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Abstract

The present work is dedicated to the study of numerical schemes for a viscoelastic
bar vibrating longitudinally and having its motion limited by rigid obstacles at the both
ends. Finite elements and finite difference schemes are presented and their convergence
is proved. Finally, some numerical examples are reported and analyzed.

1 Introduction

We consider a viscoelastic bar of length L, which, vibrates longitudinally. More precisely, each
end of the bar is free to move as long as it does not hit a material obstacle and each obstacle
may constrain the displacement of the extremity to be greater than or equal to some number.

The mathematical situation can be described as follows: assume that the bar is made up
of an homogeneous viscoelastic material and satisfies the assumptions of the theory of small
deformations. Let u(x, t) be the displacement at time t of the material point of spatial coordinate
x ∈ (0,L). Let f (x, t) denote a density of external forces, depending on space and time. Define

Ω def

= (0,L) and let α be a strictly positive number. The mathematical problem is formulated as
follows:

utt −uxx −αuxxt = f , x ∈ Ω, t > 0, (1.1)

with Cauchy initial data
u(·,0) = u0 and ut(·,0) = u1, (1.2)

and unilateral boundary conditions at x = c0 and x = cL, t > 0,

0 ≤ (u(0, ·)+c0) ⊥ −ux(0, ·)−αuxt(0, ·) ≥ 0, (1.3a)

0 ≤ (u(L, ·)+cL) ⊥ ux(L, ·)+αuxt(L, ·) ≥ 0, (1.3b)

where (·)t
def

= ∂
∂ t (·), (·)x

def

= ∂
∂x(·) and c0,cL > 0. The orthogonality has the natural meaning: if

we have enough regularity, it means that the product (u(X , ·)+cX )(ux(X , ·)+ αuxt (X , ·)) van-
ishes almost everywhere on the boundary, with X = 0,L. If we do not have enough regu-
larity, the above inequality is integrated on an appropriate set of test functions, yielding a
weak formulation for the unilateral condition. From mechanical point of view, (1.3) means that
when the bar touches the obstacle in X = 0 or X = L, its reaction can be only upwards, so
that ux(0, ·) + αuxt(0, ·) ≤ 0 on the set {t : u(0, ·) = −c0} or ux(L, ·) + αuxt(L, ·) ≥ 0 on the
set {t : u(L, ·) = −cL}. When the bar does not touch the obstacle, the end is free to move,
namely, we have ux(X , ·) + αuxt(X , ·) = 0 on the set {t : u(X , ·) > −cX}, X = 0,L. Note that
conditions (1.2) are also termed Signorini conditions. We suppose that the initial position u0

belongs to H2(Ω) and satisfies the compatibility conditions, i.e., u0(0,0) = u0(0) ≥ −c0 and
u0(L,0) = u0(L) ≥ −cL, the initial velocity u1 belongs to H1(Ω) and the density of forces f
belongs to L2(0,T ;L2(Ω)).
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Let us describe the weak formulation of the problem. Denote by K the convex set:

K
def

= {v ∈ H1(Ω× (0,T )) : vxt ∈ L2(Ω× (0,T )), v(0, ·) ≥−c0, v(L, ·) ≥−cL}.

This unusual convex set has been devised in order to write a weak formulation of our problem.
Since we expect to find a scalar product (uxt ,vx), we require uxt to be square integrable. Thus,
the weak formulation associated to (1.1)–(1.3) is obtained by multiplying (1.1) by v−u, v ∈ K,
and by integrating formally over Ω× (0,τ), τ ∈ [0,T ]. Then, we get the following variational
formulation



























Find u ∈ K such that for all v ∈ K and for all τ ∈ [0,T ],
∫

Ω
(ut(v−u))

∣

∣

τ
0 dx−

∫ τ

0

∫

Ω
ut(vt−ut)dxdt

+
∫ τ

0

∫

Ω
(ux+αuxt)(vx−ux)dxdt ≥

∫ τ

0

∫

Ω
f (v−u)dxdt .

(1.4)

The existence result for (1.1)–(1.3) is easily established by penalty method and was already
proved by Jarušek et al. [JM*93] in the case of distributed constraints. To do so, the obsta-
cle constraints are penalized, this means that the rigid constraints are replaced by very stiff
responses. When the constraint is active, the response is linear and it vanishes when the
constraint is not active (see [MaO88]). Thus, the existence of a weak solution is obtained by
passing to the limit with respect to the penalty parameter in the variational formulation associ-
ated to the penalty problem. The detailed proof can be find in [Pet02, pp. 13–26]. The reader is
also referred to [PeS09] for some existence results in higher dimension. Observe that nothing
is known about uniqueness.

