−1)+)4

δ(1+|zk|2)
, 0 < δ ≪ 1

and we define H1 and H2 in order that H1(z) + θH2(z) is an affine approximation of Hδ(z, θ). If

we define E0 ∈ L(RN−1; R3×3
sym ) by E0(z)

def
=

∑N−1
k=1 z

k(Ek−EN ), the system (1.1) is rewritten as

follows:

− div(E(e(u)−E(z))+αθI+Le(u̇)) = ℓ, (2.5a)

∂Ψ(ż) + Mż − ET

0 E(e(u)−E(z)) + DzH1(z) + θDzH2(z) − ν∆z ∋ 0, (2.5b)

c(θ)θ̇− div(κ(e(u), z, θ)∇θ)=Le(u̇):e(u̇)+θ(αtr(e(u̇))+DzH2(z).ż)+Ψ(ż)+Mż.ż, (2.5c)
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where I is the identity matrix. We have naturally to prescribe initial and boundary conditions for the

displacement, the internal variables, and the temperature, namely

u(·, 0) = u0, z(·, 0) = z0, θ(·, 0) = θ0, (2.6a)

u|∂Ω
= 0, ∇z·η|∂Ω

= 0, κ∇θ·η|∂Ω
= 0, (2.6b)

where η denotes the outward normal to the boundary ∂Ω of Ω.

In order to get another formulation of this problem, we define the enthalpy transformation g(θ) = ϑ
def
=∫ θ

0 c(s) ds. We will assume that c is continuous and bounded from below by a positive constant cc.

Hence we deduce that g is a bijection from [0,∞) into [0,∞) which allows us to define the mapping ζ

by ζ(ϑ)
def
= g−1(ϑ) if ϑ ≥ 0 and ζ(ϑ)

def
= 0 otherwise where g−1 is the inverse of g (see also [Rou09]

for more details on the enthalpy transformation). Let κc(e(u), z, ϑ)
def
= κ(e(u),z,ζ(ϑ))

c(ζ(ϑ)) . The system (2.5) is

transformed into the following form

− div(E(e(u)−E(z))+αζ(ϑ)I+Le(u̇)) = ℓ, (2.7a)

∂Ψ(ż)+Mż−ET

0 E(e(u)−E(z))+DzH1(z)+ζ(ϑ)DzH2(z)−ν∆z ∋ 0, (2.7b)

ϑ̇− div(κc(e(u), z, ϑ)∇ϑ)=Le(u̇):e(u̇)+ζ(ϑ)(αtr(e(u̇))+DzH2(z).ż)+Ψ(ż)+Mż.ż, (2.7c)

with initial and boundary conditions

u(·, 0) = u0, z(·, 0) = z0, ϑ(·, 0) = ϑ0 = g(θ0), (2.8a)

u|∂Ω
= 0, ∇z·η|∂Ω

= 0, κc∇ϑ·η|∂Ω
= 0. (2.8b)

The identity (2.7c) will be called the enthalpy equation. As usual Korn’s inequality plays a role in the

mathematical analysis. We assume that Ω is a bounded domain such that ∂Ω is of class C2+ρ. Hence

there exists CKorn > 0 such that for all u ∈ H1
0(Ω), we have ‖e(u)‖2

L2(Ω ≥ CKorn‖u‖2
H1(Ω) (see

[KoO88, DuL76]).

Let us introduce now the assumptions on the data.

(A1) The dissipation potential Ψ is positively homogeneous of degree 1, satisfies the triangle inequality,

and there exists CΨ > 0 such that for all z, zi ∈ R
N−1, i = 1, 2, and all γ ≥ 0, we have

Ψ(γz) = γΨ(z), 0 ≤ Ψ(z) ≤ CΨ|z|, Ψ(z1+z2) ≤ Ψ(z1) + Ψ(z2). (2.9)

(A2) The hardening functionalsHi, i = 1, 2, belong to C2(RN−1; R) and that there exist cH1 , c̃H1 > 0
and CHi

zz > 0 such that for all z ∈ R
N−1, we get

H1(z) ≥ cH1 |z|2 − c̃H1 and |D2
zHi(z)| ≤ CHi

zz . (2.10)

Then we may deduce that there exists CHi
z > 0 such that for all z ∈ R

N−1, we have

|DzHi(z)| ≤ CHi
z (1+|z|) and |Hi(z)| ≤ CHi

z (1+|z|2). (2.11)

(A3) The elastic tensor E : Ω → L(R3×3
sym ,R

3×3
sym ) is a symmetric positive definite operator such that

there exists cE > 0 such that for all e ∈ L2(Ω; R3×3
sym ) and for all i, j, k = 1, 2, 3, we have

cE‖e‖2
L2(Ω) ≤

∫

Ω
Ee:edx and E(·),

∂Ei,j(·)
∂xk

∈ L∞(Ω). (2.12)
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(A4) The tensors L and M are symmetric positive definite. This implies that there exist four constants

cL, CL, cM, CM > 0 such that for all e ∈ R
3×3
sym and z ∈ R

N−1:

cL|e|2 ≤ Le:e ≤ CL|e|2 and cM|z|2 ≤ Mz.z ≤ CM|z|2. (2.13)

(A5) The heat capacity c is continuous from R
+ to R

+, the conductivity κc is continuous from R
3×3
sym ×

R
N−1 ×R to R

3×3
sym and there exist β1 ≥ 2 and cc, cκ

c
, Cκc

> 0 such that for all θ ≥ 0, v ∈ R
3,

(e, z, ϑ) ∈ R
3×3
sym × R

N−1 × R, we have

0 < cc ≤ cc(1+θ)β1−1 ≤ c(θ), (2.14a)

κc(e, z, ϑ)v·v ≥ cκ
c

|v|2 and |κc(e, z, ϑ)| ≤ Cκc

. (2.14b)

