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Abstract

This paper studies conical diffraction problems with non-smooth grating structures. We

prove existence, uniqueness and regularity results for solutions in weighted Sobolev spaces of

Kondratiev type. An a priori estimate, which follows from these results, is then used to prove

shape differentiablility of solutions. Finally, a characterization of the shape derivative as a

solution of a modified transmission problem is given.
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1 Introduction

We consider the scattering of a time-harmonic electromagnetic plane wave by a diffraction grating
in R3. The simplest form of such a diffraction grating is a periodic interface between two materials
with different dielectric constants. More precisely, the grating surface is a perturbation of the
(x1, x2)-plane, which is assumed to be periodic in the x1-direction and invariant in the x3-direction.
Scattering by such gratings occurs in the micro-optics industry, where optical devices with certain
features have to be designed [1]. Additionally, it is important to solve the inverse problem of shape
reconstruction, i.e. to determine the grating structure from measured data of the diffracted wave
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[13]. Mathematically, this can be formulated as an inverse problem for the Maxwell equations. See
the books of Petit [26] and Colton/Kress [7] for detailed explanations. Under the assumption of a
periodic grating illuminated by a plane wave it is possible to reduce the 3D Maxwell transmission
problem to a system of Helmholtz equations in R2 which are coupled by transmission conditions on
the interface. The inverse problem can then be solved by an iterative Newton-type method, which
makes use of certain concepts of differentiability with respect to the domain. The theory of shape
calculus and shape optimization has been thoroughly investigated for example by Sokolowski and
Zolesio [31] and Simon [30]. Since inverse problems of this kind are typically ill-posed, iterative
methods require regularization.

In the past, different settings and approaches have been discussed. Elschner, Schmidt et al. focused
on Eulerian derivatives of shape functionals. In their papers, these fuctionals depend continuously
on the Rayleigh coefficients of the scattered waves. The Rayleigh coefficients themselves depend
on the shape of the diffraction grating. These investigations cover existence and uniqueness results
for the direct problem in usual Sobolev spaces [8] and gradient formulas for both classical TE/TM
diffraction and binary gratings [10] and for conical diffraction by general non-smooth structures [9].
They also provide an existence result for material derivatives of solutions which are H1-regular and
statements about asymptotic expansions of the field components near corner points. The formulas
given in these papers involve solutions of direct and adjoint problems. Therefore, two different
diffraction problems have to be solved in each iteration step.

A different approach uses the shape derivative of the solution operator F : Γ 7→ u for a fixed
incident wave, depending on the interface Γ. An iterative method is given for example by the
minimization problem

min

{

1

2
||F′(Γn)(Γn+1 − Γn) − u + F(Γn)||2 +

α

2
||Γn+1 − Γn||2

}

,

where F′ is the shape derivative of F and α is a regularization parameter. Potthast, Chandler-Wilde
and Hohage and Schormann characterized shape derivatives of solutions of Dirichlet and Neumann
boundary value problems [27, 28], transmission problems for bounded, smooth domains [15] and
of Dirichlet problems for unbounded rough surfaces. These are surfaces which are described by
contiuous non-periodic functions with Hölder continuous gradients [6]. The shape derivatives are
characterized as solutions of problems with the same operator and different right-hand sides. These
results were proven by representing the solution as single layer or double layer potentials and taking
the shape derivative of the resulting boundary integrals. Hettlich [14] obtained the same results
for Dirichlet and Neumann problems, and additionally for a transmission problem with a smooth
interface, by means of weak formulations of these problems. Kirsch [16] also employed this method
for a Dirichlet problem with a smooth periodic grating. This ansatz works if the shape derivative
has H1-regularity. However, if the boundaries are non-smooth, the shape derivatives, if they
exist, are no longer in H1. Bochniak and Cakoni [4] suggested a different approach for non-smooth
boundaries, using non-local perturbation theory and Kondratiev’s weighted Sobolev spaces [21, 17].
They showed shape differentiability of solutions for Dirichlet and Neumann problems for domains
with corners with the help of an a priori estimate. In this paper, this ansatz is used to investigate
shape derivatives of solutions of a system of Helmholtz equations coupled by transmission conditions
on a periodic, non-smooth interface.

The paper is structured in the following way. The second section recalls the conical diffraction
problem in three dimensions and its reduction to a Helmholtz problem in a two-dimensional periodic
cell. Section 3 introduces Kondratiev’s weighted Sobolev spaces and shows an a priori estimate
for conical transmission problems in these spaces.This estimate can be sharpened if the solution is
unique. In the second part of the third section a uniqueness result is shown for absorbing materials,
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which makes use of a former result of Elschner, Schmidt et al. [8] in standard Sobolev spaces. The
last section discusses existence, uniqueness and the characterization of shape derivatives of solutions
to the conical diffraction problem. Here, non-local perturbation theory and the ansatz of Bochniak
and Cakoni are used. We consider perturbations which preserve the opening angles at corner points
as well as perturbations which change the angles. Finally, the shape derivative is characterized as
a solution of a conical diffraction problem. More precisely, the solution operator is the same as for
the original problem, only the right-hand side is changed. For interfaces with corners, as opposed
to smooth interfaces, the right-hand sides of the transmission conditions involve values which are
concentrated on the corner points.