In the present paper, a family of numerical schemes is defined in Section 2 with help of a
variational formulation. Let Vh be a sequence of approximation spaces of H1(Ω), which, can
be a space of finite elements. Let Kh be a convex set of elements of Vh. The duality product in
L2(Ω) and H1(Ω) are denoted by (·, ·) and by

a(u,v)
def

=

∫ L

0
uxvx dx, (1.5)

respectively. Thus, the family of schemes is defined by































Find un+1 ∈ Kh such that for all v ∈ Kh,
(

un+1−2un+un−1

∆t2 ,v−un+1
)

+a

(

un+1+un−1

2
,v−un+1

)

+αa

(

un+1−un−1

2∆t
,v−un+1

)

≥
(

f n,v−un+1),

(1.6)

with f n a suitable discretization of f and initial conditions u0 and u1 adequately chosen. Thus,
we establish that the scheme (1.6) converges, under a stability condition, to a solution of
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(1.1)–(1.3). In Section 3, we deal with finite difference schemes given by


















































un+1
j −2un

j+un−1
j

∆t2 −
(

un+1
j+1−2un+1

j +un+1
j−1

2∆x2 +
un−1

j+1−2un−1
j +un−1

j−1

2∆x2

)

−α
(

un+1
j+1−2un+1

j +un+1
j−1

2∆t∆x2 −
un−1

j+1−2un−1
j +un−1

j−1

2∆t∆x2

)

= f n
j for j ∈ [2,J−1],

un+1
1 =max

(

c0,
1
c∆

(

2un
1−un−1

1
∆t2 +

(

un+1
2

2∆x2 +
un−1

2 −un−1
2

2∆x2

)

+α
(

un+1
2

2∆t∆x2 −t un−1
2 −un−1

1
2∆t∆x2

)))

,

un+1
J =max

(

cL,
1
c∆

(

2un
J−un−1

J
∆t2 +

(

un+1
J−1

2∆x2 +
un−1

J−1−un−1
J

2∆x2

)

+α
(

un+1
J−1

2∆t∆x2 −
un−1

J−1−un−1
J

2∆t∆x2

)))

,

(1.7)

where c∆ 6= 0 is some constant. The convergence of the scheme (1.7) is proved. Finally, numer-
ical examples in Section 4 illustrate the usage of the provided tools for benchmark examples.

2 Fully discretized finite elements schemes

We consider Vh and Hh two sequences of finite-dimensional subspaces of H1(Ω) and L2(Ω)

such that L2(Ω) =
⋃

h Hh
L2(Ω)

and H1(Ω) =
⋃

hVh
H1(Ω)

. We assume that ∆t is the uniform time

step, tn = t0 + n∆t and n ≤ N(∆t) with N(∆t)
def

=
⌊

T
∆t

⌋

denotes the greatest integer at the most

equal to T
∆t . Let Kh

def

= {v ∈ Vh : vxt ∈ Hh, v(0) ≥ −c0, v(L) ≥ −cL be the sequence of convex
sets. We define a fully discrete scheme































Find un+1
h ∈ Kh such that for all v ∈ Kh,

(

un+1
h −2un

h+un−1
h

∆t2 ,v−un+1
h

)

+a

(

un+1
h +un−1

h

2
,v−un+1

h

)

+αa

(

un+1
h −un−1

h

2∆t
,v−un+1

h

)

≥
(

f n
h ,v−un+1

h

)

,

(2.8)

with f n
h a suitable discretization of f and initial conditions u0

h and u1
h satisfying

lim
h↓0

(

‖u0
h−u0‖+

∣

∣

∣

∣

u1
h−u0

h

∆t
−u1

∣

∣

∣

∣

)

= 0, (2.9)

where | · | and ‖·‖ denote the norms in L2(Ω) and H1(Ω), respectively. Note that (2.8) can be
rewritten in a slightly different but equivalent form. To do so, we define an operator Ah : Vh →Vh

such that
∀v ∈Vh : (Ahun+1

h ,v) = a(un+1
h ,v), (2.10)

and a maximal monotone operator such that

∂ψKh(u
n+1
h )

def

=











{0} if un+1
h ∈ int(Kh),

{w ∈ Kh : (w,v−un+1
h ) ≤ 0, ∀v ∈ Kh} if un+1

h ∈ ∂Kh,

/0 otherwise.

