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AbstratBrittle Gri�th-type delamination of ompounds is dedued by means of Γ-onvergene from partial, isotropi damage of three-speimen-sandwih-stru-tures by �attening the middle omponent to the thikness 0. The models usedhere allow for nonlinearly elasti materials at small strains and onsider the pro-esses to be unidiretional and rate-independent. The limit passage is performedvia a double limit: �rst, we gain a delamination model involving the gradient ofthe delamination variable, whih is essential to overome the lak of a uniformoerivity arising from the passage from partial damage to delamination. Seond,the delamination gradient is supressed. Noninterpenetration- and transmission-onditions along the interfae are obtained.1 IntrodutionDelamination (or debonding) is one main reason for the marosopi failure of om-pounds. Opposite, sometimes delamination is an intentional mehanism in engineeringonstrutions designed for the e�ient absorption of energy during impats. In anyase, reliable modelling of delamination is important and has reently reeived a on-siderable attention both in engineering and in mathematial ommunities. As manyengineering ontributions [All02, AC96, DBS02, Lad92℄ the present paper views delam-ination as the damage of interfaes. Using the ideas of ontinuum damage mehanis,the delamination along an interfae ΓC is modelled by an inner variable, the delami-nation variable z : [0, T ]× ΓC → [0, 1], whih re�ets the urrent state of the bondingalong ΓC, i.e. for z(t, x) = 1 the bonding is fully intat at x ∈ ΓC at time t ∈ [0, T ],whereas for z(t, x) = 0 the bonding is ompletely broken. In [All02℄ it is suggestedto understand interfaes as the limit of a thin medium, whih links two onstituentsand whih follows its own onstitutive law. Suh interfae models have been exploitedin [PS96a, PS96b℄ to study delamination in the framework of the adhesion models ofFrémond, see e.g. [Fré88℄.In the present work suh a limit is rigorously performed: Starting from a sandwih-struture omposed of three onstituents of non-zero thikness, where the middle om-ponent is exposed to partial, isotropi damage, the delamination of two perfetly un-breakable speimen glued together with a breakable adhesive of thikness 0 is gainedwhen �attening the thikness of the middle omponent to 0, see also Fig. 1. Thedamage models applied for this purpose where analyzed in [TM10℄. The limit pas-sage is mathematially performed via a double limit. The �rst limit models desribedelamination with an energy funtional involving the delamination gradient and theyre�et transmission- and noninterpenetration onditions on the displaements u alongthe interfae, namely
z
[[
u
]]

= 0 and [[
u·n1

]]
≥ 0 a.e. on ΓC , (1.1)1



where [[u]] is the jump of u aross ΓC and n1 is the unit normal vetor. At this pointwe emphasize that the noninterpenetration ondition annot be obtained from anyonstitutive relation in the damageable domain. Sine the usage of the small straintensor presumes in�nitesimally small strains and hene exludes interpenetration inthe bulk, this additional unilateral ontat ondition rather results from an anisotropiterm in the stored energy density on the damageable domain, whih involves (tr e)−,the negative part of the trae of the small strain tensor e.The delamination gradient was also inluded in the models analyzed in [BBR08, BBR09℄.Due to this term, the delamination variable an attain values between 0 and 1. Thisproperty di�ers from those of rak-models based on Gri�th' frature riterion [Gri21℄,as studied e.g. in [DMFT04, FL03, Gia05℄. To overome this disrepany the gradientis suppressed in a seond limit κ → 0 and the delamination model disussed in [RSZ09℄is obtained. In fat, Proposition 4.4 implies that z in this model only takes the val-ues 0 or 1 for the initial datum z0 = 1. Then 1 − z is the indiator funtion of therak. Indeed, this model re�ets Gri�th' frature riterion, sine it expresses, that arak expands as soon as the energy release is bigger than a ritial value (the fraturetoughness ̺ in (4.5)) and rak-healing is forbidden.Both the damage and the delamination proesses are onsidered to be quasistati andhene an be analyzed using their so-alled energeti formulation. Our general frame-work will solely be based on the hypothesis that the evolution is governed by a time-dependent energy funtional E and a dissipation potential R being degree-1 positivelyhomogeneous, whih re�ets the rate-independene of the proess (i.e. invariane underany monotone resaling of time). Both funtionals are de�ned with respet to a suitablestate spae Q, whih is a Banah spae in this work. The triple (Q, E ,R) is alled arate-independent system. A state q = (u, z) ∈ U ×Z =: Q is given by the displaement�eld u and the inner variable z that desribes either damage or delamination. Weassume that R involves only z, whih distinguishes it as a �slow� variable while u is a�fast� variable. Within the energeti formulation of rate-independent proesses one isinterested in so-alled energeti solutions, whih are de�ned as follows:De�nition 1.1 (Energeti solution) The proess q = (u, z) : [0, T ] → Q is an en-ergeti solution of the initial value problem given by (Q, E ,R) and the initial ondition
(u0, z0), if q(0) = (u(0), z(0)) = (u0, z0), if t 7→ ∂tE(t, q(t)) ∈ L1((0, T )), if for all
t ∈ [0, T ] we have E(t, q(t)) < ∞ and if the global stability inequality (1.2 S) and theglobal energy balane (1.2E) are satis�ed for all t ∈ [0, T ]:for all q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) +R(z̃ − z(t)), (1.2 S)

E(t, q(t)) + DissR(z, [0, t]) = E(0, q(0)) +

∫ t

0

∂ξE(ξ, q(ξ)) dξ (1.2E)with DissR(z, [0, t]) := sup
{ ∑N

j=1R(z(tj)− z(tj−1)) | 0= t0<t1 <. . .<tN = t, N ∈N
}
.For the limit passages we will apply the abstrat result [MRS08, Theorem 3.1℄ forsequenes of rate-independent systems, whih generalizes the lassial ideas of Γ-onvergene to the rate-independent setting. While the lassial Γ-onvergene, seee.g. [DM93℄ ensures that minimizers of stati funtionals onverge to minimizers ofa limit funtional, if the lim inf-inequality and the existene of a reovery sequene is2



given, these two properties are not su�ient to verify an analogous impliation in therate-independent setting. In order to guarantee that energeti solutions qh : [0, T ] → Qof the approximating systems (Q, Eh,Rh) onverge as h → 0 to an energeti solution
q : [0, T ] → Q of the limit system (Q, E ,R) the properties (1.2) have to be main-tained under onvergene. The theorem [MRS08, Theorem 3.1℄, whih guarantees thisand whih is the basis of our onvergene results, is realled in Theorem A.1 in theAppendix. In partiular, the onservation of (1.2 S) an be veri�ed by the onstru-tion of a so-alled mutual reovery sequene, whih must preserve the interplay of thedisplaements and the inner variable required by the spei� form of the funtionals.In the present work the transmission ondition in (1.1) makes the onstrution of themutual reovery sequenes extraordinarily di�ult for both limit passages, sine itrequires a strong interation of the displaements and the inner variables. For the �rstlimit a re�etion tehnique is applied to the displaements, see Setion 3.2, and for theseond limit a generalized Hardy's inequality is used, see Setion 4.2.Another di�ulty lies in extrating the onditions (1.1) when passing from partial dam-age to delamination, sine this entails a loss of oerivity: For the modeling of damageand delamination it is harateristi that the stored energy density links the unknowns(linearized strain tensor e, inner variable z) multipliatively, e.g. as in W (e, z) := z|e|2.Thus, the oerivity of the partial damage proesses, i.e. z ∈ (εγ, 1] with γ > 0, is lostas ε → 0. Then, in general, regions with z = 0 isolating those with z > 0 from theDirihlet boundary may our, so that Korn's inequality does not hold. Due to this,e.g. in [BMR09℄ partial damage models result in a omplete damage model ontainingno information about the displaements. Anyhow to dedue (1.1) we transform thedamageable domains to a unit domain, see Fig. 1, and we use an ansatz ensuring thatthe limit z of a bounded sequene (uε, zε)ε∈(0,ε0] is onstant in the diretion vanishingas ε → 0, so that no isolated regions with z > 0 an our.In Setion 2 the setup, tools and an existene result for the partial, isotropi damagemodels are introdued. In Setion 3, a delamination model involving the delamina-tion gradient is obtained as the Γ-limit of these damage models. Then, in Setion4, it is shown that the gradient delamination models Γ-onverge to a model desrib-ing Gri�th-type delamination, whih no longer involves the (arti�ial) delaminationgradient. Finally, in Setion 5 the results are merged to a simultaneous onvergene.Remark 1.2 In [Tho10℄ the noninterpenetration ondition from (1.1) was deduedfrom the term e−11, whih involves only the �rst omponent of the strain tensor e,and not from the full trae (tr e)−, as it is done in this work in order to get loserto engineering models. Moreover, the transmission ondition from (1.1) was deduedunder the assumption that the damage omponent of states in sublevels of E is boundedin W 1,r(ΩD) for some r > d, whih implies the ompat embedding W 1,r(ΩD) ⋐ C(ΩD).In this work it was possible to generalize the results to r ∈ (1,∞). Hene, the limitpassage ε → 0 an be done for all r ∈ (1,∞) and p ∈ (1,∞), whih satisfy a ertainrelation, see (3.12). Here, W 1,r(ΩD) is the Sobolev spae for the damage variable and
W 1,p(Ω, Rd) denotes the Sobolev spae for the displaements. Relation (3.12) evenadmits the exponents r = 2 and p = 2 for d = 3. However, for tehnial reasons theseond limit passage κ → 0 is arried out as in [Tho10℄ for p > d. �3



2 The Damage Models, Assumptions and ToolsFor all ε∈ (0, ε0] we onsider a domain Ω:=(−L, L)×(−H, H)d−1, whih is the unionof the three uboid-type Lipshitz-domains Ωε
− := (−L,−ε)×ΓC, Ωε

+ := (ε, L)×ΓCfor L > 1, ΩεD := (−ε, ε)×ΓC ⊂ R
d with the interfaes Γε

± := {±ε}×ΓC ⊂ R
d−1 and

ΓC := (−H, H)d−1, see also Fig. 1a. We assume that the domains Ωε
± are oupiedby a nonlinearly elasti material whih is damage-resistive, whereas ΩεD refers to amaterial undergoing a rate-independent damage proess leading to partial damage ofthat speimen. This damage proess is assumed to be driven by slow time-dependentexternal loadings indued by time-dependent Dirihlet onditions on parts of the outerboundary ΓDir={L,−L}×ΓC with Ld−1(ΓDir)>0. Throughout this paper Lm(A) denotesthe m-dimensional Lebesgue-measure of the set A⊂R

m with m = (d−2), (d−1) or d.
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ε→0

x1, y1

x2

x3Fig.1. Geometry and notation of the uboid-type domains and surfaes used.a) Domain with a thin subdomain ΩεD undergoing possible damage. Loading isrealized through Dirihlet boundary onditions presribed on the sides ΓDir.b) Domain obtained for ε=0 with an interfae ΓC undergoing possible delamina-tion with a subsequent unilateral Signorini ondition.) Setup for the analysis: the original, ε-dependent domains Ωε
−, Ωε

+ and ΩεDare used for the displaements, whereas the auxiliary transformed damageabledomain ΩD of �xed size is used for the damage/delamination variable.For q = (u, z) the energy of the ompound Ω, see Fig. 1a, is given by:
Ẽκ

ε (t, u, z) :=

∫

Ωε
−
∪Ωε

+

W (e(u+g(t)))dx +

∫

ΩεD(WD(e(u+g(t)), z)+ κ
rε
|∇z|r+δ[εγ ,1](z)

)
dx, (2.1)where r ∈ (1,∞) and ε, κ > 0. Sine we are going to perform the limit passages

ε, κ → 0, we restrit our analysis to small values ε∈(0, ε0] and κ∈(0, κ0] for onstants
0<ε0 ≪ 1, 0<κ0 ≪ 1. For the stored elasti energy density WD : R

d×d
sym × [0, 1] → R of4



the damageable region we make a spei� ansatz for all e ∈ R
d×d
sym and z ∈ [0, 1], namely

WD(e, z) := zW̃ (e) + ϕ(tr e) , (2.2)where tr(e) =
∑d

i=1 eii and where ϕ : R → [0,∞) is onvex and satis�es
c̃(a−)p̂ ≤ ϕ(a) ≤ c

(
(a−)p̂−1 + 1

)
a− (2.3)with onstants c̃, c > 0 and an exponent p̂ ∈ (1, p] and a− := max{0,−a}. Thus, ϕ in(2.2) only takes into aount the negative part of tr e and hene punishes ompression,whih may trigger less damage than tension. More importantly, the ontribution of

ϕ(tr e) to WD in (2.2) guarantees that even the totally damaged material still resistsompression. As an example for (2.2) one may onsider an isotropi material oupledwith damage as follows
WD(e, z) := z

(
µ1|e|

2 + µ2|e|
p + λ

2
|(tr e)+|2

)
+ λ

2
|(tr e)−|2 ,where λ, µ > 0 are the Lamé onstants. Then p̂ = 2 and c̃ = c = λ/2 in (2.3). Theproperties of W and W̃ are explained in detail in Setion 2.1.In (2.1), u : Ω→R

d denotes the unknown displaement and e(w) :=1
2
(∇w+∇w⊤) thelinearized strain tensor for all w : Ω → R

d. Thereby u satis�es homogeneous Dirihletonditions on ΓDir and the given displaement g(t) = g(t, ·) : Ω → R
d with t ∈ [0, T ]inorporates the time-dependent Dirihlet ondition. Its properties are spei�ed inSubsetion 2.1. Moreover, z : [0, T ]×ΩεD → [0, 1] denotes the damage variable. Thefuntional Ẽκ

ε allows for partial damage only, whih is ensured by the indiator funtion
δ[εγ ,1] of the interval [εγ, 1] for γ >0, i.e. δ[εγ ,1](z)=0 if εγ≤z(x)≤1 for a.e. x∈ΩεD and
δ[εγ ,1](z)=∞ otherwise. However δ[εγ ,1] prevents total damage for eah ε∈ (0, ε0], butit will allow for omplete delamination in the limit ε=0.We assume that the damage proess is unidiretional, i.e. that healing of the materialis impossible, meaning ż ≤ 0, where ż = ∂tz is the partial derivative with respet totime. The evolution of the damage variable is desribed by the dissipation potential

R̃ε(v) :=

{ ∫
ΩεD −̺

ε
v dx if v ≤ 0 a.e. on ΩεD,

∞ otherwise, (2.4)for a onstant ̺ > 0 and v = ż.2.1 General Assumptions and Existene ResultWe now state general assumptions on the densities W, W̃ and the given data, andtherewith dedue the existene of energeti solutions to the model given by Ẽκ
ε and R̃ε.We assume that the Dirihlet data satisfy

g ∈ C1([0, T ], W 1,p(Ω, Rd)),

supp g(t) ∩ Ωε0D = ∅ for all t∈ [0, T ]

} (2.5)and we set ĉg := ‖g‖C1([0,T ],W 1,p(Ω,Rd)). Note that the seond assumption in (2.5) leadsto supp g(t) ∩ ΩεD = ∅ even for all ε∈(0, ε0].5



Furthermore we make the following hypotheses on the energy densities W : R
d×d
sym → R,

W̃ : R
d×d
sym → R of the damage-resistive and of the damageable materials:(2.6a) Convexity: W, W̃ : R

d×d
sym → R stritly onvex.(2.6b) Coerivity: ∃ p ∈ (1,∞), c, c̃, C̃ > 0 ∀e, ê ∈ R

d×d
sym :

c|e|p ≤ W (e) ≤ c̃(|e|p + C̃) , c|e|p ≤ W̃ (e) ≤ c̃(|e|p + C̃) .(2.6) Continuity of the stresses: ∃ c, C > 0 ∀ e, ê ∈ R
d×d
sym :

|∂eW (e)− ∂eW (ê)| ≤ C(c + |e|p−1 + |ê|p−1) |e− ê| .As a diret onsequene of (2.6a, b) one obtains, see [Da00, Theorem 2.31℄,(2.6d) Continuity: W, W̃ : R
d×d
sym → R ontinuously.Moreover, (2.6a, b) imply the following stress ontrol for the densities(2.6e) Stress ontrol: ∃ c, C > 0 ∀e, ê ∈ R

d×d
sym :

|∂eW (e)| ≤ c(|∂eW (e)|p−1 + C) , |∂eW̃ (e)| ≤ c(|∂eW̃ (e)|p−1 + C) .In view of (2.2) we realize that the omposed density
W (x, e, z) :=

{
W (e) if x ∈ Ωε

− ∪ Ωε
+

WD(e, z) if x ∈ ΩD (2.7)also satis�es (2.6a-e) with onstants that depend on ε and(2.6f) Monotoniity: ∀ε ∈ (0, ε0] ∃K > 0, K̃ ≥ 0 ∀e ∈ R
d×d, εγ ≤ z ≤ z̃ ≤ 1 :

W (e, z) ≤ W (e, z̃) ≤ K(W (e, z) + K̃).This is a property of partial damage. Due to (2.6b) we introdue the spaes
UD := {u ∈ W 1,p(Ω, Rd) | u = 0 on ΓDir} , Zε := W 1,r(ΩεD) , Qε := UD × Zε (2.8)and S̃κ

ε (t) := {q ∈Qε | Ẽ
κ
ε (t, q) <∞, Ẽκ

ε (t, q)≤ Ẽκ
ε (t, q̃)+R̃ε(z̃−z) for all q̃ ∈Qε} denotethe stable sets at time t.For all �xed ε∈(0, ε0], κ∈(0, κ0] the rate-independent systems (Qε, Ẽ

κ
ε , R̃ε) thus �t tothe setting studied in [TM10℄ so that the existene of energeti solutions is guaranteed.Proposition 2.1 (Energeti solutions of (Qε, Ẽ