2 Conical diffraction

2.1 The Maxwell system

We consider a time-harmonic incoming plane wave with frequency ω illuminating a periodic diffrac-
tion grating in R3 dividing two materials with different dielectric coefficients. The surface structure
is assumed to be infinite and periodic in x1-direction and invariant in x3-direction. It is then de-
termined by a profile curve Γ being the intersection of the interface with the (x1, x2) plane. In
the conical diffraction case the angle between the incoming wave direction and the (x1, x2) plane
is allowed to be non zero. If the incoming wave lies in the (x1, x2) plane, we have TE or TM
diffraction, depending on the polarization.

X_1

X_2

X_3

−

incoming 
wave

π/2−φ

Figure 1: The diffraction grating

The electromagnetic field (E ,H) is the sum (E1,H1) = (E (i),H(i)) + (E (r),H(r)) of the incoming
wave and the reflected wave above and the transmitted wave (E2,H2) = (E (t),H(t)) below the
grating. Since the incoming wave is time-harmonic, i.e. it admits the form

(

E (i),H(i)
)

=
(

peiαx1−iβx2+iγx3e−iωt, qeiαx1−iβx2+iγx3e−iωt
)

=
(

E(i), H(i)
)

e−iωt, (1)

where k = (α,−β, γ) is the wave vector and k/|k| is the direction of the incoming wave, we obtain
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the time-harmonic Maxwell equations

∇× E = iωµH

∇× H = −iωǫE
(2)

with transmission conditions

ν × (E1 − E2) = 0

ν × (H1 − H2) = 0
(3)

on the interface Γ ×R, where ν is the unit normal vector to Γ ×R, µ is the magnetic permeability
and ǫ is the dielectric coefficient. We will assume that µ is constant, that ǫ = ε+ above the grating
and ε = ε− below the grating, respectively. Here ε+ > 0 and ε− are constant. If the incoming
wave is of the form (1), then

(E, H)(x1, x2, x3) = (E, H)(x1, x2)eiγx3,

and the above Maxwell system can be reduced to a system of Helmholtz equations for the third
components E3 of E = (E1, E2, E3) and H3 of H = (H1, H2, H3) defined in the cross-section plane
(x1, x2) described in the next subsection. For details, see [8], [9], [11] and the following section.

2.2 The quasi-periodic Helmholtz problem

We restrict the problem to a rectangular cell Ω := (0, 2π)× (−b, b) ⊂ R2 with artificial boundaries
Γ± := {(x1,±b) : 0 < x1 < 2π} above resp. below the grating and with an interface Γ splitting
Ω into an upper part Ω+ and a lower part Ω−. This is shown in Figure 2. Now we introduce the
functions

u±
1 := E3|Ω± and u±

2 := H3|Ω± .

In view of the periodicity of the problem and the form of the incoming wave, we look for solutions
which are α-quasi-periodic in x1, i.e.

u±
1 (x1 + 2π, x2) = e2πiαu±

1 (x1, x2), u±
2 (x1 + 2π, x2) = e2πiαu±

2 (x1, x2). (4)

The Maxwell equations (2) can then be formulated as

△u+
1 + κ2

+u+
1 = f +

1 in Ω+

△u−
1 + κ2

−u−
1 = f−1 in Ω−

△u+
2 + κ2

+u+
2 = f +

2 in Ω+

△u−
2 + κ2

−u−
2 = f−2 in Ω−

(5)

Here κ2
± := k2

± − γ2, where k± = ω
√

µε± denotes the wavenumber inside Ω±. Let further
κ(x) := κ± if x ∈ Ω±, and define ε in the same way. Let [·]Γ denote the jump of a function over
Γ, i.e.

[u]Γ := u+ − u−
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Figure 2: The 2D periodic cell

on the interface. Then the transmission conditions (3) turn into
[ γ

κ2
∂τu2 +

ωε

κ2
∂νu1

]

Γ
= −ωε

κ2
+

∂νu
(i)
1 =: b1

[ γ

κ2
∂τu1 −

ωµ

κ2
∂νu2

]

Γ
=

ωµ

κ2
+

∂νu
(i)
2 =: b2

[u1]Γ = −u
(i)
1 =: b3

[u2]Γ = −u
(i)
2 =: b4

(6)

on Γ. Usually the case of (u
(i)
1 , u

(i)
2 ) being a plane wave, i.e.

