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Abstract

We consider the problem of estimating the fractional order of a Lévy process

from low frequency historical and options data. An estimation methodology is

developed which allows us to treat both estimation and calibration problems in a

unified way. The corresponding procedure consists of two steps: the estimation

of a conditional characteristic function and the weighted least squares estimation

of the fractional order in spectral domain. While the second step is identical for

both calibration and estimation, the first one depends on the problem at hand.

Minimax rates of convergence for the fractional order estimate are derived, the

asymptotic normality is proved and a data-driven algorithm based on aggregation

is proposed. The performance of the estimator in both estimation and calibration

setups is illustrated by a simulation study.

1 Introduction

Nowadays Lévy processes are undoubtedly one of the most popular tool for modeling eco-
nomic and financial time series (see e.g. Cont and Tankov, 2004, for an overview). This
is not surprising if one takes into account their simplicity and analytic tractability on the
one hand and the ability to reproduce many stylized facts of financial time series on the
other hand. In the last decade, new subclasses of Lévy processes have been introduced
and actively studied (mainly in the context of option pricing). Among the best known
models are normal inverse Gaussian processes (NIG), hyperbolic processes (HP), gener-
alized hyperbolic processes (GHP) and truncated (or tempered) Lévy processes (TLP).
Boyarchenko and Levendorskĭı (2002) have introduced a general class of regular Lévy
processes of exponential type (RLE) which contains all above mentioned particular Lévy
models. This type of processes is characterized by the requirement that the modulus of
the characteristic function of increments behaves like exp(−η|u|α) as |u| → ∞ for some
0 < α < 2. Parameter α coincides with the fractional order of the underlying Lévy process
and plays an important role because it determines the decay of the characteristic function
and hence the smoothness properties of the corresponding state price density. Statistical
inference for RLE processes is the subject of our paper.

There are basically two types of statistical problems relevant for Lévy processes: the
estimation of parameters of a Lévy process Xt from a time series of the asset St = exp(Xt)
and the calibration of these parameters using options data. Both problems have got much
attention recently.

Suppose that a Lévy process Xt is observed at n time points ∆, 2∆, . . . , n∆. Since X0 = 0,
this amounts to observing n increments χi = Xi∆ − X(i−1)∆, i = 1, . . . , n. If ∆ is small
(high-frequency data), then a large increment χi indicates that a jump occurred between
time ti−1 and ti. Based on this insight and the continuous-time observation analogue,
inference for the Lévy measure of the underlying Lévy process can be conducted. See,
for example, Äıt-Sahalia and Jacod (2006) for a semiparametric problem of estimating
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volatility of a stable process under the presence of Lévy perturbation or Lee and Mykland
(2007) and Figueroa-López and Houdré (2006) for a nonparametric problems of testing
and estimation for jump diffusion models. For low-frequency observations, however, we
cannot be sure to what extent the increment χi is due to one or several jumps or just
to the diffusion part of the Lévy process. The only way to draw inference is to use the
fact that the increments form independent realizations of infinitely divisible probability
distributions. In this setting, a variety of methods have been proposed in the literature:
standard maximum likelihood estimation (DuMouchel, 1973a,b, 1975), using the empiri-
cal characteristic function as an estimating equation (see e.g. Press, 1972; Fenech, 1976;
Feuerverger and McDunnough, 1981a; Singleton, 2001), maximum likelihood by Fourier
inversion of the characteristic function (Feuerverger and McDunnough, 1981b), a regres-
sion based on the explicit form of the characteristic function (Koutrouvelis, 1980), or
other numerical approximations (Nolan, 1997). Some of these methods were compared
in Akgiray and Lamoureux (1989). Note that all of the aforementioned papers deal with
the specific parametric (mainly stable) models. A semiparametric estimation problem for
Lévy models has recently been considered in Neumann and Reiß (2007) and Gugushvili
(2008).

The second, calibration problem is of special importance for financial applications because
pricing of options is performed under an equivalent martingale measure and one can infer
on this measure only from options data. Since option data is sparse and the underly-
ing inverse problem is usually ill-posed, we face a rather complicated estimation issue.
Different approaches have been proposed in the literature to regularize the underlying
inverse problem. For example, in Cont and Tankov (2004) and Cont and Tankov (2006) a
method based on the penalized least squares estimation with the minimal entropy penal-
ization is proposed. Belomestny and Reiß (2006) developed a spectral calibration method
which avoids solving a high dimensional optimization problem and is based on the direct
inversion of a Fourier pricing formula with a cut-off regularization in spectral domain.
This method essentially employees the integrability property of the underlying Lévy mea-
sure (finite activity Lévy processes) that excludes many interesting infinite activity Lévy
processes.

In this paper we consider the problem of estimating the fractional order of a Lévy process
from low-frequency historical as well as options data. Our problem is semiparametric one
because we do not assume any specific parametric model for the underlying process but
only some asymptotic behavior. The spectral approach allows us to treat both estimation
and calibration problems in a unified framework and leads to an efficient data-driven
algorithm. Moreover, the fractional order estimate delivered by the spectral method
possesses several interesting optimality properties.

The problem of estimating the degree of activity of jumps in semimartingale framework
using high-frequency financial data has recently been considered in Äıt-Sahalia and Jacod
(2009). On the one hand, small increments of the process turn out to be most informative
for estimating the activity index. On the other hand, these small increments are the ones
where the contribution from the continuous martingale part is mixed with the contribution
from the small jumps. Äıt-Sahalia and Jacod (2009) proposed an estimation procedure
which is able to “see through” the continuous part and consistently estimate the degree
of activity for the small jumps under some restrictions on the structure of the underlying
semimartingale. Note that in the case of Lévy processes the degree of activity of jumps
is identical to the fractional order of the underlying Lévy process. We also stress that
the case when both diffusion and jump components are presented can be treated in the
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framework of spectral estimation as well (see Section 6.9).

Short outline of the paper. In Section 2 we introduce the class of RLE processes. Section
3 discusses some aspects of financial modeling with RLE processes. Section 4 describes
the observational model. In Section 5 methods of estimating the characteristic function
of a Lévy process from low-frequency historical and options data are presented. Section
6 is devoted to the spectral calibration method of estimating the fractional order α. We
discuss here the problems of regularization and derive minimax rates of convergence for
a class of Lévy processes. In Section 7 adaptive procedure for estimating α is presented
and its properties are discussed. We conclude with some simulation results.

2 Regular Lévy processes of exponential type

In this section we recall some basic properties of Lévy processes.

2.1 Spectral properties of Lévy processes

Consider a Lévy process Xt with a Lévy measure ν. That is, Xt is càdlàg process with in-
dependent and stationary increments such that the characteristic function of its marginals
φt(u) is given by

(2.1) φt(u) := E
[
eiuXt

]
= exp

{
t

(
iuµ− u2a2

2
+

∫

R

(eiux − 1 − iux1{|x|≤1})ν(dx)

)}
.

So, any Lévy process Xt is characterized by the so called Lévy triple (µ, a, ν), where µ ∈ R

is a drift, a > 0 is a diffusion volatility and ν is a Lévy measure. Note that the drift µ
depends on the type of truncation in (2.1). In fact, this characterization is unique for
a fixed truncation function and we can reconstruct Lévy triple from the characteristic
function φt(u). This reconstruction may be viewed as consisting of three steps. First,
because of

1

|u|2
∫

R

(eiux − 1 − iux1{|x|≤1})ν(dx) → 0, |u| → ∞,(2.2)

we can find a2/2 as lim|u|→∞ |u|−2ψ(u) with

ψ(u) = t−1 log(φt(u)).

Second, note that ∫ 1

−1

(ψ̃(u) − ψ̃(u+ w)) dw =

∫

R

eiuxρ(dx)

with

ψ̃(u) = ψ(u) +
a2

2
u2, ρ(dx) = 2

(
1 − sin x

x

)
ν(dx).

Since ρ is a finite measure (
∫

(x2 ∧ 1)ν(dx) < ∞), one can uniquely reconstruct it (and

hence ν) from ψ̃(u). Finally, we find µ as limu→∞

[
ψ̃(u)/(iu)

]
. So, in principle, we can

recover all characteristics of the underlying Lévy process (including the fractional order)
provided that φt is completely known. If, however, φt is estimated from data we face
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an ill-posed estimation problem because a small perturbation in φt may deteriorate its
asymptotic behavior and lead to the violation of (2.2). In this case using a regularization
technique (see e.g. Cont and Tankov (2004) or Belomestny and Reiß (2006)), we still can
get an asymptotically consistent estimates for the whole triple (µ, a, ν) given a consistent
estimate of φt.

Remark 2.1. A consistent estimation of ψ(u) from a time series of Xt is only possible
if the number of observations from the distribution with the c. f. φt(u) for some t > 0
increases. This can be either due to a decreasing time step in a times series of the process
X (high frequency data) or due to an increasing time horizon (low frequency data). While
the first type of observational models has got much attention in recent years, there are
only few papers dealing with low frequency data (see e.g. Neumann and Reiß (2007)).

