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Abstract

While it is well-known that the standard integral operator K of (stationary)
diffuse-gray radiation, as it occurs in the radiosity equation, is compact if the
domain of radiative interaction is sufficiently regular, we show noncompactness
of the operator if the domain is polyhedral. We also show that a stationary
operator is never compact when reinterpreted in a transient setting. Moreover,
we provide new proofs, which do not use the compactness of K, for 1 being
a simple eigenvalue of K for connected enclosures, and for I − (1 − ǫ)K being
invertible, provided the emissivity ǫ does not vanish identically.

1 Introduction

Accounting for diffuse-gray radiative heat transfer is important for the accurate mod-
eling of processes that involve heat transfer at high temperatures through transparent
or semi-transparent media with nonspecular surfaces, crystal growth from melt or va-
por being two examples [DNR+90, KPS04]. The physical modeling of radiative heat
transfer is well-understood [SC78, Mod93], where diffuse-gray radiative heat transfer
between points on the surface Σ of a transparent cavity are described by the radiosity
equation involving the linear integral operator K (see (1.1) and (1.2) below for details).
In [Met99, LT01, Dru08, Dru10, Amo10a, Amo10b], the Lp theory of the radiosity
equation is employed to couple the radiosity equation to the heat equation in both
stationary and transient settings, developing the corresponding existence theory. More
regular solutions of the radiosity equation are desirable in the context of optimal con-
trol [MPT06, MY09]. Under suitable hypotheses, one can obtain solutions in Sobolev
spaces and in spaces of continuous functions (see [Han02] and references therein).

If Σ is sufficiently regular (e.g. at least C1,α), then K is known to be compact on Lp(Σ)
[Tii97b, Dru08]. In [LT01], the compactness of K is used to show that, if Σ is the
surface of a connected enclosure, then the eigenvalue 1 of K is simple [LT01, Lem.
1(iv)] and I − (1 − ǫ)K is invertible for a nonvanishing emissivity ǫ [LT01, Lem. 2].
These results are then exploited to couple the radiosity equation to the heat equation
and to develop the corresponding existence theory.

However, in applications, the involved domains often lack the regularity needed to
obtain compactness of K. In Th. 2 below, we will show that K is noncompact for
polyhedral domains. However, we will also show in Theorems 3 and 5 how to obtain
the abovementioned properties of K without employing compactness.

In Section 3, we prove that K as well as other stationary bounded linear operators can
never be compact if reinterpreted as time-dependent operators in a transient setting,
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which has sometimes been incorrectly assumed in the literature (cf. remark after the
proof of Th. 8).

For the space domain Ω ⊆ R
3, we assume it consists of two parts Ωs and Ωg, where

Ωs represents an opaque solid and Ωg represents a transparent gas. More precisely, we
assume

(A-1) Ω = Ωs ∪Ωg, Ωs ∩ Ωg = ∅, and each of the sets Ω, Ωs, Ωg, is a nonvoid, bounded,
open subset of R

3 such that the interface surface Σ := Ωs ∩ Ωg is Lipschitz and
piecewise C1, i.e. Σ can be partitioned into finitely many C1-surfaces.

(A-2) Ωg is enclosed by Ωs, i.e. Σ = ∂Ωg (see Fig. 1).

We will state additional hypotheses on the domains where needed.

Ωs

Ωs

Ωg,2

Ωg,1

Ωg,3

Ωs

Ωg = Ωg,1 ∪ Ωg,2 ∪ Ωg,3

Figure 1: Possible shape of a 2-dimensional section through the 3-dimensional domain
Ω = Ωs ∪ Ωg. Here, Ωg has the 3 connected components Ωg,1, Ωg,2, Ωg,3. The picture
illustrates that Σ = ∂Ωg can have fewer connected components than Ωg. Note also that,
according to (A-2), Ωg is engulfed by Ωs, which can not be seen in the 2-dimensional
section.

