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Consider at first in R™ (m > 2) a ball Bs = {z : |z| < }, where z € R™ and §
is an arbitrary positive number Suppose that a function u(z), which is defined on

B; belongs to the space W, (Bs) (all the second derivatives are square summable
with the weight |z|?) (|8 < m) and satisfies the boundary condition
ulop; = 0. _ (1)

This condition gives us the possibility to define the norm of such function in WZ,(,zﬂ)
by the equality

lullga = [ 1D*uf)a)d, (2)
Bg
where
|D?u|? = z luik? .
. 1,k=1

For such functions S. Chelkak (see for example [4], p. 28) under additional assump-
tion - ’

vu’laBa =0 (3)
has proved the inequality
- 48(m—1)
Dzuzmﬁdmg[l-j-————] Aul?|z|Pdz , 4
4| | ——E lllll (4

which holds for all 8 with 0 < 8 < m and m > 4. This inequality holds also for
B=m-—2+2y(0<+v<1)for any m > 2.

The inequality (4) has many applications in the theory of quasilinear elliptic and
parabolic systems. We shall show now that the relation of the type (4) holds also
without assumption (3), but the constant before the rlght—hand side integral will
be different in some cases.

It should be also mentioned that the inequalities of the type (4) can be obtained
with the help of the methods of E. Stein [5] or V.A. Kondratjev [1]. But the above
mentioned constant will have an implicit form.

Before formulating the main results we shall mention some necessary relations,
which will be used later.

At first we would like to mention the so called Hardy’s inequality

+o00 P +oo

[ e < (2g) [ eeinye. (5)

0

where

Firy= [fledde (s>1) and  F(r)= [ fledde (s<1)



and f(p) is suitable summable and defined on (0, +o0). Suppose that on [0, 8] is
given a function u(r), which satisfies the condition u(§) = 0 and possesses the first
derivative with a finite integral

§
/ ! (r)[2r=* 2
0

with some s < 1. Expand this function on the whole axis [0, +00) with the help of
the equality u(r) = 0 for » > §. Denoting f(r) = v/(r) and using the identity

)= [ (e)do

we obtain from (5) the inequality

/ u(r)Pr~*dr < = 1)2 / [ (r) Pr=*+2dr (6)
The analogous is true for s > 1 and w(0) = 0. We shall also use the inequality

ab < na® + Z%bz, (7

where n > 0 is as always an arbitrary small number.

It is worthwhile to mention that we can from the beginning to consider u as a
sufficiently smooth function satisfying the condition (1). Denote by S a sphere with
the unit radius with the center at the origin in R™ and let B; = B. Take a complete
orthogonal set of spherical functions {Y;;(8)} (7 = 1,2,---;1=1,--- ,k;j; § € S)
and consider the expansion of u(z)

+oo - kj
u(e) =Y D uiu(r)Y;u(6), (8)
Jj=1 I=1
where r = |z|. After elementary calculations we come to the following equalities
[180Fr%ds = (m =) 1) + 3 [ (o +
i
I (9)
+[(m - 1)1 -8)+ 2](] +m = 2)JJug(r)*r® +
+30G +m =[G +m —2) ~ B+ m — 48 — D)~}

where ' denotes the derivative with respect to r and the summation for j,[ is
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running in the same way as in (8);

[Pl = 18uP)rPde = ~(m = 1) 3 (1) +
B I

18 [l Dy + &)

il 0o
+(B 4+ m —3)j (7 +m — 2)|uju(r)|*r~?)rftm3dr .

Let us show for example how to prove the equahty (10). First of all integration by
parts gives .