2.2 Fractional order of Lévy processes

Let Xt be a Lévy process with a Lévy measure ν. The value

α := inf

{
r ≥ 0 :

∫

|x|≤1

|x|rν(dx) <∞
}

is called the fractional order or the Blumenthal-Getoor index of the Lévy process Xt.
This index α is related to the “degree of activity” of jumps. All Lévy measures put finite
mass on the set (−∞,−ǫ] ∪ [ǫ,∞) for any arbitrary ǫ > 0, so if the process has infinite
jump activity it must be because of the small “jumps”, defined as those smaller than ǫ.
If ν([−ǫ, ǫ]) < ∞ the process has finite activity and α = 0. But if ν([−ǫ, ǫ]) = ∞ i.e.
the process has infinite activity and in addition the Lévy measure ν((−∞,−ǫ] ∪ [ǫ,∞))
diverges near 0 at a rate |ǫ|−α for some α > 0 then the fractional order of Xt is equal to
α. The higher α gets, the more frequent the small jumps become (see Äıt-Sahalia and
Jacod (2009) for more discussion).

The Blumenthal-Getoor index is closely related to the notion of the degree of jump activity
that applies to general semimartingales as shown in Äıt-Sahalia and Jacod (2009), and
reduces to the Blumenthal-Getoor index in the special case of Lévy processes.

Note also that the Blumenthal-Getoor index coincides with the stability index for stable
processes. Another example of processes having a prescribed fractional order α is the class
of tempered stable processes of order α. Boyarchenko and Levendorskĭı (2002) studied a
generalization of tempered stable processes, called regular Lévy processes of exponential
type (RLE). A Lévy process is said to be a RLE process of type [λ−, λ+] and order
α ∈ (0, 2) if the Lévy measure has exponentially decaying tails with rates λ− ≥ 0 and
λ+ ≥ 0

(2.3)

∫ −1

−∞

eλ
−
|y| ν(dy) <∞,

∫ ∞

1

eλ+y ν(dy) <∞

and behaves near zero as |y|−(1+α):

∫

|y|>ǫ

ν(dy) ≍ Π(ǫ)

ǫα
, ǫ→ +0,

where Π is some positive function on R+ satisfying 0 < Π(+0) < ∞. Obviously, the
fractional order of a RLE process of order α is equal to α. An equivalent definition of a
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RLE process in terms of its characteristic exponent ψ(u) can be given as follows. A Lévy
process is called to be a RLE process of type [λ−, λ+] and order α ∈ (0, 2) if the following
representation holds

ψ(u) = iµu+ ϑ(u), µ ∈ R,(2.4)

where function ϑ admits a continuation from R into the strip {z ∈ C : Im z ∈ [−λ+, λ−]}
and is of the form

ϑ(u) = −|u|απ(u),(2.5)

where π(u) is a function satisfying lim sup|u|→∞ |π(u)| < ∞ and lim inf |u|→∞ |π(u)| > 0
such that

Re[π(u)] > 0, u ∈ R \ {0}.(2.6)

As was mentioned in the introduction, the class of RLE processes includes among others
hyperbolic, normal inverse Gaussian and tempered stable processes but does not include
variance Gamma process. In the sequel we will mainly consider RLE processes without
regularity conditions (2.3) (or equivalently with λ− = λ+ = 0) since only the behavior
of a Lévy measure near zero matters for the fractional order of the corresponding Lévy
process.

As mentioned before, in this work we are going to consider the problem of estimating the
fractional order α of a Lévy process Xt from a time series of asset prices as well as from
option prices. Before turning to this, let us first make our modelling and observational
framework more precise.

3 Financial modelling

In this section we recall basic facts concerning financial modelling with exponential Lévy
models.

3.1 Asset dynamics

We assume that the asset price St follows an exponential Lévy model under both historical
measure P and risk neutral measure Q. Specifically, we suppose that

St =

{
SeXt , under P,

Sert+Yt , under Q,

where Xt and Yt are Lévy processes, S > 0 is the present value of the asset (at time 0)
and r ≥ 0 is the riskless interest rate which is assumed to be known and constant. Note,
that the martingale condition for St under Q entails EQ[eYt ] = 1. The martingale measure
Q is in fact not unique under the presence of jumps. As is standard in the calibration
literature, it is assumed to be settled by the market and to be identical for all options
under consideration. Processes Xt and Yt are related by the requirement that measures
P and Q ought to be equivalent: P ∼ Q. Interestingly, this implies that if Xt and Yt are
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RLE process and Xt is of order αP then Yt has the order αQ = αP. Indeed, the equivalence
of the corresponding Lévy measures νP and νQ implies (see, Sato (1999))

∫ ∞

0

(√
dνQ/dνP − 1

)2

νP(dx) <∞.(3.1)

Since for RLE processes dνQ(x)/dνP(x) ≍ x(αP−αQ) and dνP(x) ≍ x−(1+αP) dx as x → +0,
the condition (3.1) can be satisfied only if αP = αQ. This means that the fractional order
of the underlying Lévy process must be the same under both historical and risk-neutral
measures. This not only indicates the importance of the fractional order parameter for
financial applications but also suggests that the combination of two estimates of the
fractional order α under P and Q might be useful e.g. to reduce the overall variance of
the resulting combined estimator.

3.2 Option pricing

The risk neutral price at time t = 0 of the European call option with strikeK and maturity
T is given by

C(K, T ) = e−rT EQ[(ST −K)+].

Using the independence of increments, we can reduce the number of parameters by intro-
ducing the so called negative log-forward moneyness

y := log(K/S) − rT,

such that the call price in terms of y is given by

C(y, T ) = S EQ[(eYT − ey)+].

The analogous formula for the price of the European put option is P(y, T ) = S EQ[(ey −
eYT )+] and a well-known put-call parity is easily established

C(y, T ) − P(y, T ) = S EQ[eYT − ey] = S(1 − ey).

As we need to employ Fourier techniques, we introduce the function

(3.2) OT (y) :=

{
S−1C(y, T ), y ≥ 0,

S−1P(y, T ), y < 0.

The function OT records normalized call prices for y ≥ 0 and normalized put prices for
y < 0. It possesses many interesting properties (see, Belomestny and Reiß (2006) for
details) one of them being the following connection between the Fourier transform of OT

and the characteristic function of YT denoted by φQ
T

(3.3) F[OT ](v) =
1 − φQ

T (v − i)

v(v − i)
, v ∈ R.

Another property which directly follows from (3.3) is that

(3.4)

∫

R

e−2yOT (y) dy <∞,

provided that E[e2YT ] exists and is finite.
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4 Observations

We consider two kinds of observational models corresponding to two types of statistical
problems we are going to tackle. While the first type of models assumes the a time series
of St is directly available, the second one supposes that only some functionals of St can
be observed.

4.1 Time series data

We assume that the values of the log-price process Xt = log(St) on equidistant time grid
π = {t0, t1, . . . , tn} are observed.

4.2 Option data

As to option data, we assume to be given the prices of n call options for a set of forward
log-moneynesses y0 < y1 < . . . < yn and a fixed maturity T , corrupted by noise. In terms
of the function O, the following sample is available

(4.1) OT (yj) = OT (yj) + σ(yj)ξj, j = 1, . . . , n.

It is supposed that {ξj} are independent centered random variables with E[ξ2
j ] = 1 and

supj E[ξ4
j ] <∞. Furthermore, we assume that

∫

R

e−2yσ2(y) dy <∞.

This condition is required because we need to transform the original regression model
(4.1) to an exponentially weighted one

(4.2) ÕT (yj) = ÕT (yj) + σ̃(yj)ξj, j = 1, . . . , n

with ÕT (y) = e−yOT (y), ÕT (y) = e−yOT (y) and σ̃(y) = e−yσ(y).

As a matter of fact, a consistent estimation of the fractional order α is only possible if the
amount of data available increases. In our asymptotic analysis we will therefore assume
that the number of time series observations and the number of available options tend to
infinity.

5 Estimation of characteristic functions φP and φQ

The main idea of the spectral estimation method (SEM) is to infer on the parameters of
the underlying model using its special structure in the spectral domain. Since spectral
behavior of a RLE process is described explicitly by (2.4)-(2.5), we can apply SEM as soon
as an estimate for the corresponding characteristic function is available. While estimation
of φ under P is rather straightforward, its calibration from option prices under Q requires
special treatment.
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5.1 Estimation of φ under P

We estimate the characteristic function φP
|π|(u) by its empirical counterpart

φ̃P
|π|(u) =

1

n

n∑

j=1

eiu(Xtj
−Xtj−1 ).

The empirical characteristic function φ̃P
|π| possesses many interesting properties and we

refer to Ushakov (1999) for a comprehensive overview.

5.2 Estimation of φ under Q

For estimating φQ
T we employ the Fourier technique. So, motivated by (3.3) we define

(5.1) φ̃Q
T (u) := 1 − u(u+ i)

[
n∑

j=1

δjÕT (yj)e
iuyj

]
, u ∈ R,

where δj = yj − yj−1 and ÕT is defined in (4.2). For more involved methods of approxi-
mating F[OT ](u) see Belomestny and Reiß (2006).