(A6) The applied loading satisfies

ℓ ∈ H1(0, T ; L2(Ω)). (2.15)

Our existence result for problem (2.5)-(2.6) is based on a fixed point argument. More precisely, for any

given ϑ̃, we define θ
def
= ζ(ϑ̃) and we solve first the system composed by (2.5a)–(2.5b), then we solve

(2.7c) with κc def
= κc(e(u), z, ζ(ϑ̃)). This allows us to define a mapping φ : ϑ̃ 7→ ϑ, and we will prove

that this mapping satisfies the assumptions of Schauder’s fixed point theorem. Let us observe that, since

ζ is a Lipschitz continuous mapping from R to R, the mapping φ1 : ϑ̃ 7→ θ is also Lipschitz continuous

from Lq̄(0, T ; Lp̄(Ω)) to Lq̄(0, T ; Lp̄(Ω)) for any p̄ ≥ 1 and q̄ ≥ 1. Furthermore (2.14a) implies that

for all β ∈ [1, β1] and ϑ ∈ R, we have

|ζ(ϑ)| ≤
(β1

cc max(0, ϑ)+1
) 1

β − 1 ≤
(β1

cc max(0, ϑ)
) 1

β . (2.16)

Hence, for all β ∈ [1, β1] and for all ϑ̃ ∈ Lq̄(0, T ; Lp̄(Ω)), we have θ ∈ Lβq̄(0, T ; Lβp̄(Ω)) with

‖θ‖Lβq̄(0,T ;Lβp̄(Ω)) ≤
(β1

cc

) 1
β ‖ϑ̃‖

1
β

Lq̄(0,T ;Lp̄(Ω)). In the rest of the paper, we will assume that q̄ > 4 and

p̄ = 2. When there is not any confusion, we will use simply the notation X(Ω) instead of X(Ω;Y) where

X is a functional space and Y is a vector space.

3 Existence and regularity results for the system composed b y the mo-
mentum equilibrium equation and the flow rule

We focus in this section on existence, uniqueness and regularity results for the system (2.5a)–(2.5b) when

θ = ζ(ϑ̃) is given in a bounded subset of Lq(0, T ; Lp(Ω)) with q = β1q̄ and p ∈
[
4,min(β1p̄, 6)

]
.

More precisely we look for a solution of the problem (Puz):

− div(E(e(u)−E(z))+αθI+Le(u̇)) = ℓ, (3.1a)

∂Ψ(ż) + Mż − ET

0 E(e(u)−E(z)) + DzH1(z) + θDzH2(z) − ν∆z ∋ 0, (3.1b)

with initial and boundary conditions

u(·, 0) = u0, z(·, 0) = z0, u|∂Ω
= 0, ∇z·η|∂Ω

= 0. (3.2)

As a first step, we use classical results for Partial Differential Equations (PDE) and Ordinary Differential

Equations (ODE) to obtain an existence result. In the sequel, the notations for the constants introduced

in the proofs are valid only in the proof and we also use the set Qτ
def
= Ω × (0, τ) with τ ∈ [0, T ].
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Theorem 3.1 (Existence for (Puz)) Assume that (2.9), (2.10), (2.12), (2.13) and (2.15), u0 ∈ H1
0(Ω)

and z0 ∈ H1(Ω) hold. Then for a given θ ∈ Lq(0, T ; Lp(Ω)), the problem (3.1)–(3.2) admits a solution

(u, z) ∈ H1(0, T ; H1
0(Ω) × L2(Ω)) ∩ L∞(0, T ; H1

0(Ω)×H1(Ω)).

Proof. We recall that for all f ∈ L2(0, T ; (H1
0(Ω))′) and for all u∗ ∈ H1

0(Ω) the problem

− div(Ee(u)+Le(u̇)) = f, u(·, 0) = u∗ ∈ H1
0(Ω), u|∂Ω

= 0

admits a unique solution u
def
= L(u∗, f) ∈ H1(0, T ; H1

0(Ω)) ∩ C0([0, T ]; H1
0(Ω)). Moreover for all

(f1, f2, u
∗) ∈ (L2(0, T ; (H1

0(Ω))′))2 ×H1
0(Ω), we have L(u∗, f1+f2) = L(u∗, f1)+L(0, f2) and

L(0, ·) : f 7→ u is a linear and continuous mapping from L2(0, T ; (H1
0(Ω)′)) into H1(0, T ; H1

0(Ω)) ∩
C0([0, T ]; H1

0(Ω)). Then (3.1) can be rewritten as follows

∂Ψ(ż) + Mż + ET

0 EE(z) + DzH1(z) + θDzH2(z) − ν∆z + g1(θ) + g2(z) ∋ 0, (3.3)

with initial and boundary conditions

z(·, 0) = z0 ∈ H1(Ω), ∇z·η|∂Ω
= 0. (3.4)

Here we denoted g1(θ)
def
= −ET

0 Ee(L(u0, ℓ+ div(αθI−EEN ))∈H1(0, T ; L2(Ω)) and

g2 : L2(0, T ; L2(Ω)) → H1(0, T ; L2(Ω)),

z 7→ ET

0 Ee(L0(div(EE0(z)))).

Letϕ(z)
def
= ν

2‖∇z‖
2
L2(Ω) if z ∈ H1(Ω) and ϕ(z)

def
= +∞ otherwise. Observe that ϕ is a proper, convex

lower semicontinuous function on L2(Ω), which implies that ∂ϕ is a maximal monotone operator on

L2(Ω) (see [Bre73]). The resolvant of the subdifferential ∂ϕ is defined by Jǫ
def
= (I+ǫ∂ϕ)−1 where ǫ >