κ
ε , R̃ε), [TM10, Theorem 3.1℄)For all ε ∈ (0, ε0] and κ ∈ (0, κ0] �xed, let the rate-independent system (Qε, Ẽ

κ
ε , R̃ε)be de�ned via (2.1)-(2.5). Let p, r ∈ (1,∞). Then, for (Qε, Ẽ

κ
ε , R̃ε) and for any ini-tial state q0 ∈ S̃

κ
ε (0), there exists an energeti solution q of the initial-value problem

(Qε, Ẽ
κ
ε , R̃ε, q0).2.2 The Damage Model in a Fixed State SpaeFirst, κ ∈ (0, κ0] remains �xed. As ε → 0 the d-dimensional domain ΩεD shrinks to the

(d−1)-dimensional interfae ΓC between the domains Ω±, see Fig. 1a, b, and we want6



to show that (Qε, Ẽ
κ
ε , R̃ε)ε∈(0,ε0] onverges to a rate-independent proess desribing thedelamination along the interfae. Thus, it is neessary to reformulate the ε-problemsin a �xed state spae Q. In partiular, for all ε ∈ (0, ε0], we use damage variables thatare de�ned on a �xed domain ΩD = (−1, 1) × ΓC, see Fig. 1a, . Hene, from now onwe onsider z : ΩD → [0, 1] and the energy funtionals Ẽκ

ε have to be adapted. This isrealized with the following mapping:
Tε : ΩD → ΩεD, Tεy = (εy1, s) = x ∈ ΩεD for y = (y1, s) ∈ ΩD, (2.9)with s = (x2, . . . , xd) ∈ ΓC. For all ε ∈ (0, ε0] this transformation is wellde�ned,ontinuous and and invertible. Then we introdue the following transformation:

Πε : L1(ΩεD) → L1(ΩD) , z̃ 7→ z̃ ◦ Tε . (2.10)In view of (2.9) and (2.10) we obtain that the gradient of z̃ transforms as follows:
∇xz̃(x) = ∇yΠεz̃(y)∇xy =

(
1
ε
∂y1

Πεz̃(y), (∇sΠεz̃(y))⊤
)⊤

=: ε∇Πεz̃(y) , (2.11)where we used ∇s := (∂y2
, . . . , ∂yd

)⊤.We are now in a position to de�ne a �xed state spae by
U := {u ∈ W 1,p(Ω− ∪ Ω+, Rd) | u = 0 on ΓDir} , Z := L∞(ΩD) , Q := U × Z . (2.12)With UD as in (2.8) the state spae for the approximating problems is given by

ZD := W 1,r(ΩD) with r ∈ (1,∞) , QD := UD × ZD . (2.13)Therewith we introdue the extended energy funtionals Eκ
ε : [0, T ]×Q → R∞

Eκ
ε (t, q) :=

{
ΠEκ

ε (t, q) if q = (u, z) ∈ QD,
∞ if q ∈ Q\QD, where (2.14)

ΠEκ
ε (t, u, z) :=

∫

Ωε
−
∪Ωε

+

W (e(u+g(t))dx+

∫

ΩεD WD(e(u), Π−1
ε z)dx+

∫

ΩD(
κ
r
|ε∇z|r+δ[εγ ,1](z)

)
dy.Here we used that supp g(t) ∩ ΩεD = 0 for all ε ∈ (0, ε0] and all t ∈ [0, T ]. Comparedto Ẽκ

ε in (2.1) the funtional ΠEκ
ε allows for z : ΩD → [0, 1]. Therefore one has to use

Π−1
ε z in in the seond integral. Only the integral ontaining the damage gradient istransformed from ΩεD to ΩD. This requires to use ε∇z from (2.11) and involves a fator

ε, whih anels out 1/ε in (2.1). Additionally we used that εδ[εγ ,1](z) = δ[εγ ,1](z). Inview of the transformations (2.9), (2.10) we note that
εγ ≤ z ≤ 1 a.e. on ΩD is equivalent to εγ ≤ Π−1

ε z ≤ 1 a.e. on ΩεD . (2.15)As we now use the state spae Q we also transform the dissipation potential (2.4)leading to the potential R : Z → [0,∞] with
R(v) :=

{ ∫
ΩD −̺ v(y) dy if v ≤ 0 a.e. on ΩD,
∞ else. (2.16)7



Remark 2.2 Sine ̺ > 0 we �nd the oerivity R(v) ≥ ̺‖v‖L1(ΩD). Moreover, R :

L1(ΩD) → [0,∞] is onvex and both weakly and strongly lower semiontinuous. How-ever, the lak of strong upper semiontinuity makes the theory tehnially di�ult.For all t∈ [0, T ] we now de�ne the stable sets of the transformed problems by
Sκ

ε (t) :={q∈Q | Eκ
ε (t, q)<∞, Eκ

ε (t, q)≤Eκ
ε (t, q̃)+R(z̃−z) for all q̃∈Q}.We an rewrite the rate-independent systems (Qε, Ẽ

κ
ε , R̃ε) by the equivalent systems

(Q, Eκ
ε ,R). It remains to transfer the existene result stated in Proposition 2.1 for

(Qε, Ẽ
κ
ε ,Rε) to (Q, Eκ

ε ,R). For this we �rst show that ∂tE
κ
ε (t, q) is well-de�ned for all

q ∈ Q if Eκ
ε (t∗, q) < ∞ for some t∗ ∈ [0, T ].Proposition 2.3 (Well-posedness of ∂tE

κ
ε ) Keep ε ∈ (0, ε0], κ ∈ (0, κ0] �xed. Let

(Q, Eκ
ε ,R) be given by (2.12), (2.14) and (2.16) so that (2.5) and (2.6) hold with

p, r ∈ (1,∞). Then, for all (tq, q)∈ [0, T ]×Q with Eκ
ε (t∗, q)<∞ it is Eκ

ε (·, q)∈C1([0, T ])with
∂tE

κ
ε (t, q)=

∫

Ω
ε0
−
∪Ω

ε0
+

∂eW (e(u+g(t))) :∂te(g(t)) dx . (2.17)Proof: Beause of (2.1), (2.14) and (2.10) it is Eκ
ε (t∗, u, z) = Ẽκ

ε (t∗, u, Π−1
ε z) < ∞.Sine ∫

ΩD κ
r
|ε∇z|r dy with z ∈ ZD does not depend on t ∈ [0, T ] we onlude that

∂tE
ε
κ(t, u, z) = ∂tẼ

ε
κ(t, u, Π−1

ε z), whih is given by formula (2.17).This result is used to adapt Proposition 2.1 to the transformed funtionals.Proposition 2.4 (Energeti solutions of (Q, Eκ
ε ,R)) For all ε∈ (0, ε0], κ∈ (0, κ0]�xed, let (Q, Eκ

ε ,R) be de�ned via (2.12), (2.14) and (2.16) suh that (2.5) and (2.6)hold with p, r ∈ (1,∞). Then, for (Q, Eκ
ε ,R) and for any initial state q0 ∈ S

κ
ε (0), thereexists an energeti solution q : [0, T ] → Q of the initial value problem (Q, Eκ
ε ,R, q0).Proof: Consider (Q, Eκ

ε ,R) with the initial state q0 = (u0, z0) ∈ S
κ
ε (0). By (2.14)and (2.16) we �nd that (u0, Π

−1
ε z0)∈S̃

κ
ε (0). Then Proposition 2.1 states the existeneof an energeti solution q = (u, z) : [0, T ] → Qε of (Qε, Ẽ

κ
ε , R̃ε) with (u(0), z(0)) =

(u0, Π
−1
ε z0). We want to show that (u, Πεz) is an energeti solution of (Q, Eκ

ε ,R, q0).To verify that (u(t), Πεz(t))∈Sκ
ε (t) we use that (u(t), z(t))∈ S̃κ

ε (t). The bijetivity of
Πε : Zε →ZD and (2.15) imply that Ẽκ

ε (t, ũ, Πεz̃) <∞ sine Eκ
ε (t, ũ, z̃) <∞. Applying

Πε and transforming the integrals in stability ondition (1.2 S) yields the stabilityof (u(t), Πεz(t)), i.e. Eκ
ε (t, u(t), Πεz(t)) ≤ Eκ

ε (t, ũ, Πεz̃)+R(Πεz̃−Πεz(t)). The energybalane (1.2E) follows diretly from DissR(Πεz, [0, t])=Diss eRε
(z, [0, t]) and Proposition2.3, sine ∂tE

κ
ε (t, u(t), Πεz(t))=∂tẼ

κ
ε (t, u(t), z(t)).2.3 The Topologies T , TT and a uniform Korn's InequalityIn the following we speify a suitable topology on the �xed state spae Q, whih allowsus to show that a subsequene of energeti solutions of (Q, Eκ

ε ,R) onverges to anenergeti solution of the limit system as ε → 0 and as κ → 0 respetively.8



For the analysis we will onsider sequenes of systems (Q, Eκ
ε ,R)ε∈(0,ε0] and sequenes

(tε, qε)ε∈(0,ε0] ⊂ [0, T ]×Q. The notation ε ∈ (0, ε0] always stands for ountably manyindies ε ∈ (0, ε0] satisfying ε → 0. The indiations (Q, Eκ,R)κ∈(0,κ0] and (qκ)κ∈(0,κ0]have to be understood similarly.Sine Eκ
ε (tε, uε, zε) ≤ E for some E ∈ [0,∞) implies that ‖zε‖L∞(ΩD) ≤ 1, a suitabletopology on Z=L∞(ΩD) is the weak∗-topology of L∞(ΩD). In view of (2.14) and (2.6b)we obtain that ‖e(uε+g(tε))‖Lp(Ωε

−
∪Ωε

+
,Rd×d)≤E. By the triangle inequality, assumption(2.6) and Korn's inequality on eah of the domains Ωε

− ∪ Ωε
+ we �nd a onstant Ẽsuh that ‖uε‖W 1,p(Ωε

−
∪Ωε

+
,Rd)≤ Ẽ, provided that the onstants in Korn's inequality areuniformly bounded, whih is ensured below. Therefore the onvergene of a sequene

(uε, zε)ε∈(0,ε0] to a limit (u, z) has to be understood as follows
(uε, zε)

T
−→ (u, z) ⇔

{
uε ⇀ u in W 1,p(Ων

− ∪ Ων
+, Rd) for all ν ∈ (0, ε0],

zε
∗
⇀ z in L∞(ΩD).

(2.18)With the funtions uε(x) = tanh(x1/ε) one an see that uε ⇀ u in W 1,p(Ων
− ∪ Ων

+) forall ν ∈ (0, ε0] does not imply uε ⇀ u in W 1,p(Ω− ∪ Ω+).To speify the onvergene of sequenes of pairs (tε, qε) ∈ [0, T ]×Q we de�ne
(tε, qε)

TT−→ (t, q) ⇔ tε → t and qε
T
−→ q. (2.19)As already mentioned a uniform Korn's inequality is required for the domains Ωε

−∪Ωε
+.Theorem 2.5 (Korn's inequality for a family of domains) For all 0 < ε ≤ ε0let Ωε

± ⊂ Ω± be the Lipshitz domains depited in Fig.1a and let p ∈ (1,∞). Thenthere is a onstant cK > 0, suh that for all 0 < ε ≤ ε0 and all v ∈ W 1,p(Ω±, Rd) with
v = 0 on ΓDir in the trae sense we have

‖v‖W 1,p(Ωε
±

,Rd) ≤ cK‖e(v)‖Lp(Ωε
±

,Rd×d) . (2.20)Proof: It su�es to prove the result for Ωε
+ and Ωε

− separately. We restrit ourselvesto Ωε
+, the proof for Ωε

− is analogous.We transform Ωε
+ = (ε, L)× ΓC into Ω+ = (0, L)× ΓC via the invertible mapping

τε : Ω+ → Ωε
+, (y1, s) 7→ (ε+α(ε)y1, s) , where α(ε) = (1−ε/L) . (2.21)For vε := v ◦ τε ∈ W 1,p(Ω+, Rd) we obtain that

∇yvε(y) = ∇xv(τε(y))∇yτε(y) and ∇xv(x) = ∇yvε(τ
−1
ε (x))∇xτ

−1
ε (x) , (2.22)where ∇yτε = diag(α(ε), 1, . . . , 1), y = (y1, s) ∈ Ω+ and x = (x1, s) ∈ Ωε

+ with
x1 = ε+α(ε)y1.Using these relations and exploiting Korn's inequality on Ω+ results in a uniform Korn'sinequality for all ε ∈ (0, ε0] :

‖v‖p
W 1,p(Ωε

+
) = ‖v‖p

Lp(Ωε
+

) + ‖∇xv‖
p
Lp(Ωε

+
) = α(ε)

(
‖vε‖

p
Lp(Ω+) + ‖∇yvε∇xτ

−1
ε ‖p

Lp(Ω+)

)

≤ α(ε)−p+1
(
‖vε‖

p
Lp(Ω+) + ‖∇yvε‖

p
Lp(Ω+)

)
≤ α(ε0)

−p+1Cp
K‖e(vε)‖

p
Lp(Ω+)

≤ α(ε0)
−pCp

K‖e(v)‖p
Lp(Ωε

+
) . 9



3 The �rst Γ-limit: Gradient DelaminationOur aim for this setion is to show that (Q, Eκ
ε ,R)ε∈(0,ε0] Γ-onverges to the limit system

(Q, Eκ,R) as ε → 0, see Fig. 1b, where Eκ : [0, T ]×Q → R∞ is given by
Eκ(t, q) :=





∫

Ω−∪Ω+

W (e(u+g(t))) dx +

∫

ΩD(
κ
r
|∇z|r+δ[0,1](z)

)
dy if q=(u, z)∈QC,

∞ if q ∈ Q\QC ,

(3.1)
ZC := {z ∈ W 1,r(ΩD) | ∂y1

z = 0} with r ∈ (1,∞) , (3.2)
QC :=

{
q = (u, z) ∈ U × ZC ∣∣ TCz[[u]]

= 0 and [[
u·n1

]]
≥ 0 a.e. on ΓC} (3.3)with U from (2.12). Moreover, TCz=z|ΓC in the trae sense, whih is well-de�ned in ZC,and [[·]] denotes the jump of a funtion de�ned on Ω−∪Ω+ aross ΓC in the trae sense.The onstraint TCz[[u]] = 0 a.e. on ΓC inorporates a transmission ondition, namely

[[u]] = 0 whenever TCz > 0. This ondition was already used in [Fré88℄. Furthermore
n1 := (1, 0, . . . , 0) stands for the unit normal vetor to ΓC. Thus the ondition [[u·n1]] ≥ 0a.e. on ΓC prevents the interpenetration of the material of Ω− and Ω+.If (u, z) ∈ QC and v ∈ ZC we �nd that Eκ(t, q) and R(v) equivalently read

Eκ(t, u, z)=

∫

Ω−∪Ω+

W (e(u+g(t))) dx + 2

∫

ΓC(
κ
r
|∇sTCz|r+δ[0,1](TCz)

)
ds , (3.4)

R(v)=





2

∫

ΓC−̺ TCv(s) ds if TCv ≤ 0 Ld−1-a.e. on ΓC ,

∞ otherwise (3.5)with s := (x2, . . . , xd) and∇s := (∂x2
, . . . , ∂xd

). This shows that the limit system indeedmodels delamination along ΓC. For all t∈ [0, T ] we introdue the stable sets
Sκ(t) :={q=(u, z)∈Q | Eκ(t, q)<∞, Eκ(t, q)≤Eκ(t, q̃)+R(z̃−z) for all q̃=(ũ, z̃)∈Q} .The onvergene result, whih will be proven in the next subsetion, is the following:Theorem 3.1 (Γ-onvergene of the damage problems) Let assumptions (2.5)and (2.6) be valid with r, p ∈ (1,∞), and γ ∈ (p−1, P ) satisfying (3.12) and (3.9).Keep κ ∈ (0, κ0] �xed. For all ε ∈ (0, ε0] let qε : [0, T ] → Q be an energeti solutionof (Q, Eκ

ε ,R) given by (2.12), (2.14) and (2.16). If the initial values satisfy qε
0

T
−→ q0and Eκ

ε (0, qε
0) → Eκ(0, q0), then the damage problems (Q, Eκ

ε ,R)ε∈(0,ε0] Γ-onverge tothe delamination problem (Q, Eκ,R) given by (2.12), (3.1) and (2.16) in the sense ofTheorem A.1.Proof: Theorem 3.1 is proven by heking the assumptions (A.1)�(A.3) of TheoremA.1. The lower Γ-limit of R, i.e. ondition (A.3-C4) here follows from the weak se-quential lower semiontinuity of R on Z. Conditions (A.1), (A.3-C1) and (A.3-C3) areshown in Subsetion 3.1 and ondition (A.3-C2) is veri�ed in Subsetion 3.2.The existene of a subsequene (zε)ε∈(0,ε0] is obtained by repeating the arguments of[MM05, Theorem 3.2℄, using the bound (3.7b), Helly's seletion priniple and the fat10



that min{R(zk − z),R(z − zk)} → 0 implies zk
∗
⇀ in L∞(ΩD). For the orrespondingsubsequene (uε)ε∈(0,T ] the bound (3.7a) provides a further subsequene uε̃(t) ⇀ u(t)in W 1,p(Ων

− ∪ Ων
+, Rd) uniformly for a ountable hoie of indies ν → 0 and Lemma3.9 implies that (u(t), z(t)) ∈ Sκ(t) for all t ∈ [0, T ]. Due to the strit onvexity of Wby (2.6a) the funtional Eκ(t, ·, z(t)) has a unique minimizer, so that u(t) is the onlyaumulation point, i.e. uε(t) ⇀ u(t) in W 1,p(Ων

− ∪ Ων
+, Rd) for all ν ∈ (0, ε0] and all

t ∈ [0, T ] even for the whole subsequene.3.1 Compatness of Sublevels, Lower Γ-limit, Conditions on ∂tE
κ
ε , ∂tE