(u
(i)
1 , u

(i)
2 ) = (p3, q3)ei(α−β)x2, (7)

and f±j = 0 for j = 1, 2 is of interest, but for technical reasons, we will also have to consider inho-
mogeneous boundary conditions and inhomogeneous right-hand sides of the Helmholtz equations.
Note that the functions uj describe only the scattered field and not the total field.
In general, the unknown functions have to satisfy a radiation condition at infinity. In the given
situation this leads to the requirement that in the vicinity of Γ+ and Γ−, they have to be a
superposition of outgoing bounded plane waves of the form

u±
j (x1, x2) =

∞

∑
n=−∞

A±
j,nei(n+α)x1+

√
κ2
±−(n+α)2x2 , (8)

which remains bounded as |x2| → ∞. We suppose that the artificial boundaries are straight lines
and that the interface is piecewise C2 with a finite set of corner points. Moreover, we suppose that
for every corner point S there exists a neighbourhood US such that Ω± ∩ US = C±

S ∩ US, where
C±

S is an infinite cone with vertex S.
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In the following we will write the boundary operators as a 4 × 4 matrix B = (Bi
j), i.e.

B =
(

Bi
j(∂ν, ∂τ)

)4

i,j=1
:=











ωε+

κ2
+

∂ν −ωε−
κ2
−

∂ν
γ

κ2
+

∂τ − γ

κ2
−

∂τ

γ

κ2
+

∂τ − γ

κ2
−

∂τ −ωµ

κ2
+

∂ν
ωµ

κ2
−

∂ν

1 −1 0 0
0 0 1 −1











, (9)

which acts on the vector (u+
1 , u−

1 , u+
2 , u−

2 )⊤.

3 Regularity of solutions

We are interested in shape derivatives of the solutions of the above boundary value problem. In the
first subsection, we will show an a priori estimate for solutions of the conical diffraction problem.
Then we give an existence and uniqueness result. This is used in Section 2.2 to show existence and
uniqueness of shape derivatives.

3.1 A priori estimates

Since we deal with nonsmooth interfaces, we use weighted Sobolev spaces of the Kondratiev type,
which were introduced especially for boundary value problems where the domains have corner
points.

Definition 1. Let S be the set of corner points of the boundary, let rS be the distance from
x ∈ Ω± to S ∈ S and fix a partition of unity

1 = ∑
S∈S

χS + Ψ,

where χS and Ψ are smooth, the χS have compact support in the neighbourhood of S ∈ S, χ ≡ 1
in a smaller neighbourhood and Ψ(x), χ(x) ≥ 0 for all x ∈ Ω. For k ∈ N and η ∈ R we define
Vk

η (Ω±) as the set of generalized functions with the finite norm

||u||Vk
η (Ω±) := ||Ψu||Hk(Ω±) + ∑

S∈S
∑

|β|≤k

||rη−k+|β|
S Dβ(χSu)||L2(Ω±).

For k ≥ 1, the well defined (see [24],[18]) trace space on the boundary ∂Ω± is denoted by
Vk−1/2

η (∂Ω±). If, as in our setting, Ω = Ω+ ·∪Ω−, then

V k
η(Ω) := Vk

η (Ω+) × Vk
η (Ω−).

The following lemma, which is Lemma 6.2.1 in [18], concerning embeddings of these spaces will be
needed later on.

Lemma 1. Let Ω be a bounded domain and η, β ∈ R. If k ≥ l ≥ 0 and η − k ≤ β − l, then Vk
η (Ω)

is continuously embedded into Vl
β(Ω). Moreover, Vk

η (Ω) is dense in Vl
β(Ω). If k > l ≥ 0 and

η − k < β − l, then this embedding is compact. Analogous statements are true for the trace spaces.
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Remark 1 (Dual spaces). Let Ω be a bounded domain and let k be a nonnegative integer. The
dual space of Vk

η (Ω) is denoted by Vk
η (Ω)∗. It is equipped with the norm

||u||Vk
η (Ω)∗ = sup

{

|(u, v)| : ||v||Vk
η (Ω) = 1

}

,

where (·, ·) is the extension of the scalar product in L2(Ω) to Vk
η (Ω)∗ × Vk

η (Ω). Obviously,
V0

η (Ω)∗ = V0
−η(Ω), because the weight functions cancel out in the scalar product. We define

V−k
−η (Ω) := Vk

η (Ω)∗.

For every S ∈ S, we set
v±j := χSu±

j

and extend vj by zero outside the support of χS. Additionally, we define

σ±
j := (△ + κ2

±)v±j for j = 1, 2,

φ1 := B1
1(∂ν, ∂τ)v+

1 + B2
1(∂ν, ∂τ)v−1 + B3

1(∂ν, ∂τ)v+
2 + B4

1(∂ν, ∂τ)v−2 ,

φ2 := B1
2(∂ν, ∂τ)v+

1 + B2
2(∂ν, ∂τ)v−1 + B3

2(∂ν, ∂τ)v+
2 + B4

2(∂ν, ∂τ)v−2 ,

φ3 := B1
3(∂ν, ∂τ)v+

1 + B2
3(∂ν, ∂τ)v−1 + B3

3(∂ν, ∂τ)v+
2 + B4

3(∂ν, ∂τ)v−2 ,

φ4 := B1
4(∂ν, ∂τ)v+

1 + B2
4(∂ν, ∂τ)v−1 + B3

4(∂ν, ∂τ)v+
2 + B4

4(∂ν, ∂τ)v−2 .