0. We also define ϕǫ(z)
def
= minz̄∈L2(Ω)

{
1
2ε‖z−z̄‖

2
L2(Ω)+ϕ(z̄)

}
for all z ∈ L2(Ω). It is a convex and

Fréchet differentiable mapping from L2(Ω) to R. Furthermore the Yosida approximation of ∂ϕ coincide

with the Fréchet differential of ϕǫ, i.e. ∂ϕǫ
def
= 1

ǫ (I−Jǫ) and it is 1
ǫ -Lipschitz continuous on L2(Ω) (see

[Bre73]). We approximate the problem (3.3)–(3.4) by

∂Ψ(żǫ) + Mżǫ + Υ(θǫ, zǫ) ∋ 0, zǫ(·, 0) = z0. (3.5)

Here Υ(θǫ, zǫ)
def
= ∂ϕǫ(zǫ)+ET

0 EE(zǫ)+DzH1(zǫ)+ g1(θǫ)+ g2(Jǫzǫ)+ θǫDzH2(Jǫzǫ), where

θǫ ∈ C∞
0 (0, T )⊗C∞

0 (Ω) and ∂Ψ(żǫ) is taken in the sense of the L2(Ω)-extension of the subdifferential

of the convex function Ψ. Observing that ∂Ψ+M is a strongly monotone operator on L2(Ω), we rewrite

(3.5) as

żǫ = (∂Ψ+M)−1(−Υ(θǫ, zǫ)). (3.6)

We solve this differential equation in L2(Ω) by using the Picard’s iteration technique. More precisely, we

prove that the mapping Λǫ defined on C0([0, T ]; L2(Ω)) by

Λǫ(z) : t 7→ z0 +

∫ t

0
(∂Ψ+M)−1(−Υ(θǫ(·, s), z(·, s)))ds

admits a unique fixed point zǫ, which is the unique solution zǫ ∈ C1([0, T ]; L2(Ω)) of (3.6) satisfying

zǫ(·, 0) = z0 (the verification is left to the reader).

We choose now a sequence (θǫ)ǫ>0 such that θǫ converges strongly to θ in Lq(0, T ; Lp(Ω)). Define

wǫ(·, t)
def
=gǫ(t,Jǫzǫ(·, t))−∂ϕǫ(zǫ(·, t))−E

T

0 EE(zǫ(·, t))−DzH1(zǫ(·, t)) with gǫ(t,Jǫzǫ(·, t))
def
=

6



−(g1(θǫ(·, t))+g2(Jǫzǫ(·, t))+θǫ(·, t)DzH2(Jǫzǫ(·, t))) for all t ∈ [0, T ]. We notice that for all t ∈
[0, T ], we have

wǫ(·, t) + ∂ϕǫ(zǫ(·, t)) + ET

0 EE(zǫ(·, t)) + DzH1(zǫ(·, t)) = gǫ(t,Jǫzǫ(·, t)), (3.7a)

żǫ(·, t) = (∂Ψ+M)−1((wǫ(·, t))). (3.7b)

Our goal is to pass to the limit in (3.7) as ǫ tends to 0. As the first step, we may reproduce the same kind

of a priori estimates as in the proof of [PaP11, Thm 4.1], we find that zǫ is bounded in H1(0, T ; L2(Ω))∩
L∞(0, T ; L2(Ω)), Jǫzǫ is bounded in L∞(0, T ; H1(Ω)), wǫ is bounded in L2(0, T ; L2(Ω)) and

∂ϕǫ(zǫ) is bounded in L2(0, T ; L2(Ω)), independently of ǫ > 0. Hence, we may extract subsequences,

still denoted zǫ, Jǫzǫ, wǫ and ∂ϕǫ(zǫ) such that

zǫ ⇀ z in H1(0, T ; L2(Ω)) weak and in L∞(0, T ; L2(Ω)) weak ∗,

Jǫzǫ ⇀ z̃ in L∞(0, T ; H1(Ω)) weak ∗,

wǫ ⇀ w, ∂ϕǫ(zǫ) ⇀ v in L2(0, T ; L2(Ω)) weak.

Moreover, reminding that Jǫ is a contraction on L2(Ω), it is possible to extract another subsequence,

still denoted by zǫ, such that

Jǫzǫ → z in C0([0, T ]; L4(Ω)) and zǫ → z in C0([0, T ]; L2(Ω)).

Since the mapping L(0, ·) is linear and continuous, the mappings g1 and g2 are also continuous from

L2(0, T ;L2(Ω)) into H1(0, T ; L2(Ω)), DzHi, i = 1, 2, are Lipschitz continuous, it follows that

g1(θǫ)+g2(Jǫzǫ)+θǫDzH2(Jǫzǫ) → g1(θ)+g2(z)+θDzH2(z) in L2(0, T ; L2(Ω)),

DzH1(zǫ) + ET

0 EE(zǫ) → DzH1(z) + ET

0 EE(z) in C0([0, T ]; L2(Ω)),

which allows us to pass to the limit in all the terms of (3.7a), we get

w + v + ET

0 EE(z) + DzH1(z) = −(g1(θ)+g2(z)+θDzH2(z)). (3.8)

The second step consists in proving that v(·, t) ∈ ∂ϕ(z(·, t)) andw(·, t)−Mż(·, t) ∈ ∂Ψ(ż(·, t)) for

almost every t ∈ [0, T ] which is obtained by using the lower semicontinuity of ϕ and [Bre73, Prop. 2.5].