κIn the following we verify the onditions on the energy funtionals omplying with(A.1), (A.3-C1) and (A.3-C3). As a diret onsequene of stability (1.2 S) one obtainsthat the energeti solutions of the approximating problems have an equibounded en-ergy; to see this one may hek (1.2 S) for the energeti solutions and the states (û, ẑε)with û = 0 and ẑε = εγ. To ensure that the equiboundedness of the energies impliesthe equiboundedness of the orresponding states we establish the following a prioriestimates as a onsequene of the oerivity (2.6b).Lemma 3.2 (A priori estimates uniform for κ ∈ [0, κ0]) Let (2.5), (2.6) hold, let
t ∈ [0, T ] and keep κ∈ [0, κ0] �xed. For all ε∈(0, ε0], all ν ∈ [ε, ε0] and all q = (u, z) ∈ Qwith Eκ

ε (t, q) < ∞ it is
Eκ

ε (t, q) ≥ 21−pc
cp
K

‖u‖p
W 1,p(Ων

−
∪Ων

+
,Rd)

+ κ
r
‖ε∇z‖r

Lr(ΩD) − C (3.6)with C =ccp
g and ‖ε∇z‖r

Lr(ΩD,Rd)≥‖∇z‖r
Lr(ΩD,Rd)≥‖z‖

r
W 1,r(ΩD)−L

d(ΩD) for all ε∈(0, ε0].Moreover, Eκ
ε (t, q) < ∞ implies that ‖z‖L∞(ΩD) ≤ 1.Proof: Let q = (u, z) ∈ Q with Eκ

ε (t, q) < ∞. Keep ν ∈ (0, ε0] �xed. Then Ων
−∪Ων

+ ⊆
Ωε
− ∪Ωε

+ for all ε ≤ ν. From hypothesis (2.6b), (2.5) and the uniform Korn's inequality(2.20), where we exploit the Dirihlet-onditions on the Lipshitz-domains Ων
±, we infer

Eκ
ε (t, q) ≥

∫

Ων
−
∪Ων

+

W (e(u+g(t))) dx + κ
r
‖ε∇z‖r

Lr(ΩD,Rd)

≥ c‖e(u+g(t))‖p
Lp(Ων

−
∪Ων

+
,Rd×d)

+ κ
r
‖∇z‖r

Lr(ΩD,Rd)

≥21−pc‖e(u)‖p
Lp(Ων

−
∪Ων

+
,Rd×d)

− ccp
g + κ

r
‖∇z‖r

Lr(ΩD,Rd)

≥ 21−pc
cp
K

‖u‖p
W 1,p(Ων

−
∪Ων

+
,Rd)

− ccp
g + κ

r
‖z‖r

W 1,r(ΩD) −
κ
r
Ld(ΩD) ,where we used that ε−1 > 1 for all 0 < ε < 1. The last statement of the lemma diretlyfollows from δ[εγ ,1](z(y)) = ∞ if z(y) /∈ [εγ, 1] in (2.14).Proposition 3.3 (A priori estimates for energeti solutions) Let (2.5) as wellas (2.6) hold. Keep κ∈(0, κ0] �xed. For all ε∈(0, ε0] let qε : [0, T ] → Q be an energetisolution of (Q, Eκ

ε ,R, qε
0). Then there are onstant Ẽ, C independent of κ and ε, suhthat for all t ∈ [0, T ] and for all �xed ν ∈ (0, ε0] the following uniform bounds are valid

‖uε(t)‖W 1,p(Ων
±

,Rd) ≤ Ẽ , ‖zε(t)‖L∞(ΩD) ≤ 1 , (3.7a)
DissR(zε, [0, t]) ≤ C . (3.7b)11



Proof: For all ε ∈ (0, ε0] the funtion qε : [0, T ] → Q is an energeti solution of
(Q, Eκ

ε ,R). Hene, for all t ∈ [0, T ] they satisfy Eκ
ε (t, qε(t)) < ∞, whih implies that

εγ ≤ zε(t, x) ≤ 1 for a.e. x ∈ ΩD, for all t ∈ [0, T ] and all ε ∈ (0, ε0]. Stability inequality(1.2 S) with qε(t) and q̃ = (0, εγ) yields Eκ
ε (t, qε(t)) ≤ Eκ

ε (t, q̃) + R(z̃−zε(t)) ≤ E forall t ∈ [0, T ] by (2.5), so that (t, qε(t))ε∈(0,T ] is a stable sequene and their energies areequibounded for all t ∈ [0, T ]. Using estimate (3.6) �nishes the proof of (3.7a).Beause of Eκ
ε (0, qε(0)) ≤ C and ∫ t

0
∂ξE

κ
ε (ξ, qε(ξ)) dξ ≤ cgT (ĉE + ĈLd(Ω)) for all t ∈

[0, T ], whih is due to stress ontrol (2.6), energy balane (1.2E) yields (3.7b).With Proposition 3.4 we then ensure that the equiboundedness of sequenes enablesus to extrat subsequenes onverging with respet to T to an element in QC, given by(3.3). The Items (1.) and (2.a) in Proposition 3.4 result from the oerivity inequality(3.6), whih yields uniform boundedness of uε in W 1,p(Ων
− ∪ Ων

+, Rd) for all �xed ν ∈
(0, ε0] and hene, using Cantor's diagonal proess, the onvergene of a subsequene forall �xed ν. Moreover, (2.b) results from the uniform boundedness of the gradient termfor �xed κ ∈ (0, κ0]. Item (2.) an be gained from the term (tr e(uε))

− inluded to
WD, see (2.2), using the Lebesgue-Besiovith di�erentiation theorem to express [[u1]] ∈
L1(ΓC) in the Lebesgue points ŝ ∈ ΓC and then Gauss' theorem on balls Br(ŝ) ⊂ ΓC.In this ontext we use the following relation for the trae mapping

T :

{
W 1,p(A) → Lq′(∂A),

u 7→ u|∂A,
if {

p < d and 1 ≤ q′ ≤ (d− 1)p/(d− p) ,

p = d and q′ ∈ [1,∞) ,
(3.8)to obtain that ∣∣∣

∫
∂A

∫ ε

−ε
uε ·n dx1 da

∣∣∣ ≤ (2ε)(q′−1)/q′Ld−2(∂A)‖uε‖Lq′(Iε×∂A)
!
→ 0, where

A = Br(ŝ) and ‖uε‖W 1,p(ΩεD,Rd) ≤ Cε−γ/p by Π−1
ε zε∈ [εγ , 1]. This leads to the followingondition on γ:

γ < P , where P =

{
(p−1)d/(d−1) if p < d ,

p if p ≥ d .
(3.9)Moreover, for γ < p−1 one obtains that

‖∇uε‖L1(ΩεD,Rd×d) ≤ Cε
p−1−γ

p → 0 ,whih implies that jumps are prevented. In order to admit nontrivial displaementjumps in points where z = 0 we thus have to assume γ > p−1.Item (2.d) is equivalent to ∫
ΓC |TCz[[u]]| ds = 0. This is obtained by onsidering thetraes of the approximating sequene (uε)ε∈(0,ε0] on {±ν}×ΓC and by passing to 0 �rstwith ε, then with ν. To estimate the traes TCΠ−1

ε zε on {0} × ΓC we use that
εγ ≤ Π−1

ε zε ≤ 1 Ld-a.e. in ΩεD ⇒ εγ ≤ TCΠ−1
ε zε ≤ 1 Hd−1-a.e. on {0} × ΓC . (3.10)This is due to the fat that ΩεD an be extended to a Lipshitz domain Ω̃ ⊃ ΩεD.Moreover, C(Ω̃) is dense in W 1,r(Ω̃) and {v : Ω̃ → [0, 1]} is a losed subset both of

C(Ω̃) and of W 1,r(Ω̃). Then (3.10) follows by density arguments.When proving that ∫
ΓC |TCz[[u]]| ds = 0, we have to handle terms of the form

∫

ΩεD |uε|
∣∣Π−1

ε zε(ε)− TCΠ−1
ε zε

∣∣ ds ≤ ‖uε‖Lq′ (ΩεD,Rd)‖∂x1
Π−1

ε zε‖Lq(ΩεD) ,12



where q′ = q/(q−1). We need q < r for Π−1
ε zε ∈ W 1,r(ΩεD) to show that the seondfator an be estimated by cεα‖Π−1

ε zε‖W 1,r(ΩεD) with some α > 0. Hene, we have toensure that uε ∈ Lq′(ΩεD, Rd) using the embedding
W 1,p(ΩεD, Rd) → Lq′(ΩεD, Rd) if {

p < d and 1 ≤ q′ ≤ dp/(d−p) ,

p = d and q′ ∈ [1,∞) ,
(3.11)see [Ada75, Th. 5.4℄. This leads to the following admissible ombinations of r and p:

r ∈ (1, d) and p ∈ [rd/(rd−d+r),∞) or
r ∈ [d,∞) and p ∈ (1,∞) .

} (3.12)Thus, the transmission ondition (2.d) an be veri�ed using impliation (3.10) togetherwith the onditions (3.12) and (3.9) on r, p and γ.Note that not every ombination of r, p < d is admissible. But the ase d = 3, r = p = 2is inluded in the �rst line of (3.12), sine then 3 > r = p = 2 > rd/(rd−d+ r) = 6/5.Proposition 3.4 (Properties of sequenes with equibounded energies) Let theenergy funtionals Eκ
ε be given by (2.14) suh that the assumptions (2.5) and (2.6) hold.Let κ ∈ (0, κ0] �xed and (tε)ε∈(0,ε0] ⊂ [0, T ]. Let r, p ∈ (1,∞) and γ ∈ (p − 1, P ) suhthat (3.12) and (3.9) hold. Assume that Eκ

ε (tε, uε, zε) ≤ E for all ε ∈ (0, ε0]. Then(1.) there is a subsequene (uε, zε)
T
−→ (u, z) as ε → 0,(2.) the limit satis�es (u, z) ∈ QC, i.e.(2.a) u ∈ W 1,p(Ω− ∪ Ω+, Rd), u = 0 on ΓDir in the trae sense,(2.b) z ∈ W 1,r(ΩD), 0 ≤ z(y) ≤ 1 and ∂y1

z(y) = 0 for all y ∈ ΩD,(2.) [[u·n1]] ≥ 0 a.e. on ΓC,(2.d) TCz[[u]] = 0 a.e. on ΓC.Moreover, for γ < p−1 jumps are prevented, i.e. [[u]] = 0 a.e. on ΓC.Proof: Reall Q from (2.12), Eκ
ε from (2.14) and QC from (3.3).Ad (1.) and (2.a): From Eκ

ε (tε, qε) ≤ E we infer that εγ ≤ zε ≤ 1 a.e. in ΩD. Sinethe unit ball of L∞(ΩD), whih is the dual spae of L1(ΩD), is weakly∗ sequentiallyompat by the theorem of Banah-Alaoglu we �nd a subsequene zε
∗
⇀ z in L∞(ΩD).The equiboundedness of the energies together with oerivity estimate (3.6) yields that

‖uε‖W 1,p(Ων
−
∪Ων

+
,Rd) are uniformly bounded for all ε ≤ ν. For a ountable set of indies νwith ν → 0 we obtain by Cantor's diagonal proess that there is a subsequene uε ⇀ uin W 1,p(Ων

−∪Ων
+, Rd) as ε → 0 for all ν, due to the re�exivity of W 1,p(Ων

−∪Ων
+, Rd). As

ν → 0 we onlude that u ∈ W 1,p(Ω− ∪ Ω+, Rd) with u = 0 on ΓDir in the trae sense.This proves the existene of a subsequene qε
T
−→ q.Ad (2.b): The equiboundedness of the energies together with (3.6) yields that

‖zε‖
r
W 1,r(ΩD) ≤ r(E+Ld(ΩD))/κ as well as ‖∂y1

zε‖
r
Lr(ΩD) ≤ εrrE/κ. Due to the re�ex-ivity of W 1,r(ΩD) there is a subsequene zε ⇀ z in W 1,r(ΩD) with ∂y1

z = 0 a.e. in
ΩD. Beause of the ompat embedding W 1,r(ΩD) ⋐ Lr(ΩD) and Riesz' onvergenetheorem there is a subsequene [εγ, 1] ∋ zε(y) → z(y) ∈ [0, 1] pointwise for a.e. y ∈ ΩD.Hene, z ∈ [0, 1] a.e. in ΩD. 13



Ad (2.): To verify that [[u1]] ≥ 0 a.e. on ΓC we use the Lebesgue-Besiovith di�er-entiation theorem, see [AFP05, Corollary 2.23℄, stating for [[u1]] ∈ L1(ΓC) that
[[
u1(ŝ)

]]
= lim

r→0

1

Ld−1(Br(ŝ))

∫

Br(ŝ)

[[
u1(s)

]]
ds for a.a. ŝ ∈ ΓC (3.13)with Br(ŝ) := {s ∈ ΓC | |s− ŝ| < r}. Hene it su�es to show that

∫

Br(ŝ)

[[
u1(s)

]]
ds ≥ 0 for a.a. ŝ ∈ ΓC and all r ≤ r(ŝ) . (3.14)Omitting to indiate the dependene of u on s we �rst dedue the following relation

∫

Br(ŝ)

[[
u1

]]
ds = lim

ν→0

∫

Br(ŝ)

(
u1(ν)− u1(−ν)

)
ds = lim

ν→0
lim
ε→0

∫

Br(ŝ)

(
u1

ε(ν)− u1
ε(−ν)

)
ds (3.15)for the subsequene uε ⇀ u in W 1,p(Ων

− ∪ Ων
+, Rd) for all ν ∈ (0, ε0] obtained in (1.)from the equiboundedness of Eκ

ε (tε, uε, zε). Moreover, note that the �rst equality resultsfrom the fat that the linear, ontinuous trae operators S±ν : W 1,p(Ω±) → L1(ΓC),
S±ν v=(v(±ν, s)−v±), for v± being the trae of v|Ω± ∈ W 1,p(Ω±) onto ΓC, satisfy theestimate ‖S±ν ‖ ≤ ν

p−1

p (Ld−1(ΓC)) p−1

p , whih follows with Hölder's inequality.Now it remains to verify that the expression in line (3.15) is positive. Using Gauÿ'theorem we obtain that
∫

Br(ŝ)

(
u1

ε(ν, s)− u1
ε(−ν, s)

)
ds =

∫

Br(ŝ)

∫ ν

−ν

div uε dx1 ds−

∫

∂Br(ŝ)

∫ ν

−ν

uε · n da ,with n as the outer unit normal vetor to (−ν, ν)×∂Br(ŝ). Hene, (3.14) holds true, if
lim
ν→0

lim
ε→0

∫

Br(ŝ)

∫ ν

−ν

div uε dx1ds ≥ 0 (3.16)and lim
ν→0

lim
ε→0

∫

∂Br(ŝ)

∫ ν

−ν

uε · n da → 0 . (3.17)For (3.16) we deompose divuε =(divuε)
+−(divuε)

− with (divuε)
+ =max{0, divuε} and

(divuε)
− = max{0,−divuε}. Showing limν→0 lim supε→0

∫
Br(ŝ)

∫ ν

−ν
(div uε)

− dx1ds = 0we are done. To do so, we hoose a subsequene in ε whih attains the limit superior.Due to (2.2) and the oerivity inequalities (2.3) and (2.6b) for ϕ and W the equi-boundedness of Eκ
ε (tε, uε, zε) yields that ‖(divuε)

−‖Lp̂(Ω) ≤ C for all ε ∈ (0, ε0] on thedomain Ω with p̂ ∈ (1, p], see (2.2). Thus, we �nd a further subsequene (divuε)
− ⇀ bin Lp̂(Ω) and obtain

lim
ν→0

lim
ε→0

∫

Br(ŝ)

∫ ν

−ν

(div uε)
− dx1 ds = lim

ν→0

∫

Br(ŝ)

∫ ν

−ν

b dx1 ds = 0 .Hene (3.16) is established.For the proof of (3.17) we deompose the integral as follows
∫

∂Br(ŝ)

∫ ν

−ν

uε · n dx1 da =

∫

∂Br(ŝ)

(∫ −ε

−ν

+

∫ ε

−ε

+

∫ ν

ε

)
uε · n dx1 da . (3.18)14



First, let p ≤ d. Using Hölder's inequality we obtain that
∣∣∣±

∫

∂Br(ŝ)

∫ ±ν

±ε

uε · n dx1 da
∣∣∣ ≤ ±

∫

∂Br(ŝ)

∫ ±ν

±ε

|uε| dx1 da

≤ (ν − ε)
q′−1

q′ Ld−2(∂Br(ŝ))
q′−1

q′

(
±

∫ ±ν

±ε

∫

∂Br(ŝ)

|uε|
q′ da dx1

) 1

q′

,

(3.19)whih tends to 0 as ε < ν → 0 by property (3.8) for either A = (−ν,−ε)× ∂Br(ŝ) or
A = (ε, ν)× ∂Br(ŝ).For the integral over Iε = (−ε, ε) in (3.18) we proeed as in estimate (3.19). Theequiboundedness of the energies, the assumptions (2.6b), (2.5), Π−1

ε zε ≥ εγ, Korn'sinequality on Ω and property (3.8) imply the following estimate for all ε ∈ (0, ε0]:
‖uε‖Lq′(Iε×∂Br(ŝ),Rd) ≤ C‖uε‖W 1,p(ΩεD,Rd) ≤ ε−

γ

p

(
E

1
p

c
+ ĉg

)
cK(Ω)C (3.20)Under the assumption that γ ∈ (p−1, P ) with P = (p−1)d/(d−1) if p < d, see (3.9),we now onlude

∣∣∣
∫

∂Br(ŝ)

∫ ε

−ε

uε · n dx1 da
∣∣∣ ≤ (2ε)

q′−1

q′ Ld−2(∂Br(ŝ))
q′−1

q′

(∫

∂Br(ŝ)