/u;ku;krﬁdm - f(uku;krﬂ);dm — /uku,-gkrﬁdm -

B B B

_ B- — _
B Z uptper® "l dz / UgUrkdS S/ uAudS +

S

+/ |Au|*rPdz -I—ﬁ/u,Aurﬁ_ldm - B /uku,krﬁ_ldm.
B B B
After simple calculations we come to the equality

/UikUikT‘ﬂd-'E = / (ukurk — upAu — gqu|2) s +

B S

+f|Au|2rﬂdm + 8 /u,Aurﬁ_ldm+ ’B(ﬁgj—:—a /qu|2rﬁ_2da:.
B B B

Since 8 > 0 we have 8 —2 > —2 > —m and all the integrals are determined.
Applying the boundary condition (1) we’ll have

(uku”‘ —urAu — g'V“P) lr=1 = — ( ~ 14 ) (u')?],=
Then
JUDP | auPyPds = —~(m— 1+ 5) [yas +
B s

(11)
ﬁ(ﬂ‘l‘m_ 2) 2 _4-2
—-2———/|Vu| rP=2dz .

+ﬂ/u,Aurﬁ_1dw +
B B

Substituting in the right-hand side for m = 2
[Vul® = Jur|* + 772 ue?
and calculating the integral [u,Aurf~ldz with the help of the expansion (8) we
B

come to (10) in this case. For m > 3 the expansion (8) should be applied to the
right-hand side of the identity

/ |Vul*rP~2dz = — /uAurﬁ_zd:c +('B - 2)('8;_ m—4) /|u|2rﬁ_4dm.
B B B




After substituting the expression of this integral and the analogous expression for
the integral f u,AurP~ldz in (11) we also come to (10) with m > 3. It should not

be forgotten that for j > 0 we have the equality u;;(0) = 0.

Theorem 1. Let f =m—242y and0 <y < 1/2. For anyu € Wz(,zﬁ)(Bg)’satisfying
the boundary condition (1) the inequality

2,12 ( “1)
B/gIDu|7ﬁda:§{l+( — 5y

4B(B +m — 2)*(m — 1)
(m — BY(m + 8 = 3)(m - B—1)2 [m—1+ Btz=2 +<’""’>’]+O“)}X<12>

/ |Au|*rPde

holds.
Proof. Tt is enough to prove (12) for § = 1. Evidently

1

w(r) —wy(1) = - [uje)de. (13)

T

For all 8 (0 < B < m) the inequality s = —8 — m + 3 < 1 holds. Then, according
to (6) we have

/ iu;/,llzrﬁ+m—-1dr > W_ / |u_l1',l(r) — u'].’l(]_)l2715+m—3d,r._ (14)
0 0

Estimating on the right-hand side of (9) the term with the second derivative with
the help of (14) we come to the inequality

[ 18ufrfds > <m ~1+ 5—?’#) Z (D =
B

_______(ﬂ-{-n; 2) Z/u rBtm= 3dru ()+

Jyl 0
1 (m_
+Z/H—; 1 +2j(j+m—2)} [ufal® +
sl o

J(G+m—=2)+(B+m—4)(2- ,5):' [u§’,|r‘2}rﬁ+m_3dr .

(15)

+3(7 + m — 2)

Since for m >4 (all B > 0) we have that s = —8 —m+5 < 1 also from (6) follows

1 : 1
_4)? .
/|u;~,,|2rﬂ+’"'3dr > -—————————('B +TZ ) /IUj,IIZTﬁ+m_5dT. (16)
0 0



The samewillhappenforﬁ> landm=3.Form=2and 0<f8<2andm=3
and 0 < B < 1 using the fact that u;;(0) = 0 for j > 0 instead of the representation
analogous to (13) we can write :

T

'uj,z(r) = / u; (0)de -

0

These cases give us s = —F —m + 5 > 1 and we can .apply (6). With the help of
the last equality we also come to (16) (with the exception for m = 3 and 8 = 1).
Estimating the right-hand side of (15) from below with the help of (16) we come
to : ,

[1ulris > (m-14 B2 2) s g +
B 5l

+Zf{@{£&%#fw+m—%PU+m—@+

j’l (s}

. (17)
-I-(m —B)m+5 - 4)] |uj,l|27'—2}rﬁ+m_3dr —

2

1
B+m—2)? g
: ——————————( 5 ) Z/ug,,rﬁ*' 3dru5j',(1).

j)l 1]