6 Estimation of fractional order

In this section we turn to the problem of estimating the fractional order of a RLE process.
To this aim we apply the spectral estimation method accompanied with a spectral cut-off
regularization.

6.1 Main idea

Let us consider a RLE process with the characteristic exponent ψ(u) of the form (2.4)-
(2.5). In the sequel we assume (mainly for the sake of simplicity) that limu→−∞ π(u) =
limu→∞ π(u) = η ∈ R+. In this case we can rewrite ϑ as

(6.1) ϑ(u) = −η|u|ατ(u),

where Re[τ(u)] > 0 for u ∈ R \ {0} and τ(u) → 1 as |u| → ∞. The formula

Y(u) := log(− log(|φ(u)|2))(6.2)

= log(2η) + α log(u) + log(Re τ(u)), u > 0,

with φ(u) = exp(ψ(u)), suggests now the way how to estimate α from φ. Indeed, in
terms of the new “data” Y we have a linear semiparametric problem with the “nuisance”
non-parametric part log(Re τ(u)). Since log(Re τ(u)) tends to 0 as |u| → ∞, we can get
rid of this component by basing our estimation on Y(u) with large |u|. On the other hand,
if we plug-in an estimate φ̃ instead of φ, the variance of Y(u) will increase exponentially
with |u| (because of the exponential decay of φ(u)) and we have to regularize the problem
by cutting high frequencies. An appropriate weighting scheme would allow to take both
effects into account.
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6.2 Truncation

First, we truncate φ̃ to avoid logarithm’s explosion. Let

Ỹ(u) := log(− log(Tω
−

,ω+[|φ̃|2](u))), u ∈ R \ {0},

where the truncation operator Tω
−

,ω+ with truncation levels 0 < ω− ≤ ω+ < 1 is defined
via

Tω
−

,ω+ [f ](u) =






ω+, f(u) > ω+,

f(u), ω− ≤ f(u) ≤ ω+,

ω−, f(u) < ω−

for any real-valued function f .

6.3 Linearization

Truncation allows us to linearize the problem. Set

ω∗
±(u) := |φ(u)|2

(
1 ± 2| log |φ(u)||

1 + 2| log |φ(u)||

)
.

The following lemma holds

Lemma 6.1. For any u ∈ R \ {0} and any ω−(u), ω+(u) satisfying

0 < ω− ≤ ω∗
− ≤ ω∗

+ ≤ ω+ < 1,

the following inequality holds with probability one
∣∣∣Ỹ(u) − Y(u) − ζ1(u)(|φ̃(u)|2 − |φ(u)|2)

∣∣∣ ≤ ζ2(u)(|φ̃(u)|2 − |φ(u)|2)2,

where

ζ1(u) = 2−1|φ(u)|−2 log−1(|φ(u)|)

and

ζ2(u) = 2 max
ξ∈{ω

−
(u),ω+(u)}

[
1 + | log(ξ)|
ξ2 log2(ξ)

]
.

Using the notation
∆(u) := |φ̃(u)|2 − |φ(u)|2,

Lemma 6.1 can be reformulated as follows

Corollary 6.2. For any u ∈ R \ {0}

(6.3) Ỹ(u) − Y(u) = ζ1(u)∆(u) +Q(u),

where

(6.4) |Q(u)| ≤ ζ2(u)∆
2(u)

with probability one.
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Remark 6.1. Since φ(0) = 1 and φ(u) → 0 as |u| → ∞ the behavior of truncation
levels ω−(u) and ω+(u) in the vicinity of points u = 0 and u = ∞ becomes important
for determining the behavior of Ỹ(u) around these points. However, the values of Ỹ(u)
around 0 will be discarded while estimating α and hence we do not need to know ω+(u)
for small |u|. As to ω−(u) and ω+(u) for large u, they can be constructed if some prior
information on the Blumenthal-Getoor index α and the function π(u) = ητ(u) is available.
For instance, if 0 < α ≤ α ≤ α ≤ 2 and 0 < π− ≤ Re[π(u)] ≤ π+ for all |u| > u0 with
large enough u0 > 0 then one can take

ω−(u) = C1e
−2π+|u|α|u|−α, |u| > u0,

ω+(u) = C2e
−2π

−
|u|α, |u| > u0

with some constants C1 > 0 and C2 depending on π+ and π− respectively. While a
prior upper estimate α for α appears also in the minimax rates of convergence proved in
Section 6.6, a lower estimate α turns out to be irrelevant for the convergence rates.

Note that the slope coefficient ζ1 grows exponentially with |u|. This means that the
variance of Ỹ(u) grows exponentially as well and the values of Ỹ(u) with large |u| should
be discarded when estimating α.

6.4 Spectral cut-off estimation

Taking into account the special semi-linear structure of (6.2) together with a heteroscedas-
tic variance of Ỹ(u), we apply a weighted least squares method to estimate α. Let w1(u)
be a function supported on [ǫ, 1] with some ǫ > 0 that satisfies

∫ 1

0

w1(u) log(u) du = 1,

∫ 1

0

w1(u) du = 0.(6.5)

For any U > 0 put
wU(u) = U−1w1(uU−1)

and define an estimate α̃U of α as

(6.6) α̃U =

∫ ∞

0

wU(u)Ỹ(u) du.

It is instructive to see what happens with α̃U in the case of exact data, i.e Ỹ = Y. One
can see that in this case the following decomposition holds

α̃U = log(2η)

∫ ∞

0

wU(u) du

︸ ︷︷ ︸
0

+α

∫ ∞

0

wU(u) log(u) du

︸ ︷︷ ︸
1

+RU

with

(6.7) RU :=

∫ ∞

0

wU(u) log(Re τ(u)) du.

So, even in the case of perfect observations we still have the “bias” term RU induced
by model misspecification. Indeed, when applying the least squares method we ignore a
non-linearity caused by RU and treat the problem as being linear. This is, however, only
justified if RU is small. In fact, RU can be made small by taking large values of U .
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6.5 Further specification of the model class

In order to rigorously study the complexity of the underlying estimation problem we have
to make further assumptions about the model class. Let us consider a class of Lévy models
A(ᾱ, η−, η+,κ) with

(6.8) ψ(u) = iµu+ ϑ(u), ϑ(u) = −η|u|ατ(u), u ∈ R,

where 0 < α ≤ ᾱ ≤ 2,

(6.9) 0 < η− ≤ η ≤ η+ <∞

and

(6.10) |1 − τ(u)| .
1

|u|κ , |u| → ∞

for some 0 < κ ≤ α. We will write

(α, η, τ) ∈ A(ᾱ, η−, η+,κ)

to indicate that the Lévy process with characteristics (α, η, τ) is in the class A. The
following proposition shows that conditions (6.8), (6.9) and (6.10) can be in fact rephrased
in terms of the Lévy density of a A(ᾱ, η−, η+,κ) process.

Proposition 6.3. Let ν(x) be the Lévy density of a Lévy process satisfying (6.8), where
the function τ fulfills

(6.11) τ(u) = 1 +D±u
−κ + o(|u|−κ), u → ±∞

with some constants D+ and D−. Then
∫

|x|<ǫ

x2ν(x) dx = cǫ2−αθ(ǫ),(6.12)

where c > 0 is a constant depending on η and α and the function θ(ǫ) satisfies

|θ(ǫ) − 1| . |ǫ|κ, ǫ→ 0.

As will be shown in the next two sections even in the class A(ᾱ, η−, η+,κ) the problem
of estimating α is severely ill-posed, that is a small perturbation ε in data may lead (in
worst case) to log−κ/ᾱ(1/ε) distance between α and its best estimate. On other hand, it
turns out that our estimate α̃U achieves the best possible rates of convergence in the class
A(ᾱ, η−, η+,κ).

6.6 Upper bounds

Let us define

ε :=

{
n−1, under P,

‖δ‖2 +
∑n

j=1 δ
2
j σ̃

2(yj), under Q,

where ‖δ‖2 =
∑n

j=1 δ
2
j , σ̃(yj) = e−yjσ(yj) and δj = yj − yj−1. In the case of calibration

ε comprises the level of the numerical interpolation error and of the statistical error

11



simultaneously. In this section we will study the asymptotic behavior of the estimate
α̃U = α̃U(ε) defined in (6.6) as ε→ 0, A := min{−y0, yn} → ∞ and e−A . ‖δ‖2. Thus, it
is assumed that the number of historical observations as well as the number of available
options tend to infinity. First, we present an upper bound showing that our estimate α̃U

with the “optimal” choice of the cut-off parameter U converges to α with a logarithmic
rate in ε.

Theorem 6.4. For U = Ū with

Ū =

[
1

2η+

log
(
ε−1 log−β(1/ε)

)]1/ᾱ

and

β =

{
1 + κ/ᾱ, under P,

(κ + 4)/ᾱ− 1, under Q,

it holds

(6.13) sup
(α,η,τ)∈A(ᾱ,η

−
,η+,κ)

E |α̃Ū − α|2 . R(ε), ε→ 0,

where

R(ε) =

[
1

2η+
log ε−1

]−2κ/ᾱ

.