Now we switch to polar coordinates (r, θ±S ) in the cone C±
S ⊂ Ω± with origin S and apply the

coordinate transform t 7→ et. We define

w±
j (t, θ±S ) := v±j (et, θ±S ),

wj := (w+
j , w−

j ),

̺±j (t, θ±S ) := e2tσ±
j (et, θ±S ),

̺j := (̺+
j , ̺−j ),

ωi(t, θ±S ) := e(3/2−mi)tφi(et, θ±S )

with m1 = m2 = 0, m3 = m4 = 1 and i = 1, . . . , 4. Using this notation, we now have the following
interface problem in the ramified strip (see [24], Chapter 1.6.3)

BS = B+
S ∪ B−

S

with

B+
S := {(t, θ+

S ) : t ∈ R, 0 < θ+
S < δ+

S },

B−
S := {(t, θ−S ) : t ∈ R, δ+

S < θ−S < 2π},

Lemma 2. With the notation introduced above and L± := △ + κ2
±, the inhomogeneous conical

diffraction problem in the vicinity of a corner point can be transformed to

L±(Dθ, Dt)w±
1 = ̺±1 in B±

S
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L±(Dθ, Dt)w±
2 = ̺±2 in B±

S

with transmission conditions

B1
1(∂θ , ∂t)w+

1 + B2
1(∂θ , ∂t)w−

1 + B3
1(∂θ, ∂t)w+

2 + B4
1(∂θ , ∂t)w−

2 = ω1,

B1
2(∂θ , ∂t)w+

1 + B2
2(∂θ , ∂t)w−

1 + B3
2(∂θ, ∂t)w+

2 + B4
2(∂θ , ∂t)w−

2 = ω2,

B1
3(∂θ , ∂t)w+

1 + B2
3(∂θ , ∂t)w−

1 + B3
3(∂θ, ∂t)w+

2 + B4
3(∂θ , ∂t)w−

2 = ω3,

B1
4(∂θ , ∂t)w+

1 + B2
4(∂θ , ∂t)w−

1 + B3
4(∂θ, ∂t)w+

2 + B4
4(∂θ , ∂t)w−

2 = ω4.

Proof. See [24], Theorem 2.10.

Applying the Laplace transform

ǔ(·, λ) :=

∞
∫

−∞

e−λtu(·, t)dt

to the problem of Lemma 2 leads to an ”interface” problem on

A+
S ∪ A−

S := {θ+
S : 0 < θ+

S < δ+
S } ∪ {θ−S : δ+

S < θ−S < 2π}

for w̌±
j with inhomogeneities ˇ̺±j and ω̌±

j . This problem depends on the parameter λ. We introduce
the norms

||u||Hk(A±
S ,λ) := ||u||Hk(A±

S ) + |λ|k||u||L2(A±
S )

and
Hk(AS, λ) := Hk(A+

S , λ) × Hk(A−
S , λ).

Then, as in [18], Theorem 3.6.1, where it is necessary to assume that Reλ does not coincide with
the real part of one of the eigenvalues of the parameter dependent system, it can be shown that
there exists a unique solution w̌j, which satisfies

2

∑
j=1

||w̌j(·, λ)||Hk+2(AS,λ) ≤ C1

{

2

∑
j=1

|| ˇ̺ j(·, λ)||Hk(AS,λ) +
4

∑
j=1

(1 + |λ|k+mj+1/2)|ω̌j(λ)|
}

, (10)

where
w̌j := (w̌+

j , w̌−
j ) and ˇ̺ j := ( ˇ̺+j , ˇ̺−j ).

We integrate this equation along the line Reλ = −β and use the norm equivalence

||u||Hk
β(B±

S ) ≃







∫

Reλ=−β

||ǔ(·, λ)||2
Hk(A±

S ,λ)
dλ







1/2

,

where
Hk

β(B±) :=
{

u ∈ D′(B±) : (t, θ) 7→ eβtu(t, θ) ∈ Hk(B±)
}

.

Furthermore,
Hk

β(B) := Hk
β(B+) × Hk

β(B−)

8



as usual. In this way we get

2

∑
j=1

||wj||Hk+2
β (BS)

≤ C2

{

2

∑
j=1

||̺||Hk
β(BS) +

4

∑
j=1

||ωj||
H

k+mj+1/2

β (∂B+
S )

}

. (11)

The trace spaces H
k+mj+1/2

β (∂B±
S ) consist of all functions u on ∂B±

S which satisfy

eβtu ∈ Hk+mj+1/2(∂B±
S ).