The middle term on the right—hand side can be estimated in the same way as it
was done by Chelkak ([4], p. 29) ’

1 2
/{@%ﬁimm%wo+m—mjo+m—m+
Lo

-I-(m — ﬂ)(ﬁ2+ i 4)] lujul*r~2 }rﬂ+’";3dr >

Iy

(m — B’ A
ZEG:Tyﬂ§!%m—DMA+
+(B8+m —3)5(s +m - 2)|'U'j,l|27'—2:| rPrm=34r .
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Applying now the equality (10) from (17) we come to the estimate

/ Aufrbiz > (m— 1y BEm e 2) > ) +

+ (TT(Lm & [/(W“V |Au*)rfda + (m — 1) ZI“J’(I)IZ}
_(ﬁ__l__T;i__ %!“;,lrﬂm_sd?‘u;,z(l)-

From this follows that for all m > 2 (except m = 3 and 8 = 1) the inequality

4 -
[l + M] /|Au|2rﬁd:z: > / |D?u|?rPdz +
B

(m—B)?
+%;—)1}[m—1+ﬂ+z_2 (m 'B ]%Iuﬂ (18)
_26(8 +(7TT; - ?;(m —1) %: 0/1 () B2 gt (1)
takes place. Consider now the integral
I= /1 wly(r)rPtm=3dr (19)

for m > 3. After integrating by parts we get

1 1
/ ul (F)rBH =3 = — (B +m — 3) / win(r )Pt dr
0 0

Applying the Holder’s inequality we come to the following relation

1 1 1/2
| [ ()2 < ( / lua',z(r)lzr‘”’"“’dr) (8+m—3)2.
0 0 .
Then from (18) we’ll have

[1+4(,3(m }/IAUIQ ﬁdm>/|D2 k Bdz + (( '321))

[m_1+ﬁ+m—2 (m ) 1Z| 26(8 +m — 2)’(m — 1)

O T m— BB +m— 23

(L)

1/2
X3 ( / |uj,i<r)|2rﬁ+'"—4dr) w50
jal 0
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Applying the inequality (7) we come to the relé,tion

[1 + é('%?‘(—m——] /IAu|2 Pdx >/|D2u,|2 Pdz +
+%§?59Pwﬁ+ﬁ+m‘2(m O] 5 httaye -

4 4,3 Y
_9)2 a\1/2(,
_2B(B+m 2)(7(5:5;2 3)/%(m .,72|u;,,(1)|2_
m — 2)2(m — )/2
_B(B+m- 2?2((:: /31))2(,8+m 73 Xy |uj’,|27-ﬂ+m—ydr.
VL)

Take

2[m — 1+ 8tm=2 y (mof]
T Btm 2B rm -3
‘Then the terms with 3 |u)(1)|? will be abolished and we’ll have

4(m —1) 2 2,12
T B Bf]Au| ﬁda;>/|p ulPrPdz -

__BB+m—=2)(m 1) +m-3) 2pBtmed g,
4(m—lB)Z[ -1+ ﬁ+m— + (m_ﬂ)z] ;!luj’l‘ dr .

14+ ————3

Using the equality
1
> / fuja|*rfHm=tdr = / ul*rf=3dz
Wl o B

we come to

(m —

2 ﬁ(ﬁ+m 2)*(m —1)(B+m —3) 2 -
/|D2u| rPdz — 2(m B [m—1+ﬁ+m = (m-ﬂ)2 /|u| rP=3de .

4B(m —1) 2
[1+ 7 } B/ |Aul?rPdzs > "

So, now we have to estimate the integral

/ |u|?>rf—3dz .