This allows us to deduce that z is a solution of (3.3)–(3.4). �

In order to obtain more regularity properties for u and z, we will use maximal regularity results for

parabolic systems. Let A : H1(Ω) → (H1(Ω))′ be the linear continuous mapping defined as fol-

lows 〈Au, v〉(H1(Ω))′,H1(Ω)
def
=

∫
Ω νM

−1∇u:∇v dx for all (u, v) ∈ (H1(Ω))2. Classical results about

elliptic operators implies that A generates an analytic semigroup on L2(Ω), which extends to a C0-

semigroup of contractions on Lr(Ω). We denote by Ar the realization of its generator in Lr(Ω) and by

Xq,p(Ω)
def
= (Lp(Ω),D(Ap))1− 2

q
, q
2
∩(Lp/2(Ω),D(A p

2
))1− 1

q
,q where D(Ar) is the domain of Ar with

r = p
2 , p (see [HiR08, PrS01]). Then we observe that (3.1b) can be rewritten as follows

ż − νM
−1∆z = M

−1((ET

0 E(e(u)−E(z)))−DzH1(z)−θDzH2(z)−ψ) (3.9)

with ψ = w − Mż and (2.9) implies that ‖ψ(·, t)‖L∞(Ω) ≤ CΨ for almost every t ∈ [0, T ]. Since z ∈
L∞(0, T ; H1(Ω)), we may infer with (2.11) that DzHi(z) ∈ L∞(0, T ; Lp(Ω)) for i = 1, 2. It follows

that the right hand side in (3.9) belongs to Lq(0, T ; L2(Ω)). We conclude from the maximal regularity

result for parabolic systems that z ∈ Lq(0, T ; H2(Ω))∩C0([0, T ]; H1(Ω)) and ż ∈ Lq(0, T ; L2(Ω))
since z0 ∈ Xq,p(Ω) (see [Dor93, HiR08, PrS01]).

Next we can prove that (Puz) admits a unique solution.
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Proposition 3.2 (Uniqueness for (Puz)) Assume that (2.9), (2.10), (2.12), (2.13) and (2.15), u0 ∈
H1

0(Ω) and z0 ∈ Xq,p(Ω) hold. Then for any given θ ∈ Lq(0, T ; Lp(Ω)), the problem (3.1)–(3.2)

admits a unique solution.

Proof. Let θ be given in Lq(0, T ; Lp(Ω)) and denote by (ui, zi), i = 1, 2, two solutions of (Puz). Let

CH1 > 0 and define h1(z)
def
= H1(z) −CH1 |z|2 for all z ∈ R

N−1 and

γ(t)
def
=1

2

∫

Ω
E((e(u1)−E(z1)) − (e(u2)−E(z2))):((e(u1)−E(z1))−(e(u2)−E(z2)))dx

− ν
2

∫

Ω
∆(z1−z2).(z1−z2)dx+ CH1

∫

Ω
|z1−z2|

2 dx ∀t ∈ [0, T ].

By using (2.12) and Korn’s inequality, we infer that there exists Cγ > 0 such that

γ(t) ≥ Cγ

(
‖u1(·, t)−u2(·, t)‖

2
H1(Ω)+‖z1(·, t)−z2(·, t)‖

2
H1(Ω)

)
for all t ∈ [0, T ]. (3.10)

We can obtain an estimate of γ̇(t) by using u̇i− u̇3−i as a test-function in (3.1a) and the definition of the

subdifferential ∂Ψ(·) to rewrite(3.1b) as a variational inequality associated with the test-function ż3−i.

Then adding these expressions, we find
∫

Ω
(E(e(ui)−E(zi))+αθI+Le(u̇i)):(e(u̇i)−e(u̇3−i))dx

+

∫

Ω
(Mżi−E

T

0 E(e(ui)−E(zi))+DzH1(zi)+θDzH2(zi)).(żi−ż3−i)dx

+ ν

∫

Ω
∆zi·(żi−ż3−i)dx ≤

∫

Ω
(ℓ·(u̇i−u̇3−i)+Ψ(ż3−i)−Ψ(żi))dx

(3.11)

for i = 1, 2. We add these two inequalities and we get

γ̇(t) + cM
∫

Ω
|ż1−ż2|

2 dx+ cL
∫

Ω
|e(u̇1)−e(u̇2)|

2 dx

≤ −

∫

Ω
(Dzh1(z1)−Dzh1(z2)).(ż1−ż2)dx−

∫

Ω
θ(DzH2(z1)−DzH2(z2)).(ż1−ż2)dx

for almost every t ∈ [0, T ]. Then (2.10), (2.13) and the continuous embedding H1(Ω) →֒ L4(Ω) imply

that there exists C > 0 depending on cM, CH1 ,CH1
zz and CH2

zz such that

γ̇(t) ≤ C
(
1+‖θ(·, t)‖2

L4(Ω)

)
‖z1(·, t)−z2(·, t)‖

2
H1(Ω) for almost every t ∈ [0, T ]. (3.12)

We insert (3.10) into (3.12) and we conclude with Grönwall’s lemma. �

Lemma 3.3 Assume that (2.9), (2.10), (2.12), (2.13), (2.15), u0 ∈ H1
0(Ω), z0 ∈ Xq,p(Ω) hold. Then

the mapping ϑ 7→ (u, z) is continuous from Lq̄(0, T ; Lp̄(Ω)) into H1(0, T ; H1
0(Ω) × L2(Ω)) ∩

L∞(0, T ; H1
0(Ω)× H1(Ω)) and maps any bounded subset of Lq̄(0, T ; Lp̄(Ω)) into a bounded subset

of H1(0, T ; H1
0(Ω) × L2(Ω)).