Remark 6.2. Since the rates are logarithmic it is usual to call the underlying estimation
problem severely ill-posed. From a practical point of view severely ill-posedeness means
that more observations are needed to reach the desired level of accuracy than for well-
posed problems.

Remark 6.3. As can be easily seen the convergence rates depend on ᾱ, a prior upper
bound for α. If there is no prior information on ᾱ one may take ᾱ = 2.

Remark 6.4. For symmetric stable processes we have τ(u) ≡ 1 and it can be shown that
the rates are parametric in this case, that is

sup
(α,η,τ)∈A(ᾱ,η

−
,η+,∞)

E |α̃Ū − α|2 . ε, ε→ 0

for some Ū depending on ε.

6.7 Lower bounds

Now we show that the rates obtained in the previous section are the best ones in the
minimax sense for the class A(ᾱ, η−, η+,κ).

Theorem 6.5. It holds

(6.14) lim
s→0

lim inf
ε→0

inf
α̃

sup
(α,η,τ)∈A(ᾱ,η

−
,η+,κ)

δ−2
n,s(ε) E(|α̃− α|2) = O(1),

where

δn,s(ε) =

[
1

2η+

log ε−1

]−κ/(ᾱ−s)

,

and the infimum is taken over all estimators α̃ of α.

12



6.8 Asymptotic behavior

In this section we complete the investigation of asymptotic properties of the estimate α̃ by
proving its asymptotic normality. In the case of estimation under P we have the following

Theorem 6.6. Denote

ς(ε, U) =

[
ε

∫ ∞

0

wU(u)wU(v)ζ1(u)ζ1(v)S(u, v) du dv

]1/2

with

S(u, v) : = Reφ(u− v) + Imφ(u+ v)

−(Reφ(u) + Imφ(u))(Reφ(v) + Imφ(v)).

Let U = U(ε) be a sequence of cutoffs such that U(ε) → ∞ and ς(ε, U(ε)) → σ > 0 as
ε→ 0. Then

ς−1(ε, U(ε))(α̃U(ε) − α) ∼ N(0, 1), ε → 0.

Remark 6.5. The choice of U(ε) is based on the following reasoning. On the one hand
we have to require that U(ε) → ∞ in order to make RU in (6.7) small. On the other
hand the variance of α̃U should converge as ε → 0 and the limit must be bounded and
non-degenerated.

Remark 6.6. Given an estimate φ̃ of φ and some U = U(ε) such that |φ̃(u)| 6= 0 on
[−U,U ] and |φ̃(u)| 6= 1 on [−U,U ]\ {0}, we can estimate the asymptotic variance σ of α̃U

via

σ̃ :=

[
ε

∫ ∞

0

wU(u)wU(v)ζ̃1(u)ζ̃1(v)S̃(u, v) du dv

]1/2

with

S̃(u, v) : = Re φ̃(u− v) + Im φ̃(u+ v)

−(Re φ̃(u) + Im φ̃(u))(Re φ̃(v) + Im φ̃(v))

and

ζ̃1(u) := |φ̃(u)|−2 log−1(|φ̃(u)|2).

A similar result can be proved in the case of calibration as well.

6.9 Processes with a non-zero diffusion part

In fact, spectral calibration algorithm allows us to treat more general models with a
non-zero diffusion part. Let A(ā, ᾱ, η−, η+,κ) be a class of Lévy processes with the char-
acteristic exponent of the form

(6.15) ψa(u) = iµu− a2u2/2 + ϑ(u), ϑ(u) = −η|u|ατ(u), u ∈ R,

13



where 0 < a < ā and conditions (6.9)-(6.10) are fulfilled. We will write (a, α, η, τ) ∈
A(ā, ᾱ, η−, η+,κ) to indicate that a Lévy process with the characteristic exponent (6.15)
belongs to A(ā, ᾱ, η−, η+,κ).

Assume first that φa(u) = exp(ψa(u)) is known exactly. Define

L(u) := log(|φa(u)|2) = −a2u2 + 2 Re[ϑ(u)]

and
Lξ(u) := ξ2L(u) − L(ξu) = log

(
|φa(u)|2ξ2

/|φa(ξu)|2
)

=: log(ρξ(u))

for some ξ > 1. It obviously holds

Lξ(u) = −η|u|α
(
ξ2 Re[τ(u)] − ξα Re[τ(ξu)]

)
= −cξ(α)|u|ατξ(u),

where cξ(α) = (ξ2 − ξα)−1 and τξ(u) fulfills

(6.16) |1 − τξ(u)| .
1

|u|κ , |u| → ∞.

Thus, Lξ(u) has a structure similar to the structure of ϑ(u) in (6.8) and we can carry over
the results of the previous section to a more general models (6.15) by defining

Ỹξ(u) := log
(
− log(Tω

−
,ω+ [ρ̃ξ](u))

)
,

where ρ̃ξ(u) = |φ̃(u)|2ξ2
/|φ̃(ξu)|2 with φ̃ being an estimate of φa. Define

(6.17) α̃ξ,U =

∫ ∞

0

wU(u)Ỹξ(u) du.

The following two theorems are extensions of Theorems 6.4 and 6.5 respectively to the
case of Lévy models with a nonzero diffusion part.

Theorem 6.7. For U = Ū with

Ū =

[
1

2ā
log

(
ε−1 log−β(1/ε)

)]1/2

and β = 1 + κ/2 it holds

(6.18) sup
(a,α,η,τ)∈A(ā,ᾱ,η

−
,η+,κ)

E |α̃ξ,Ū − α|2 . R(ε), ε→ 0,

where

R(ε) = c−1
ξ (ᾱ)

[
1

2ā
log ε−1

]−κ

.

Theorem 6.8. It holds

(6.19) lim inf
ε→0

inf
α̃

sup
(a,α,η,τ)∈A(ā,ᾱ,η

−
,η+,κ)

δ−2
n (ε) E(|α̃− α|2) = O(1),

where

δn(ε) =

[
1

2ā
log ε−1

]−κ/2

,

and the infimum is taken over all estimators α̃ of α.

As can be seen the estimate α̃ξ,Ū is consistent as long as ᾱ < 2. The nearer is ᾱ to 2 the
closer is the constant cξ(ᾱ) to zero and the more difficult becomes the estimation problem.
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7 Adaptive Procedure

Minimax results obtained in the previous sections show the complexity of the underlying
estimation problem but are not very helpful in practice. Putting aside the fact that they
are related to the performance of the procedure in the worst situation (worst case scenario)
which is not necessarily the case for the given model from A(ᾱ, η−, η+,κ), the choice of U
suggested there depends on ᾱ, is asymptotic and likely to be inefficient for small sample
sizes. In this section we propose an adaptive procedure for choosing the cut-off parameter
U . First, let us fix a sequence of cut-off parameters U1 > U2 > . . . > UK and define

α̃k =

∫ ∞

0

wUk(u)Ỹ(u) du, k = 1, . . . , K.

We suggest a method based on the combination of multiple testing and aggregation ideas
(see, Belomestny and Spokoiny (2007)). Namely, for the sequence of estimates α̃k consider
a sequence of nested hypothesis Hk : α1 = . . . = αk = α, where

αk =

∫ ∞

0

wUk(u)Y(u) du, k = 1, . . . , K.

The hypothesis Hk basically means that RUi
= 0 for i = 1, . . . , k. The procedure is

sequential: we put α̂1 = α̃1 and start with k = 2 and at each step k the hypothesis Hk is
tested againstHk−1. For testing Hk againstHk−1 we check that the previously constructed
adaptive estimate α̂k−1 belongs to the confidence intervals built on α̃k. Then we put

(7.1) α̂k = γkα̃k + (1 − γk)α̂k−1.

The mixing parameter γk is defined using a measure of statistical difference between α̂k−1

and α̃k

γk := K(Tk/Vk), Tk :=
(
α̃k − α̂k−1

)2
/σ2

k,

where σ2
k is the variance of α̃k, K is a kernel supported on [0, 1] and {Vk} is a set of critical

values. In particular, γk is equal to zero if Hk is rejected, that is α̂k−1 lies outside the
confidence interval around α̃k. The final estimate is equal to α̂K .

7.1 Choice of the critical values Vk

The critical values V1, . . . ,VK−1 are selected by a reasoning similar to the standard ap-
proach of hypothesis testing theory: we would like to provide prescribed performance of
the procedure under the simplest (null) hypothesis. In the considered set-up, the null
means that

α1 = . . . = αK = α.(7.2)

In this case it is natural to expect that the estimate α̂k coming out of the first steps of
the procedure until index k is close to the nonadaptive counterpart α̃k.