(2.11)

For further details on maximal monotone operators, the reader is referred to [Lio69, Bré73].
Clearly, using (2.10) and (2.11), it follows that (2.8) can be rewritten as

un+1
h −2un

h+un−1
h

∆t2 + Ah
un+1

h +un−1
h

2
+ Ah

un+1
h −un−1

h

2∆t
+ ∂ψKh(u

n+1
h ) ∋ f n

h . (2.12)
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The scheme (2.8) is implicit in the constraints. It is equivalent to minimize a coercive and twice
differentiable function in a convex set. Thus, for each step un

h is unique.

We establish now the convergence of the numerical scheme (2.8). More precisely, following
the analogous ideas developed for a wave equation with unilateral constraints in [ScB89], it is
possible to prove the Theorem 2.1. To do so, we assume that there exist two strictly positive
constants λ ,γ such that

∀v ∈ H1(Ω) : a(v,v) ≥ γ ‖v‖2 −λ |v|2. (2.13)

In the following, the notations for the constants introduced in the proofs are valid only in the
proof.

Theorem 2.1 Assume that (2.9) and (2.13) hold. Then the numerical scheme (2.8) converges
to a solution of (1.1)–(1.3) when ∆x and ∆t tend to 0.

Proof. First we prove the stability. To do so, we introduce v
def

= un−1
h in (2.8) ,which, leads to the

following inequality:

(

un+1
h −2un

h+un−1
h

∆t2 ,un−1
h −un+1

h

)

+ a

(

un+1
h +un−1

h

2
,un−1

h −un+1
h

)

+αa

(

un+1
h −un−1

h

2∆t
,un−1

h −un+1
h

)

≥
(

f n
h ,un−1

h −un+1
h

)

.

(2.14)

Note that the identity

1
∆t2

(

un+1
h −2un

h+un−1
h ,un−1

h −un+1
h

)

=

∣

∣

∣

∣

∣

un−1
h −un

h

∆t

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

un+1
h −un

h

∆t

∣

∣

∣

∣

∣

2

,

implies that

∣

∣

∣

∣

∣

un+1
h −un

h

∆t

∣

∣

∣

∣

∣

2

+
a(un+1

h ,un+1
h )

2
+ 2αa

(

un+1
h −un−1

h

2∆t
,
un+1

h −un−1
h

2∆t

)

∆t

≤
∣

∣

∣

∣

∣

un−1
h −un

h

∆t

∣

∣

∣

∣

∣

2

+
a(un−1

h ,un−1
h )

2
+ 2

(

f n
h ,

un+1
h −un−1

h

2∆t

)

∆t.

Hence we perform a discrete time integration of the above expressions and we obtain

∣

∣

∣

∣

∣

un+1
h −un

h

∆t

∣

∣

∣

∣

∣

2

+
a(un+1

h ,un+1
h )

2
+ 2α

n

∑
m=1

a

(

um+1
h −um−1

h

2∆t
,
um+1

h −um−1
h

2∆t

)

≤
∣

∣

∣

∣

u0
h−u1

h

∆t

∣

∣

∣

∣

2

+
a(u0

h,u
0
h)

2
+ 2

n

∑
m=1

(

f m
h ,

um+1
h −um−1

h

2∆t

)

∆t.

(2.15)

By using Cauchy-Schwarz inequality, we find

n

∑
m=1

(

f m
h ,

um+1
h + um−1

h

2∆t

)

∆t ≤ 1
2

n

∑
m=1

| f m
h |2∆t +

1
2

n

∑
m=1

∣

∣

∣

∣

∣

um+1
h −um−1

h

2∆t

∣

∣

∣

∣

∣

2

∆t. (2.16)
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Clearly, (2.16) and (2.13) lead to the following inequality
∣

∣

∣

∣

∣

un+1
h −un

h

∆t

∣

∣

∣

∣

∣

2

+
a(un+1

h ,un+1
h )

2
+ 2αγ

n

∑
m=1

∥

∥

∥

∥

∥

um+1
h −um−1

h

2∆t

∥

∥

∥

∥

∥

2

∆t

≤
∣

∣

∣

∣

u0
h−u1

h

∆t

∣

∣

∣

∣

2

+(1+2αλ )
n

∑
m=1

∣

∣

∣

∣

∣

um+1
h −um−1

h

2∆t

∣

∣

∣

∣

∣

2

∆t +
a(u0

h,u
0
h)

2
+

n

∑
m=1

| f m
h |2∆t.

