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Abstract

Let a high-dimensional random vector X⃗ can be represented as a sum of two
components - a signal S⃗, which belongs to some low-dimensional subspace S ,
and a noise component N⃗. This paper presents a new approach for estimating
the subspace S based on the ideas of the Non-Gaussian Component Analysis.
Our approach avoids the technical difficulties that usually exist in similar methods
- it doesn’t require neither the estimation of the inverse covariance matrix of X⃗
nor the estimation of the covariance matrix of N⃗.
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1 Introduction and set-up

Assume that a high-dimensional random variable X⃗ ∈Rd can be represented as a sum
of two independent components - a low-dimensional signal (which one can imagine
as än useful partör än information") and a noise component (which has a Normal
distribution). More precisely,

X⃗ = S⃗+ N⃗, (1)

where S⃗ belongs to some low-dimensional subspace S , N⃗ is a normal vector with
zero mean and unknown covariance matrix Γ, and S⃗ is independent of N⃗. Denote the
dimension of S⃗ by m; up to this paper, m is fixed such that the representation (1) is
unique (the existence of such m is proved by Theis and Kawanabe, 2007).

The aim of this paper is to estimate vectors from the subspace S , which we call
the signal subspace. A very related task, estimation of so called the non-Gaussian
subspace I (the definition will be given below) is widely studied in the literature. The
original method known as Non-Gaussian Component Analysis (NGCA) was proposed
by Blanchard et al, 2006a, and later improved by Kawanabe et al., 2007, Dalalyan et
al., 2007, Sugiyama et al., 2008, Diederichs et al., 2010.

In almost all papers mentioned above, the problem of estimation of the vectors from
S is not considered in details; the natural estimators require the estimation of the
unknown matrix Γ. The exception is an article Sugiyama et al., 2008, where one es-
timator is proposed. But practical usage of this method meets another problem - the
estimation of the inverse covariance matrix.

Each of these tasks, estimation of the unknown matrix Γ and inverse covariance ma-
trix, is an obstacle in real-world applications of the method. In this article, we propose
a new approach, which avoids the mentioned problems.

The main theoretical fact is given in theorem 1. Together with lemma 2, this result
yields a method of estimation. For proving the main result, one needs a special repre-
sentation of the density of X⃗ , which is given in lemma 7, discussed in section 3, and
proved in section 4.
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Figure 1: The action of the linear transformation T: 1. x⃗ is transformed by S ; 2. trans-
formed x⃗ is projected on transformed S .

2 Estimation of the signal subspace

We begin with the main result.

Theorem 1. Let T : Rd → Σ−1/2S be the linear transformation defined as

T⃗x := PrΣ−1/2S {Σ−1/2⃗x}, (2)

where by Σ we denote the covariance matrix of X⃗ . Then

S = Σ (KerT)⊥ . (3)

In Blanchard et al., 2006a, a transformation T is considered instead of T:

T x⃗ := PrΓ−1/2S {Γ−1/2⃗x}.

In that paper, the subspace (KerT )⊥ is called the non-Gaussian subspace and is
in fact the main object of interest. We would like to stress here, that T ̸= T, and
equalities like (3) are wrong for T .

The linear transformation T acts on x⃗ in the following way: firstly, S and x⃗ are trans-
formed by matrix Σ−1/2; secondly, the transformed x⃗ is projected on the transformed
S . Figure 1 illustrates this action. One of the main results of the NGCA approach
gives the practical method for estimating vectors from (KerT )⊥. Similar result can be
formulated for the subspace (KerT)⊥ also.

Lemma 2. Assume that a structural assumption (1) is fulfilled. Then for any function
ψ ∈ C 1(Rd,R) there exists a vector β ∈ (Ker T)⊥ such that

E[∇ψ(X⃗)]−β = Σ−1E
[
X⃗ψ(X⃗)

]
. (4)

Corollary 3. Let a structural assumption (1) be fulfilled and let a function ψ ∈C 1(Rd,R)
be such that E

[
X⃗ψ(X⃗)

]
= 0. Then

E
[
∇ψ(X⃗)

]
∈ (Ker T)⊥ .
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Theorem 1 and lemma 2 yield a method for finding vectors from the subspace S .