∫ ε

−ε

|uε|
q′ dx1 da

) 1

q′

≤ ε
q′−1

q′
− γ

p C → 0 , (3.21)where we use that ‖uε‖Lq′ (Iε×∂Br(ŝ),Rd) ≤ c‖uε‖W 1,p(ΩεD,Rd) for q′ = (d− 1)p/(d− p). Therequirement q′−1
q′
− γ

p
> 0 then yields γ < (p−1)d/(d−1) as stated in ondition (3.9).Assume now that p > d. Then W 1,p(Ω, Rd) ⋐ C(Ω, Rd). Due to this, we an set q′ = ∞in the above estimates. Moreover, q′ − 1/q′ = 1, so that (3.21) implies that γ < p.Alltogether we have veri�ed (3.16) and (3.17), hene [[u · n1]] a.e. on ΓC by (3.14).Ad (2.d): In the following we verify TCz[[u]] = 0 a.e. on ΓC for the limit state (u, z).Verifying TCz[[u]] = 0 a.e. on ΓC for the limit state (u, z) is equivalent to showing that∫

ΓC |TCz[[u]]| ds = 0. For this, we approximate u on the interfae {0}× ΓC from the leftand the right by the traes of the approximating sequene on the lines {±ν} × ΓC andwe exploit that z is onstant in y1-diretion, so that z(±ν, s) = z(0, s) for all s ∈ ΓCand all ν ∈ (0, ε0]. In partiular, we use
∫

ΓC∣∣TCz [[
u
]]∣∣ ds = lim

ν→0

∫

ΓC∣∣TCz (u(ν)− u(−ν))
∣∣ ds

≤ lim
ν→0

( ∑

ι∈{−,+}

∫

ΓC∣∣TCz (u(ιν)− uε(ιε))
∣∣ ds +

∫

ΓC∣∣z(ε)u(ε)− z(−ε)u(−ε))
∣∣ ds

)

≤ lim
ν→0

lim
ε→0

( ∫

ΓC∣∣Π−1
ε zε(ε)uε(ε)− Π−1

ε zε(−ε)uε(−ε)
∣∣ ds (3.22)

+
∑

ι∈{−,+}

∫

ΓC∣∣TCΠ−1
ε zε (uε(ιν)− uε(ιε))

∣∣ds

)
. (3.23)In (3.23), with ι ∈ {−, +}, we apply that |TCΠ−1

ε zε| ≤ 1 a.e. on ΓC by (3.10). Withpartial integration and Hölder's inequality we �nd
∫

ΓC∣∣TCΠ−1
ε zε (uε(±ν)− uε(±ε))

∣∣ds ≤ ‖∂x1
uε‖L1(Ωε

±
\Ων
±

,Rd) ≤ (ν − ε)
p−1

p ‖∂x1
uε‖Lp(Ωε

±
,Rd),15



whih tends to 0 as ε < ν → 0, sine the norms are uniformly bounded, as an be seenfrom (3.6).When estimating the term in (3.22) we apply partial integration on ΩεD and we use that
‖uε‖W 1,p(ΩεD,Rd) ≤ Cε−γ/p, due to Π−1

ε zε ∈ [εγ, 1]. In partiular, we obtain
∫

ΓC ∣∣Π−1
ε zε(ε)uε(ε)− Π−1

ε zε(−ε)uε(−ε)
∣∣ds =

∫

ΓC ∣∣∣∣
∫ ε

−ε

∂x1
(Π−1

ε zεuε) dx1

∣∣∣∣ ds

≤

∫

ΓC ∣∣∣∣
∫ ε

−ε

(∂x1
Π−1

ε zε)uε dx1

∣∣∣∣ ds +

∫

ΓC ∣∣∣∣
∫ ε

−ε

Π−1
ε zε∂x1

uε dx1

∣∣∣∣ ds . (3.24)For the �rst term in (3.24) we use again Hölder's inequality with the exponent q = r for
zε and q′ = r/(r−1) for uε. Now, we exploit the embedding W 1,p(ΩεD, Rd) → Lq′(ΩεD, Rd)for p < d and p ≤ q′ ≤ dp/(d−p). Beause of these relations we �nd the ondition
q′ = r/(r−1) ≤ dp/(d−p) whih leads to p ∈ [rd/(rd−d + r), d) in (3.12).To estimate the seond term in (3.24) we use that ∫

ΩεD WD(Π−1
ε zε, e(uε)) ≤ C dueto the equiboundedness of the energies, and additionally that Π−1

ε zp
ε ≤ Π−1

ε zε for
Π−1

ε zε ∈ [εγ, 1] and p ∈ (1,∞). Thus, with Hölder's inequality we obtain
∫

ΓC ∣∣∣∣
∫ ε

−ε

Π−1
ε zε∂x1

uε dx1

∣∣∣∣ ds ≤

∫

ΩεDΠ−1
ε zε|∂x1

uε| dx ≤ Ld(ΩεD)p−1

∫

ΩεDWD(Π−1
ε zε, e(uε)) → 0 .Hene, Item (2.d) is proven for r ∈ (1,∞) and p ∈ [rd/(rd−d + r), d).For p = d we an apply the embedding W 1,p(ΩεD, Rd) → Lq′(ΩεD, Rd), whih holds forall q′ ∈ [p,∞) and in partiular for all q′ ∈ [1,∞). For p > d we have the ompatembedding W 1,p(ΩεD, Rd) ⋐ C(ΩεD, Rd). Thus, in both ases the hoie q′ = r/(r−1)in the above Hölder estimates is admissible. Note that, if r > d we may use theexponent r̃ = d instead of r in the above estimates. Then the lower bound on p is

r̃d/(r̃d−d+r) = 1. This �nishes the proof of Item (2.d).Ad [[u]]: By (1.) there is a subsequene uε ⇀ u in W 1,p(Ων
− ∪ Ων

+, Rd) for all �xed
ν ∈ (0, ε0]. Using partial integration we obtain for the ith omponent that

∫

ΓC |ui
ε(ν, s)− ui

ε(−ν, s)| ds ≤

∫

ΩνD |∂x1
ui

ε| dx ≤

∫

ΩεD |∇uε| dx +

∫

ΩνD\ΩεD |∇uε| dx . (3.25)With estimate (3.20) and Hölder's inequality we �nd for the �rst term in (3.25) that
‖∇uε‖L1(ΩεD,Rd×d) ≤ ε

p−1

p Ld−1(ΓC) p−1

p cK(Ω)E
1

p ε
−γ

p . (3.26)Sine γ<p−1 we onlude from (3.26) that ‖∇uε‖L1(ΩεD,Rd×d) → 0.Additionally the equiboundedness of the energies and the oerivity of W provide aonstant C > 0 suh that ‖∇uε‖Lp(Ωε
−
∪Ωε

+
,Rd×d) ≤ C. Thus, appliation of Hölder'sinequality on the seond term in (3.25) yields

∫

ΩνD\ΩεD |∇uε| dx ≤
(
(ν−ε)Ld−1(ΓC)) p−1

p ‖∇uε‖Lp((Ωε
−
∪Ωε

+
)\(Ων

−
∪Ων

+
),Rd×d) → 0 .Repeating the ideas of (3.15) we obtain ∫

ΓC |[[u]]| ds = 0, if ‖∇uε‖L1(ΩεD,Rd×d) → 0.16



The next lemma summarizes the properties of the limit energy Eκ, whih guaranteethe existene of minimizers in the diret method of the alulus of variations, suh asoerivity and lower semiontinuity. They yield the ompatness of the sublevels of Eκ.Lemma 3.5 (Properties of the limit energy) Let the assumptions (2.5) and (2.6)hold. Then, for all t∈ [0, T ] and all κ∈ (0, κ0] the energy funtional Eκ(t, ·) :QC→R∞given by (3.1) and (3.3) is oerive and weakly sequentially lower semiontinuous on
QC. In partiular, (3.6) holds also for ε = 0, i.e. Ω− ∪ Ω+. Moreover for all E ∈ Rthe sublevels Lκ

E(t) := {q ∈ Q | Eκ(t, q) ≤ E} of the funtional Eκ(t, ·) : Q → R∞ aresequentially ompat with respet to T from (2.18).Proof: Keep κ ∈ (0, κ0] and t ∈ [0, T ] �xed. If (qj)j∈N ⊂Q\QC, then Eκ(t, qj) =∞for all j ∈ N. Thus, for ‖uj‖W 1,p(Ων
−
∪Ων

+,Rd) → ∞ for some ν ∈ (0, ε0] the property
Eκ(t, qj) →∞ is trivially satis�ed. Coerivity inequality (3.6) with ε = 0 follows from(2.6) for all q∈QC. Thus Eκ(t, ·) is oerive both on QC and on Q.In order to show lower semiontinuity we assume that qj

T
−→ q. If qj ∈ Q\QC foralmost all j ∈ N then there is an index j0 ∈ N suh that qj ∈ Q\QC for all j ≥ j0and hene lim infj→∞ E

κ(t, qj) = ∞ ≥ Eκ(t, q). Assume that there is a subsequene
(qj)j∈N ⊂ QC with uj ⇀ u in W 1,p(Ω− ∪ Ω+, Rd) and zj ⇀ z in W 1,r(ΩD). Let u±j , u±denote the traes of uj|Ω±, u|Ω± on ΓC. Then the ompatness of the trae operators
TC : W 1,r(ΩD) → Lr(ΓC) and T± : W 1,p(Ω±, Rd) → Lp(ΓC, Rd) implies that TCzj u±j →
TCz u± in L1(ΓC, Rd) and u±j → u± in Lp(ΓC, Rd), eah ontaining a subsequene thatonverges pointwise a.e. on ΓC. Hene [[u ·n1]] ≥ 0 and TCz[[u]] = 0 a.e. on ΓC, i.e.
(u, z) ∈ QC. Furthermore {z ∈ W 1,r(ΩD) | 0 ≤ z ≤ 1 a.e. on ΩD} is a losed subset of
W 1,r(ΩD). Together with (2.6) one obtains lower semiontinuity of Eκ(t, ·) on QC.Let now (qj)j∈N ⊂ Lκ

E(t). By oerivity (3.6) there are onstants c1(E), c2(E) suh that
‖uj‖W 1,p(Ω−∪Ω+,Rd) ≤ c1(E) and ‖zj‖W 1,r(ΩD) ≤ c2(E). Sine W 1,p(Ω±, Rd) and W 1,r(ΩD)are re�exive Banah spaes there are subsequenes uj ⇀ u in W 1,p(Ω− ∪ Ω+, Rd) and
zj ⇀ z in W 1,r(ΩD). From the lower semiontinuity of Eκ(t, ·) on QC we now infer
E ≥ lim infj→∞ E

κ(t, qj) ≥ Eκ(t, q), whih proves that the sublevels of Eκ : Q → R∞are ompat in with respet to T .As a onsequene of Proposition 3.4 and Lemma 3.5 we obtain ondition (A.1-E1).Corollary 3.6 Keep κ ∈ (0, κ0] �xed and let the assumptions (2.5) and (2.6) holdtrue. Then, for all ε ∈ (0, ε0] the sublevels Lε,κ
E (t) := {q ∈ Q | Eκ

ε (t, q) ≤ E} as well asthe sublevels Lκ
E(t) := {q ∈ Q | Eκ(t, q) ≤ E} are ompat and the unions ∪ε∈(0,ε0]L

ε,κ
E (t)are preompat with respet to the topology T , whih is de�ned by (2.18).Proof: For all ε ∈ (0, ε0] and κ ∈ (0, κ0] �xed the weak sequential ompatness ofthe sublevels Lε,κ

E (t) in W 1,p(Ω, Rd)×W 1,r(ΩD) is due to [TM10, Proposition 3.4℄, sinethe omposed density W from (2.7) satis�es hypotheses (2.6). Sine T is oarser thanthe weak topology of W 1,p(Ω, Rd) ×W 1,r(ΩD) we onlude the ompatness of Lε,κ
E (t)with respet to T . The preompatness of unions of sublevels in T diretly follows fromProposition 3.4 for tε = t and the ompatness of Lκ

E(t) is due to Lemma 3.5.In the following we prove the Γ-lim inf-inequality (A.3-C3) for Eκ
ε . The main idea in theproof is to exploit the lower semiontinuity of Eκ

ε (t, ·) on Lp(Ων
−∪Ων

−, Rd×d)×Lr(ΩD, Rd)17



for all �xed ν ∈ (0, ε0]. The use of this spae is admissible sine the lower Γ-limit onlyhas to be veri�ed for stable sequenes, so that their energies and hene the damagegradients are uniformly bounded.Lemma 3.7 (Lower Γ-limit of the energy funtionals) Keep κ∈(0, κ0] �xed. Let
(tε, uε, zε)

TT−→(t, u, z) as ε→0 and (uε, zε)∈S
κ
ε (tε) for all ε∈(0, ε0]. Then

Eκ(t, u, z) ≤ lim inf
ε→0

Eκ
ε (tε, uε, zε) . (3.27)Proof: In view of (2.5) it holds g(tε)→ g(t) in W 1,p(Ω− ∪ Ω+, Rd). Sine (uε, zε) ∈

Sκ
ε (tε) we �nd a onstant E > 0 so that Eκ

ε (tε, uε, zε) ≤ E for all ε ∈ (0, ε0]. FromProposition 3.4 then follows that the limit (u, z) ∈ QC. Moreover there is a subsequene
zε ⇀ z in W 1,r(ΩD) suh that we obtain

lim inf
ε→0

∫

ΩDκ
r
|ε∇zε|

r dy ≥ lim inf
ε→0

∫

ΩDκ
r
|∇szε|

r dy ≥

∫

ΩDκ
r
|∇sz|

r dy =

∫

ΩDκ
r
|∇z|r dy , (3.28)where the last equality is due to ∂y1

z=0. Furthermore, we observe that ∫
Ων
−
∪Ων

+

W (·) dxis weakly sequentially lower semiontinuous on Lp(Ων
−∪Ων

+; Rd×d) by (2.6a) and (2.6d).In view of (2.6b) and Proposition 3.4, Item (1.) it holds for all ν > 0

lim inf
ε→0

∫

Ων
−
∪Ων

+

W (e(uε+g(tε))) dx ≥

∫

Ων
−
∪Ων

+

W (e(u + g(t))) dx . (3.29)Putting together (3.28) and (3.29) we obtain the desired lim inf-estimate as ν → 0,sine u∈W 1,p(Ω−∪Ω+, Rd) by Proposition 3.4, Item (2.).Next, we verify the onditions (A.1-E2), (A.1-E3) and (A.3-C1) onerning the time-derivatives of both the approximating and the limit energy funtional.Lemma 3.8 (Properties of ∂tE
κ
ε , ∂tE

κ) The funtionals Eκ
ε , Eκ : Q → R∞ satisfy(A.1-E2). In partiular, ∂tE

κ(t, q) takes the same form as ∂tE
κ
ε (t, q) in (2.17). More-over, Eκ satis�es (A.1-E2) and, as ε → 0, (A.3-C1) holds true.Proof: Reall ∂tE

κ
ε (t, q) from (2.17). Condition (A.1-E2) an be proven by repeatingthe arguments of [TM10, Theorem 3.7℄. The proof mainly uses the stress ontrol (2.6)to derive a Gronwall estimate for the energy. Furthermore it relies on the assumptions(2.5) for g and on the oerivity inequalities (2.6b). Sine ∂tE

κ
ε is independent of κ alsothe onstants c0, c1 do not depend on κ. Due to the uniform Korn's inequality (2.20)these onstants are also independent of ε ∈ (0, ε0] and hene also apply to the limitenergy, so that ∂tE

κ(t, q) is also given by (2.17).Conditions (A.1-E3) and (A.3-C1) result from (2.6). An analogous proof an be foundin [TM10, Theorems 3.11, 3.9℄.
18



3.2 Conditioned Upper Semiontinuity of Stable SetsWe now verify ondition (A.3-C2), saying that the limit of a stable sequene is stable.This will be done by verifying that for all sequenes (tε, qε)ε∈(0,ε0] ⊂ [0, T ] × Q with
(qε)∈S

κ
ε (tε) and (tε, qε)

TT−→ (t, q) and for all (q̂)∈Q there is a sequene (q̂ε)ε∈(0,ε0]⊂QDsatisfying (q̂ε)
T
−→ (q̂) suh that

lim sup
ε→0

(Eκ
ε (tε, q̂ε)+R(ẑε−zε)) ≤ Eκ(t, q̂)+R(ẑ−z) . (3.30)To gain that R(ẑε−zε) → R(ẑ−z) we must ensure R(ẑε−zε) <∞ for all ε ∈ (0, ε0].Moreover, ûε∈W 1,p(Ω, Rd) must hold for all ε∈(0, ε0] to assure that Eκ

ε (tε, ûε, ẑε)<∞,whereas the limit û ∈ W 1,p(Ω−∪Ω+, Rd), only. We will onstrut (ûε, ẑε)ε∈(0,ε0] in suha way that Eκ
ε (tε, ûε, ẑε) → Eκ(t, û, ẑ). This requires an interplay of ûε and ẑε.The di�ulty is to onstrut (ûε)ε∈(0,ε0] in a way whih allows it to prove that

∫

ΩεD Π−1
ε ẑεW (e(ûε)) dx → 0 .This onstrution will be based on re�eting both û− = û|Ω− and û+ = û|Ω+

at theinterfae ΓC, i.e. x1 = 0, and on subsequent interpolation on the interval (−ε, ε). Thismethod guarantees that ûε ∈ W 1,p(Ω−∪Ω+, Rd), in suh a way that ∇ûε are uniformlybounded for (x1, s) ∈ (−ε, ε]×
(
ΓC\N Ĉ

z

) and bounded by ε−1 on (−ε, ε]× N Ĉ
z , where

N Ĉ
z := {s ∈ ΓC | TCẑ(s) = 0}.Lemma 3.9 (Mutual reovery sequenes) Keep κ ∈ (0, κ0] �xed. Let (Q, Eκ