Since
∣

∣

∣

um+1
h −um−1

h
2∆t

∣

∣

∣

2
≤
∣

∣

∣

um+1
h −um

h
∆t

∣

∣

∣

2
+
∣

∣

∣

um−1
h −um

h
∆t

∣

∣

∣

2
, we may infer that

∣

∣

∣

∣

∣

un+1
h −un

h

∆t

∣

∣

∣

∣

∣

2

+
a(un+1

h ,un+1
h )

2
+ 2αγ

n

∑
m=1

∥

∥

∥

∥

∥

um+1
h −um−1

h

2∆t

∥

∥

∥

∥

∥

2

∆t

≤
∣

∣

∣

∣

u0
h−u1

h

∆t

∣

∣

∣

∣

2

+
a(u0

h,u
0
h)

2
+

n

∑
m=1

| f m
h |2∆t + 2(1+2αλ )

n

∑
m=0

∣

∣

∣

∣

∣

um+1
h −um

h

∆t

∣

∣

∣

∣

∣

2

∆t.

(2.17)

Thus a discrete Grönwall’s lemma implies that there exists C > 0, independent of h, such that
∣

∣

∣

∣

∣

un+1
h −un

h

∆t

∣

∣

∣

∣

∣

2

+
a(un+1

h ,un+1
h )

2
+ 2αγ

n

∑
m=1

∥

∥

∥

∥

∥

um+1
h −um−1

h

2∆t

∥

∥

∥

∥

∥

2

∆t ≤C. (2.18)

On the other hand, we define an interpolation uh by

uh(x, t) = un
h
(n+1)∆t−t

∆t
+ un+1

h
t−n∆t

∆t
for t ∈ [n∆t,(n+1)∆t].

Therefore by using (2.18), we can extract from the sequence uh, a subsequence, still denoted
by uh, such that

uh ⇀ u in L∞(0,T ;H1(Ω)) weak ∗, (2.19a)

duh

dt
⇀

du
dt

in L∞(0,T ;L2(Ω)) weak ∗, (2.19b)

uh → u in C0,β (Ω× (0,T )) for all β < 1/2. (2.19c)

In order to prove that the limit u satisfies (1.4), it is necessary to take convenient test functions.
It is obvious that uh belongs to K. Thanks to (2.19), we may deduce that u belongs to K. The
elements of K are not smooth enough in time, and they have to be approximated before being
projected onto Vh. This projection does not conserve the constraints at x = 0 and x = L, and
therefore, the elements of K need another approximation in order to satisfy the constraints
strictly. More precisely, let v be an element of K, which, is equal to u for t ≥ T − ε . For η ≤ ε

4 ,
we define

vη(x, t)
def

=







u(x, t) if t ≥ T −η ,

u(x, t)+
1
η

∫ t+η

t
(v−u)(x,s)ds + c(η)φ(t) if t ≤ T −η .

(2.20)

The function φ is nonnegative and smooth; it is equal to 1 on [0,T− ε
2 ], and it vanishes on

[T− ε
4 ,T ]. The parameter c(η) is chosen as follows:
∣

∣

∣

∣

u(L, t)− 1
η

∫ t+η

t
u(L,s)ds

∣

∣

∣

∣

≤ 1
η

∫ t+η

t
|u(L, t)−u(L,s)| ds ≤ C

η

∫ η

0
sβ ds =

Cηβ

β+1
,

5



where C
def

= sups∈]t,t+η [
|u(L,t)−u(L,s)|

(s−t)β . We have the inequality

∀t ≤ T − ε
2

: vη(L, t) ≥ 1
η

∫ t+η

t
v(L,s)ds− Cηβ

β+1
+ c(η)φ(t).

If we choose c(η) = 2Cηβ

β+1 , we will be sure that

∀t ≤ T − ε
2

: vη(L, t) ≥−cL +
Cηβ

β+1
.

With the same arguments, we obtain

∀t ≤ T − ε
2

: vη(0, t) ≥−c0 +
Cηβ

β+1
.

It is not difficult to check that

∀t ∈ [T− ε
2 ,T−η ] : vη(x, t) = u(x, t)+ c(η)φ(t),

so that vη belongs to K. Furthermore, the time integration having a smoothing effect, we
may easily prove that vη belongs to L∞(0,T ;H1(Ω)). We denote by Ph the projection onto
Vh with respect to scalar product of L2(Ω). The sequence Ph converges in strong operator
topology of L2(Ω) to the identity I. Then Sobolev injections imply that there exists a sequence
γh converging to 0 when h tends to 0 such that

∀z ∈ H1(Ω) : ‖(Ph−I)z‖C0(Ω) ≤ γh ‖z‖ .