Proof. Reminding that φ1 : ϑ̃ 7→ θ is continuous from Lq̄(0, T ; Lp̄(Ω)) to Lq̄(0, T ; Lp̄(Ω)), we need

to prove that the mapping θ 7→ (u, z) is continuous from Lq̄(0, T ; Lp̄(Ω)) to Lq̄(0, T ; Lp̄(Ω)). We

consider ϑi ∈ Lq̄(0, T ; Lp̄(Ω)) and for i = 1, 2, we define θi
def
= ζ(ϑi) ∈ Lq(0, T ; Lp(Ω)) and
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(ui, zi) the solution of the problem (3.1)–(3.2) with θ = θi. Therefore we reproduce the same kind of

computations as in the proof of Proposition 3.2, we find by using (2.11) and (2.13) that

γ̇(t) + cM‖ ˙̄z‖2
L2(Ω) + cL‖e( ˙̄u)‖2

L2(Ω) ≤ −

∫

Ω
αθ̄tr(e( ˙̄u))dx

−

∫

Ω
(θ1DzH2(z1)−θ2DzH2(z2)). ˙̄zdx−

∫

Ω
(Dzh1(z1)−Dzh1(z2)). ˙̄zdx

where ū
def
= u1−u2, z̄

def
= z1−z2 and θ̄

def
= θ1−θ2. The first and the third terms on the right hand side

are estimated by using Cauchy-Schwarz’s inequality, while the second term is estimated by employing

the decomposition θ1DzH2(z1)−θ2DzH2(z2)). ˙̄z = (θ̄DzH2(z1) + θ2(DzH2(z1)−DzH2(z2))). ˙̄z
combined with Young’s inequality. Then using (3.10) and the continuous embeddings H2(Ω) →֒ L∞(Ω)
and H1(Ω) →֒ L4(Ω), we deduce that there exists a generic constant C > 0 depending only on the

data such that

γ̇(t) + ‖ ˙̄z‖2
L2(Ω) + ‖e( ˙̄u)‖2

L2(Ω) ≤ C
(
1+‖z1‖

2
L∞(Ω)

)
‖θ̄‖2

L2(Ω)+C
(
1+‖θ2‖

2
L4(Ω)

)
γ(t)

for almost every t ∈ [0, T ], which allows us to conclude by using once again Grönwall’s lemma. �

We establish now some further regularity properties for the solutions of the system (Puz). Let us define

Vp(Ω)
def
=

{
u ∈ L2(Ω; R3) : ∇u ∈ Lp(Ω; R3×3)

}
endowed with the norm ‖u‖Vp(Ω)

def
= ‖u‖L2(Ω) +

‖∇u‖Lp(Ω) and Vp
0(Ω)

def
=

{
u ∈ Vp(Ω; R3) : u|∂Ω

= 0
}

.

Lemma 3.4 Assume that (2.9), (2.10), (2.12), (2.13), (2.15), u0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω) hold. Then

e(u) belongs to W1,q(0, T ; Lp(Ω)) and θ 7→ e(u) maps any bounded subset of Lq(0, T ; Lp(Ω)) into

a bounded subset of W1,q(0, T ; Lp(Ω)).

Proof. The key-point consists in interpreting (3.1a) as an ODE for u in an appropriate Banach space.

More precisely, let Fp(Ω)
def
= L2(Ω; R3)×Lp(Ω; R3×3

sym ) be endowed with the norm ‖ϕ‖Fp(Ω)
def
=

‖ϕ1‖L2(Ω) + ‖ϕ2‖Lp(Ω) with ϕ
def
= (ϕ1, ϕ2). Since L is a symmetric, positive definite tensor then

classical results about PDE in Banach spaces give that for all ϕ = (ϕ1, ϕ2) ∈ Fp(Ω), there exists a

unique u ∈ Vp
0(Ω), denoted by u

def
= Λp(ϕ), satisfying

∫

Ω
Le(u):e(v)dx =

∫

Ω
ϕ1·vdx+

∫

Ω
ϕ2:e(v)dx

for all v ∈ D(Ω). Furthermore Λp is linear continuous from Fp(Ω) to Vp
0(Ω) (see [Val88]). It comes

that (3.1a) can be rewritten as

u̇ = Λp(ℓ,EE(z)−αθI)−Λp(0,Ee(u)). (3.13)

Then using (2.12), (2.15) and the continuous embedding H1(Ω) →֒ Lp(Ω), we infer that (ℓ,EE(z) −
αθI) belongs to Lq(0, T ;Fp(Ω)) and (3.13) is an ODE for u in Vp

0(Ω). Hence classical results about

ODE in Banach spaces and Lemma 3.3 allow us to conclude. �

Finally, by using (3.9), the regularity results for (u, z) previously obtained and the maximal regularity

results for parabolic systems (see [Dor93, HiR08, PrS01]), we can easily deduce the Lemma 3.5. The

reader is referred to [PaP11] for technical details.
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Lemma 3.5 Assume that (2.9), (2.10), (2.12), (2.13), (2.15), u0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω) hold. Then

(ż,∆z)∈(Lq/2(0, T ; Lp(Ω))∩Lq(0, T ; Lp/2(Ω)))2 and z∈C0([0, T ],Xq,p(Ω))∩Lq(0, T ; H2(Ω)).

Moreover θ 7→ (ż,∆z, z) maps any bounded subset of Lq(0, T ; Lp(Ω)) into a bounded subset of

(Lq/2(0, T ; Lp(Ω)) ∩ Lq(0, T ; Lp/2(Ω)))2 × (C0([0, T ]; Xq,p(Ω)) ∩ Lq(0, T ; H2(Ω))).

4 Local existence result

We establish here a local existence result for (2.7)–(2.8) by using a fixed-point argument. To this aim,

for any given ϑ̃ ∈ Lq̄(0, T ; Lp̄(Ω)), we consider the solutions of (Puz) with θ = ζ(ϑ̃) and we define

κ̃c def
= κc(e(u), z, θ) and f

eϑ def
= Le(u̇):e(u̇) + θ(αtr(e(u̇)) + DzH2(z).ż) + Ψ(ż) + Mż.ż. We

already know from Section 3 that f
eϑ ∈ Lq/4(0, T ; Lp/2(Ω)). Since p ≥ 4 and q > 8, we infer that

f
eϑ ∈ L2(0, T ; L2(Ω)). We assume that ϑ0 ∈ L2(Ω) and (2.14) hold. By using [Lio68] we infer that

there exists a unique ϑ ∈ C0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1(Ω)) with ϑ̇ ∈ L2(0, T ; (H1(Ω)′) such

that

ϑ̇− div(κ̃c∇ϑ) = f
eϑ, ϑ(·, 0) = ϑ0, κ̃c∇ϑ·η|∂Ω

= 0. (4.1)

Moreover, for all τ ∈ [0, T ], we have

‖ϑ(τ)‖2
L2(Ω) + 2cκ

c

∫ τ

0
‖∇ϑ(t)‖2

L2(Ω) dt ≤ eτ
(
‖ϑ0‖2

L2(Ω)+‖f‖2
L2(0,T ;L2(Ω))

)
. (4.2)

Proposition 4.1 The mapping φ : ϑ̃ 7→ ϑ is continuous from Lq̄(0, T ; Lp̄(Ω)) to Lq̄(0, T ; Lp̄(Ω)).