To give a precise definition we need to specify a loss function. Suppose that the risk of

estimation for an estimate α̂ of α is measured by E
∣∣α̂ − α

∣∣2r
for some r > 0. It is not

difficult to show that under the null hypothesis (7.2), each estimate α̃k asymptotically
fulfills

ε−1/2(α̃k − α) ∼ N(0, σ2
k), ε→ 0.
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For example, in the case of estimation under P one can prove (see the proof of Proposi-
tion 6.6) that

σ2
k =

∫ ∞

0

∫ ∞

0

wUk(u)ζ1(u)w
Uk(v)ζ1(v)S(u, v) du dv(7.3)

with

S(u, v) : = Reφ(u− v) + Imφ(u+ v)

−(Reφ(u) + Imφ(u))(Reφ(v) + Imφ(v)),

Therefore,

E0

∣∣σ−2
k,ε

(
α̃k − α

)2∣∣r ≈ Cr,

where σ2
k,ε = εσ2

k, Cr = E|ξ|2r and ξ is the standard normal. We require the parameters
V1, . . . ,VK−1 of the procedure to satisfy

E0

∣∣σ−2
k,ε

(
α̂k − α̃k

)2∣∣r ≤ γCr , k = 2, . . . , K.(7.4)

Here γ stands for a preselected constant having the meaning of a confidence level of the
procedure. This gives us K − 1 conditions to fix K − 1 parameters.

Our definition still involves two parameters γ and r. It is important to mention that their
choice is subjective and there is no way for an automatic selection. A proper choice of the
power r for the loss function as well as the “confidence level” γ depends on the particular
application and on the additional subjective requirements to the procedure.

8 Simulations

8.1 Estimation of the fractional order from a time series

Let us consider the generalized hyperbolic (GH) Lévy model which was introduced in a
series of papers (Eberlein and Keller (1995), Eberlein, Keller and Prause (1998) and Eber-
lein and Prause (2002)) and emerged from extensive empirical investigations of financial
time series. See also Eberlein (2000) for a survey on a number of analytical aspects of
this model. The characteristic function ΦGH of increments in the GH Lévy model with
parameters (κ, β, δ, λ) is given by

ΦGH(u) = eiµu

(√
κ2 + β2

)λ

(√
κ2 − (β + iu)2

)λ

Kλ

(
δ
√
κ2 − (β + iu)2

)

Kλ

(
δ
√
κ2 + β2

) ,

where K is the modified bessel function of the second kind. ΦGH has the Lévy-Khintchine
representation of the form

ΦGH(u) = exp

(
ibu+

∫ ∞

−∞

(eiux − 1 − iux)g(x) dx

)
.

Note that this model does not contain a Gaussian component a2u2/2. Function g(x), the
density of the corresponding Lévy measure, can be represented (see Eberlein (2000)) in
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an integral form. From this representation the following expansion for ρ(x) = x2g(x) can
be obtained

ρ(x) =
δ

π
+
λ+ 1

2

2
|x| + δβ

π
x+ o(|x|), x→ 0.

A direct consequence of this expansion is that
∫

|x|>ε

g(x) dx ≍ 1/ε, ε→ 0

and hence the fractional order of the GH Lévy model is equal to 1. In our simulation study
we simulate GH Lévy process X with β = 0, λ = 1 and different pairs of κ and δ at n+ 1
equidistant points {0,∆, . . . , n∆}. Upon that we construct the empirical characteristic
function of increments:

φ̃(u) =
1

n

n∑

k=1

eiu(Xk∆−X(k−1)∆).

Following the description of the spectral estimation algorithm, define

Ỹ(u) := log(− log(Tω
−

,ω+[|φ̃|2](u))),

where truncation levels ω− and ω+ are constant in u and are equal to 0.01 and 0.95
respectively. In fact, for practical applications with a medium sample sizes n the choice
of these levels is not crucial. Now consider the following minimization problem

(lU0 , l
U
1 ) = arg min

l0,l1

∫ U

0

w̄U(u)(Ỹ(u) − l1 log(u) − l0)
2 du,(8.1)

where w̄U(u) = U−1w̄1(U−1u) and w̄1(u) = u1{ǫ≤u≤1} for some ǫ > 0. An estimate for the
fractional order is defined as α̃U = lU1 . It is not difficult to show that α̃U is of the form

α̃U =

∫ ∞

0

wU(u)Ỹ(u) du

with wU(u) = U−1w1(U−1u) and w1(u) = w̄1(u) [A1 log(u) − A2] , where A1 and A2 are
two positive constants such that w1(u) satisfies conditions (6.5). Let U1 > U2 > . . . > UK

be an exponentially decreasing sequence of cut-offs and α̃1, . . . , α̃K be the corresponding
sequence of estimates. Following (7.1), we construct a sequence of aggregated estimates
α̂1, . . . , α̂K using a triangle kernel and a set of critical values V1, . . .VK computed by (7.4).
The variances {σ2

k} in (7.3) are estimated from above using a bound for ζ1. Box plots of
α̂ = α̂K based on 500 trials for different n and different pairs of κ and δ are shown in
Figure 8.1.

8.2 Estimation of the fractional order from options data

In the case of calibration (estimation under Q) we compute first the prices of n call options

C(yk, T ) = S EQ[(eYT − eyk)+], k = 1, . . . , n

using formula (3.3), where the underlying process Y follows a GH Lévy model (parameters
will be specified later on), S = 1, T = 0.25 and r = 0.06. The log-moneyness design (yi)
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Figure 8.1: Box plots of the estimate α̂ under P for different sample sizes and different
parameters of the GH process.
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is chosen to be normally distributed with zero mean and variance 1/3 and reflects the
structure of the option market where much more contracts are settled at the money than
in or out of money. Finally, we simulate

OT (yj) = OT (yj) + σ(yj)ξj, j = 1, . . . , n,

where ξj are standard normal, OT is defined in (3.2) and σ(y) = [σ̄ OT (y)]2.

In the first step of our estimation procedure we find the function Ô among all functions O
with two continuous derivatives as the minimizer of the penalized residual sum of squares

RSS(O,L) =

n+1∑

i=0

(OT (yi) −O(yi))
2 + L

∫ yn+1

y0

[O′′(u)]2 du,(8.2)

where y0 ≪ y1and yn+1 ≫ yn are two extrapolated points with artificial values On+1 =
O0 = 0. The first term in (8.2) measures closeness to the data, while the second term
penalizes curvature in the function, and L establishes a trade-off between the two. The
two special cases are L = 0 when Ô interpolates the data and L = ∞ when a straight
line using ordinary least squares is fitted. In our numerical example we use the R package
psplines with the choice of L that minimizes the generalized cross-validation criterion.
It can be shown that (8.2) has an explicit, finite dimensional, unique minimizer which is
a natural cubic spline with knots at the values of yi, i = 1, . . . , n. Since the solution of
(8.2) is a natural cubic spline, we can write

Ô(y) =
n∑

j=1

θjβj(y)

where βj(y), j = 1, . . . , n, is a set of basis functions representing the family of natural

cubic splines. We estimate F[Ô](v + i) by

F[Ô](v + i) =
n∑

j=1

θjF[e−yβj(y)](v).

Although F[e−yβj(y)] can be computed in closed form, we just use the Fast Fourier Trans-

form (FFT) and compute F[Ô](v + i) on a fine dyadic grid. On the same grid one can
compute

(8.3) ψ̃(v) :=
1

T
log

(
1 + v(v + i)F[Ô](v + i)

)
, v ∈ R,

where log(·) is taken in such a way that ψ̃(v) is continuous with ψ̃(−i) = 0. Now we can
follow the road map of the adaptive spectral calibration algorithm and get an estimate
for the fractional order of the underlying GH Lévy model. In Figure 8.2 box plots of
the final estimate α̂ = α̂K based on 500 Monte Carlo trials are shown in the case of the
underlying GH Lévy model with parameters β = −1, λ = 1 and different κ, δ. Sample
size n is equal to 1000 and noise level σ̄ takes values in the set {1, 10, 20}. The estimate
α̂ is obviously biased because of numerical errors (due to the approximation of Fourier
integral and linearization).
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Figure 8.2: Box plots of the estimate α̂ under Q for different noise levels and different
sets of parameters of the underlying GH Lévy process.
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8.3 Processes with a non-zero diffusion part

Turn now to the class of Lévy processes containing a non-zero diffusion part which was
treated in Section 6.9. The only algorithmic difference to the case of processes with zero
diffusion part is that now we first fix some ξ > 1 and compute