Moreover there exists CPh > 0 such that

∀v ∈ H1(Ω) : ‖Phv‖ ≤CPh ‖v‖ .

This property is proved by a classical computation. Now, we choose vη as in (2.20) and we let

vn
h = un+1

h + Ph(v
η (n∆t)−u(n∆t)).

If we substitute this value for vn
h in (2.8) and perform a discrete integration, we obtain

N−1

∑
n=1

( f n
h ,vn

h−un+1
h )∆t ≤−

(

u1
h−u0

h

∆t
,v0

h−u1
h

)

−
N−1

∑
n=1

(

un
h−un−1

h

∆t
,

vn
h−un+1

h − vn−1
h +un

h

∆t

)

∆t

+
N−1

∑
n=1

a

(

un+1
h +un

h

2
,vn

h−un+1
h

)

∆t + α
N−1

∑
n=1

a

(

un+1
h −un

h

2∆t
,vn

h−un+1
h

)

∆t.

(2.21)

The passage to the limit in this expression is obvious. It is enough to show that the total energy
of uh converges to the total energy of u. This is done by a discrete integration of (2.14). �

A similar result to Theorem 2.1 can be obtained in the case where one of the Signorini condi-
tions is replaced by a Neumann or a Dirichlet boundary conditions. Since the proof uses the
same ideas as already developed in Theorem 2.1, the verification is let to the reader.
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3 Finite difference schemes

Let ∆x
def

= L
J be the space step where J is an integer. We denote by un

j the solution of the
following finite difference scheme:























































un+1
j −2un

j+un−1
j

∆t2 −
(

un+1
j+1−2un+1

j +un+1
j−1

2∆x2 +
un−1

j+1−2un−1
j +un−1

j−1

2∆x2

)

−α
(

un+1
j+1−2un+1

j +un+1
j−1

2∆t∆x2 −
un−1

j+1−2un−1
j +un−1

j−1

2∆t∆x2

)

= f n
j for j ∈ [2,J−1],

un+1
1 =max

(

c0,
1
c∆

(

2un
1−un−1

1
∆t2 +

(

un+1
2

2∆x2 +
un−1

2 −un−1
1

2∆x2

)

+ α
(

un+1
2

2∆t∆x2 −un−1
2 −un−1

1
2∆t∆x2

)))

,

un+1
J =max

(

cL, 1
c∆

(

2un
J−un−1

J
∆t2 +

( un+1
J−1

2∆x2 +
un−1

J−1−un−1
J

2∆x2

)

+α
(

un+1
J−1

2∆t∆x2 −
un−1

J−1−un−1
J

2∆t∆x2

)))

,

(3.22)

where f n
j denotes a suitable discretization of f and c∆

def

= 1
∆t2− 1

2∆x2 − α
2∆t∆x2 . We assume that

un
0 = 0 and c∆ 6= 0. We define now an interpolation in the space of un

j and an approximation

of the L2 scalar product. We will see below that this family of schemes have a variational
formulation. More precisely, we introduce

ϕ j(x)
def

=







1− |x− j∆x|
∆x

if x ∈
[

( j−1)∆x,( j+1)∆x
]

,

0 otherwise,

and

un
h(x)

def

=
J

∑
j=1

un
jϕ j(x) and f n

h (x)
def

=
J

∑
j=1

f n
j ϕ j(x).

Observe that un
h and f n

h belong to Vh, the space of uniform P1 finite elements with the nodes at

the points jh, j ∈ [0,J]. Let u(x)
def

= ∑J
j=1 u jϕ j(x) and v(x)

def

= ∑J
j=1 v jϕ j(x), and let us define the

scalar product over Vh by

〈u,v〉 def

=
J

∑
j=1

u jv j∆x. (3.23)

Thus for all u and v belonging to Vh, we have

∆x2

4
a(u,u) ≤ 〈u,u〉, (3.24a)

〈u,v〉− (u,v) =
∆x2

6
a(u,v)+

∆x
2

uJvJ. (3.24b)

The detailed proof of (3.24) can be found in the Appendix.

Lemma 3.1 The finite difference scheme (3.22) is equivalent to the following variational in-
equality































Find un+1
h ∈ Kh such that for all v ∈ Kh,

〈

un+1
h −2un

h+un−1
h

∆t2 ,v−un+1
h

〉

+a

(

un+1
h +un−1

h

2
,v−un+1

h

)

+αa

(

un+1
h −un−1

h

2∆t
,v−un+1

h

)

≥
〈

f n
h ,v−un+1

h

〉

.