Proof. The proof is obtained by the same techniques detailed in [PaP11, Prop. 6.1]. Since it is quite a

routine to adapt this proof to our case, the verification is left to the reader. �

It remains to prove that the mapping φ fulfills the other assumptions of the Schauder’s fixed point theorem.

To do so, we define the following functional space

Wτ
def
= {ϑ ∈ L2(0, τ ; H1(Ω)) ∩ L∞(0, τ ; L2(Ω)) : ϑ̇ ∈ L2(0, τ ; (H1(Ω)′)}

endowed with the norm ‖ϑ‖Wτ

def
= ‖ϑ‖L2(0,τ ;H1(Ω)) + ‖ϑ‖L∞(0,τ ;L2(Ω)) + ‖ϑ̇‖L2(0,τ ;(H1(Ω)′) for all

ϑ ∈ Wτ with τ ∈ (0, T ]. We know that Wτ is compactly embedded in Lq̄(0, τ ; Lp̄(Ω)) (see [Sim87]).

From the previous results, we may infer that φ maps any bounded subset of Lq̄(0, T ; Lp̄(Ω)) into a

bounded subset of WT . More precisely, for anyRϑ > 0 and for any ϑ̃ such that ‖ϑ̃‖Lq̄(0,T ;Lp̄(Ω)) ≤ Rϑ,

we have

‖ζ(ϑ̃)‖Lq(0,T ;Lp(Ω)) = ‖θ‖Lq(0,T ;Lp(Ω)) ≤ Rθ def
= (β1

cc R
ϑ)

1
β1 |Ω|

β1p̄−p

β1p̄p

and there exists a constant C = C(‖u0‖Vp(Ω), ‖z
0‖Xq,p(Ω), ‖ϑ

0‖L2(Ω), ‖ℓ‖C0([0,T ];L2(Ω)), R
θ), de-

pending only on ‖u0‖Vp(Ω), ‖z
0‖Xq,p(Ω), ‖ϑ

0‖L2(Ω), ‖ℓ‖C0([0,T ];L2(Ω)) and Rθ such that

‖φ(ϑ̃)‖WT
= ‖ϑ‖WT

≤ C(‖u0‖Vp(Ω), ‖z
0‖Xq,p(Ω), ‖ϑ

0‖L2(Ω), ‖ℓ‖C0([0,T ];L2(Ω)), R
θ).

Now let 0 < τ ≤ T . For any ϑ̃ ∈ Lq̄(0, τ ; Lp̄(Ω)), we define ϑ̃ext ∈ Lq̄(0, T ; Lp̄(Ω)) by ϑ̃ext = ϑ̃

on [0, τ ] and ϑ̃ext = 0 on (τ, T ] and φτ (ϑ̃) as the restriction of φ(ϑ̃ext) to [0, τ ]. From Proposition 4.1,
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it is clear that φτ is continuous from Lq̄(0, τ ; Lp̄(Ω)) to Lq̄(0, τ ; Lp̄(Ω)). Furthermore, reminding that

p̄ = 2 and observing that ‖ϑ̃ext‖Lq̄(0,T ;Lp̄(Ω)) = ‖ϑ̃‖Lq̄(0,τ ;Lp̄(Ω)), we get

‖φτ (ϑ̃)‖Lq̄(0,τ ;Lp̄(Ω)) ≤ τ
1
q̄ ‖φ(ϑ̃ext)‖L∞(0,T ;Lp̄(Ω)) ≤ τ

1
q̄ ‖φ(ϑ̃ext)‖WT

≤ τ
1
q̄C(‖u0‖Vp(Ω), ‖z

0‖Xq,p(Ω), ‖ϑ
0‖L2(Ω), ‖ℓ‖C0([0,T ];L2(Ω)), R

θ).

It follows that, for any Rϑ > 0, there exists τ ∈ (0, T ] such that φτ maps B̄Lq̄(0,τ ;Lp̄(Ω))(0, R
ϑ) into

itself. Moreover, for any ϑ̃ ∈ B̄Lq̄(0,τ ;Lp̄(Ω))(0, R
ϑ), φ(ϑ̃ext) belongs to a bounded subset of WT , thus

the image of B̄Lq̄(0,τ ;Lp̄(Ω))(0, R
ϑ) by φτ is included into a bounded subset of Wτ and is relatively

compact in Lq̄(0, τ ; Lp̄(Ω)) ([Sim87]). Consequently, we may apply Schauder’s fixed point theorem to

φτ and we conclude that the problem (2.7)–(2.8) possesses a local solution (u, z, ϑ) defined on [0, τ ]
such that u ∈ W1,q(0, τ ; Vp

0(Ω)), z ∈ L∞(0, τ ; H1(Ω))∩H1(0, τ ; L2(Ω))∩C0([0, τ ]; Xq,p(Ω))∩
Lq(0, τ ; H2(Ω)), ż,∆z ∈ Lq/2(0, τ ; Lp(Ω)) ∩ Lq(0, τ ; Lp/2(Ω)) and ϑ ∈ Wτ .