Ỹξ(u) := log(− log(Tω
−

,ω+[|ρ̃ξ|2](u))),

instead of Ỹ(u), where ρ̃ξ(u) = |φ̃(u)|2ξ2
/|φ̃(ξu)|2 with φ̃ being an estimate of φa. In the

estimation procedure we consider only the set of u with |φ̃(ξu)| > 0. Note that this set
is smaller than the set where |φ̃(u)| > 0 since ξ > 1. It is also intuitively clear that more
observations are needed to estimate ρ̃ξ with the same quality as |φ̃(u)|2 and therefore the
first problem is likely to be computationally more difficult. This conjecture is supported
by our simulation study as well. Figure 8.3 shows the boxplots of two estimates α̂ and
α̂ξ based on 500 samples under historical measure P from the GH Lévy model with zero
diffusion part (left) and with the diffusion parameter a equal to 0.1 (right), remaining
parameters λ, β, κ and δ being equal to 1, 0, 1 and 4 respectively. The estimate α̂ξ is
constructed from the estimates α̃U1,ξ, . . . , α̃UK ,ξ (we use ξ = 2 and w̄1(u) = u1{ǫ<u≤1} in
(8.1)) via the stagewise aggregation procedure as described in Section 7. We took K = 30,
Uk = 100(1.25)−(k−1), k = 1, . . . , K and K(x) = (1−x)1{0≤x≤1}. As to the critical values,
they are determined via (7.4) with r = 1, γ = 0.5. Note that while the difference between
α̂ξ and α̂ is rather pronounced for small sample sizes it almost disappears for sample sizes
as large as 1000.
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Figure 8.3: Box plots of the estimates α̂ (left) and α̂ξ (right) under P for different sample
sizes n.
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9 Appendix

9.1 Proof of Lemma 6.1

For any positive ω− and ω+ satisfying ω−(u) ≤ |φ(u)|2 ≤ ω+(u), we have
∣∣∣Ỹ(u) − Y(u) − ζ1(u)(Tω

−
,ω+ [|φ̃|2](u) − |φ(u)|2)

∣∣∣ ≤
ζ2(u)

2
(Tω

−
,ω+[|φ̃|2](u) − |φ(u)|2)2 ≤

ζ2(u)

2
(|φ̃(u)|2 − |φ(u)|2)2.

Furthermore ∣∣∣|φ̃(u)|2 − Tω
−

,ω+[|φ̃|2](u)
∣∣∣ ≤

∣∣∣|φ̃(u)|2 − |φ(u)|2
∣∣∣ , u ∈ Rd

and it holds on the set |φ̃(u)|2 6∈ [ω−, ω+]
∣∣∣|φ̃(u)|2 − |φ(u)|2

∣∣∣ ≥ min{|φ(u)|2 − ω−, ω+ − |φ(u)|2}.

Thus,

ζ1(u)
∣∣∣|φ̃(u)|2 − Tω

−
,ω+[|φ̃|2](u)

∣∣∣ ≤ ζ2(u)

2

∣∣∣|φ̃(u)|2 − |φ(u)|2
∣∣∣
2

on the set |φ̃(u)|2 6∈ [ω−, ω+], provided that

2|φ(u)|2 |log (|φ(u)|)|min{|φ(u)|2 − ω−, ω+ − |φ(u)|2} ≥ |φ(u)|4 log2(|φ(u)|2)
1 + | log(|φ(u)|2)| ,

that is

min

{
1 − ω−

|φ(u)|2 ,
ω+

|φ(u)|2 − 1

}
≥ log(|φ(u)|2)

1 + | log(|φ(u)|2)| .

9.2 Proof of Proposition 6.3

Without loss of generality we can assume that µ = 0 in (6.8). Denote

ρ(x) =

(
1 − sin x

x

)
ν(x),

then ρ is, up to a scaling factor, the density of some probability distribution with the
characteristic function ζρψ̃(u), where ζρ is a positive constant and

ψ̃(u) =

∫ 1

−1

(ψ(u) − ψ(u+ w)) dw.

Due to (6.11) the following asymptotic expansion holds

ψ̃(u) = |u|ατ(u)
∫ 1

−1

[
1 −

∣∣∣1 +
w

u

∣∣∣
α τ(u+ w)

τ(u)

]
dw

= C±(α, κ)|u|α−2
[
1 +O(|u|−κ)

]
, u→ ±∞

with some constants C+ and C− depending on α and κ. We consider separately two cases.
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Case 0 < α < 1 Note that in this case ψ̃(u) is integrable on R and the Fourier inversion
formula implies

ρ(x) =
ζρ
2π

∫ ∞

−∞

(exp(−ixu) − 1)ψ̃(u) du

since ρ(0) = 0. We have for any positive number a

∫ ∞

−∞

(exp(−ixu) − 1)ψ̃(u) du =

∫

|u|≤a

(exp(−ixu) − 1)ψ̃(u) du

+

∫

|u|>a

(exp(−ixu) − 1)ψ̃(u) du =: I1 + I2,

where |I1| . |x| . |x|1−α+κ for x→ 0 provided that κ ≤ α. Furthermore,

I2 = C±(α, κ)

∫

|u|>a

(exp(−ixu) − 1)|u|α−2 du+O(|x|1−α+κ)

= C±(α, κ)|x|1−α [1 +O(|x|κ)] , x→ ±0

and (6.12) holds.

Case 1 ≤ α < 2 In this case we use the Fourier inversion formula for distribution
functions to get

∫

|x|<ε

ρ(x) dx =
2ζρ
π

∫ ∞

0

sin(εu)

u
Re[ψ̃(u)] du.

The representation
∫ ∞

0

sin(εu)

u
Re[ψ̃(u)] du =

∫ a

0

sin(εu)

u
Re[ψ̃(u)] du+

∫ ∞

a

sin(εu)

u
Re[ψ̃(u)] du =: I1 + I2.

and the asymptotic relation

I2 = C+(α, κ)

∫ ∞

a

sin(uε)

u
uα−2 du+O(ε2−α+κ)

= C+(α, κ)ε2−α [1 +O(εκ)] , ε→ +0

lead now to (6.12) provided that κ ≤ α− 1.

9.3 Proof of Theorem 6.4

The representation

α̃U − α =

∫ ∞

0

wU(u)(Ỹ(u) − Y(u)) du+RU ,

and Lemma 6.1 imply that

(9.1) E |α̃U − α|2 ≤ 3 E

[∫ ∞

0

wU(u)ζ1(u)∆(u) du

]2

+ 3 E

[∫ ∞

0

wU(u)ζ2(u)∆
2(u) du

]2

+ 3|RU |2.
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Let us consider the first term in (9.1)

E

[∫ ∞

0

wU(u)ζ1(u)∆(u) du

]2

=

[∫ ∞

0

wU(u)ζ1(u) E[∆(u)] du

]2

+ Var

[∫ ∞

0

wU(u)ζ1(u)∆(u) du

]
.

Since
ζ1(u) = 2−1|φ(u)|−2 log−1(|φ(u)|) = e2η|u|α Re τ(u)/(2η|u|α Re τ(u))

we have

∫ ∞

0

wU(u)ζ1(u) E[∆(u)] du =

∫ 1

0

w1(u)ζ1(Uu) E[∆(Uu)] du

= U−α

∫ 1

0

w1(u)e2ηUαuα Re τ(Uu)

2ηuα Re τ(Uu)
E[∆(Uu)] du.(9.2)

Due to localization principle (Laplace method) and the identity

E[∆(u)] = E |φ̃(u)|2 − |φ(u)|2 = ε(1 − |φ(u)|2),

the integral in (9.2) is asymptotically (as U → ∞) less than or equal to

AεU−α

∫ 1

1−δ

w1(u)u−αe2ηUαuα

du . εU−αe2ηUα

with arbitrary small δ > 0 and some constant A > 0. Similarly

Var

[∫ ∞

0

wU(u)ζ1(u)∆(u) du

]
=

∫ ∞

0

∫ ∞

0

wU(u)wU(v)ζ1(u)ζ1(v) Cov(∆(u),∆(v)) du dv

. εU−2αe2ηUα

+ ε2U−4αe4ηUα

, U → ∞,

where again localization principle and the identity

Cov(|φ̃(u)|2, |φ̃(v)|2) = 2ε3(ε−1 − 1)(ε−1 − 2)[Re(φ(u)φ(v)φ(−u− v))

+ Re(φ(−u)φ(v)φ(u− v)) − 2|φ(u)|2|φ(v)|2]
+ε3(ε−1 − 1)[|φ(u+ v)|2 + |φ(−u+ v)|2 − 2|φ(u)|2|φ(v)|2]

are used. Turn now to the second term in (9.1)

E

[∫ ∞

0

wU(u)ζ2(u)∆
2(u) du

]2

=

[∫ ∞

0

wU(u)ζ2(u) E[∆2(u)] du

]2

+ Var

[∫ ∞

0

wU(u)ζ2(u)∆
2(u) du

]
.

Since

ζ2(u) .
| log |φ(u)||
|φ(u)|4 , u→ ∞
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and

E ||φ̃(u)|2 − |φ(u)|2|2 = E ||φ̃(u)|2 − E |φ̃(u)|2 + E |φ̃(u)|2 − |φ(u)|2|2
≤ 2 E ||φ̃(u)|2 − E |φ̃(u)|2|2 + 2|E |φ̃(u)|2 − |φ(u)|2|2
. ε|φ(u)|2 + ε2, u→ ∞,

we get an asymptotic estimate
∫ ∞

0

wU(u)ζ2(u) E[∆2(u)] du . εUαe2ηUα

+ ε2Uαe4ηUα

, U → ∞.

Similarly, one can prove that

Var

[∫ ∞

0

wU(u)ζ2(u)∆
2(u) du

]
. ε2U2αe4ηUα

, U → ∞.