Let Θ be the coordinate transform (t, θ) 7→ (log t, θ) mapping a ramified strip B ⊂ R2 onto a
ramified cone C ⊂ R

2. Lemma 1.62 in [24] states that the mapping

V k
η(C) → Hk

β(B) : u 7→ u ◦ Θ−1,

is an isomorphism for β = η − k + 1 with η and k from Definition 1. We will omit the dependence
of β on k and η in the notation. In terms of these spaces the estimate (11) becomes

2

∑
j=1

||vj||V k+2
η (CS)

≤ C3

{

2

∑
j=1

||t2σj||V k
η−2(CS) +

4

∑
j=1

||t3/2−mjφi
j||

V
k+mj+1/2

η−mj
(∂B+

S )

}

(12)

because of the isomorphism. The product rule yields

σ±
j = χS(△ + κ2

±)u±
j + 2∇u±

j · ∇χS + u±
j △χS = χS f±j + 2∇u±

j ∇χS + u±
j △χS.

The operator L∗u±
j := 2∇u±

j ∇χS + u±
j △χS is continuous and of first order, i.e.

||L∗uj||V k
η(CS) ≤ C4||u||V k+1

η (CS)

Moreover,
||χS f j||V k

η(CS) ≤ C5|| f j||V k
η(CS)

by Lemma 3.3 in [17]. Since
Vk

η (CS) → Vk
η−α(CS) : u 7→ tαu

realizes isomorphisms, it follows by switching back to Cartesian coordinates that

||t2σj||V k
η−2(CS) ≤ C6

{

|| f j||V k
η(CS) + ||uj||V k+1

η (CS)

}

.

Analogously, we get

||t3/2−mjφj||
V

k+mj+1/2

η−mj
({(t,δ+

s ):t≥0})
≤ C7

{

||bj||
V

k+mj+1/2

η (∂C+
S )

+ ∑
l

||ul ||V k+1
η (CS)

}

.

Inserting this into (12) yields

2

∑
j=1

||vj||V k+2
η (CS)

≤ C8

{

2

∑
j=1

|| f j||V k
η(CS) +

4

∑
j=1

||bj||
V

k+mj+1/2

η (∂C+
S )

+
2

∑
j=1

||uj||V k+1
η (CS)

}

. (13)
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Now we consider the smooth part Ψuj. From now on we use the notation û±
j := Ψu±

j and

û±
j := (û+

j , û−
j ) and define

g±j := (△ + κ2
±)(û±

j )

Again, by the product rule, it holds that

(△+ κ2
±)(û±

j ) = Ψ(△+ κ2
±)u±

j + 2∇u±
j · ∇Ψ + u±

j △Ψ = Ψ f±j + 2∇u±
j · ∇Ψ + u±

j △Ψ

and
∂û±

j

∂ν
= Ψ

∂u±
j

∂ν
+ u±

j

∂Ψ

∂ν
,

∂Ψu±
j

∂τ
= Ψ

∂u±
j

∂τ
+ u±

j

∂Ψ

∂τ
.

Using the notation (9), we define

B1
1(∂ν, ∂τ)û+

1 + B2
1(∂ν, ∂τ)û−

1 + B3
1(∂ν, ∂τ)û+

2 + B4
1(∂ν, ∂τ)û−

2 =: Φ1,

B1
2(∂ν, ∂τ)û+

1 + B2
2(∂ν, ∂τ)û−

1 + B3
2(∂ν, ∂τ)û+

2 + B4
2(∂ν, ∂τ)û−

2 =: Φ2,

B1
3(∂ν, ∂τ)û+

1 + B2
3(∂ν, ∂τ)û−

1 + B3
3(∂ν, ∂τ)û+

2 + B4
3(∂ν, ∂τ)û−

2 =: Φ3,

B1
4(∂ν, ∂τ)û+

1 + B2
4(∂ν, ∂τ)û−

1 + B3
4(∂ν, ∂τ)û+

2 + B4
4(∂ν, ∂τ)û−

2 =: Φ4.

Note that
Bi

j(∂ν, ∂τ)[û±
k ] = ΨBi

j(∂ν, ∂τ)u±
k + u±

k Bi
j(∂ν, ∂τ)Ψ.