ε ,R)and (Q, Eκ,R) be de�ned by (2.12), (2.14), (2.16) and (3.1). Assume that (2.5) and(2.6) hold true. Moreover, let γ > (p−1), p ∈ (1,∞) and r ∈ (1,∞). Then, for all
(tε, qε)ε∈(0,ε0] ⊂ [0, T ]×Q with (tε, qε)

TT−→ (t, q) as ε → 0 and qε ∈ S
κ
ε (tε) and for every

q̂ ∈ Q there is a sequene (q̂ε)ε∈(0,ε0] suh that (3.30) holds true.Proof: Let q̂ = (û, ẑ) ∈Q and let (tε, qε)
TT−→ (t, q) as ε→ 0 with qε ∈ S

κ
ε (tε). Henetheir energies are equibounded and Proposition 3.4 an be applied. Thus, q∈QC with

0≤ z≤ 1 a.e. in ΩD, so that Eκ(t, q) is at least �nite. For an arbitrary q̂ ∈ Q we willnow onstrut the mutual reovery sequene (q̂ε)ε∈(0,ε0] with q̂ε = (ûε, ẑε).If q̂ ∈ Q\QC, then Eκ(tε, q̂) = ∞ for all ε ∈ (0, ε0] so that (3.30) holds for q̂ε = q̂. Letnow q̂ ∈ QC. If ẑ > z a.e. in ΩD, then R(ẑ−z) = ∞ and (3.30) trivially holds.Hene, assume ẑ ≤ z a.e. in ΩD. In order to keep Eκ
ε (t, ûε, ẑε) + R(ẑε−zε) �nite, thesequene (ẑε)ε∈(0,ε0] has to satisfy εγ ≤ ẑε ≤ zε. Furthermore it is required that ûε ∈ UD,i.e. ûε ∈ W 1,p(Ω, Rd) with ûε = 0 on ΓDir, whereas û ∈ W 1,p(Ω− ∪ Ω+, Rd) with û = 0on ΓDir, TCẑ[[û]] = 0 and [[û·n1]] ≥ 0 a.e. on ΓC, only. We will �rst onstrut (ẑε)ε∈(0,ε0]and prove the onvergene of the energy terms whih solely depend on the damagevariable. Then we will onstrut (ûε)ε∈(0,ε0] in suh a way that the interplay of ûε with

ẑε makes the remaining energy terms onverge.Step 1 (Constrution of ẑε): For every ε ∈ (0, ε0] we now onstrut ẑε in suh amanner that ẑε ∈ ZD and R(ẑε−zε) < ∞, i.e. the property εγ ≤ ẑε ≤ zε a.e. in ΩD19



has to be ensured. For this, we adapt the ansatz used in [TM10, Th. 3.14℄ and weintrodue
ẑε := max

{
εγ, min{zε, ẑ − δε}

}
, (3.31)where δε = o(‖zε − z‖r

Lr(ΩD)) is determined by Markov's inequality (M) to ensure
Ld

(
[|zε − z| > δε]

) (M)
≤ δ−r

ε ‖z − zε‖
r
Lr(ΩD) dx

!
→ 0 . (3.32)Here and in the following we use the notation [f > a] = {y ∈ ΩD | f(y) > a} witha similar meaning for ≥, <,≤ . Note that ẑε = εγ if ẑ − δε < εγ and in partiular,if ẑ = 0. Using a omposition lemma for W 1,r-funtions and Lipshitz-funtions, see[MM72℄, one obtains as in [TM10, Th. 3.14℄

ẑε ∈ W 1,r(ΩD) with ∇ẑε(y) =





∇ẑ(y) if y ∈ Aε ,

∇zε(y) if y ∈ Bε ,

0 if y ∈ ΩD\(Aε ∪ Bε) ,

(3.33)where Aε = [εγ ≤ ẑ − δε ≤ zε] and Bε = [zε < ẑ − δε]. Beause of (3.32) we have
δε → 0, Ld(Bε) → 0 and one an prove that ẑε ⇀ ẑ in W 1,r(ΩD) as in [TM10, Th. 3.14,step 1℄. Beause of the ompat embedding W 1,r(ΩD) ⋐ Lr(ΩD) we immediately seethat R(ẑε − zε) →R(ẑ − z).With the same arguments as in [TM10, Th. 3.14, step 2℄ we see that
lim sup

ε→0

(
‖∇ẑε‖

r
Lr(ΩD) − ‖∇zε‖

r
Lr(ΩD)

)
≤ lim sup

ε→0
‖∇ẑε‖

r
Lr(Aε) − lim inf

ε→0
‖∇zε‖

r
Lr(Aε∪Cε) ,where ‖∇ẑ‖r

Lr(Aε) ≤ ‖∇ẑ‖r
Lr(ΩD) for all ε ∈ (0, ε0]. Moreover, to inrease the estimate,we may drop the sets Cε in the − lim inf-term. We de�ne Ŵ (I, Z) = I|Z|r and intro-due C(I, z) =

∫
ΩD Ŵ (I,∇z) dy, where I stands for the indiator funtion of a subsetin ΩD. Hene, C(IAε

, zε) = ‖∇zε‖Lr(Aε) = ‖IAε
∇zε‖Lr(ΩD). Sine Ld(Aε) → Ld(Ω) by(3.32), we have that IAε

→ IΩD strongly in Lq(ΩD) for any q ∈ [1,∞) and ∇zε ⇀ ∇zweakly in Lr(ΩD, Rd). Hene, by the lower semiontinuity result [Da00, p. 96, Theorem3.23℄ it is lim infε→0 C(IAε
, zε) ≥ C(ΩD, z) = ‖∇z‖r

Lr(ΩD).Step 2 (Constrution of ûε): For every ε ∈ (0, ε0] we now determine (ûε)ε∈(0,ε0] insuh a way that ûε ∈ UD, see (2.8). Sine (û, ẑ) ∈ QC we have û ∈ W 1,p(Ω− ∪ Ω+, Rd),

û = 0 on ΓDir, TCẑ[[û]] = 0 and [[û·n1]] ≥ 0 a.e. on ΓC.Let û± := û|Ω±, set I+
ε := [0, ε) and I−ε := [−ε, 0). For our onstrution we re�et

û+|I+
ε ×ΓC and û−|I−ε ×ΓC along the interfae {0} × ΓC and take the additive mean ofthese funtions. Therewith we obtain an interpolated funtion ûε ∈ W 1,p(ΩεD, Rd),whih has the form

ûε(x1, s) := ε−x1

2ε
û−(±x1, s) + ε+x1

2ε
û+(∓x1, s) for x1 ∈ I∓ε , (3.34)i.e. ûε(−ε, s) = û−(−ε, s) , ûε(ε, s) = û+(ε, s) , ûε(0, s) = 1

2

(
û+(0, s) + û−(0, s)

)
. Weompose the funtions ûε ∈ W 1,p(Ω, Rd) as follows

ûε(x1, s) :=

{
û±(x1, s) if (x1, s) ∈ Ωε

±,

ûε(x1, s) if (x1, s) ∈ ΩεD.
(3.35)20



By onstrution it is ûε ∈ W 1,p(Ω, Rd) and, sine ûε|Ωε
±

= û|Ωε
±
, we have

∫

Ωε
±

W (e(ûε+g(tε))) dx =

∫

Ωε
±

W (e(û+g(tε))) dx →

∫

Ω±

W (e(û+g(t))) dx , (3.36)where we used (2.5) and the dominated onvergene theorem.Step 3 (Proof of ∫
Ω

εD WD(e(ûε), Π
−1

ε
ẑε) dx → 0): From the onstrution (3.31)reall that Π−1

ε ẑε(x) = εγ if ẑ(x) = 0 for all ε ∈ (0, ε0]. In view of the deomposition
ΩεD = Aε ∪ Bε ∪ Cε and (2.6b) we have

∫

ΩεDΠ−1
ε ẑε|e(û

ε(x1, s))|
p dx

≤

∫

Aε

Π−1
ε (ẑ−δε)|e(û

ε(x1, s))|
p dx +

∫

Bε

|e(ûε(x1, s))|
p dx +

∫

Cε

εγ |e(ûε(x1, s))|
p dx .Let N Ĉ

z := {s ∈ ΓC | TCẑ(s) = 0}. For y ∈ Bε = [ẑ − δε > zε] we have ẑ(y) > εγ, whihimplies that Bε ∩ ΓC ⊂ ΓC\N Ĉ
z . Similarly, we �nd

Aε = [εγ < ẑ − δε ≤ zε] = [εγ + δε < ẑ ≤ zε + δε] ⊂ [εγ < ẑ] ,i.e. also Aε ∩ ΓC ⊂ ΓC\N Ĉ
z . Moreover, Cε = [ẑ ≤ εγ + δε] and hene N Ĉ

z ⊂ Cε ∩ ΓC.Beause of this, we an estimate
∫

ΩεDΠ−1
ε ẑε|e(û

ε(x1, s))|
p dx ≤

∫

N Ĉ
z

∫ ε

−ε

εγ|e(ûε)|p dx1 ds +

∫

ΓC\N Ĉ
z

∫ ε

−ε

|e(ûε)|p dx1 ds ,where |e(ûε)|p ≤ 2p−1
(
|∂x1

ûε|p + |∇sû
ε|p

)
. For notational simpliity denote by û± alsotheir even extensions to Ω by re�etion at x1 = 0. In partiular, û± ∈ W 1,p(Ω, Rd).Using that 0 < (ε±x1)/(2ε) < 1 on I−ε ∪ I+

ε we �nd
‖∇sû

ε‖Lp(ΩεD,Rd−1×d−1) ≤ 2‖∇û−‖Lp(I−ε ×ΓC,Rd×d) + 2‖∇û+‖Lp(I+
ε ×ΓC,Rd×d) → 0 . (3.37)Moreover, ∂x1

ûε = Gε
1 + Gε

2 with
Gε

1 =
ε− x1

2ε
∂x1

û− +
ε + x1

2ε
∂x1

û+ and Gε
2 = (2ε)−1(û+ − û−) . (3.38)Again, ‖Gε

1‖Lp(ΩεD,Rd) → 0 as in (3.37), while Gε
2 needs speial onsideration.Sine û ∈ W 1,p(Ω\N Ĉ

z ) it holds for a.e. s ∈ ΓC\N Ĉ
z that û+(0, s) = û−(0, s) and henewe �nd using Hölder's inequality

|û+(x1, s)− û−(x1, s)| ≤

∣∣∣∣
∫ x1

0

∂ξû
+(ξ, s) dξ

∣∣∣∣ +

∣∣∣∣
∫ x1

0

∂ξû
−(ξ, s) dξ

∣∣∣∣

≤ C|x1|
p−1

p

(
‖∂x1

û+(·, s)‖Lp(I+
ε ,Rd) + ‖∂x1

û−(·, s)‖Lp(I−ε ,Rd)

)
.

(3.39)Dividing by 2ε and integrating over (x1, s) ∈ (I−ε ∪ I+
ε )× ΓC\N Ĉ

z yields
‖Gε

2‖
p

Lp((I−ε ∪I+
ε )×ΓC\N Ĉ

z
,Rd)

≤ C⋆

(
‖∂x1

û+‖p
Lp(ΩεD,Rd)

+ ‖∂x1
û−‖p

Lp(ΩεD,Rd)

)
→ 0 (3.40)21



as ε → 0, sine the onstant C⋆ is independent of ε.For s ∈ N Ĉ
z we have in general û+(0, s) 6= û−(0, s). Then we �nd

|û+(x1, s)− û−(x1, s)|

≤
∣∣[[û

]]
(s)

∣∣ +

∣∣∣∣
∫ x1

0

∂ξû
+(ξ, s) dξ

∣∣∣∣ +

∣∣∣∣
∫ x1

0

∂ξû
−(ξ, s) dξ

∣∣∣∣
(3.41)Handling the last terms as in (3.39) leads to

‖Gε
2‖

p

Lp((I−ε ∪I+
ε )×N Ĉ

z
,Rd)

≤ Cε1−p
∥∥[[

û
]]∥∥

Lp(ΓC,Rd)
+ C⋆

(
‖∂x1

û+‖p
Lp(ΩεD,Rd)

+ ‖∂x1
û−‖p

Lp(ΩεD,Rd)

)
,

(3.42)where the seond term tends to 0 as in (3.40). Using that Π−1
ε ẑε = εγ on I−ε ∪ I+

ε ×N Ĉ
zwith γ > p−1, we obtain that the term in WD related to the �rst term in (3.42) willtend to 0 as ε → 0.In order to show that also ∫

ΩεD ϕ(tr e(ûε)) dx → 0 we apply the upper growth estimatein (2.3) and we use that ∣∣( tr e(ûε)
)−∣∣p̃ ≤ 2p̃−1|(∂x1

ûε
1)
−|p̃ + 2p̃−1|∇sû

ε|p̃ with p̃ ∈ {p̂, 1}.The integral on ΩεD over the seond term tends to 0 as in (3.37). For the integral overthe �rst term we use that (∂x1
ûε

1)
− ≤ (Gε1

1 )− + (Gε1
2 )−, where Gε1

i denotes the �rstomponent of Gε
i ∈ R

d, i ∈ {1, 2}. We obtain that the integral on ΩεD over |(Gε1
1 )−|p̃tends to 0 again as in (3.37). For the term involving (Gε1

2 )− we use that
(
û+

1 (x1, s)− û−1 (x1, s)
)−

≤
(
û+

1 (x1, s)−û+
1 (0, s)

)−
+

([[
û · n1

]]
(s)

)−
+

(
û−(0, s)−û−(x1, s)

)−
,where (

[[û·n1]]
)−

=0 sine Eκ(t, û, ẑ)<∞. On the remaining terms we apply integrationby parts, Jensen's and Hölder's inequality and �nd
‖Gε1

2 ‖
p̃

Lp̃((I−ε ∪I+
ε )×N Ĉ

z
,Rd)

≤ C⋆

(
‖∂x1

û+‖p̃
Lp̃(ΩεD,Rd)

+ ‖∂x1
û−‖p̃

Lp̃(ΩεD,Rd)

)
→ 0 ,due to p̂∈(1, p] and ‖(∂x1

û±1 )−‖p
Lp(Ω,Rd)

≤ C by the equiboundedness of the energies.4 The Seond Γ-limit: Gri�th-type DelaminationIn this setion we prove that the gradient delamination models (Q, Eκ,R)κ∈(0,κ0] ap-proximate a model (Q, E ,R) for Gri�th-type delamination as κ → 0. Here, R :Z →
[0,∞] is given by (2.16) and

E(t, q) :=

{ ∫
Ω−∪Ω+

W (e(u+g(t))) dx if q = (u, z) ∈ QG,

∞ if q ∈ Q\QG,
(4.1)

ZG :={z ∈ L∞(ΩD) | 0 ≤ z ≤ 1 and ∂y1
z = 0 a.e. in ΩD}, (4.2)

QG :=

{
(u, z) ∈ U × ZG ∣∣∣∣

[[
u·n1

]]
≥ 0 and TCz[[u]]

= 0 a.e. on ΓC}, (4.3)22



with U as in (2.12) and with TC explained by (4.4). For sequenes (uκ, zκ)κ∈(0,κ0] withequibounded energies there is a subsequene zκ
∗
⇀ z in L∞(ΩD) and due to ∂y1

zκ = 0a.e. in ΩD for all κ∈(0, κ0] we �nd that z ∈ L∞(ΩD) is onstant a.e. in y1-diretion. Bythe de�nition of the weak derivative we an verify that ∂y1
z=0 a.e. in ΩD is the weak

y1-derivative of z ∈ L∞(ΩD). This allows us to de�ne the trae of z on ΓC by
TCz(s) = 1

2

∫ 1

−1

z(y1, s) dy1 . (4.4)Then, for all z ∈ ZC from (3.2) de�nition (4.4) oinides with the trae in the usualsense and for all v ∈ ZG it is
R(v) =

{
2
∫
ΓC −̺ TCv ds if TCv ≤ 0 a.e. on ΓC,

∞ otherwise, (4.5)so that (QG, E ,R) indeed models delamination along the interfae ΓC.For all t∈ [0, T ] the stable sets of (Q, Eκ,R) and (Q, E ,R) are given by
Sκ(t) :={q=(u, z)∈Q | Eκ(t, q)<∞, Eκ(t, q)≤Eκ(t, q̃)+R(z̃−z) for all q̃=(ũ, z̃)∈Q} ,

S(t) :={q=(u, z)∈Q | E(t, q)<∞, E(t, q)≤E(t, q̃)+R(z̃−z) for all q̃=(ũ, z̃)∈Q}.Beause a funtion f ∈ L∞(ΓC) is only de�ned Ld−1-a.e. on ΓC, its support suppC fand its zero set NC
f have to be de�ned with are. Using the ideas of [Fed69, p. 60℄ weintrodue

suppC f := ∩{A ⊂ ΓC |A losed, Ld−1
(
{s ∈ ΓC | f(s) 6=0}\A

)
= 0} , (4.6)