(3.25)
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Proof. Let g(x) be a function depending on x such that g(0) = g(L) = 0. Thus, taking v =
un+1

h + g(x) in (2.8), we find

〈

un+1
h −2un

h+un−1
h

∆t2 ,g

〉

+a

(

un+1
h +un−1

h

2
,g

)

+αa

(

un+1
h −un−1

h

2∆t
,g

)

≥
〈

f n
h ,g
〉

,

which, implies the first relation in (3.22). Choosing now v such that vJ ≥ cL and v j = un+1
j for

j ∈ [1,J−1], then it follows that

∀vJ ≥ cL :
un+1

J −2un
J+un−1

J

∆t2 (vJ−un+1
J )−

(

un+1
J−1−un+1

J

2∆x2 +
un−1

J−1−un−1
J

2∆x2

)

(vJ−un+1
J )

−α
(

un+1
J−1−un+1

J

2∆x2 −
un−1

J−1−un−1
J

2∆x2∆t

)

(vJ−un+1
J ) = f n

J (vJ−un+1
J ).

(3.26)

Therefore it is clear that (3.26) is equivalent to the third relation of (3.22). Finally, choosing v
such that v1 ≥ c0 and v j = un+1

j for j = [2,J], and proceeding as above, the second relation
follows. This proves the lemma. �

Note that the difference between (2.8) and (3.25) is that the scalar product (·, ·) is replaced by
〈·, ·〉. Let us introduce the following approximations:

u0
j

def

= u0( j∆x), (3.27a)

u1
1

def

= u0
1 +

2∆t
∆x

∫ 3/2∆x

0
u1(x)dx, (3.27b)

u1
j

def

= u0
j +

∆t
∆x

∫ ( j+1/2)∆x

( j−1/2)∆x
u1(x)dx for j ∈ [2,J−1], (3.27c)

u1
J

def

= u0
J +

2∆t
∆x

∫ J∆x

(J−1/2)∆x
u1(x)dx, (3.27d)

f n
j

def

=
1

∆x∆t

∫ (n+1)∆t

n∆t

∫ j∆x

( j−1)∆x
f (x, t)dxdt. (3.27e)

We establish now the convergence of the finite difference scheme (3.22). Note that the proof
is quite similar to the proof of convergence of an explicit finite difference scheme for a wave

equation with unilateral constraints (see [ScB89]). We assume now that ζ def

= ∆t
∆x is a fixed

number sufficiently small.

Theorem 3.2 Assume that (2.20) and (3.27) hold. Then the numerical scheme (3.22) con-
verges to a solution of (1.1)–(1.3) when ∆x and ∆t tend to 0.

Proof. We proceed exactly as in the proof of Theorem 2.1. Let us go into details. Taking
v = un−1

h in (2.8), we get

〈

un+1
h −un

h

∆t
,
un+1

h −un
h

∆t

〉

+
1
2

a
(

un+1
h ,un+1

h

)

+
α

2∆t
a
(

un+1
h −un−1

h ,un+1
h −un−1

h

)

≤
〈

un+1
h −un

h

∆t
,
un+1

h −un
h

∆t

〉

+
1
2

a(un−1
h −un−1

h )+
〈

f n
h ,un+1

h −un−1
h

〉

,

8



Then we perform a discrete integration and we use a discrete Grönwall’s lemma, which, im-
plies that there exists C > 0, independent of h, such that

〈

un+1
h −un

h

∆t
,
un+1

h −un
h

∆t

〉

+‖un
h‖2 ≤C. (3.28)

Define an interpolation uh by

uh(x, t) = un
h
(n+1)∆t−t

∆t
+ un+1

h
t−n∆t

∆t
for t ∈ [n∆t,(n+1)∆t].

Relation (3.28) implies that we can extract from the sequence uh, a subsequence, still denoted
by uh, such that

uh ⇀ u in L∞(0,T ;H1(Ω)) weak ∗, (3.29a)

duh

dt
⇀

du
dt

in L∞(0,T ;L2(Ω)) weak ∗, (3.29b)

uh → u in C0,β (Ω× (0,T )) for all β < 1/2. (3.29c)

Obviously u belongs to K. Let vn
h = un+1

h + Ph(vη (n∆t)−u(n∆t)) where Ph and vη as defined
in the proof of Theorem 2.1. We substitute this value for vn

h in (2.8) and perform a discrete
integration, we obtain

N−1

∑
n=1

〈 f n
h ,vn

h−un+1
h 〉∆t ≤−

〈

u1
h−u0

h

∆t
,v0

h−u1
h

〉

−
N−1

∑
n=1

〈

un
h−un−1

h

∆t
,
vn

h−un+1
h − vn−1

h +un
h

∆t

〉

∆t

+
N−1

∑
n=1

a

(

un+1
h +un

h

2
,vn

h−un+1
h

)

∆t + α
N−1

∑
n=1

a

(

un+1
h −un

h

2∆t
,vn

h−un+1
h

)

∆t.