Analogous to the considerations above, it follows that

||g±j ||Hk(Ω±) ≤ C9

{

|| f±j ||Vk
η (Ω±) + ||u±

j ||Vk+1
η (Ω±)

}

and

||Φj||
H

k− 1
2 (Γ)

≤ C10











||bj||
V

k+mj+1/2

η (Γ)
+

2

∑
l=1

i∈{+,−}

||ui
l ||Vk+1

η (Ωi)











,

where Hk(Ω) := Hk(Ω)× Hk(Ω) as before. Inserting this into the estimate (2.2) in [5] (originally
proven by Roitberg and Seftel [29]), namely

2

∑
j=1

||ûj||Hk+2(Ω) ≤ C11

{

2

∑
j=1

||gj||Hk(Ω) +
4

∑
j=1

||Φj||Hk+mj+1/2
(Γ)

}

,

yields

2

∑
j=1

||ûj||Hk+2(Ωi) ≤ C12

{

2

∑
j=1

|| f j||V k
η(Ωi) +

4

∑
j=1

||bj||
V

k+mj+1/2

η (Γ)
+

2

∑
j=1

||ui
j||V k+1

η (Ω)

}

. (14)

By adding the estimates (13) and (14) we get the desired a priori estimate.

As we have seen and as explained in [10] in more detail, to each corner point S ∈ S one can attach
a parameter dependent system of ordinary differential equations, which arises from the problem in
Lemma 2 by applying a Laplace transform. The eigenvalues form the sets

A±
S :=







λS ∈ C :

(

sin(π − δ±S )λS

sin πλS

)2

=

(

k2
− + k2

+

k2
− − k2

+

)2






∪ N\{0},
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where λS are the eigenvalues of the system, δ+
S and δ−S := 2π − δ+

S are the opening angles of the
interface at the corner point S from above and from below the interface, respectively. Let λ0

S be
the λS with minimal positive real part and

µ0 := min
S∈S

{

Reλ0
S

}

. (15)

Proposition 1. Assume that k + 1 − η ∈ (0, µ0) and that the solution (u1, u2) of (4) - (8) is in
[V k+1

η (Ω)]2 for k ∈ Z, k ≥ 0. Then (u1, u2) ∈ [V k+2
η (Ω)]2 and

2

∑
j=1

||uj||V k+2
η (Ω)

≤ C

{

2

∑
j=1

|| f j||V k
η(Ω) +

4

∑
j=1

||bj||
V

k+mj+1/2

η (Γ)
+

2

∑
j=1

||uj||V k+1
η (Ω)

}

. (16)

Proposition 2. If in addition to the assumptions of Proposition 1 the conical diffraction problem
(4) - (8) is uniquely solvable in V k+1

η (Ω), then

2

∑
j=1

||uj||V k+2
η (Ω)

≤ C

{

2

∑
j=1

|| f j||V k
η(Ω) +

4

∑
j=1

||bj||
V

k+mj+1/2

η (Γ)

}

. (17)

Proof. The proof follows the technique used in [3], Lemma III 3.10. Suppose that the hypothesis
is not satisfied. Then it follows that there exist sequences (uj,n)n ⊆ V k+2

η (Ω) for j = 1, 2 such that

2

∑
j=1

||uj,n||V k+2
η (Ω)

>n











2

∑
j=1

i∈{+,−}

||Liui
j,n||Vk

η (Ωi) +
4

∑
j=1

||
2

∑
i=1

(

B2i−1
j u+

i,n +B2i
j u−

i,n

)

||
V

k+mj+1/2

η (Γ)

}

,

(18)

where L± := △ + κ2
± and the Bi

j are the operators of the boundary conditions. Now define

v±j,n :=
u±

j,n

||u±
j,n||Vk+2

η (Ω±)

.

If we insert this into (18) we have

2

∑
j=1

i∈{+,−}

||Livi
j,n||Vk

η (Ωi) +
4

∑
j=1

||
2

∑
i=1

(

B2i−1
j v+

i,n + B2i
j v−i,n

)

||
V

k+mj+1/2

η (Γ)
<

2

n
. (19)

We will use the compact embeddings stated in Lemma 1, i.e.

Vk+2
η (Ω±) →֒→֒ Vk+1

η (Ω±) →֒→֒ Vk
η (Ω±).

Since the unit sphere is closed with respect to weak convergence we can choose a subsequence
(v±

j,n′)n′ ⊆ (v±j,n)n and functions Φ±
j ∈ Vk+2

η (Ω±) such that (v±
j,n′)n′ ⇀ Φ±

j weakly in Vk+2
η (Ω±).

Since compact embeddings are completely continuous, it follows that v±j,n′ → Φ±
j in the norm of

11



Vk+1
η (Ω±). Proposition 1 implies that

2

∑
j=1

||vj,n′ − vj,m′ ||V k+2
η (Ω)

≤C











2

∑
j=1

i∈{+,−}

||Livi
j,n′ − Livi

j,m′ ||Vk
η (Ωi)+

+
4

∑
j=1

||
2

∑
i=1

(

B2i−1
j v+

i,n′ − B2i−1
j v+

i,m′ + B2i
j v−

i,n′ − B2i
j v−

i,m′

)

||
V

k+mj+1/2

η (Γ)

+
2

∑
j=1

||vj,n′ − vj,m′ ||V k+1
η (Ω)