B

Integrating by parts we come to

—/Au curPldz = / |Vu|?rPdz + (8 — 1)/u'ur5"2dm.
B B B



Using the condition (1) we can integrate by parts once more in the second term on
the right-hand side. Then we get

—/Au-urﬂ'ldm é/qulzrﬁ‘ldm _(B- 1)('62"'"7"‘3) /|u|27‘5_3dz.
B B

B

Since

1

u(r) = - [ u(e)de

T

and —8 —m + 4 < 1 then from the inequality (6) we have

1
/lulz Btm—4 3. <

0

4

1
<y [

Therefore

- / AuurP~dz > (m+p=3)(m=p-1) / |u|?rP=3dz .
B

4

Since B =m — 2+ 2y (0 < v < 1/2) the coeflicient on the right-hand side will be
positive and we get

4 .
wl?rP=3dy < — Au - urf~ldz .
e < e

From the Hoélder inequality follows

16
lu|?>rP=3dz < > > /|Au|2rﬂ+1dm.
/ (m+ A= 3F(m =B =1V J

Since r < 1 we have

uzﬁax 16 'U:z'rﬂw‘
J e S e | 14

Using the estimate (20) we come to the inequality (12) for m > 3.
Let us consider now the case m = 2. In the inequality (17) we shall estimate the
integral I (19) in a different way. Evidently

5l

1 1/2
I<(B+m=-2" Y ( / |u|j,z|2rﬂ+m-3dr) 511
0

Applying (7) we get

(8 +m Bam=27 E/ [l [P =3dr 4 (ﬁ—+—m—— Z| AP

J)l 0



Then from (17) we get

. —2)°]
/ |Aul*rPdz > [m -1+ b +2n = (6 +1Tg77 ) ] 2; s (1) +
B J’

+Z/” —n]luﬂl2+](]+m 2)

Jlo

jG+m—-2)+

) (m — 'B)(Tg +h- 4)} |uji)*r? }rﬁ+m_3d7‘ :

Take n = O(y?). Since

o {(m D j(j+m—2)+M§"j£ﬁ}_ (m B

1pm—1) 5" BB +m—3) T 4f(m-1)

then for small v > 0

[ 18z > [m_1+ﬂ+m—2 (‘”"" 25 ] S R (1)F +
B

4

(m —B)° A
[(m — Dujy(r)* + (B +m — 3)j(j +m —2) x |uj,,(r)12r—2] B34y

According to (10) we come to the inequality

/lAuPrﬂdm > {’.”' _14F Jf?' 2 (ﬁ“;;— 2)3] 2,: ful (1) +
B ‘ ‘ I

+[(m—;ﬁﬂ - 0(7)}

As far as n = 0(4?) the first bracket on the right-hand side will be positive. Then

/(|D2u|2 - |Au[2)'rﬁd:c +(m —1) Zt [u;-,l(l)lz} .

[ 18uprdn > [%f—y’- — o) / (|D%]? — |Au?)rda

B

and the proof of the theorem is completed. [

Consider now in the space (t, :z:) where ¢ > 0 and z € R™ the cylinder (O <t<
8%) x Bs. Suppose that the boundary condition

Uemo = 0 (21)
holds.

Let the function u(z,t) possesses in Sobolev’s sense all the second derivatives with
respect to z and the first derivative with respect to ¢.

9



Assume that the conditions (1) and (21) are satisfied and the integral

/(Iut|2 + | D?u)?)|z|Pdzdt (|B| < m)
Qs

is finite. We shall tell that the functions of this class belongs to the 2(}323 (Qs)-

Theorem 2. Ifu € W, (1 2)(Q5) (B=m—2+27,0 <y < 1/2) then the following

inequalities take place: for m >3

2 4ﬂ(m—1)
Q/6|D ufodedt < {1+ ——

48(8+m —2)*(m — 1)

ot + 0(7)}
(m — B)2(m + B —3)(m — f — 1) ! e “""”2} | (22)

/ luy — Aul?|z|Pdzdt;

: Qs
form =2 and small v > 0
/ | D?ul?|z|Pdzdt < 2[1 + O(7)] / lue — Auf?|e|Pdzdt . (23)
Qs Qs

The inequalities (22) and (23) follow from (12) and lemma 2 and theorem 2 in [3]
and [2].
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