The abovementioned radiosity equation modeling diffuse-gray radiative heat transfer
between points on the surface Σ reads

(

I − (1 − ǫ)K
)

(R) = ǫσθ4, (1.1)

where I denotes the identity operator, θ represents absolute temperature, ǫ represents
the emissivity of the solid, σ ∈ R

+ represents the Boltzmann radiation constant, R =
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R(θ) represents radiosity, and K is the linear integral operator defined by

K(ρ)(x) :=

∫

Σ

V (x, y) ω(x, y) ρ(y) dy for a.e. x ∈ Σ, (1.2)

ω(x, y) :=

(

n(y) · (x − y)
) (

n(x) · (y − x)
)

π
(

(y − x) · (y − x)
)2 for a.e. (x, y) ∈ Σ × Σ, (1.3)

V (x, y) :=

{

0 Σ∩ ]x, y[6= ∅,

1 Σ∩ ]x, y[= ∅
for (x, y) ∈ Σ × Σ, (1.4)

ω denoting the view factor, V denoting the visibility factor (being 1 if, and only if, x
and y are mutually visible), and n denoting the outer unit normal to the solid domain
Ωs, existing almost everywhere on the assumed Lipschitz boundary.

Theorem 1. Assume (A-1) and (A-2).

(a) The kernel V ω of K is almost everywhere nonnegative (actually positive for V (x, y)
= 1), symmetric, and

∫

Σ

V (z, y) ω(z, y) dy = 1 for a.e. z ∈ Σ. (1.5)

Moreover, if Ωs and Ωg are polyhedral, then (1.5) actually holds for every z ∈ Σ,
where one can choose each of the finitely many possible values of n(z) if z belongs
to more than one face of Σ.

(b) For each 1 ≤ p ≤ ∞, the operator K : Lp(Σ) −→ Lp(Σ) given by (1.2) is well-
defined, linear, bounded, and positive.

Proof. See [Tii97a, Lem. 1] and [Tii97b, Lem. 2]. �

2 Noncompactness of K for Polyhedral Domains

Theorem 2. Let p ∈ [1,∞] and assume (A-1) and (A-2). If Ωs and Ωg are polyhedral,
then K : Lp(Σ) −→ Lp(Σ) is not compact.

Proof. For the sake of readability and briefness, we present the proof for Ω :=]− 3, 3[3,
Ωg :=]0, 2[×]−1, 1[×]0, 2[, Ωs := Ω\Ωg, and leave the adaptation to general polyhedral
domains to the reader. For each k ∈ N, we define the following subsets A+

k and A−
k of

Σ = ∂Ωg (see Fig. 2):

A+
k := {0} × [−1/(2k), 1/(2k)] × [1/(2k), 1/k],

A−
k := [1/(2k), 1/k] × [−1/(2k), 1/(2k)] × {0}.

(2.1)
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Figure 2: Illustrating the construction for the proof of Th. 2.

For each (z, y) ∈ A+
k × A−

k , we obtain

n(z) · (y − z) = y1 ≥
1

2k
, n(y) · (z − y) = z3 ≥

1

2k
. (2.2)

Since, on the other hand, ‖z − y‖2 ≤
√

3
k

, we estimate

ω(z, y) =
n(z) · (y − z)n(y) · (z − y)

π ‖z − y‖4
2

≥
k2

36 π
for each (z, y) ∈ A+

k × A−
k . (2.3)

Fix 1 ≤ p < ∞, and define, for each k ∈ N,

fk : Σ −→ R, fk(y) := k2/p χA−

k
(y). (2.4)

Then ‖fk‖
p
Lp(Σ) = 1

2
and {fk : k ∈ N} is bounded. Clearly, we also have pointwise

convergence fk(y) → 0 for each y ∈ Σ. In particular, if a subsequence of fk were to
converge to f in Lp(Σ), then f = 0. However, on the other hand, for each z ∈ A+

k :

(K(fk))(z) =

∫

Σ

ω(z, y) fk(y) dy ≥
k2/p k2 meas(A−

k )

36 π
=

k2/p

72 π
. (2.5)

In consequence,

‖K(fk)‖
p
Lp(Σ) ≥

k2

72p πp
meas(A+

k ) =
1

2 · 72p πp
> 0, (2.6)

showing that K(fk) does not converge to 0 in Lp(Σ). For 1 < p < ∞, the pointwise
convergence fk → 0 implies weak convergence fk ⇀ 0 in Lp(Σ) and K(fk) 6→ 0 shows
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that K is not compact. For p = 1, consider the sequence gk := f2k . Since, for k 6= l,
int(A−

2k) and int(A−
2l) are disjoint, for each z ∈ A+

2k ∪ A+
2l :

∣

∣(K(gk))(z) − (K(gl))(z)
∣

∣ =

∫

A+

2k

ω(z, y) gk(y) dy +

∫

A+

2l

ω(z, y) gl(y) dy ≥
(2k + 2l)2

72 π
.