The first step. On the first step, one estimates vectors from the subspace (Ker T)⊥

using lemma 2. Theoretically, the best way for the estimation is to find a function ψ
such that E

[
X⃗ψ(X⃗)

]
= 0, and then to use the corollary. In practice, it is difficult to find

such functions; usually it is more realistic to consider some ψ such that E
[
X⃗ψ(X⃗)

]
is close to zero (but not exactly zero). In this case, according to lemma 2, the vec-
tor E

[
∇ψ(X⃗)

]
is close to some vector from the subspace (Ker T)⊥. For discussing

practical issues about finding functions ψ , we refer to Diederichs, PhD dissertation,
2007.

The second step. Denote the vectors obtained on the first step by β̂i. Now one can
use theorem 1 and estimate vectors from the signal subspace by Σ̂β̂i, where Σ̂ is an
estimator of the matrix Σ.

Note that the inverse covariance matrix is presented in the formulae (4) but our ap-
proach doesn’t require the estimation of it. In fact, lemma 2 is used only for theoretical
justification of the first step; practical method described above doesn’t need neither
the estimation of Σ−1 nor the estimation of Σ. On the second step, on uses only the
representation (3), which also allows to avoid the estimation of the inverse covariance
matrix.

3 Density representation

The proofs of the facts formulated in the previous section lie on some special repre-
sentation of the density function of X⃗ . Certain representations can be also found in
previous papers about NGCA. Such facts are stated in the following form: if structural
assumption (1) is fulfilled than the density function of a random vector X⃗ ∈ Rd can be
represented as

p(⃗x) = g(T x⃗)ϕA(⃗x), (5)

where T : Rd → E is a linear transformation (E - some subspace with dimE = m),
g : E →R - a function, and A - a d×d symmetric positive matrix. Usually the formulae
(5) is proven for A=Σ, see e.g. Kawanabe et al., 2007; rarely for A=Γ, see Sugiyama,
2008. Another way is to start with the representation (5) without giving the motivation
in the spirit of (1), see e.g. Blanchard et al., 2006b.

The main result of this section can be briefly explained as follows: one can find a
function g such that (5) is fulfilled with T = T and A = Γ. The precise formulation is
given below in lemma 4.

The existence of the representation in the form (5) can be easily shown as follows.
Note that the model (1) can be equivalently formulated via linear mixing model:

X⃗ = ASX⃗S +ANX⃗N , (6)
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where X⃗S ∈ Rm, X⃗N ∈ Rd−m are two random variables; X⃗N is a normal vector with un-
known covariance matrix; X⃗S is independent of X⃗N ; AS ∈ Matr(d ×m),AN ∈ Matr(d ×
(d−m)) are two deterministic matrices such that columns of these matrices are inde-
pendent. In this formulation, the signal subspace is spanned by the columns of matrix
AS.

From (6), one can easily see that the vector X is in fact a linear transformation of
the vector X⃗ ′ := (X⃗S; X⃗N) (vector X⃗ ′ is a concatenation of vectors X⃗S and X⃗N). This
yields that p(x) ∝ g(X⃗S)ϕ(X⃗N), where by g we denote the density of the m-dimensional
non-Gaussian component, and by ϕ - the density function of the normally distributed
random variable X⃗N . Thus, the representation (5) is proven with T = Γ.

The next theorem gives the exact representation for the density of X⃗ that is needed
for our purposes.

Lemma 4. Let the structural assumption (1) be fulfilled . Then the density function of
the random vector X⃗ can be represented in the following way:

p(⃗x) = g(T⃗x)ϕΣ(⃗x), (7)

where

� T : Rd → S ′, S ′ := Σ−1/2S ,

T⃗x = PrS ′{Σ−1/2⃗x}, (8)

by Σ we denote the covariance matrix of X⃗ .

� g : S ′ → R,

g(⃗t) = |Σ−1/2|
q
(⃗
t
)

ϕm
(⃗
t
) , (9)

where q(·) is the density function of the random variable TX⃗ , and ϕm(·) is the
density function of the m - dimensional standard normal vector.

The proof of this fact begins the next section.

4 Proofs of the main facts

Proof of the lemma 4

Step 1. Denote by X⃗ ′ = Σ−1/2X⃗ the standardized vector,

Σ−1/2X⃗ = Σ−1/2S⃗+Σ−1/2N⃗. (10)

Introduce the notation
S⃗′ = Σ−1/2S⃗, N⃗′ = Σ−1/2N⃗. (11)

5



The first component in (10) belongs to the subspace S ′ := Σ−1/2S . Denote by N′ the
subspace that is orthogonal to S ′. One can proof that N′ = Σ1/2S ⊥ (see Sugiyama
et al., 2008).