(3.30)

The difference between (2.21) and (3.30) is that the scalar product (·, ·) is replaced by the
scalar product 〈·, ·〉. Now if we substitute in (3.30) the scalar product 〈·, ·〉 by the scalar product
(·, ·) and we use (3.24b), the error commited is given by

E
def

=
6

∑
i=1

Ei, (3.31)

where

E1
def

=
∆x2

6
a

(

u1
h−u0

h

∆t
,v0

h−u1
h

)

, E2
def

=
∆x
2

(

u1
J−u0

J

∆t

)

(v0
J−u1

J), (3.32a)

E3
def

=
∆x2

6

N−1

∑
n=1

a

(

un
h−un−1

h

∆t
,
vn

h−un+1
h −vn−1

h +un
h

∆t

)

∆t, (3.32b)

E4
def

=
∆x
2

N−1

∑
n=1

(

un
J−un−1

J

∆t

)(

vn
J−un+1

J −vn−1
J +un

J

∆t

)

∆t, (3.32c)

E5
def

=
∆x2

6

N−1

∑
n=1

a( f n
h ,vn

h−un+1
h )∆t, E6

def

=
∆x
2

N−1

∑
n=1

f n
J (vn

J−un+1
J )∆t. (3.32d)

We evaluate now Ei, i = 1, . . . ,6. Concerning the first term, we observe that letting u1(0+x) =
u1(0−x) and u1(L+x) = u1(L−x), (3.24a) can be written as follows

u1
j−u0

j

∆t
=

1
∆x

∫ ( j+1/2)∆x

( j−1/2)∆x
u1(x)dx for all j ∈ [1,J],

9



which, implies that
∣

∣

∣

∣

∣

u1
j−u0

j

∆t

∣

∣

∣

∣

∣

2

≤ 1
∆x

∫ ( j+1/2)∆x

( j−1/2)∆x
|u1(x)|2 dx for all j ∈ [1,J]. (3.33)

Then, adding (3.33) from j = 1 to J, we get

〈

u1
h−u0

h

∆t
,
u1

h−u0
h

∆t

〉

=
J

∑
j=1

∣

∣

∣

∣

∣

u1
j−u0

j

∆t

∣

∣

∣

∣

∣

2

∆x ≤
J

∑
j=1

∫ ( j+1/2)∆x

( j−1/2)∆x
|u1(x)|2 dx ≤ 2|u1|2,

which, leads by using (3.24a) that
∥

∥

∥

∥

u1
h−u0

h

∆t

∥

∥

∥

∥

≤ 2
√

2|u1|
∆x

.

We may deduce that

|E1| ≤
√

2∆x
3

|u1|‖v0
h−u1

h‖ = O(∆x). (3.34)

On the other hand, there exists C2 > 0, independent of h, such that

|E2| ≤C2

√
∆x|u1||v0

J−u1
J|,

since v0
J and u1

J are bounded independently of h, we infer that

|E2| = O
(
√

∆x
)

. (3.35)

We evaluate now E3. We observe by using the projection Ph introduced in Theorem 2.1 that

‖vn
h−un+1

h −vn−1
h +un

h‖ = ‖Ph(v
η (n∆t)−u(n∆t)−vη((n−1)∆t)+u((n−1)∆t))‖

≤C‖vη (n∆t)−u(n∆t)−vη((n−1)∆t)+u((n−1)∆t)‖.
(3.36)

Owing (2.20), we get
|E3| = O

(
√

∆x
)

. (3.37)

For the bound |E4|, we use the following inequality

|vn
J−un+1

J | ≤C4

√
∆t

η

(

∫ n∆t+η

n∆t
‖(v−u)(x,s)‖2 ds

)1/2

,

where C4 > 0. Therefore we may deduce that

|E4| ≤
C4∆x

√
∆t

η
max

n
‖un

h‖
√

N−1

((N−1

∑
n=1

∫ n∆t+η

n∆t
‖(v−u)(x,s)‖2 ds

)1/2

+

(N−1

∑
n=1

∫ (n−1)∆t+η

(n−1)∆t
‖(v−u)(x,s)‖2 ds

)1/2)

.