In order to go back to problem (2.5)–(2.6), we observe that the mappings g and ζ are two C1-diffeo-

morphism from (0,+∞) into (0,+∞) and any solution of (2.7)–(2.8) gives a solution of (2.5)–(2.6) as

soon as the enthalpy remains positive. So we assume in the sequel that there exists ϑ̄ > 0 such that

ϑ0(x) ≥ ϑ̄ > 0 (4.3)

for almost every x ∈ Ω. The local solution for the problem (2.5)–(2.6) is obtained by using the Stampac-

chia’s truncation method.

Theorem 4.2 (Local existence result) Assume that (2.9), (2.10), (2.12), (2.13), (2.14) and (2.15) hold.

Then, for any initial data u0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω) and ϑ0 ∈ L2(Ω) satisfying (4.3), there exists

τ ∈ (0, T ] such that the problem (2.5)–(2.6) admits a solution on [0, τ ].

Proof. Letϕ(t)
def
= ϑ̄e

−
β1

cc

R t

0
(C+

(C
H2
z )2

cM
‖z(·,s)‖2

L∞(Ω)
)ds

for all t ∈ [0, τ ] whereC
def
= (3α)2

2cL + (C
H2
z )2

cM . Let

G ∈ C1(R) be is strictly increasing on (0,∞) such that there exists CG > 0 such that |G′(σ)| ≤ CG

for all σ ∈ R and G(σ) = 0 for all σ ≤ 0. Then we define H(σ)
def
=

∫ σ
0 G(s) ds for all σ ∈ R and

h(t)
def
=

∫
ΩH(−ϑ+ϕ) dx. Clearly h(0) = 0. Since ϑ ∈ Wτ and ϕ ∈ H1(0, τ ; R), we infer that h is

absolutely continuous and it follows from (2.11), (2.13), (2.14) and Cauchy-Schwarz’s inequality that

ḣ(t) ≤

∫

Ω
G(−ϑ+ϕ)

(
|θ|2

(
C+ (C

H2
z )2

cM |z|2
)
+ϕ̇

)
dx

for almost every t ∈ [0, τ ]. But θ = ζ(ϑ) and, since β1 ≥ 2, we infer from (2.16) that |θ|2 ≤
β1

cc max(0, ϑ). Observing that G(−ϑ+ϕ) = 0 whenever −ϑ+ ϕ ≤ 0, we get

ḣ(t) ≤

∫

Ω
G(−ϑ+ϕ)

(
ϕ
(
C+ (C

H2
z )2

cM |z|2
)
+ϕ̇

)
dx ≤ 0

for almost every t ∈ [0, τ ]. We deduce that h(t) ≤ h(0) = 0 for all t ∈ [0, τ ] and it follows that

−ϑ+ ϕ ≤ 0 for almost every (x, t) ∈ Ω × (0, τ) which proves the theorem. �
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5 Global existence result

We establish some a priori estimates for the solutions of the problem (2.7)–(2.8) which are relied on an

energy balance combined with Grönwall’s lemma. Then by using a contradiction argument together with

the results obtained in the previous sections, the global existence result is obtained.

Proposition 5.1 Assume that (2.9), (2.10), (2.12), (2.13), (2.14) and (2.15) hold. Assume moreover

that u0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω) and ϑ0 ∈ L2(Ω) such that (4.3) is satisfied. Then, there exists

a constant C̃ > 0, depending only on ‖u0‖H1(Ω), ‖z
0‖H1(Ω), ‖ϑ

0‖L1(Ω) and the data such that for

any solution (u, z, ϑ) of problem (2.7)–(2.8) defined on [0, τ ], τ ∈ (0, T ], we have ‖u(·, τ̃ )‖2
H1(Ω) +

‖z(·, τ̃ )‖2
H1(Ω) + ‖ϑ(·, τ̃ )‖L1(Ω) ≤ C̃ for all τ̃ ∈ [0, τ ].

Proof. We test (2.5a) with u̇, (2.5b) with ż and (2.5c) with the test-function equal to 1. Then we add these

equalities and we integrate over [0, τ̃ ], with τ̃ ∈ (0, τ ]. We get

1
2

∫

Ω
E(e(u(·, τ̃ ))−E(z(·, τ̃ ))):(e(u(·, τ̃ ))−E(z(·, τ̃ )))dx+ ν

2‖∇z(·, τ̃ )‖
2
L2(Ω)

+

∫

Ω
H1(z(·, τ̃ ))dx+

∫

Ω
ϑ(·, τ̃ )dx = C0 +

∫

Qeτ

ℓ·u̇dxdt

withC0
def
= 1

2

∫
Ω E(e(u0)−E(z0)):(e(u0)−E(z0))dx+ ν

2‖∇z
0‖2

L2(Ω)+
∫
ΩH1(z

0)dx+‖ϑ0‖L1(Ω).

We estimate from below the first term of the left hand side and we integrate by parts the last term of the

right hand side: there exist two generic constants C1, C2 > 0 depending only on cE, ‖E‖L∞(Ω), ν,

CKorn, cH1 , c̃H1 , ‖E0‖ and ‖EN‖ such that

C1
2 ‖u(·, τ̃ )‖2

H1(Ω) + C1‖z(·, τ̃ )‖
2
H1(Ω)+

∫

Ω
ϑ(·, τ̃ )dx ≤ C0+‖ℓ‖C0([0,T ];L2(Ω))‖u

0‖L2(Ω)

+ C2 + 1
2C1

‖ℓ‖2
C0([0,T ];L2(Ω)) + 1

2‖ℓ̇‖
2
L2(0,T ;L2(Ω)) + 1

2

∫ eτ

0
‖u‖2

L2(Ω) dt.