Vector N′ can be decomposed into the sum of two vectors, N⃗′ = N⃗S ′ + N⃗N′, where
N⃗S ′ ∈ S ′, N⃗N′ ∈N′. So, we consider the following decomposition of X⃗ ′:

X⃗ ′ = S⃗′+ N⃗S ′︸ ︷︷ ︸
∈ S ′

+ N⃗N′︸︷︷︸
∈N′

.

It is worth mentioning that the density function doesn’t depend on a basis. This means
that for a calculation of the density function the basis can be changed arbitrarily. Let
us choose it such that the first m vectors v⃗1, ..., v⃗m compose a basis of S ′ and the next
d−m vectors v⃗m+1, ..., v⃗d compose a basis of N′. In the following, we assume that this
change is already made.

Step 2. By definition, X⃗ ′ is a standardized vector. This step shows that the vectors
Z⃗′ = S⃗′+ N⃗S ′ and N⃗N′ are also standardized.

Id = Cov X⃗ ′ = E
[
X⃗ ′X⃗ ′T

]
= E

[⃗
Z ′⃗Z′T

]
+E

[
N⃗N′N⃗T

N′

]
+E

[⃗
S′N⃗T

N′

]
+E

[
N⃗S ′N⃗T

N′

]
+E

[
N⃗N′ S⃗′T

]
+E

[
N⃗N′N⃗T

S ′

]
(12)

Note some facts:

(i) By the change of the basis, the last d−m components of the vectors S⃗′, Z⃗′, N⃗S ′

and the first m components of the vector N⃗N′ are equal to zero.

(ii) The vectors S⃗′ = Σ−1/2S⃗ and N⃗N′ = Pr N′{Σ−1/2N⃗} are independent as functions
of the independent vectors S⃗ and N⃗.

(iii) EN⃗N′ = E
[
PrN′{Σ−1/2N⃗}

]
= 0, because of EN⃗ = 0 and (i).

Now it’s easy to see that the third and the fifth summands in (12) are equal to zero. In
fact,

E
[⃗
S′N⃗T

N′

]
= ES⃗′ ENT

N′ = 0.

So, one can rewrite (12) in the following way

Id = E
[⃗
Z ′⃗Z′T

]
+E

[
N⃗N′N⃗T

N′

]
+E

[
N⃗S ′N⃗T

N′

]
+E

[
N⃗N′N⃗T

S ′

]
. (13)

Decompose the vectors Z⃗′, N⃗S ′ and N⃗N′ into the basis v⃗1, .., v⃗d :

Z⃗′ =
m

∑
i=1

zi⃗vi; N⃗S ′ =
m

∑
i=1

ni⃗vi; N⃗N′ =
d

∑
i=m+1

ni⃗vi, (14)
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where all coefficients zi and ni are random values.

Equality (13) can be rewritten as follows:

Id =
m

∑
i,i′=1

E [zizi′] v⃗i⃗v⊤i′ +
d

∑
i,i′=m+1

E [nini′ ] v⃗i⃗v⊤i′

+
m

∑
i=1

d

∑
i′=m+1

E [nini′] v⃗i⃗v⊤i′ +
d

∑
i=m+1

m

∑
i′=1

E [nini′] v⃗i⃗v⊤i′

Then the second term in the right hand side is equal to Id−m, i.e.

E
[
N⃗N′N⃗T

N′

]
=

d

∑
i,i′=m+1

E [nini′] v⃗i⃗v⊤i′ = Id−m.

Thus, the (d −m) - dimensional vector N⃗N′ has the standard normal distribution. De-
note the density function by ϕd−m(x).

Step 3. Denote by F ′(⃗x′) and p′(⃗x′) the distribution function and the density function
of the vector X⃗ ′.

F ′(⃗x′) = P
{

X⃗ ′ 6 x⃗′
}
= P

{
Z⃗′+ N⃗N′ 6 x⃗′

}
(15)

Note some facts:

(i) Vectors Z⃗′ = S⃗′ + N⃗S ′ and N⃗N′ are independent. In fact, vectors S⃗′ = Σ−1/2S⃗
and N⃗′ = Σ−1/2N⃗ are independent. Then vectors S⃗′, N⃗N′ and N⃗S ′ are jointly
independent (this follows from the choice of the basis). Finally, Z⃗′ and N⃗N′ are
independent as functions of independent variables.