Finally, the third term in (9.1)

RU =

∫ ∞

0

wU(u) log(Re τ(u)) du

can be can be bounded by

|RU | =

∣∣∣∣
∫ 1

0

w1(u) log(Re τ(uU)) du

∣∣∣∣ ≤

U−1

∫ A

0

|w1(y/U)|| log(Re τ(y))| dy

+ U−κ

∫ 1

0

|y|−κ|w1(y)| dy . U−κ, U → ∞,

for A > 0 large enough. Combining all the previous estimates we get

E |α̃U − α|2 . εU−2αe2ηUα

+ ε2U2αe4ηUα

+ U−2κ

. εU−2ᾱe2η+U ᾱ

+ ε2U2ᾱe4η+U ᾱ

+ U−2κ, U → ∞.(9.3)

Finally the choice

U =

[
1

2η+
log

(
ε−1 log−β(1/ε)

)]1/ᾱ

with β = 1 + κ/ᾱ leads to (6.13).

In the case of calibration problem we have

|φ̃(u)|2 = 1 − 2 Re

[
u(u+ i)

n∑

j=1

δjÕ(yj)e
iuyj

]

+u2(1 + u2)

n∑

j,l=1

eiu(yl−yj)δjδlÕ(yj)Õ(yl)

and

E |φ̃(u)|2 = 1 − 2 Re

[
u(u+ i)

n∑

j=1

δjÕ(yj)e
iuyj

]

+u2(1 + u2)

n∑

j 6=l

eiu(yl−yj)δjδlÕ(yj)Õ(yl)

+u2(1 + u2)

n∑

j=1

δ2
j σ̃

2
j .
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As was mentioned in Section 3.2 function Õ(y) = e−yO(y) is nonnegative, Lipschitz and
satisfies Cramér condition ∫

R

O(y)e−y dy <∞

provided that E[e2YT ] <∞. Under the condition e−A ≤ ‖δ‖2 we get

∣∣∣∣∣

∫

R

eiuyÕ(y)dy −
n∑

j=1

eiuyjδjÕ(yj)

∣∣∣∣∣ . ‖δ‖2 , ‖δ‖2 → 0

as well as
∣∣∣∣∣

∣∣∣∣
∫

R

eiuyÕ(y)dy

∣∣∣∣
2

−
n∑

j,l=1

eiu(yl−yj)δjδlÕ(yj)Õ(yl)

∣∣∣∣∣ . ‖δ‖2 , ‖δ‖2 → 0.

Thus,

|E |φ̃(u)|2 − |φ(u)|2| . u2(1 + u2)
n∑

j=1

δ2
j (1 + σ̃2

j ).

Further

|φ̃(u)|2 − E |φ̃(u)|2 = −2 Re

[
u(u+ i)

n∑

j=1

δjσ̃jξje
iuyj

]

+2u2(1 + u2)
∑

j<l

eiu(yl−yj)δjδlσ̃j σ̃lξjξl

+u2(1 + u2)
n∑

j=1

δ2
j σ̃

2
j (ξ

2
j − 1)

and

E(|φ̃(u)|2 − E |φ̃(u)|2)2 . u2(1 + u2)

n∑

j=1

δ2
j σ̃

2
j + u4(1 + u2)2

n∑

j=1

δ4
j σ̃

4
j .

Using these inequalities, the first term in (9.1) can be estimated from above as

E

[∫ ∞

0

wU(u)ζ1(u)∆(u) du

]2

. U8−2αe4ηUα‖δ‖4 + U4−2αe4ηUα

[
n∑

j=1

δ2
j σ̃

2
j

]2

. ε2U8−2ᾱe4η+U ᾱ

while the second one is asymptotically negligible if ε2U8−2αe4ηUα → 0. Taking

U =

[
1

2η+

log
(
ε−1 log−β(1/ε)

)]1/ᾱ

with β = (κ + 4)/ᾱ− 1, we get (6.13).
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9.4 Proof of Theorem 6.5

For any two probability measures P and Q define

χ2(P,Q) =:






∫ (
dP
dQ

− 1
)2

dQ if P ≪ Q

+∞ otherwise

The following proposition is the main tool for the proof of lower bounds in the estimation
case and can be found in Butucea and Tsybakov (2004).

Proposition 9.1. Let PΘ := {Pθ : θ ∈ Θ} be a family of models. Assume that there exist
θ1 and θ2 in Θ with |θ1 − θ2| > 2δn > 0 such that

Pθ1 ≪ Pθ2 , χ2(P⊗n
θ1
, P⊗n

θ2
) ≤ κ2 < 1

then
lim inf
n→∞

inf
θ̂n

δ−2
n max{Eθ1 |θ̂n − θ1|2,Eθ2 |θ̂n − θ2|2} ≥ (1 − κ)2(1 −

√
κ)2,

where the infimum is taken over all estimators θ̂n (measurable function of observations)
of the underlying parameter.

Taking Θ = A(ᾱ, η−, η+,κ) and θi = (αi, ηi, τi), i = 1, 2, we get from Proposition 9.1

sup
(α,η,τ)∈A(ᾱ,η

−
,η+,κ)

E(|αε − α|2) ≥ δ−2
n max{E1(|αε − α1|2),E2(|αε − α2|2)}

provided that |α1 − α2| > 2δn > 0 and

χ2(P⊗n
θ1
, P⊗n

θ2
) ≤ κ2 < 1.

Turn now to the construction of models θ1 and θ2. Let us consider a symmetric stable
model

ψ(u) = iµu+ ϑ(u), ϑ(u) = −η+|u|α, 0 < α ≤ 1, u ∈ R

For any δ satisfying 0 < δ < α and M > 0 define

ψδ(u) = iµu+ ϑδ(u),

where

ϑδ(u) = −η+|u|α1{|u|≤M} −
η+M

δ

(1 + cM−κ)
|u|α−δ(1 + c|u|−κ)1{|u|>M}.

Then φδ(u) = exp(iµu+ ϑδ(u)) is a characteristic function of some Lévy process and

φδ(u) = φ(u), |u| ≤ M,

where φ(u) = exp(iµu+ ϑδ(u)). Indeed, the function ϑδ(u) is a continuous, non-positive,
symmetric function which is convex on R+ for large enough M and small enough c >
0. According to a well known Pólya criteria (see e.g. Ushakov (1999)), the function
exp(ξϑδ(u)) is a c. f. of some absolutely continuous distribution for any ξ > 0. In
particular, for any natural n the function exp(ϑδ(u)/n) is a c. f. of some absolutely
continuous distribution. Hence, exp(ϑδ(u)) is a c.f. of some infinitely divisible distribution.
Define

(9.4) θ1 = (α, η+, 1), θ2 = (α− δ, η+, τδ,M)
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and φθ1(u) = φ(u), φθ2(u) = φδ(u) with

τδ,M(u) := |u|δ1{|u|≤M} +
M δ

(1 + cM−κ)
(1 + c|u|−κ)1{|u|>M}.

If M δ = 1 + cM−κ, i.e.

(9.5) δ = log(1 + cM−κ)/ logM ≍ cM−κ/ logM, M → ∞,

then
|τδ,M(u) − 1| . |u|−κ, |u| → ∞

and hence θ2 ∈ Θ = A(ᾱ, η−, η+,κ). Furthermore, it holds

χ2(P⊗n
θ1
, P⊗n

θ2
) = nχ2(pθ1, pθ2) = n

∫

R

|pθ1(y) − pθ2(y)|2
pθ1(y)

dy,

where pθ1 and pθ2 are densities corresponding to c.f. φθ1 and φθ2 respectively. Using the
fact that the density of stable law pθ1(y) does not vanish on any compact set in R and
fulfills

pθ1(y) & |y|−(α+1), |y| → ∞,

we derive

nχ2(pθ1 , pθ2) ≤ nC1

∫

|y|≤A

|pθ1(y) − pθ2(y)|2 dy

+nC2

∫

|y|>A

|y|α+1|pθ1(y) − pθ2(y)|2 dy = nC1I1 + nC2I2

for large enough A > 0 and some constants C1, C2 > 0. Using the fact that function
φθ1(u)− φθ2(u) is two times differentiable (it is zero for |u| < M) and Parseval’s identity,
we get

I1 ≤ 1

2π

∫

R

|φθ1(u) − φθ2(u)|2 du

≤ 1

2π

∫

|u|>M

e−2η|u|α−δ

du . M1−α+δe−2ηMα−δ

,

I2 ≤ 1

2π

∫

|u|>M

|(φθ1(u) − φθ2(u))
′′|2 du

.

∫

|u|>M

|u|6e−2η|u|α−δ

du . M7−α+δe−2ηMα−δ

.

The choice M ≍
[

1
2η+

log
(
ε−1 log−β(1/ε)

)]1/(α−δ)

with ε = 1/n and some β ≥ (7 − (α −
δ))/2(α− δ) yields

ε−1χ2(pθ1, pθ2) < 1

for small enough ε. Combining this and (9.5), we arrive at (6.14).