}

,

and therefore (v±j,n′)n′ is a Cauchy sequence in Vk+2
η (Ω±) because the right-hand side tends to zero

if m′, n′ → ∞. Hence v±
j,n′ → Φ±

j in Vk+2
η (Ω±) and ||Φ±

j ||Vk+2
η (Ω±)

= 1. On the other hand

2

∑
j=1

i∈{+,−}

||LiΦi
j||Vk

η (Ωi) = lim
n′→∞

2

∑
j=1

i∈{+,−}

||Livi
j,n′ ||Vk

η (Ωi) = 0

and

4

∑
j=1

||
2

∑
i=1

(

B2i−1
j Φ+

i + B2i
j Φ−

i

)

||
V

k+mj+1/2

η (Γ)
=

= lim
n′→∞

4

∑
j=1

||
2

∑
i=1

(

B2i−1
j v+

i,n′ + B2i
j v−

i,n′

)

||
V

k+mj+1/2

η (Γ)
= 0

because of (19). If the kernel of the operator of the diffraction problem is trivial, then Φ±
j = 0.

This is a contradiction and finishes the proof.

3.2 Existence and uniqueness

In this section, we will prove the existence and uniqueness of the solution of the conical diffraction
problem for absorbing materials. The following two Lemmas establish the Fredholm property of
the problem, which is then used together with a result from [8]. The first Lemma is due to Peetre
[25]. A proof can also be found in [24].

Lemma 3. Let X ,Y and Z be Banach spaces such that X is compactly embedded into Z , and let
A be a bounded linear operator from X into Y . Then the following two assertions are equivalent:

(i) dim ker A < ∞ and ran A is closed in Y .

(ii) ∃C > 0 ∀u ∈ X : ||u||X ≤ C {||Au||Y + ||u||Z} .

This Lemma, together with Proposition 1, establishes the semi-Fredholm property. In order to
show that the operator of the conical diffraction problem has a finite-dimensional cokernel, we will
construct a right regularizer.

Definition 2. Let A be a linear and continuous operator from a Banach space X into a Banach
space Y and let R be a linear and continuous operator from Y into X . If AR − I : Y → Y is
compact, then the operator R is called a right regularizer for A.

12



Lemma 4. Let X and Y be Banach spaces and let A : X → Y be a linear and continuous operator.
If a right regularizer for A exists, then the dimension of the cokernel of A is finite.

This is a classical result, cf. [33]. We will furthermore need the notions of proper ellipticity and
Shapiro-Lopatinskii ellipticity. Let Ω be a bounded domain in R2. The inward-pointing unit
normal at a point x ∈ ∂Ω will be denoted by ν(x). Then the tangent space TxR2 can be written
as a direct sum

TxR
2 = Tx(∂Ω)⊕ span{ν(x)}.

The cotangent space T∗
x R2 is then

T∗
x R

2 = [Tx(∂Ω)]⊥ ⊕ [span{ν(x)}]⊥ = [Tx(∂Ω)]⊥ ⊕ T∗
x (∂Ω),

because [span{ν(x)}]⊥ can be identified with T∗
x (∂Ω). For σ ∈ T∗

x R2, we write σ := (σ1, σ2),
with a cotangent σ1 ∈ T∗

x (∂Ω) and a conormal σ2 ∈ [Tx(∂Ω)]⊥. Obviously, T∗
x R

2 is canonically
isomorphic to R2. We may also assume σ ∈ C ⊗ T∗

x R2 ⊂ C2, so when we write σ1 ∈ C in the
following, we mean in fact the coefficient of σ1 ∈ T∗

x (∂Ω) in the canonical basis representation of
σ ∈ C ⊗ T∗

x R2.

Definition 3. Let L(x; Dx1, Dx2) be an n × n-matrix of elliptic differential operators and denote
its principal part by L0(x; Dx1, Dx2). The operator L(x; Dx1, Dx2) is called properly elliptic if for
every σ1 ∈ C\{0} the polynomial

p(λ) := det L0(x; σ1, λ), λ ∈ C

has as many roots with strictly positive imaginary part as with strictly negative imaginary part,
including multiplicities.

If, for example, L(x; Dx1, Dx2) is a system of two Laplacians in R2, then

p(λ) = det

(

σ2
1 + λ2 0

0 σ2
1 + λ2

)

.

The polynomial p(λ) has two double roots λ1/2 = ±iσ1. Consequently, this system is properly
elliptic.