NC
f := ΓC\ suppC f = ∪{O ⊂ ΓC | O open, Ld−1

(
O ∩ {s ∈ ΓC | f(s) 6=0}

)
= 0} .Clearly, suppC f is losed and NC

f is open and they are well-de�ned for equivalenelasses f ∈ L∞(ΓC). The following lemma is a diret onsequene of (4.6), see [Tho10,Lemma 4.3.1℄.Lemma 4.1 Let f ∈ L∞(ΓC), g ∈ C0(ΓC) and let OS g := {s ∈ ΓC | g(s) 6= 0} denotethe open support of g. Then
f(s)g(s) = 0 for a.e. s ∈ ΓC is equivalent to suppC f ∩OS g = ∅ . (4.7)The following example emphasizes the interation of u and z for (u, z) ∈ QG and showsthat the proper de�nition of NC

z is ruial.Example 4.2 Let M ⊂ ΓC be losed and nowhere dense, i.e. M has an empty interior.Let 0 < Ld−1(M) < Ld−1(ΓC). Suh a set an be onstruted similarly to Cantor'smiddle third set, see e.g. [Els02, p. 70 & Exerise 8.9℄. Consider z = 1− IM ∈ L∞(ΓC),i.e. z = 0 on M and z = 1 on ΓC\M. Then NC
z = ∅ 6= M . Let (u, z) ∈ QG. Thus, itholds [[u]] = 0 on Γc\M and [[u]] ≥ 0 on M . Beause of p>d we have that [[u]] ∈ C0(ΓC)and {s ∈ ΓC | [[u]]>0} is open. By int M = ∅ we onlude that {s ∈ ΓC | [[u]]>0} = ∅,i.e. [[u]] = 0 on ΓC. Thus, if z = 0 holds only on a nowhere dense subset of ΓC, then uannot jump on ΓC at all, although possibly Ld−1(M) > 0. �23



As an be seen from (4.1), the values of E(t, u, z) are independent of the partiularvalues of z. Moreover Example 4.2 shows that, for p>d, only the set Nz is of importane.In the following we prove that the system (Q, E ,R) for Gri�th-type delaminationfavours energeti solutions (u, z) with either z(t, y) = 0 or z(t, y) = z0(y), where z0 isa given initial ondition.Lemma 4.3 (Stability of majorants) Let (u, z) ∈ S(t). Consider z̃ ≥ z suh that
{y ∈ ΩD | z̃(y) = 0} = {y ∈ ΩD | z(y) = 0}. Then also (u, z̃) ∈ S(t).Proof: We hek the stability ondition (1.2 S) for an arbitrary state (û, ẑ). If ẑ > z̃on a set of positive measure, then R(ẑ− z̃) = ∞ and (1.2 S) is trivially satis�ed. Heneit remains to investigate the ase ẑ ≤ z̃ a.e. on ΩD.If z ≤ ẑ ≤ z̃ a.e., then we have already E(t, û, ẑ) ≥ E(t, u, z̃), so that (1.2 S) holds forthis hoie of (û, ẑ). Assume now that ẑ ≤ z ≤ z̃. The stability of (u, z) and the fatthat z̃ ≥ z then yield

E(t, û, ẑ) = E(t, u, z̃) ≤ E(t, û, ẑ) +R(ẑ − z) ≤ E(t, û, ẑ) +R(ẑ − z̃) .Finally onsider ẑ suh that ẑ ≤ z ≤ z̃ on A ⊂ ΩD and z̃ > ẑ > z on ΩD\A for a set
A ⊂ ΩD with Ld(A) > 0. We introdue a funtion z̄ suh that z̄ := ẑ in A and z̄ := zin ΩD\A. From the stability of (u, z) we obtain

E(t, u, z̃) = E(t, u, z) ≤ E(t, û, z̄) +R(z̄ − z) ≤ E(t, û, ẑ) +R(ẑ − z̃) ,due to R(z̄ − z) =
∫

A
(z − ẑ) dy ≤

∫
A
(z̃ − ẑ) dy ≤ R(ẑ − z̃).Proposition 4.4 (Gri�th-rak property) Let (Q, E ,R) be given by (2.12), (4.1)and (2.16) suh that assumptions (2.5) and (2.6) hold true. Let (u0, z0) ∈ Q be a giveninitial value suh that (u0, z0) ∈ S(0). Let (u, z) : [0, T ] → Q be an energeti solutionof (Q, E ,R). Then (u, z̃) is also an energeti solution, where

z̃(t, y) :=

{
z0(y) if z(t, y) > 0,

0 else.Moreover, for all t ∈ [0, T ] it is z(t, ·) = z̃(t, ·) ∈ L∞(ΩD).Proof: Sine (u(t), z(t)) ∈ S(t) Lemma 4.3 implies that also (u(t), z̃(t)) ∈ S(t). Thus,it remains to verify the energy balane (1.2E). We have E(t, u(t), z̃(t)) = E(t, u(t), z(t))and ∂tE(t, u(t), z̃(t)) = ∂tE(t, u(t), z(t)). Moreover, due to the monotoniity of z̃ and zwith z̃ ≥ z it holds that
DissR(z̃, [0, t]) = R(z̃(t)− z0) ≤ R(z(t)− z0) = DissR(z, [0, t]) . (4.8)Hene, the upper energy estimate for (u, z̃) : [0, T ] → Q follows. The lower energyestimate, whih is a diret onsequene of stability (see e.g. [FM06, p. 70℄ for a proof)then yields equality in (1.2E). This implies equality in (4.8) and for all t ∈ [0, T ] weonlude that z̃(t, ·) = z(t, ·) ∈ L∞(ΓC).We now state the Γ-onvergene result from gradient to Gri�th-type delamination.24



Theorem 4.5 (Γ-onvergene of the delamination problems) Let the assump-tions (2.5) and (2.6) hold with p > d and r ∈ (1,∞). For all κ ∈ (0, κ0], let
qκ : [0, T ] → Q be an energeti solution of (Q, Eκ,R). If the initial values satisfy
qκ
0

T
−→ q0 and Eκ(0, qκ

0 ) → E(0, q0), then the delamination problems (Q, Eκ,R)κ∈(0,κ0]

Γ-onverge to the limit delamination problem (Q, E ,R) in the sense of Theorem A.1.Proof: We proeed as for Theorem 3.1. Sine R : Z → [0,∞] is independent of κ, Re-mark 2.2 also proves ondition (A.2-D2) as κ → 0. Furthermore, for all q with �nite en-ergy it holds ∂tE(t, q)=∂tE
κ(t, q) given by (2.17), so that onditions (A.1-E2), (A.1-E3)and (A.3-C1) hold due to Lemma 3.8. The existene of a subsequene (qκ)κ∈(0,κ0] ofenergeti solutions to (Q, Eκ,R, qκ

0 ) onverging in T for all t∈ [0, T ] an be establishedas for Theorem 3.1. Conditions (A.1-E1), (A.1-E2) and (A.3-C2) will be shown in thesubsequent setions.4.1 Compatness of the Energy Sublevels and Lower Γ-limitIn Lemma 3.5 it has been veri�ed that the sublevels of the funtionals Eκ(t, ·) areompat in the topology T . In order to omplete the proof of (A.1-E1) it remainsto show that unions of sublevels with respet to κ are preompat in T . Moreover,we will show that the sublevels of E are even ompat in the weak topology of Q, i.e.in W 1,p(Ω− ∪ Ω+, Rd) for the displaements, whih is important for the proof of the
Γ-lim inf-inequality.Theorem 4.6 (Sequenes with equibounded energies) For all κ ∈ (0, κ0] let
Eκ : [0, T ]×Q → R∞ be given by (3.1) so that (2.5) and (2.6) hold. Moreover, let
E∈R and (tκ)κ∈(0,κ0] ⊂ [0, T ]. Assume that Eκ(tκ, uκ, zκ)≤E for all κ∈(0, κ0]. Then(1.) there is a subsequene (uκ, zκ) ⇀ (u, z) in Q and hene also (uκ, zκ)

T
→ (u, z) as

κ → 0,(2.) for the limit holds (u, z) ∈ QG, see (4.3), and 0 ≤ TCz ≤ 1 a.e. on ΓC.Proof: Ad (1.): From Eκ(tκ, uκ, zκ) ≤ E and oerivity estimate (3.6) we obtainthat (uκ)κ∈(0,κ0] is equibounded in W 1,p(Ω− ∪Ω+, Rd). Sine U ⊂ W 1,p(Ω− ∪Ω+, Rd) isa re�exive Banah spae there is a subsequene uκ ⇀ u in U and in W 1,p(Ων
− ∪Ων

+, Rd)for all ν ∈ (0, ε0]. Furthermore, the equiboundedness of Eκ(tκ, uκ, zκ) implies that
‖zκ‖L∞(ΩD) ≤ 1 for all κ∈(0, κ0]. By Banah-Alaoglu's theorem there is a subsequene
zκ

∗
⇀ z in L∞(ΩD). This proves that the subsequene (uκ, zκ)κ∈(0,κ0] onverges to (u, z)both in the weak topology of Q and in T .Ad (2.): For the limit (u, z) of the subsequene (uκ, zκ)κ∈(0,κ0] ⊂ U×ZC from abovewe now show that (u, z) ∈ QG. Sine U is a Banah spae it learly holds u ∈ U .For zκ

∗
⇀ z in L∞(ΩD) with zκ ∈ W 1,r(ΩD), ∂y1

zκ = 0 and 0 ≤ zκ ≤ 1 a.e. in ΩD itremains to prove that z ∈ ZG, see (4.2). We �rst verify that 0 ≤ z ≤ 1 a.e. in ΩD.Testing the weak*-onvergene with L1
+(ΩD) = {ϕ ∈ L1(ΩD) |ϕ ≥ 0 a.e. in ΩD} yields

0 ≤ limκ→0

∫
ΩD ϕzκ dy =

∫
ΩD ϕz dy for all ϕ ∈ L1

+(ΩD). To onlude that z ≥ 0 a.e.on ΩD we assume that z < 0 on A ⊂ ΩD with Ld(A) > 0. For the indiator funtion
IA :ΩD→{0, 1} of the set A holds IA∈L1

+(ΩD), but ∫
A
z dy<0, whih is a ontradition25



to ∫
ΩDϕz dy≥ 0 for all ϕ∈L1

+(ΩD). Hene it indeed holds that z≥ 0 a.e. in ΩD. Withthe same arguments we obtain that 0≤ limκ→0

∫
ΩDϕ(1−zκ) dy =

∫
ΩD ϕ(1−z) dy for all

ϕ∈L1
+(ΩD), whih yields that z≤1 a.e. in ΩD.Now we prove that z is onstant a.e. in y1-diretion. For all κ∈ (0, κ0] we obtain 0 =

−
∫
ΩD ∂y1

zκϕ dy =
∫
ΩD zκ∂y1

ϕ dy for all ϕ ∈ C∞
0 (ΩD). Hene by the weak*-onvergeneit holds 0 = limκ→0

∫
ΩDzκ∂y1

ϕ dy =
∫
ΩDz∂y1

ϕ dy for all ϕ∈C∞
0 (ΩD). The fundamentallemma of the alulus of variations then yields that z is onstant a.e. in y1-diretion.Moreover, sine 0≤z≤1 a.e. in ΩD we obtain that 0=TC0≤TCz ≤ TC1=1.To show (1.1) we use testfuntions f ∈L1(ΩD) with f(y1, s)=f(s) and we �nd

2

∫

ΓC f(s)TCzκ(s) ds =

∫

ΩDfzκ dy1ds →

∫

ΩDfz dy1ds = 2

∫

ΓC f(s)TCz(s) ds.This proves in partiular that 0 =
∫
ΓCTCzκ

∣∣[[uκ]]
∣∣ ds →

∫
ΓCTCz∣∣[[u]]

∣∣ ds, sine the om-patness of the trae operator W 1,p(Ω− ∪ Ω+, Rd) → Lp(ΓC, Rd) yields [[uκ]] → [[u]]strongly in Lp(ΓC, Rd). Therefore we �nd a subsequene whih onverges pointwise a.e.on ΓC and hene 0 ≤ limκ→0[[uκ ·n1]] = [[u·n1]] a.e. on ΓC.For tκ = t �xed the above theorem states the preompatness of unions of energysublevels both in the weak topology ofQ and in T . It remains to verify the ompatnessof the sublevels of the limit funtional E(t, ·).Lemma 4.7 (Properties of the limit energy) Let E be given by (4.1) suh that theassumptions (2.5) and (2.6) hold true. Then E(t, ·) : Q → R∞ is oerive and weaklysequentially lower semiontinuous on Q for all t ∈ [0, T ]. In partiular, (3.6) holds for
κ = 0 and Ων

± = Ω±. Moreover for all E ∈ R the sublevels LE(t) := {q ∈ Q | E(t) ≤ E}of the funtional E(t, ·) : Q → R∞ are sequentially ompat in the weak topology of Qand hene in T .Proof: Estimate (3.6) is a diret onsequene of (2.6b), (2.5) and Korn's inequality(2.20). This estimate together with the fat that E(t, u, z) = ∞ if ‖z‖L∞(ΓC) > 1 provesthe oerivity of E(t, ·) on Q. Lower semiontinuity follows from onvexity (2.6a) andthe losedness of QG ∩ {(u, z) ∈ W 1,p(Ω− ∪ Ω+, Rd)× L∞(ΩD) | 0≤z≤1 a.e. in ΩD} in
W 1,p(Ω− ∪ Ω+, Rd)×L∞(ΩD), whih an be shown as in the proof of Lemma 3.5 usingthe ideas of the proof of Theorem 4.6, Item (2.) Then the ompatness of the sublevelsin the weak topology of Q diretly follows from the lower semiontinuity and oerivityas in the proof of Lemma 3.5. Sine T is oarser than the the weak topology of Q theompatness of the sublevels in T follows.To establish the Γ-lim inf-estimate for (Q, Eκ,R) we use that stable sequenes haveequibounded energies, whih yields a subsequene even onverging weakly in Q.Theorem 4.8 (Lower Γ-limit of the energy funtionals) Let Eκ and E be givenby (3.1) and (4.1) suh that the assumptions (2.5) and (2.6) hold. Let (tκ, qκ)

TT−→ (t, q)as κ → 0 with qκ ∈ S
κ(tκ) for all κ ∈ (0, κ0]. Then

E(t, q) ≤ lim inf
κ→0

Eκ(tκ, qκ) . (4.9)26



Proof: Sine qκ = (uκ, zκ) ∈ S
κ(tκ) for all κ ∈ (0, κ0] there is a onstant E > 0 suhthat Eκ(tκ, uκ, zκ) ≤ E. Thus, Theorem 4.6 an be applied and yields the existene ofa subsequene (uκ, zκ) ⇀ (u, z) in Q with (u, z) ∈ QG.Due to assumptions (2.6) we obtain that the funtional ∫

Ω−∪Ω+
W (·) dx is weakly se-quentially lower semiontinuous on W 1,p(Ω− ∪Ω+, Rd). Together with (2.5) we dedue

lim infκ→0

∫
Ω−∪Ω+

W (e(uκ + g(tκ))) dx ≥
∫
Ω−∪Ω+

W (e(u + g(t))) dx. Furthermore itlearly holds lim infκ→0
κ
r

∫
ΓC |∇szκ|

r ds ≥ 0, whih establishes (4.9).4.2 Conditioned Upper Semiontinuity of the Stable SetsWe show ondition (A.3-C2) by proving the existene of a mutual reovery sequene,i.e. for any sequene (tκ, qκ)
TT−→ (t, q) with q = (u, z) and with qκ = (uκ, zκ) ∈ S

κ(tκ)for all κ∈ (0, κ0] and for all q̂ = (û, ẑ)∈Q our task is to onstrut a mutual reoverysequene (q̂κ)κ∈(0,κ0] with q̂κ =(ûκ, ẑκ) suh that
lim sup

κ→0

(
Eκ(tκ, q̂κ) +R(ẑκ−zκ)− E

κ(tκ, qκ)
)
≤ E(t, q̂) +R(ẑ−z)− E(t, q) . (4.10)In order to onstitute (ẑκ)κ∈(0,κ0] ⊂ W 1,r(ΩD) for a given funtion ẑ ∈ L∞(ΩD) we haveto mollify TCẑ by a sequene of suitable molli�ers (ηκ)κ(0,κ0] ⊂ C∞

0 (Rd−1) in suh a waythat ∫
ΓC κ

r

(
|∇TCẑκ|

r − |∇TCzκ|
r
)
ds vanishes. For this, we use molli�ers of the form

η̃1(s) :=

{
c exp(−1/(1−|y|2)) if |s| ≤ 1,

0 otherwise, η̃ρ(s) := 1
ρd−1 η̃1(s/ρ) , ηκ = η̃ρ(κ) , (4.11)where c is de�ned in suh a way that ‖η̃1‖L1(Rd−1) = 1 and ρ(κ) → 0 as κ → 0 suitably.For TCẑ ∈ L∞(ΓC) the molli�ation guarantees that TCẑκ → TCẑ in Lq(ΓC) for all

q ∈ [1,∞), see [Ada75, p. 29, Lemma 2.18℄. Moreover, by [Jan71, p. 33, Theorem 39.1℄we have
supp(TCẑ ∗ η̃ρ) ⊂ suppC ẑ + BC

ρ (0) = {s + s̃ | s ∈ supp Cẑ, s̃ ∈ BC
ρ (0)} , (4.12)where BC

ρ (0) ⊂ ΓC is the losed ball of radius ρ around 0 and suppC ẑ = supp TCẑ.We de�ne ẑκ(y1, s) = TCẑκ(s) for a.e. (y1, s) ∈ ΩD, so that ẑκ ∈ ZG.Sine in general N Ĉ
zκ
6⊂ N Ĉ

z , it is neessary to modify û so that the modi�ed funtions ûκsatisfy [[[ûκ]]>0] ⊂ N Ĉ
zκ

. In order to verify (4.10) we want that Eκ(tκ, ûκ, ẑκ) → E(t, û, ẑ).This an be guaranteed if ûκ → û strongly in W 1,p(Ω− ∪ Ω+, Rd). In the following weprove the existene of this sequene for the ase p > d, sine the ontinuity of [[û]]on ΓC then allows us to onlude from Lemma 4.1 that (û, ẑ) ∈ QG is equivalent to
suppC ẑ ∩OS [[û]] = ∅. We will apply a Hardy inequality aording to [Lew88, p. 190℄.Proposition 4.9 Let M̂ ⊂ ΓC be losed and let Ω± ⊂ R

d as in Fig. 1. Assume that
p > d. Let dM̂(x) := minx̂∈M̂ |x − x̂| for all x ∈ Ω±. For all u ∈ W 1,p