(2.7)
Since meas(A+

2k ∪A+
2l) = 1

2
(1/22k +1/22l), this shows, analogous to (2.6), that ‖K(gk)−

K(gl)‖L1(Σ) ≥
1

144 π
> 0 for l 6= k and that K{gk : k ∈ N} is closed, but not compact,

hence K is not compact. Finally, for p = ∞, consider the sequence hk := χA−

2k
. Then

B := {hk : k ∈ N} is bounded in L∞(Σ) and the disjointness of the int(A−
2k) implies

that K(B) is closed, but not compact. �

The following result was essentially proved as Lemma 1(iv) of [LT01] for the case where
K is compact. We provide a direct proof that does not hinge on the compactness of K.

Theorem 3. Assume (A-1) and (A-2). If ρ ∈ L1(Σ) and K(ρ) = ρ, then ρ is constant
on each Σk, where Σk := ∂Ωg,k is the boundary of the connected component Ωg,k of Ωg

(cf. Fig. 1). In particular, if Ωg is connected, then the eigenvalue 1 of K : Lp(Σ) −→
Lp(Σ) is simple (p ∈ [1,∞], note Lp(Σ) ⊆ L1(Σ)).

Proof. Since V (y, z) = 0 if y, z lie in different Σk, we may assume Ωg is connected
without loss of generality. We first show f takes only one sign on Σ. Introducing the
sets Σ+ := {z ∈ Σ : f(z) ≥ 0} and Σ− := {z ∈ Σ : f(z) < 0}, for z ∈ Σ:

f(z) = K(f)(z) =

∫

Σ+

V (z, y) ω(z, y) f(y) dy +

∫

Σ−

V (z, y) ω(z, y) f(y) dy . (2.8)

After integrating over Σ+:
∫

Σ+

f(z) dz =

∫

Σ+

f(z)

(
∫

Σ+

V (z, y) ω(z, y) dy

)

dz

+

∫

Σ−

f(z)

(
∫

Σ+

V (z, y) ω(z, y) dy

)

dz

≤

∫

Σ+

f(z) dz +

∫

Σ−

f(z)

(
∫

Σ+

V (z, y) ω(z, y) dy

)

dz . (2.9)

From the definition of Σ−, we obtain
∫

Σ+

V (z, y) ω(z, y) dy = 0 for a.e. z ∈ Σ−.

From Th. 1(a), we conclude V (z, y) = 0 for almost every z ∈ Σ− and almost every
y ∈ Σ+ (Σ− and Σ+ are mutually invisible), implying meas(Σ−) = 0 or meas(Σ+) = 0
due to the assumed connectedness of Ωg. If we now let M := meas(Σ)−1

∫

Σ
f denote

the mean of f and f̃ := f − M , then

K(f̃) = K(f) − K(M)
(1.5)
= f − M = f̃ , (2.10)

and we know f̃ takes only one sign on Σ, i.e. f is constant and equal to M . �

5



One is usually interested in solving the radiosity equation to obtain R as a function
of θ, for example to formulate the coupled conductive-radiative heat flux through Σ,
with θ remaining as the only unknown quantity. It is thus desirable to establish the
invertibility of I − (1 − ǫ)K. It was proved for compact K in [LT01, Lem. 2]. In the
following Th. 5, we present a proof that works for polyhedral domains, where we know
that compactness is not available. We start by establishing injectivity merely using
(A-1) and (A-2).

Lemma 4. Let p ∈ [1,∞], and assume (A-1), (A-2). If ǫ ∈ L∞(Σ) with values in
[0, 1] is such that, for each connected component Ωg,k of Ωg (cf. Fig. 1), there exists
Mk ⊆ Σk := ∂Ωg,k such that Mk has positive surface measure and ǫ > 0 on Mk, then
the operator

(

I − (1 − ǫ)K
)

: Lp(Σ) −→ Lp(Σ) (2.11)

is injective on Lp(Σ).