(ii) The basis choice (14) enables us to split the inequality

Z⃗′+ N⃗N′ 6 x⃗′ =
d

∑
i=1

xi⃗vi

into two:

Z⃗′ 6
m

∑
i=1

xi⃗vi =: x⃗S ′ , N⃗N′ 6
d

∑
i=m+1

xi⃗vi =: x⃗N′.

The function F ′ can be rewritten in the following way:

F ′(⃗x′) = P
{

Z⃗′+ N⃗N′ 6 x⃗′
}
= P

{
Z⃗′ 6 x⃗S ′ , N⃗N′ 6 x⃗N′

}
= P

{
Z⃗′ 6 x⃗S ′

}
P
{

N⃗N′ 6 x⃗N′

}
.

Taking derivatives of the both parts of the last formula gives the representation of the
density function of X⃗ ′.

p(⃗x′) = q(⃗xS ′)ϕd−m(⃗xN′) =
q (⃗xS ′)

ϕm (⃗xS ′)
ϕd (⃗x′) =

q(PrS ′ {⃗x′})
ϕm(PrS ′ {⃗x′})

ϕd (⃗x′),
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where by q(·) denote the density function of the random vector Z⃗′ = S⃗′ + N⃗S ′ =
PrS ′{X⃗}.

Step 4. The last step derives representation of the density function of the vector
X⃗ = Σ1/2X⃗ from the density function of X⃗ ′. According to the well-known formula for
a density transformation,

p(⃗x) = |Σ−1/2| p′(Σ−1/2⃗x) = |Σ−1/2|
q
(

PrS ′{Σ−1/2⃗x}
)

ϕm
(
PrS ′{Σ−1/2⃗x}

)ϕd(Σ−1/2⃗x).

The remark ϕd(Σ−1/2⃗x) = ϕΣ(⃗x) concludes the proof.

Proof of the lemma 2. Here we prove a more general result:

Lemma 5. Assume that the density function of a random vector X⃗ ∈ Rd can be rep-
resented in the form (5), where T : Rd → E is any linear transformation (E - any
subspace), g : E → R - any function, and A - any d ×d symmetric positive matrix.

Assume that a structural assumption (1) is fulfilled. Then for any function ψ ∈C 1(Rd,R)
there exists a vector β ∈ (Ker T )⊥ such that

E[∇ψ(X⃗)]−β = Σ−1E
[
X⃗ψ(X⃗)

]
. (16)

Proof. Integration by parts yields

E ∇ψ(X⃗) =
∫

∇ [ψ (⃗x)] p(⃗x)dx =−
∫

ψ (⃗x)∇ [p(⃗x)]dx. (17)

The gradient of the density function can be represented as a sum of two components:

∇p(⃗x) = ∇ [log p(⃗x)] p(⃗x) = ∇ [logg(T x⃗)] p(⃗x)+∇ [logϕA(⃗x)] p(⃗x).

The summands in the right hand side can be transformed in the following way:

∇ [logg(T x⃗)] p(⃗x) =
∇g(T x⃗)
g(T x⃗)

p(⃗x)

= ∇ [g(T x⃗)]ϕA(⃗x) = T⊤∇{T x⃗} [g(T x⃗)]ϕA(⃗x)

∇ [logϕA(⃗x)] p(⃗x) =−Σ−1⃗xp(⃗x).

Denote β = T⊤Λ⃗. Then

E ∇ψ(X⃗)−β =−T⊤
∫

ψ (⃗x)∇{T x⃗} [g(T x⃗)]ϕA(⃗x)p(⃗x)dx = T⊤Λ⃗

∈ Im(T⊤) = (KerT )⊥ ,

where Λ⃗ =−
∫

ψ (⃗x)∇{T x⃗} [g(T x⃗)]ϕA(⃗x)p(⃗x)dx. This completes the proof.
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Proof of the theorem 1

The proof is straightforward:

KerT =
{⃗

x : Σ−1/2⃗x ⊥ Σ−1/2S
}

=

{⃗
x : ∃⃗s ∈ S | x⃗⊤

(
Σ−1/2

)⊤
Σ−1/2⃗s = 0

}
=
{⃗

x : ∃⃗s ∈ S | x⃗⊤ Σ−1⃗s = 0
}

=
{⃗

x : x⃗ ⊥ Σ−1S
}
.

Here we use the symmetry of the matrix Σ−1/2.
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