M̂
(Ω±, Rd) with

W 1,p

M̂
(Ω±, Rd) := {ũ ∈ W 1,p(Ω±, Rd) | ũ=0 on M̂ ∪ ΓDir} it holds (u/dM̂)∈Lp(Ω±, Rd).In partiular, there is a onstant CM̂ > 0 suh that

∥∥u/dM̂

∥∥
Lp(Ω±,Rd)

≤ CM̂ ‖∇u‖Lp(Ω±,Rd×d) . (4.13)27



We now onstrut a sequene (ûκ)κ∈(0,κ0] suh that TCẑκ[[ûκ]] = 0 a.e. on ΓC. For this,let ûsym(x1, s) = 1
2

(
û(x1, s) + û(−x1, s)

) and ûanti(x1, s) = 1
2

(
û(x1, s) − û(−x1, s)

).Then, ûsym ∈ W 1,p(Ω, Rd) and ûanti ∈ W 1,p(Ω− ∪Ω+, Rd), whih satis�es ûanti(0, s) = 0if and only if [[û]](s) = 0 for s ∈ ΓC, in partiular, ûanti = 0 on M̂ = suppC ẑ, i.e.
ûanti ∈ W 1,p(Ω−∪ M̂ ∪Ω+, Rd). We use ut-o� funtions that push ûanti to 0 in asuitable neighborhood of M̂. Thanks to Proposition 4.9 we an show for p > d that thisonstrution onverges strongly in W 1,p(Ω− ∪ Ω+, Rd) as the size of the neighborhoodtends to 0.Corollary 4.10 Let p > d and û∈W 1,p(Ω−∪M̂∪Ω+, Rd) with û=0 on ΓDir in the traesense. With ξM̂

ρ (x) := min
{

1
ρ

(
dM̂(x)− ρ

)+
, 1

} set
ûρ(x1, s) := ûsym(x1, s) + ξM̂

ρ (x1, s) ûanti(x1, s) . (4.14)Then the following statements hold:(i) ûρ → û strongly in W 1,p(Ω− ∪ Ω+, Rd),(ii) û ∈ W 1,p(Ω− ∪ M̂ ∪ Ω+, Rd) ⇒ ûρ ∈ W 1,p(Ω− ∪ (M̂ +Bρ(0)) ∪ Ω+, Rd) with
Bρ(0) ⊂ R

d,(iii) [[û · n1]] ≥ 0 ⇒ [[ûρ ·n1]]≥ 0.Proof: Reall that ûsym ∈ W 1,p(Ω, Rd) is �xed in ûρ, so that it su�es to verify thestatements for ûρ
anti = ξM̂

ρ ûanti. From ξM̂
ρ positive and [[û·n1]] ≥ 0 it follows [[ûρ

anti·n1]]≥0,whih proves (iii). Note that
ξM̂
ρ (x)





= 0 if dM̂(x) ≤ ρ,

∈ (0, 1) if ρ < dM̂(x) ≤ 2ρ,

= 1 if 2ρ < dM̂(x),

and ξM̂(x) :=

{
0 if x ∈ M̂,

1 otherwise. (4.15)Hene ûρ
anti = 0 in M̂ + Bρ(0). This implies ûρ ∈ W 1,p(Ω−∪(M̂ + Bρ(0))∪Ω+, Rd), sothat (ii) holds.It remains to prove (i). From (4.15) we see that ξM̂

ρ → ξM̂ pointwise in Ω. With
Aρ := [dM̂(x) ≤ ρ], Bρ := [ρ < dM̂(x) ≤ 2ρ] and Cρ := [2ρ < dM̂(x)] we obtain by thedominated onvergene theorem that
‖ûρ

anti − ûanti‖
p
Lp(Ω,Rd)

=

∫

Aρ

|ûanti|
p dx +

∫

Bρ

|(ξM̂
ρ − ξM̂)ûanti|

p dx +

∫

Cρ

|0|p dx → 0 ,due to Ld
(
[dM̂(x) ≤ ρ]

)
→ 0, Ld

(
[ρ < dM̂(x) ≤ 2ρ]

)
→ 0 and |ξM̂

ρ − ξM̂ | ≤ 1 for all
ρ > 0.By the hain rule we alulate that ∇ûρ

anti = ξM̂
ρ ∇ûanti + ûanti⊗∇ξM̂

ρ . Thus,
‖∇(ûρ

anti−ûanti)‖Lp ≤ ‖(1−ξM̂
ρ )∇ûanti‖Lp +‖ûanti⊗∇ξM̂

ρ ‖Lpwhere ‖(1− ξM̂
ρ )∇ûanti‖Lp(Ω−∪Ω+,Rd×d) → 0 again by dominated onvergene.It remains to show that ‖ûanti⊗∇ξM̂

ρ ‖Lp(Ω−∪Ω+,Rd×d) → 0. We obtain that
|∇ξM̂

ρ (x)| =





0 if 0 ≤ dM̂(x) ≤ ρ,

1/ρ if ρ < dM̂(x) ≤ 2ρ,

0 if 2ρ < dM̂(x) ,28



i.e. |∇ξM̂
ρ |≤1/ρ. Sine dM̂(x)∈ [ρ, 2ρ] it holds 1/ρ≤ 2

d
M̂

(x)
for all x∈Ω. We onlude

‖ûanti⊗∇ξM̂
ρ ‖

p
Lp(Ω−∪Ω+,Rd×d)

≤ 2p

∫

B2ρ(M̂)\Bρ(M̂ )

∣∣∣∣
ûanti(x)

dM̂(x)

∣∣∣∣
p

dx → 0,sine ‖ûanti/dM̂‖Lp(Ω−∪Ω+,Rd) is bounded by Corollary 4.9 and sine
Ld

(
B2ρ(M̂)\Bρ(M̂)

)
→ 0 for B2ρ(M̂)\Bρ(M̂) = {x ∈ Ω | ρ<dM̂(x)≤2ρ} .With these tools at hand we now prove the existene of a mutual reovery sequene un-der the assumption that r ∈ (1,∞). In partiular we have to determine the molli�ers ηκin suh a way that their slopes grow su�iently slow, so that ∫

ΩD κ
r

(
|∇ẑκ|

r−|∇zκ|
r
)
dyvanishes. In order to verify this, we will exploit the Lipshitz-ontinuity of | · |r.Theorem 4.11 (Mutual reovery sequenes) Let (Q, Eκ,R) and (Q, E ,R) be gi-ven by (2.12), (3.1), (2.16) and (4.1), suh that the assumptions (2.5) and (2.6) holdtrue with p>d and r ∈ (1,∞). Then, for all (tκ, qκ)

TT−→ (t, q) with qκ∈S
κ(tκ) for all

κ ∈ (0, κ0] and for every q̂∈Q there is a sequene (qκ)κ∈(0,κ0] suh that (4.10) holds.Proof: Let (tκ, uκ, zκ)
TT−→ (t, u, z) with qκ = (uκ, zκ) ∈ S

κ(tκ) for every κ ∈ (0, κ0].Consider q̂ = (û, ẑ) ∈ Q. If q̂ ∈ Q\QG, then E(tκ, q̂) = ∞ for all κ ∈ (0, κ0] and(4.10) trivially holds. Hene, assume that q̂ ∈ QG. Additionally let 0 ≤ ẑ ≤ z a.e.in ΩD, otherwise R(ẑ−z) = ∞. For every κ ∈ (0, κ0] we now have to onstrut themutual reovery sequene (ûκ, ẑκ)κ∈(0,κ0] ⊂ Q in suh a way that q̂κ = (ûκ, ẑκ)∈QC and
R(ẑκ−zκ) < ∞ for all κ∈(0, κ0]. This means in partiular that ẑκ∈W 1,r(ΩD), whereas
ẑ∈L∞(ΩD), only. Additionally it is required that ẑκ ≤ zκ a.e. inΩD. The onstrution of
(ẑκ)κ∈(0,κ0] will be done in Step 1. In Step 2 we verify that ∫

ΩD κ
r

(
|∇ẑκ|

r−|∇zκ|
r
)
ds → 0.Finally, in Step 3, we speify ûκ using Corollary 4.10.Step 1 (Constrution of ẑκ): For all κ ∈ (0, κ0] we now onstrut ẑκ. We have

ẑ∈L∞(ΩD) with 0≤ ẑ≤1 being onstant a.e. in y1-diretion, whereas ẑκ has to satisfy
ẑκ∈W 1,r(ΩD) with ∂y1

ẑκ = 0 and 0 ≤ ẑκ ≤ 1. First, we put
ζ(y) :=

{
ẑ(y)/z(y) if z(y) > 0 ,

0 if z(y) = 0.
(4.16)Due to the assumption 0 ≤ ẑ ≤ z it learly holds that 0 ≤ ζ ≤ 1 a.e. in ΩD. Wemollify TCζ by onvolution with the sequene (ηκ)κ∈(0,κ0] ⊂ C∞

0 (Rd−1) of (4.11), wherethe dependene of ρ from κ will be spei�ed below. For all κ ∈ (0, κ0] the onvolutionleads to funtions ζ̃κ = TCζ ∗ ηκ whih satisfy ζ̃κ → TCζ strongly in Lq(ΓC) for all
q ∈ [1,∞) by [Ada75, Lemma 2.18℄, sine ẑ/z ∈ Lq(ΩD). Then we set ζκ(y1, s) = ζ̃κ(s)for all (y1, s) ∈ ΩD. As the �nal reovery sequene we introdue

ẑκ := zκζκ for all κ ∈ (0, κ0] , (4.17)whih satis�es 0 ≤ ẑκ ≤ zκ. Sine zκ
∗
⇀ z in L∞(ΩD) by assumption, ζ̃κ → TCζ in

L1(ΓC) and thus ζκ → ζ in L1(ΩD) we have ẑκ ⇀ ẑ in L1(ΩD), and hene
lim
κ→0

R(ẑκ−zκ) = lim
κ→0

̺

∫

ΩD(zκ−ẑκ) dy = R(ẑ−z) . (4.18)29



Appliation of the hain rule yields that ∇ẑκ = ∇(ζκzκ)=ζκ∇zκ+zκ∇ζκ ∈ Lr(ΩD, Rd)as well as ∂y1
ẑκ =0 due to ∂y1

zκ =0 and ∂y1
ζκ =0.In order to ensure that κ

r
‖∇ẑκ‖

r
Lr(ΩD,Rd) → 0 as κ → 0 we now determine the radius

ρ(κ) for the molli�ers ηκ = η̃ρ(κ) suitably. For η̃ρ from (4.11) we have
‖∇(TCζ∗η̃ρ)‖

r
Lr(ΓC,Rd−1) ≤ ‖TCζ‖L∞(ΓC)‖∇η̃ρ‖

r
Lr(ΓC,Rd−1) ≤ ‖∇η̃1‖

r
Lr(ΓC,Rd−1)ρ

−r(d−1) .(4.19)Hene, ρ(κ) has to be hosen in suh a way that κρ−r(d−1)→0. This is satis�ed e.g. for
ρ(κ)=κ1/(2r(d−1)). We de�ne ηκ = η̃ρ(κ).Step 2 (Canellation argument): Up to now our onstrution makes sure that
κ
r
‖∇ζκ‖

r
Lr(ΩD,Rd)

≤ Cκρ−r(d−1) → 0 as κ→ 0. Sine κ
r
‖∇zκ‖

r
Lr(ΩD,Rd)

is only uniformlybounded by the properties of stable sequenes, we onlude that κ
r
‖∇ẑκ‖

r
Lr(ΩD,Rd) maynot vanish ompletely. However, in the lim sup-estimate (4.10) we an ompensate theremaining terms by the term −κ

r
‖∇zκ‖

r
Lr(ΩD,Rd) that ours in Eκ(tκ, uκ, zκ). In orderto show that these terms indeed anel out we use the following Lipshitz-estimate for

w(x) = |x|r with r ∈ (1,∞) and x ∈ R, whih an be obtained by a Taylor expansion:
|w(a)− w(b)| =

∣∣∣∣
∫ 1

0

w′(b + α(a− b))(a− b) dα

∣∣∣∣ ≤ 2r−1(|a|r−1 + |b|r−1)|a− b| (4.20)for all a, b ∈ R. Using 0 ≤ ζκ ≤ 1 and 0 ≤ zκ ≤ 1 a.e. in ΩD, estimate (4.20) andHölder's inequality imply
∫

ΩD κ
r

(
|∇ẑκ|

r−|∇zκ|
r
)
dy ≤

∫

ΩD κ
r

(
(|∇ζκ|+|∇zκ|)

r−|∇zκ|
r
)
dy

≤ 2r−1

∫

ΩD κ
r

(
2r−1|∇ζκ|

r−1 + 2r|∇zκ|
r−1

)
|∇ζκ| dy

≤ 22r−2

r
κ‖∇ζκ‖

r
Lr(ΩD,Rd) + 22r−1

r
κ1−1/r‖∇zκ‖

r−1
Lr(ΩD,Rd)

κ1/r‖∇ζκ‖Lr(ΩD,Rd) → 0 ,sine κ‖∇ζκ‖
r
Lr(ΩD,Rd) → 0 by onstrution and κ1−1/r‖∇zκ‖

r−1
Lr(ΩD,Rd)

≤ C due to theproperties of stable sequenes.Step 3 (Convergene of E
κ(tκ, q̂κ)): Beause of ẑκ = zκζκ we �nd suppC ẑκ =

suppC zκ ∩ suppC ζκ ⊂ suppC ζ + BC
ρ(κ)(0). Hene, for Eκ(tk, q̂k) < ∞ it su�es to showthat [[ûκ]] = 0 on supp TCẑκ. Sine p>d we an apply Corollary 4.10 and set

ûκ := ûρ(κ) with M̂ = suppC ẑ . (4.21)where ρ(κ) is determined by (4.19). From (4.12), Corollary 4.10 (ii) and Lemma4.1 we infer that TCẑκ[[ûκ]] = 0 on ΓC. By Corollary 4.10 (i) we have ûκ → û and
(ûκ+g(tκ)) → (û+g(t)) strongly in W 1,p(Ω− ∪ Ω+, Rd) by (2.5). Beause of (2.6b),a Taylor expansion gives ∫

Ω−∪Ω+
W (e(ûκ+g(tκ))) dx →

∫
Ω−∪Ω+

W (e(û+g(t))) dx. This�nishes the proof of the lim sup-estimate (4.10).5 Simultaneous ConvergeneIn the Setions 3 and 4 we proved that energeti solutions of the Gri�th-type delam-ination problem (Q, E ,R) an be approximated by energeti solutions of the partial30



damage models (Q, Eε
κ,R) via a double limit (�rst ε → 0 and then κ → 0). Thatis, we performed the intermediate step of �rst approximating energeti solutions ofthe gradient delamination problems (Q, Eκ,R) as ε → 0. In this setion we show thatone an merge this double limit passage to a simultaneous onvergene. For this, wehave to prove the existene of a κ-dependent upper bound G : (0, κ0] → (0, ε0] forthe parameter ε. The growth of this funtion G is on the one hand determined by theassumption κ1/(r(d−1))/ρ(κ) → 0, whih is needed to ontrol the gradient of the molli-�ed delamination variable for the onstrution of the reovery sequene as κ → 0, seeformula (4.19). On the other hand it stems from the fat, that the property ∂y1

z = 0 on
ΩD for the limit z ∈ L∞(ΩD) of a sequene (zκ

ε )ε∈(0,ε0],κ∈(0,κ0] ⊂ W 1,r(ΩD) with zκ
ε

∗
⇀ zrequires that ε/κ1/r → 0 as (ε, κ) → (0, 0), as an be seen from formula (3.6). Thesetwo requirements imply that

ε ≪ κ1/r ≪ κ1/(r(d−1)) ≪ ρ(κ) for 0 < κ < κ0 ≪ 1 . (5.1)For the upper bound on ε we hoose a funtion G : (0, κ0] → (0, ε0] with the property
G(κ)/κ1/r → 0 as κ → 0 . (5.2)This relation is essential to show the simultaneous limit. Moreover, to obtain thisresult for sequenes (ε, κ) → (0, 0) simultaneously, the ruial step is the onstrutionof a joint mutual reovery sequene. We formalize this onstrution with the aid ofso-alled reovery operators, whih are de�ned as follows.De�nition 5.1 (Reovery operators) A family (Rh)h∈(0,h0] with Rh : Q×Q×Q →

Q for all h > 0 is alled a family of reovery operators, if for a given stable sequene
(th, qh)h∈(0,h0] with (th, qh)

TT−→ (t, q) and any testfuntion q̂ ∈ Q the sequene q̂h =

Rh(q̂, q, qh) provides a mutual reovery sequene, i.e.
lim sup

h→0

(
Eh(th, q̂h) +R(q̂h − qh)− Eh(th, qh)

)
≤ E(t, q̂) +R(q̂ − q)− E(t, q) .Speaking in this notion the reovery sequene onstruted in Lemma 3.9 as ε → 0 isformed by reovery operators Rε = (RU

ε , RZ
ε ) : Q×Q×Q → Q with

R
U
ε : Q×Q×Q → U , R

U
ε (q̂, q, qε) = ûε = ûsym + Aεû , (5.3)

R
Z
ε : Q×Q×Q → Z, R

Z
ε (q̂, q, qε) = ẑε = max

{
εγ, min{ẑ − δε, zε}

}
, (5.4)i.e. here, the reovery operators do not depend on all the omponents of the state q̂, theelements of the stable sequene qε and its limit q. In (5.3) it is δε = o(‖zε − z‖Lr(ΩD)).Moreover, for û∈W 1,p(Ω−∪Ω+, Rd) we introdued ûsym(x1, s) = 1

2

(
û(x1, s)+û(−x1, s)

)and ûanti(x1, s) = 1
2

(
û(x1, s)− û(−x1, s)