Proof. As Lp(Σ) ⊆ L1(Σ), it suffices to consider p = 1. Let f ∈ L1(Σ). From

f = (1 − ǫ) K(f), (2.12)

we trivially conclude that f vanishes in the set Σ′ := {z ∈ Σ : ǫ(z) = 1}. We extend
this conclusion to Σ∗ := {z ∈ Σ : ǫ(z) > 0} by noting

∫

Σ\Σ′

∣

∣

∣

∣

f

1 − ǫ

∣

∣

∣

∣

= ‖K(f)‖L1(Σ\Σ′) ≤ ‖f‖L1(Σ\Σ′). (2.13)

Thus, letting Σ∗
k := Σ∗ ∩ Σk, we obtain (1 − ǫ)(K∗

k)(f) = f , where

K∗
k ∈ L

(

L1(Σk\Σ∗
k), L

1(Σk\Σ∗
k)

)

, K∗
k(ρ)(x) :=

∫

Σk\Σ∗

k

V (x, y) ω(x, y) ρ(y) dy . (2.14)

Moreover, it is Mk ⊆ Σ∗
k, i.e. the hypothesis meas(Mk) > 0 implies ‖K∗

k‖ < 1 via
Hölder’s inequality (cf. [Tii97b, Lem. 2], Σk \ Σ∗

k is not an enclosure). In consequence,
(1 − ǫ)(K∗

k)(f) = f implies f = 0 a.e. on Σk, concluding the proof. �

For the proof that I − (1− ǫ)K is also surjective, we make use of the following technical
condition (A-3). In Lem. 6 we will show that Ωs and Ωg being polyhedral is sufficient
for (A-3) to hold.

(A-3) There exists r0 > 0 such that

ess sup
z∈Σ

∫

Br0(z)

V (z, y) ω(z, y) dy < 1, (2.15)

where Br0
(z) := {y ∈ Σ : ‖z − y‖2 < r0}.
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Theorem 5. Assume the hypotheses of Lem. 4 plus (A-3). Then I − (1 − ǫ)K has an
inverse in L(Lp(Σ), Lp(Σ)).

Proof. We have to show that, for each g ∈ Lp(Σ), the equation

(

I − (1 − ǫ)K
)

(f) = g (2.16)

has a unique solution f ∈ Lp(Σ). Let r0 > 0 be such that (2.15) holds and define the
auxiliary operators

(K1(f))(z) :=

∫

Br0 (z)

V (z, y) ω(z, y) f(y) dy , (2.17a)

(K2(f))(z) :=

∫

Σ\Br0 (z)

V (z, y) ω(z, y) f(y) dy . (2.17b)

From K, both K1 and K2 inherit the property of being bounded linear operators from
Lp(Σ) into itself. From Hölder’s inequality and (2.15), we obtain ‖K1‖L(Lp(Σ),Lp(Σ)) < 1,
i.e. I − (1 − ǫ)K1 is invertible via the Neumann series in L(Lp(Σ), Lp(Σ)). As K =

K1 +K2, applying the inverse
(

I− (1− ǫ)K1

)−1
to (2.16) yields the equivalent equation

(

I −
(

I − (1 − ǫ)K1

)−1
(1 − ǫ)K2

)

(f) =
(

I − (1 − ǫ)K1

)−1
(g). (2.18)

With the abbreviation H :=
(

I − (1− ǫ)K1

)−1
(1− ǫ)K2, we write the left-hand side of

(2.18) as I − H . If we can show that H is compact and I − H is injective, then I − H
is invertible by the Riesz-Schauder theorem and we are done. The integral operator K2

is compact, as its kernel

k2(z, y) = χΣ\Br0 (z)(y)V (z, y) ω(z, y) (2.19)

is uniformly bounded by 1/(πr2
0). In consequence, H is also compact. It remains to

prove that I − H is one-to-one, i.e. that 0 is the only solution to the homogeneous
version of (2.18). As (2.18) and (2.16) are equivalent, Lem. 4 completes the proof. �

Lemma 6. Assuming (A-1), (A-2), and that Ωs, Ωg are polyhedral is sufficient for (A-3)
to hold.

Proof. Seeking a contradiction, assume there does not exist r0 > 0 such that (2.15)
holds. Then there is a sequence (zn) in Σ such that

∫

B1/n(zn)
V (zn, y) ω(zn, y) dy ≥

1 − 1/n for each n ∈ N. Thus, according to (1.5):
∫

Σ\B1/n(zn)

V (zn, y) ω(zn, y) dy ≤ 1/n. (2.20)

Fatou’s lemma now implies

lim inf
n→∞

V (zn, y) ω(zn, y) = lim inf
n→∞

χΣ\B1/n(zn)(y)V (zn, y) ω(zn, y) = 0 for a.e. y ∈ Σ.