This allows us to conclude by using Grönwall’s lemma since ϑ ≥ 0 almost everywhere on Qeτ . �

Let us assume now that β1 ≥ 4 and let (u, z, ϑ) be a solution of problem (2.7)–(2.8) defined on

[0, τ ] ⊂ (0, T ]. We have ‖θ = ζ(ϑ)‖Lq(0,τ ;L4(Ω)) ≤ R̄θ def
= T

1
q |Ω|

β1−4

4β1

(β1

cc C̃
) 1

β1 . By using Lem-

mas 3.4, 3.5 and estimate (4.2), we infer that there exists a constant R̄ϑ
∞, depending only on C̃,

‖u0‖Vp(Ω), ‖z
0‖Xq,p(Ω), ‖ϑ

0‖L2(Ω) and ‖ℓ‖C0([0,T ];L2(Ω)), but independent of τ , such that ‖ϑ =

φτ (ϑ)‖L∞(0,τ ;L2(Ω)) ≤ R̄ϑ
∞. Then we can check that there exists τ̃0 > 0, independent of τ , such

that problem (2.7)–(2.8) admits a solution on the extended time-interval [0,min(T, τ+τ̃0)]. Indeed,

let us assume that τ ∈ (0, T ) (otherwise there is noting to prove) and define R̄ϑ def
= T

1
q̄ R̄ϑ

∞ + 1,

R̃ϑ def
= ((R̄ϑ)q̄−T (R̄ϑ

∞)q̄)
1
q̄ > 0. For any ϑ̃ ∈ B̄Lq̄(τ,τ+eτ ;L2(Ω))(0, R̃

ϑ), we define ϑ̃ext by ϑ̃ext
def
= ϑ

on [0, τ ], ϑ̃ext
def
= ϑ̃ on (τ, τ+τ̃ ] and ϑ̃ext

def
= 0 on (τ+τ̃ , T ]. Clearly, we have

‖ϑ̃ext‖
q̄
Lq̄(0,T ;L2(Ω))

= ‖ϑ‖q̄
Lq̄(0,τ ;L2(Ω))

+ ‖ϑ̃‖q̄
Lq̄(τ,τ+eτ ;L2(Ω))

≤ τ(R̄ϑ
∞)q̄ + (R̃ϑ)q̄ ≤ (R̄ϑ)q̄,

and the mapping ϑ̃ 7→ ϑ̃ext is a contraction on Lq̄(τ, τ+τ̃ ; L2(Ω)). Let θ̃ = ζ(ϑ̃ext). By definition of

ζ , we have θ̃ = ζ(ϑ) = θ on [0, τ ], θ̃ = ζ(ϑ̃) on (τ, τ+τ̃ ] and θ̃ = ζ(0) = 0 on (τ+τ̃ , T ]. Hence

12



θ̃ ∈ Lq(0, T ; L4(Ω)) and

‖θ̃‖q
Lq(0,T ;L4(Ω))

≤ (R̄θ)q +

∫ τ+eτ

τ
‖ζ(ϑ̃)‖q

L4(Ω)
dt ≤ (R̃θ)q,

with R̃θ def
=

(
(R̄θ)q+

(β1

cc

) q
β1 |Ω|

β1−2
4β1

q
(R̃ϑ)q̄

) 1
q . By definition of φ, we get immediately that the restriction

of φ(ϑ̃ext) on [0, τ ] coincide with φτ (ϑ) = ϑ and we define φ̃eτ (ϑ̃) as the restriction of φ(ϑ̃ext) to

[τ, τ+τ̃ ]. Furthermore, with the estimates of Section 4, we have φ(ϑ̃ext) ∈ L∞(0, T ; L2(Ω)) and

‖φ(ϑ̃ext)‖L∞(0,T ;L2(Ω)) ≤ C
(
‖u0‖Vp(Ω), ‖z

0‖Xq,p(Ω), ‖ϑ
0‖L2(Ω), ‖ℓ‖C0([0,T ];L2(Ω)), R̃

θ
)
.

Let τ̃0 > 0 be such that τ̃
1
q

0 C(‖u0‖Vp(Ω), ‖z
0‖Xq,p(Ω), ‖ϑ

0‖L2(Ω), ‖ℓ‖C0([0,T ];L2(Ω)), R̃
θ) ≤ R̃ϑ.

Then φ̃eτ maps B̄Lq̄(τ,τ+eτ ;L2(Ω))(0, R̃
ϑ) into itself for all τ̃ ∈ (0,min(τ̃0, T−τ)]. By using the same

arguments as in section 4, we can check that φ̃eτ satisfies the other assumptions of Schauder’s fixed point

theorem. Hence φ̃eτ admits a fixed point ϑ̃ in B̄Lq̄(τ,τ+eτ ;L2(Ω))(0, R̃
ϑ). But, by construction of φ̃eτ , the

restriction of φ(ϑ̃ext) to [0, τ+τ̃ ] is also a fixed point of φτ+eτ in B̄Lq̄(0,τ+eτ ;L2(Ω))(0, R̄
ϑ). By choosing

τ̃ = min(τ̃0, T−τ), we get a solution (2.7)–(2.8) on [0,min(τ+τ̃0, T )]. Since τ̃0 does not depend on

τ , we may reproduce this argument to obtain finally a global solution of (2.7)–(2.8) on [0, T ]. Therefore

we conclude with the following theorem:

Theorem 5.2 (Global existence result) Assume that (2.9), (2.10), (2.12), (2.13), (2.14) and (2.15) hold.

Assume moreover that β1 ≥ 4, u0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω), ϑ0 ∈ L2(Ω) such that (4.3) is satisfied.

Then the problem (2.7)–(2.8) admits a global solution (u, z, ϑ) such that u ∈ W1,q(0, T ; Vp
0(Ω)), z ∈

L∞(0, T ; H1(Ω) ∩ Xq,p(Ω)) ∩ H1(0, T ; L2(Ω)), ż,∆z ∈ Lq/2(0, T ; Lp(Ω)) ∩ Lq(0, T ; Lp/2(Ω))
and ϑ ∈ WT . Moreover ϑ remains strictly positive and (u, z, θ = ζ(ϑ)) is a solution of problem (2.5)–

(2.6) on [0, T ].
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