). Clearly, ûsym ∈ W 1,p(Ω, Rd) and ûanti ∈
W 1,p(Ω−∪Ω+, Rd). Then, omitting to indiate the dependene of Aεû(x1, s) on s ∈ ΓC,we set
Aεû(x1) =

{
1
2

(
û±(x1)− û∓(−x1)

) if (x1, s) ∈ Ωε
±,

ε−x1

4ε

(
û−(±x1)− û+(∓x1)

)
+ ε+x1

4ε

(
û+(∓x1)− û−(±x1)

) if x1 ∈ I∓ε ,with û± = û|Ω±, I−ε = (−ε, 0] and I+
ε = [0, ε).31



The reovery sequene from Lemma 4.11 for κ → 0 is similarly formed by reoveryoperators Rκ = (RU
κ , RZ

κ ) : Q×Q×Q → Q with
R
U
κ : Q×Q×Q → U , R

U
κ (q̂, q, qκ) = ûκ = ûsym + ξsuppC ẑ

ρ(κ) ûanti , (5.5)
R
Z
κ : Q×Q×Q → Z, R

Z
κ (q̂, q, qκ) = ẑκ = zκηρ(κ) ∗ TC(ẑ/z) , (5.6)where κρ(κ)−r(d−1) → 0 and ξsuppC ẑ

ρ(κ) as in Corollary 4.10. Again, we see that theseoperators do not depend on all the omponents of q̂, qκ and q.For the simultaneous limit we now have to ompose these two reovery operators R
κ
ε =

Rκ ◦ Rε to get a joint mutual reovery sequene by q̂κ
ε = Rκ ◦ Rε(q̂, q, q

κ
ε ), where

qκ
ε ∈ S

κ
ε (tκε ) with (tκε , q

κ
ε )

TT→ (t, q). In partiular, we have to speify how the omposition
◦ has to be understood in our ontext. From the onstrution (5.3)-(5.6) we see that thereovery operators Rε and Rκ of our problems do not depend on all the omponents of
Q×Q×Q. Moreover, to get a �nite energy it is neessary that the reovery operatorsmap to a subspae of Q, that is QC for Rε and QG for Rκ, respetively. For the samereason, also Q×Q×Q is restrited to subspaes, namely Rε : QC ×QC ×QD → QDand Rκ : QG × QG × QC → QC. For the simultaneous limit passage we now wantto plug in testfuntions q̂ ∈ QG, elements of stable sequenes qκ

ε ∈ Sκ
ε (tκε ) ⊂ QDfor all ε ∈ (0, ε0], κ ∈ (0, κ0] and their limit q ∈ QG and we need that Rε ◦ Rκ :

QG×QG×QD → QD. Reall from (5.6) that ẑε
κ(y1, s) = zκ

ε (y1, s)(ηρ(κ)∗TC(ẑ/z))(s), i.e.
ηρ(κ)∗TC(ẑ/z) ∈ C∞(ΓC) and multipliation with zκ

ε ∈ W 1,r(ΩD) leads to ẑε
κ ∈ W 1,r(ΩD).Sine ∂y1

zε
κ 6= 0, in general, we have R

Z
κ (q̂, q, qκ

ε ) = ẑε
κ ∈ ZD with the property ẑκ

ε ≤ zκ
ε .Hene, in view of (5.4) and (5.6), we an de�ne R

Z
ε,κ = R

Z
ε ◦R

Z
κ as follows

R
Z
ε,κ(q̂, q, q

κ
ε ) = R

Z
ε ◦R

Z
κ (q̂, q, qκ

ε ) = R
Z
ε

(
R
Z
κ (q̂, q, qκ

ε ), q, qκ
ε

)
= max{εγ, ẑκ

ε } . (5.7)From (5.3) and (5.5) we see that R
U
ε (·, q, qκ

ε ) : QC → UD and R
U
κ (·, ẑ, q, qκ

ε ) : UG → UCare linear operators. Here, we de�ne the omposition R
U
ε,κ = R

U
ε ◦R

U
κ by

R
U
ε,κ(q̂, q, q

κ
ε ) = R

U
ε ◦R

U
κ (q̂, q, qκ

ε ) = R
U
ε

(
R
U
κ (q̂, q, qκ

ε )
)

= ûsym + ξsuppC ẑ
ρ(κ) Aεû , (5.8)Now we are in a position to show that Rε,κ given by (5.7) and (5.8) is a joint mutualreovery operator for the simultaneous limit passage (ε, κ) → (0, 0).Corollary 5.2 (Joint mutual reovery operators) Let (ε, κ) → (0, 0) under theondition that 0 < ε ≤ G(κ) with G : (0, κ0] → (0, ε0] satisfying (5.2). Assume that

r, p ∈ (1,∞) and γ ∈ (p−1, P ), suh that (3.12) and (3.9) are satis�ed. Let (2.5) and(2.6) hold. Then, the operators R
κ
ε = (RU

ε,κ, R
Z
ε,κ) : Q×Q×Q → Q de�ned by (5.7) and(5.8) form joint mutual reovery operators for the systems (Q, Eκ

ε ,R) and (Q, E ,R).Proof: Let q̂ ∈ QG and (tκε , q
κ
ε )

TT−→ (t, q) as κ → 0 with (tκε , q
κ
ε ) ∈ Sκ

ε (tκε ). Then,
qκ
ε ∈ QD for all κ ∈ (0, κ0]. For the proof we set M̂ = suppC ẑ and in the arguments ofthe reovery operators (5.3)�(5.6) we only indiate the quantities they depend on.By (5.7) and (5.8) it is R

U
ε,κ(û, M̂) = ûsym + ξM̂

ρ(κ)Aεû. Hene ξM̂
ρ(κ)Aεû = 0 in Bρ(κ)(M̂),while supp R

Z
κ (ẑ, z, zκ

ε ) ⊂ (−1, 1)× (BC
ρ(κ)(M̂)), so that R

Z
ε,κ(ẑ, z, zκ

ε ) = εγ in (−1, 1)×

ΓC\(BC
ρ(κ)(M̂)). Moreover, we have

e
(
R
U
ε,κ(û, M̂)

)
= ∇ûsym + ξM̂

ρ(κ)e(Aεû) + 1
2

(
Aεû⊗∇ξM̂

ρ(κ) + (Aεû⊗∇ξM̂
ρ(κ))

⊤
)
. (5.9)32



Reall that the assumption κ1/(r(d−1))/ρ(κ) → 0 is needed to ontrol the gradientof the molli�ed delamination variable for the onstrution of the reovery sequeneas κ → 0, see formula (4.19). Moreover, to preserve that ∂y1
z = 0 on ΩD requires

ε/κ1/r → 0 as κ → 0, as an be seen from formula (3.6). Thus, relation (5.1) follows.By the assumptions (5.2) and ε ≤ G(κ) we have ensured that ε/κ1/r → 0. Hene,learly R
Z
κ,ε(ẑ, z, z

κ
ε )

∗
⇀ ẑ, so that R(

R
Z
κ,ε(ẑ, z, zκ

ε )−zκ
ε

)
→ R

(
ẑ−z

)
. Moreover, both

Ωε
± ∩ Bρ(κ)(M̂) 6= ∅ and ΩεD ∩ Bρ(κ)(M̂) 6= ∅.In the following we omit indiating the dependene of ε and ρ on κ. Using the positivityof W given by (2.6b), the fat that Aεû|Ωε

±
= ûanti|Ωε

±
, Corollary 4.10 (i), (2.5) and thedominated onvergene theorem we �nd

∫

Ωε
±

W
(
e
(
R
U
ε,κ(û, M̂)+g(tε)

))
dx ≤

∫

Ω±

W
(
e
(
ûsym+ξM̂

ρ ûanti+g(tε)
))

dx

→

∫

Ω±

W
(
e(û+g(t))

)
dx .In view of (5.9) we obtain on ΩεD

∫

ΩεD Π−1
ε R

Z
κ,ε(ẑ, z, zκ

ε )W̃
(
e(RU

ε,κ(û, M̂))
)
dx

≤ 3p−1c̃

∫

ΩεD (
|∇ûsym|

p + Π−1
ε R

Z
κ (ẑ, z, zκ

ε )|e(Aεûanti)|
p +

∣∣Aεû⊗∇ξM̂
ρ

∣∣p) dx ,

(5.10)where the �rst term obviously tends to 0 as ε → 0. For the third term we proeed asin the proof of Corollary 4.10, i.e. with Dρ(M̂) = B2ρ(M̂)\Bρ(M̂) we have
∫

ΩεD ∣∣Aεû⊗∇ξM̂
ρ(κ)

∣∣p dx ≤

∫

ΩεD∩Dρ(M̂)

2p

∣∣∣∣
Aεûanti

dM̂(x)

∣∣∣∣
p

dx ≤

∫

ΩεD∩Dρ(M̂ )

2p

∣∣∣∣
ûanti

dM̂(x)

∣∣∣∣
p

dx → 0 , (5.11)sine ‖ûanti/dM̂(x)‖Lp(Ω−∪Ω+,Rd) is bounded by Proposition 4.9. Moreover, we have usedthat (ε± x1)/(4ε) ≤ 1/2 for x1 ∈ Iε, where Iε = (−ε, ε).Furthermore, the seond term in (5.10) an be estimated using that
∫

ΩεD Π−1
ε R

Z
ε,κ(ẑ, z, z

κ
ε )|e(Aεû)|p dx ≤

∫

Iε×(ΓC\BC
ρ (M̂))

εγ|e(Aεû)|p dx +

∫

(Iε×BC
ρ (M̂ ))\Bρ(M̂)

|e(Aεûanti)|
p dx .By repeating the estimates (3.37)-(3.42) we onlude that this term tends to 0.To verify that also ∫

ΩεD ϕ
(
e
(
R
U
ε,κ(û, M̂)

))
dx → 0 we use the upper growth estimatein (2.3) and again formula (5.9). Moreover, sine | trA| ≤ |A| for all A ∈ R

d×d, wesee that the terms ontaining tr∇ûsym and tr(Aεû⊗∇ξM̂
ρ ) tend to 0 with the samearguments as above. To prove that also the term ontaining tr e(Aεû) tends to 0 onehas to repeat the orresponding arguments in the proof of Lemma 3.9.Finally, for the gradient of the delamination variable it is

κ
(
‖ε∇R

Z
ε,κ(ẑ, z, z

κ
ε )‖r

Lr(ΩD,Rd) − ‖ε∇zκ
ε ‖

r
Lr(ΩD,Rd)

)

≤ κ
(
‖ε∇R

Z
κ (ẑ, z, zκ

ε )‖r
Lr(ΩD,Rd) − ‖ε∇zκ

ε ‖
r
Lr(ΩD,Rd)

)
.33



Then formula (4.19) and the anellation argument lead to the desired result, sine
κ1−1/r‖ε∇zκ

ε ‖
r−1
Lr(ΩD,Rd)

≤ C due to the properties of stable sequenes.The existene of a joint mutual reovery sequene by Corollary 5.2 implies that thelimit (t, q) of a stable sequene (tκε , q
κ
ε )

TT−→ (t, q) as (ε, κ) → (0, 0), satis�es q ∈ S(t),that is E(t, q) ≤ E(t, q̃) +R(z̃ − z) for all q̃ = (ũ, z̃) ∈ Q. This yields that E(t, q) < ∞and hene q ∈ QG. In partiular, this means that q = (u, z) satis�es the transmissionand the noninterpenetration ondition, see (4.3).Sine qκ
ε ∈ Sκ

ε (tκε ) for all ε ∈ (0, ε0], κ ∈ (0, κ] implies the equiboundedness of theorresponding energies one obtains the existene of a subsequene qκ
ε

T
−→ q by Lemma3.2 and the de�nition of T . Thus, we may state the following orollary.Corollary 5.3 Let the assumptions of Corollary 5.2 hold true. Consider a family

(tκε , u
κ
ε , z

κ
ε )ε(0,ε0],κ∈(0,κ0] with 0 < ε ≤ G(κ) and G as in (5.2), suh that (uκ

ε , z
κ
ε ) ∈ Sκ

ε (tκε )and tκε → t. Then, there is a subsequene (uκk
εk

, zκk
εk

)
T
−→ (u, z) as (εk, κk) → (0, 0) and

(u, z) ∈ QG, so that the transmission and the noninterpenetration ondition (1.1) aresatis�ed.Moreover, the simultaneous lower Γ-limit an diretly be adopted from Lemmata 3.7and 4.8. Lemma 3.8 onerning the properties of the partial time-derivatives of theenergy funtionals and Lemma 4.7 on the limit funtional and are valid as well. Hene,we are in a position to onlude with the simultaneous onvergene result.Theorem 5.4 (Simultaneous onvergene) Let the assumptions of Corollary 5.2hold. For all ε ∈ (0, ε0], κ ∈ (0, κ0] let qκ
ε : [0, T ] → Q denote energeti solutions ofthe systems (Q, Eκ

ε ,R) and the initial values qε,κ
0 , whih satisfy Eκ

ε (0, qε,κ
0 ) → E(0, q0).Then every subsequene (

qκk
εk

(t)
)

k∈N
with εk/κ

1/r
k → 0, whih onverges for all t ∈ [0, T ]with respet to the topology T , has an energeti solution of (Q, E ,R, q0) as its limit.Proof: The stability inequality (1.2 S) for q : [0, T ] → Q and (Q, E ,R) is a diretonsequene of Corollary 5.2. To verify the energy balane (1.2E) one may repeat thearguments of [MRS08, Theorem 3.1℄. Alltogether, this implies that q : [0, T ] → Q isan energeti solution of (Q, E ,R, q0).A Appendix: Abstrat Γ-onvergene ResultIn [MRS08℄ the theory of Γ-onvergene was adapted to the framework of the energetiformulation of rate-independent proesses. In the following we introdue su�ientonditions guaranteeing that a subsequene of energeti solutions of the approximatingsystems (Q, Ej,Rj) onverges to an energeti solution of the limit system (Q, E∞,R∞).Let the topology for the onvergene of the energeti solutions be denoted by T . Theni.e. we want to obtain that qj(t)

T
→ q(t) for all t ∈ [0, T ].For all j ∈ N∞ = N ∪ {∞} we introdue the stable sets

Sj(t) := {q ∈ Q | Ej(t, q) < ∞, ∀q̃ = (ũ, z̃) : Ej(t, qj) ≤ Ej(t, q̃) +Rj(z̃−zj)}.34



In order to ensure the Γ-onvergene of the systems (Q, Ej,Rj)j∈N the following ondi-tions have to be satis�ed by the energy funtionals Ej : [0, T ]×Q → R∞ for all j ∈ N∞.Compatness of energy sublevels: ∀ t∈[0, T ] ∀E∈R :

∀j ∈ N∞ : Lj
E(t) := {q ∈ Q | Ej(t, q) ≤ E} is ompat wrt. T ,

⋃∞
j=1 Lj

E(t) is relatively ompat wrt. T ,

(A.1-E1)Uniform ontrol of the power:
∃ c0∈R ∃ c1>0 ∀j ∈ N∞∀ (tq, q)∈[0, T ]×Q with E(tq, q) < ∞ :

E(·, q) ∈ C1([0, T ]) and |∂tE(t, q)| ≤ c1(c0+E(t, q)) for all t∈[0, T ] ,

(A.1-E2)Uniform time-ontinuity of ∂tE∞ :

∀ε > 0 ∀E ∈ R ∃ δ > 0 ∀q ∈ Q with E(0, q) < E :

|t1 − t2| < δ ⇒ |∂tE∞(t1, q)− ∂tE∞(t2, q)| < ε .

(A.1-E3)Furthermore the dissipation distanes Dj : Z × Z → [0,∞] with Dj(z, z̃) = Rj(z̃−z)for all z, z̃ ∈ Z must ful�ll for all j ∈ N∞:Quasi-distane:
∀j ∈ N∞ ∀ z1, z2, z3 ∈ Z : Dj(z1, z2) = 0 ⇔ z1 = z2 and

Dj(z1, z3) ≤ Dj(z1, z2) +Dj(z2, z3) ,

(A.2-D1)Semi-ontinuity:
∀j ∈ N∞ : Dj : Z×Z → [0,∞] is lower semi-ontinuous wrt. T ,

(A.2-D2)Positivity of D∞ :

∀ ompat A ⊂ Z , ∀(zj)j∈N ⊂ A :

min{Dj(zj , z),Dj(z, zj)} → 0 ⇒ zj
TZ→ z , (A.2-D3)where TZ is the restrition of T to the z-omponent of q = (u, z) .Additionally the following ompatibility onditions have to be satis�ed:For all tj → t in [0, T ], qj = (uj, zj)

T
→ q = (u, z) with qj ∈ Sj(tj) for all j ∈ N it holdsConditioned ontinuous onvergene of ∂tEj :

∂tEj(tj , qk) → ∂tE(t, q) ,
(A.3-C1)Conditioned upper semi-ontinuity of stable sets:

q ∈ S∞(t) ,
(A.3-C2)Lower Γ-limit for Ej :

E(t, q) ≤ lim infj→∞ Ej(tj , qj) ,
(A.3-C3)Lower Γ-limit for Dj : Let additionally q̂j = (ûj, ẑj)

T
→ q̂ = (û, ẑ) (A.3-C4)with q̂j ∈ Sj(tj), j ∈ N,The theorem below states the onvergene result. A proof is given in [MRS08, Th. 3.1℄.35



Theorem A.1 (Γ-onvergene of (Q, Ej,Rj)j∈N) Let onditions (A.1), (A.2) and(A.3) hold and for all j ∈ N let qj : [0, T ] → Q be an energeti solution of (Q, Ej,Rj) inthe sense of Def. 1.1. If qj(t)
T
→ q(t) for all t ∈ [0, T ] and if Ej(0, qj(0)) → E∞(0, q(0))then q : [0, T ] → Q is an energeti solution of (Q, E∞,R∞).Moreover, for all t ∈ [0, T ] it is Ej(t, qj(t))→E(t, q(t)), DissRj
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