(2.21)
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As Ωs, Ωg are polyhedral, the outer unit normal n(z) takes only finitely many values on
Σ. As Σ is also compact, there must exist z∗ ∈ Σ and ξ in the range of n such that, for
a subsequence (not relabelled), zn → z∗ and n(zn) → ξ. Thus, for almost every y ∈ Σ
such that V (z∗, y) = 1, we obtain

ξ · (y − z∗)n(y) · (z∗ − y) = lim inf
n→∞

n(zn) · (y − zn)n(y) · (zn − y) = 0. (2.22)

However, (2.22) is in contradiction to
∫

Σ
V (z∗, y) ω(z∗, y) dy = 1, which must hold

according to the polyhedral case of Th. 1(a) (z∗ might lie in the intersection of several
faces of Σ, but n(zn) → ξ guarantees that ξ is the outer unit normal of one of these
faces). �

3 Noncompactness of K for Transient Settings

Theorem 7. For each 1 ≤ p < ∞, the operator

K̃ : Lp(0, T, Lp(Σ)) −→ Lp(0, T, Lp(Σ)), (K̃(ρ))(t) := K(ρ(t)), (3.1)

is noncompact.

Actually, Th. 7 is a corollary of the following general result that shows reinterpreting a
nontrivial bounded linear operator K : X −→ Y between normed vector spaces X and
Y in a transient setting can never result in a compact operator K̃ : Lp(0, T, X) −→
Lp(0, T, Y ):

Theorem 8. Let X and Y be normed vector spaces, and let K : X −→ Y be a bounded
linear operator. Then, for each 1 ≤ p < ∞,

K̃ : Lp(0, T, X) −→ Lp(0, T, Y ), (K̃(ρ))(t) := K(ρ(t)), (3.2)

defines a bounded linear operator. If there is x0 ∈ X such that K(x0) 6= 0, then K̃ is
noncompact.

Proof. The continuity of K implies K̃ preserves Bochner measurability; the inequality

‖K̃(f)‖p
Lp(0,T,Y ) =

∫ T

0

‖K̃(f)(t)‖p
Y dt ≤ ‖K‖p ‖f‖p

Lp(0,T,X) (3.3)

shows that K̃ maps Lp(0, T, X) into Lp(0, T, Y ) and is bounded.

Now assume there is x0 ∈ X such that K(x0) 6= 0, let y0 := K(x0), δ := ‖x0‖X ∈ R
+,

and ǫ := ‖y0‖Y ∈ R
+. Fix p ∈ [1,∞[. For each n ∈ N, let

In :=]T 2−n, T 2−n+1[ (3.4)

and define fn ∈ S(0, T, X) as follows:

fn : [0, T ] −→ X, fn(t) := 2
n
p T

−1

p x0 χIn(t). (3.5)
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Note that (In)n∈N is a sequence of pairwise disjoint measurable subsets of [0, T ] such
that meas(In) = 2−n T . Thus, for each n ∈ N,

‖fn‖
p
Lp(0,T,X) =

∫

In

‖fn(t)‖p
X dt = 2n T−1 ‖x0‖

p
X meas(In) = δp, (3.6)

showing that the set B := {fn : n ∈ N} is bounded. Next, it will be shown that K̃[B]
is closed and noncompact. To that end, for m 6= n, one computes

∥

∥K̃(fn) − K̃(fm)
∥

∥

p

Lp(0,T,Y )
=

∫ T

0

∥

∥K
(

fn(t)
)

− K
(

fm(t)
)
∥

∥

p

Y
dt

=

∫

Im

∥

∥

∥
2

m
p T

−1

p y0

∥

∥

∥

p

Y
dt +

∫

In

∥

∥

∥
2

n
p T

−1

p y0

∥

∥

∥

p

Y
dt = 2 ǫp, (3.7)

i.e. the distance between any two distinct elements of K̃[B] is identical and positive,
implying that K̃[B] is noncompact and closed, showing K̃ is noncompact. �

In [LT01, Lem. 11], it is incorrectly assumed that stationary compact linear operators
are compact when reinterpreted as time-dependent operators in a transient setting.
[LT01, Lem. 11] claims the pseudomonotonicity of a certain transient operator, which
is then used to prove existence to a transient heat equation with radiative coupling.
For a different existence proof not founding on [LT01, Lem. 11], see [Dru10].
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