For the proof of lower bounds in the case of calibration one can employ the fact that the
regression model

ÕT (yi) = ÕT (yi) + σ̃(yi)ξi, δi = yi − yi−1, E
[
ξ2
i

]
= 1, i = 1, . . . , n,
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is equivalent to the Gaussian white noise model

dZ(x) = Õ(y) dy + ε1/2 dW (y)

with the noise level asymptotics ε→ 0, a two-sided Brownian motion W . Here the noise
level ε corresponds to the statistical regression error

∑n
j=1 δ

2
j σ̃

2
j . Furthermore, instead of

χ2 distance we use the Kullback-Leibler divergence

KL(Tθ1 ,Tθ2) =
1

2

∫

R

|(Õθ1 − Õθ2)(y)|2ε−1 dy

between two models Tθ1 and Tθ2 corresponding to two Lévy processes with characteristics
θ1 and θ2 respectively (see (9.4)). Simple calculations lead to the estimate

KL(Tθ1 ,Tθ2) . ε−1Mγe−2η+Mα−δ

with some γ > 0. Hence, for small enough ε > 0 it holds

KL(Tθ1 ,Tθ2) < 1

provided thatM ≍
[

1
2η+

log
(
ε−1 log−β(1/ε)

)]1/(α−δ)

with β ≥ γ/2(α−δ). Assouad lemma

(see e.g. Tsybakov (2008)) together with (9.5) implies (6.14).

9.5 Proof of Proposition 6.6

It holds for any fixed U

α̃U − α =

∫ ∞

0

wU(u)(Ỹ(u) − Y(u)) du

=

∫ ∞

0

wU(u)ζ1(u)∆(u) du

+

∫ ∞

0

wU(u)Q(u) du+RU ,

where Q is defined in (6.3). As shown in Lemma 9.2 the process ε−1/2∆(u) converges
weakly to a Gaussian process Z(u) with E[Z(u)] = 0 and Cov(Z(u), Z(v)) = S(u, v).
Moreover, ε−1/2Q(u) → 0 almost surely. The extended continuous mapping theorem (see
Van der Vaart and Wellner (1996)) implies that if for some sequence U(ε) and finite
positive real number σ

ς2(ε) = ε

∫ ∞

0

wU(ε)(u)wU(ε)(v)ζ1(u)ζ1(v)S(u, v) du dv→ σ2

and ς−1(ε)RU(ε) → 0, then ς−1(ε)(α̃U(ε) − α) → N(0, 1).

9.6 Proof of Theorem 6.7

We give only the sketch of the proof. Let ω− and ω+ be two truncation levels satisfying
0 < ω−(u) < ρξ(u) < ω+(u) < 1 and 0 < ω− < ρξ(u)(1 − log(ρξ(u))/(1 + log(ρξ(u)))).
First, similarly to the proof of Proposition 6.1 one can show that

∣∣∣Ỹξ(u) − Y(u) − ζ1,ξ(u)(T0,ω+ [ρ̃ξ](u) − ρξ(u))
∣∣∣ ≤ ζ2,ξ(u)(T0,ω+[ρ̃ξ](u) − ρξ(u))

2,
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where

ζ1,ξ(u) = −ρ−1
ξ (u) log−1(ρξ(u)),

and

ζ2(u) = 2 max
θ∈{ω

−
(u),ω+(u)}

[
1 + | log(θ)|
θ2 log2(θ)

]
.

Furthermore, we have on the set {ρ̃ξ(u) ≤ ω+(u)}

|ρξ(u) − T0,ω+ [ρ̃ξ](u)| ≤ ω+(u)

∣∣∣|φa(ξu)|2 − |φ̃(ξu)|2
∣∣∣

|φa(ξu)|2
+

∣∣∣|φa(u)|2ξ2 − |φ̃(u)|2ξ2
∣∣∣

|φa(ξu)|2

and on the set {ρ̃ξ(u) > ω+(u)} it holds

|ρξ(u) − T0,ω+ [ρ̃ξ](u)| ≤ 2ω+(u).

Hence

E |ρξ(u) − T0,ω+ [ρ̃ξ](u)|2 ≤ 2|φa(ξu)|−4

[
E

∣∣∣|φa(ξu)|2 − |φ̃(ξu)|2
∣∣∣
2

+ E
∣∣∣|φa(u)|2ξ2 − |φ̃(u)|2ξ2

∣∣∣
2
]

+ 4ω2
+(u) P(ρ̃ξ(u) > ω+(u)).

Without loss of generality one can assume that there exists U0 > 0 such that ρξ(u)/ω+(u) <
1/2 for u > U0. Then it holds for u > U0

P(ρ̃ξ(u) > ω+(u)) ≤ P
(∣∣∣|φa(u)|2ξ2 − |φ̃(u)|2ξ2

∣∣∣ > ω+(u)|φ(uξ)|2/4
)

+ P
(∣∣∣|φa(uξ)|2 − |φ̃(uξ)|2

∣∣∣ > ω+(u)|φ(uξ)|2/4
)

≤ 16|φa(ξu)|−4

[
E

∣∣∣|φa(ξu)|2 − |φ̃(ξu)|2
∣∣∣
2

+ E
∣∣∣|φa(u)|2ξ2 − |φ̃(u)|2ξ2

∣∣∣
2
]
.

In the case of the estimation under P, for instance, we have

E
∣∣∣|φa(ξu)|2 − |φ̃(ξu)|2

∣∣∣
2

. ε, E
∣∣∣|φa(u)|2ξ2 − |φ̃(u)|2ξ2

∣∣∣
2

. ε, ε → 0

and hence

E |ρξ(u) − T0,ω+ [ρ̃ξ](u)|2 . ε|φa(ξu)|−4, ε→ 0.

Now one can follow the proof of Theorem 6.4 and use the fact that

ζ1,ξ(u) ≍ c−1
ξ (α)|u|−ατ−1

ξ (u) exp(cξ(α)|u|ατξ(u)), u→ ∞.

9.7 Proof of Theorem 6.8

Instead of Lévy models θ1 and θ2 one considers models θ1,a and θ2,a with characteristic
exponents ψa(u) = iµu− ā2u2/2 + ϑ(u) and ψa,δ(u) = iµu− ā2u2/2 + ϑδ(u) respectively.
The rest of the proof is almost identical to the proof of Theorem 6.5.
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9.8 Auxiliary results

The following lemma is basic tool to investigate the asymptotic behavior of estimate α̃
under historical measure P.

Lemma 9.2. The process ε−1/2∆(u) with ∆(u) = |φ̃(u)|2 − |φ(u)|2 weakly converges to a
Gaussian process Z(u) with E[Z(u)] = 0 and Cov(Z(u), Z(v)) = S(u, v), where

S(u, v) : = Reφ(u− v) + Imφ(u+ v)

−(Reφ(u) + Imφ(u))(Reφ(v) + Imφ(v)).

Proof. We have

|φ̃(u)|2 =
[
Re φ̃(u)

]2

+
[
Im φ̃(u)

]2

=
1

n2

n∑

j=1

n∑

k=1

cos(u(Xj −Xk)).

Put

Hn(u) =

(
n

2

)−1 ∑

c

cos(u(Xj −Xk)) =
2

n(n− 1)

∑

c

cos(u(Xj −Xk)),

where summation c is over all
(

n
2

)
combinations of 2 integers chosen from (1, ..., n). Then

ε−1/2(|φ̃(u)|2 − |φ(u)|2) = ε1/2 + ε−1/2(1 − ε)(Hn − |φ(u)|2) − ε1/2|φ(u)|2.
The first and third terms on the right hand side converge to 0. Consider the middle
term. Since Hn(u) is an U -statistic (for each u), ε−1/2(Hn − |φ(u)|2) weakly converges to
a Gaussian process with zero mean and covariance

Cov [EX2 cos(u(X1 −X2)),EX2 cos(v(X1 −X2))]

(where EX Y denotes the conditional expectation of Y given X). Let us compute this
covariance. For any u, v ∈ R it holds

Cov(EX2 [cos(u(X1 −X2))],EX2[cos(v(X1 −X2))]) =

E[(cos(uX2) − Reφ(u)) Reφ(u) + (sin(uX2) − Imφ(u)) Imφ(u)]×
[(cos(vX2) − Reφ(v)) Reφ(v) + (sin(vX2) − Imφ(v)) Imφ(v)],

where

E(cos(uX2) − Reφ(u))(cos(vX2) − Reφ(v)) =

Reφ(u+ v) + Reφ(u− v)

2
− Reφ(u) Reφ(v),

E(sin(uX2) − Imφ(u))(sin(vX2) − Imφ(v)) =

Reφ(u− v) − Reφ(u+ v)

2
− Imφ(u) Imφ(v)

and

E(cos(uX2) − Reφ(u))(sin(vX2) − Imφ(v)) =

Imφ(v − u) + Imφ(u+ v)

2
− Reφ(u) Imφ(v).
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Boyarchenko, S. and Levendorskĭı, S. (2002). Barrier options and touch-and-out options
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