Choosing η such that η ∈ [l∆t,(l+1)∆t) for all integer l, we may deduce from the above
inequality that

|E4| ≤
2C4∆x

η
max

n
‖un

h‖
√

T
∆t

√

η+∆t

(

∫ T

0
‖(v−u)(x,s)‖2 ds

)1/2

= O
(
√

∆x
)

. (3.38)

The last two terms can be easily estimated, we find

|E5|+ |E6| = O
(
√

∆x
)

. (3.39)

Inserting (3.34), (3.35), (3.37), (3.38) and (3.39) into (3.31), we find |E | = O
(√

∆x
)

. Thus, the
passage to the limit is done as in the proof of Theorem 2.1. �
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4 Numerical examples

We consider the viscoelastodynamic problem with Signorini boundary conditions (1.4) on Ω =
[0,26] in the time interval (0,T ), T = 40 and its discretization by (2.8). We choose the time
step ∆t = 0.125, the space step ∆x = 1

27 , the initial data u0(x) = x(1−x) and u1(x) = u0(x)
and α = 1. We performed two numerical experiments for f (x, t) = 0, which, are summarized
in Figure 1. More precisely, we consider Signorini boundary conditions at the both ends as
well as Signorini condition at the one end and Neumann condition at the other end. We did
the same experiments for f (x, t) = sin(t

√
2)cos(2x), and they are reported in Figure 2. The

numerical results show that if the constraint is active, we can observe small oscillations at the
boundary. These oscillations do not exist if the constraint is not active.

u

t x
40

21

11
−8

26

u

t x
40

11
−18

23

26

Figure 1: Numerical experiments with Signorini conditions at the both ends and with f (x, t) = 0
(left) and f (x, t) = sin(t

√
2)cos(2x) (right).

u

t x
40

1
1
−11

21

26

u

t x40

24

1
1

26

−22

Figure 2: Numerical experiments with Signorini condition at one end and Neumann condition
at other end with f (x, t) = 0 (left) and f (x, t) = sin(t

√
2)cos(2x) (right).

The numerical experiments obtained for f (x, t) = 0 and f (x, t) = sin(t
√

2)cos(2x) with dis-
tributed constraints are summarized in Figure 3. In this case, we consider the following convex
set:

K
def

= {v ∈ H1(Ω× (0,T )) : vxt ∈ L2(Ω× (0,T )), v(x, ·) ≥ c0L for all x ∈ Ω}.
where c0L > 0. We have not treated the mathematical theory of this problem (see [JM*93]),
nor its numerical approximation. We give nevertheless the results of these simulations for the

11



reader’s information.

u

t x

20

−10
11

40 24

u

t x
11

40 24

−11

28

Figure 3: Numerical experiments with distributed Signorini conditions with f (x, t) = 0 (left) and
f (x, t) = sin(t

√
2)cos(2x) (right).

In practical, the resolution is done in a very simple-minded way: at each time step, we check
whether the solution of the problem without constraints is admissible; if it is, we advance by
one time-step; if it is not, we solve when one or two constraints are active. Thus we have at
almost four linear problem to solve per time-step.

Appendix

The aim of this section is to give the proof of (3.24).

Proof. Note that (3.24b) follows from the following inequality

|u j+1−u j|2 ≤ 2
(

u2
j+1+u2

j

)

. (4.40)

Then, adding (4.40) from j = 1 to J−1 gives

1
∆x

J−1

∑
j=1

|u j+1−u j|2 ≤
2

∆x2

J−1

∑
j=1

(

u2
j+1+u2

j

)

∆x
(3.23)
≤ 4

∆x2 〈u,u〉,

which, implies (3.24b). On the other hand, by using (3.23), we get

〈u,u〉− (u,u) =
1
2

J−1

∑
j=0

(

u2
j+u2

j+1

)

∆x+
1
2

u2
J∆x− 1

3

J−1

∑
j=0

(

u2
j+1+u2

j+u j+1u j
)

∆x

=
1
6

J−1

∑
j=0

(

u j+1−u j
)2∆x+

1
2

u2
J∆x,

which, leads to

〈u,u〉− (u,u) =
∆x2

6
‖u‖2 +

1
2

u2
J∆x. (4.41)

Therefore by differentiation, we get (3.24a). �
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