Lemma 5. Consider the n×n-matrix operator L(x; Dx1, Dx2) and the m×n-matrix B(x; Dx1, Dx2)
for x ∈ ∂Ω, where m is the number of roots of p(λ) = det L0(x; σ1, λ) with strictly positive
(or equivalently, with strictly negative) imaginary part, counting multiplicities. Let σ1 ∈ C\{0}.
Assume that L(x; Dx1, Dx2) is properly elliptic. If the homogeneous initial value problem

L0

(

x; σ1,
1

i

d

dt

)

φ(t) = 0, t > 0,

B0

(

x; σ1,
1

i

d

dt

)

φ(t) = 0, t = 0,

lim
t→∞

φ(t) = 0

has only the trivial solution, then the problem

L0

(

x; σ1,
1

i

d

dt

)

φ(t) = 0, t > 0,

13



B0

(

x; σ1,
1

i

d

dt

)

φ(t) = s, t = 0,

lim
t→∞

φ(t) = 0

is uniquely solvable for every s ∈ Cm.

Proof. Combine Definition 9.28 and Theorem 9.29 from [33].

Note that B(x; Dx1, Dx2) does not need to be a differential operator. It can also be pseudodiffer-
ential in the tangential variable.

Definition 4. A pair of operators (L, B) which satisfies the assumptions of Lemma 5 is said to
fulfill the Shapiro-Lopatinskii condition.

Definition 5. Let (L, B) be a pair of operators satisfying the Shapiro-Lopatinskii condition. Let
φj be the solution of the initial value problem

L0

(

x; σ1,
1

i

d

dt

)

φj(σ1, t) = 0, t > 0,

B0

(

x; σ1,
1

i

d

dt

)

φj(σ1, t) = ej, t = 0,

lim
t→∞

φ(t) = 0,

where ej = (0, . . . , 0, 1, 0, . . . , 0). The matrix Φ(σ1, t) with columns φj(σ1, t) is called the canonical
matrix function of (L, B).

We will now construct a right regularizer. This will be carried out in four steps, combining the
techniques of Wloka et al. [33], Chapter 9.3, and Kondratiev [17], as follows. First we will construct
regularizers for operators in the plane and in the half space. Using local coordinates, it is possible
to use these results to construct for every point x0 ∈ Ω a local regularizer in a neighbourhood
U(x0). It is necessary to distinguish between the case that x0 lies in the interior of Ω± and the
case that x0 lies on the boundary or on the interface. Then we obtain a global regularizer by means
of a partition of unity.

(i) Assume that L0(Dx1, Dx2) : Hk+2(R2) → Hk(R2) is the principal part of an elliptic differential
operator. Let F denote the Fourier transform on R2 and σ = (σ1, σ2). It is shown in [33] that the
operator R : Hk(R2) → Hk+2(R2) defined by

R f := F−1|σ|2(1 + |σ|2)−1L−1
0 (σ1, σ2)F f ,

is a right regularizer for L0(Dx1, Dx2) and

L0 ◦ R = I + K,

where K is an operator of order −1. In our case, L0(Dx1, Dx2) is the Laplacian and L0(σ1, σ2) =
σ2

1 + σ2
2 .

(ii) Let u+
1 and u+

2 be functions defined on the upper half plane R2
+. Analogously, assume that

u−
1 and u−

2 are functions on the lower half plane R2
−. Assume further that these functions ful-

fill a Helmholtz system coupled via transmission conditions on the x1-axis. Then the functions

14



u−
1/2(x1,−x2) are defined on R2

+ and the transmission problem becomes a boundary value problem

with boundary values on the x1-axis. Let r : Hk(R2) → Hk(R2
+) denote the restriction of a func-

tion on R
2 to R

2
+ and let ϑ : Hk(R

2
+) → Hk(R

2) be a linear and continuous extension operator.
Now define

L0(Dx1, Dx2) :=









L0(Dx1 , Dx2) 0 0 0
0 L0(Dx1, Dx2) 0 0
0 0 L0(Dx1, Dx2) 0
0 0 0 L0(Dx1, Dx2)









(20)

with L0(Dx1, Dx2) from step (i). Then the operator R0 defined by

R0 f := rF−1|σ|2(1 + |σ|2)−1L−1
0 (σ1, σ2)Fϑ f

is a continuous operator from [Hk(R2)]4 into [Hk+2(R2)]4. Additionally we define

R1b := F−1
+ Φ(σ′, x2)|σ′|2(1 + |σ′|2)−1F+b, (21)

with b = (b1, . . . , b4)
⊤ from (6), F+ is the truncated Fourier transform on R2

+ and Φ(σ′, x2) is the
canonical matrix function corresponding to the boundary value problem (cf. Definition 5). The
system of ordinary differential equations in the sense of Definition 5 is

L0

(

σ1,∓1

i

d

dt

)

w±
1/2(t) =

(

σ2
1 − d2

dt2

)

w±
1/2(t) = 0, t > 0.

The sign of d/dt alternates because the ”inward” direction changes depending on whether the
original Helmholtz equation of the interface problem applies to the region above or below the
interface. With limt→∞ w±

1/2(t) = 0, this leads to w±
1/2(t) = c±1/2eσ1t. One of the transmission

conditions in the system (6) is u−
1 − u+

1 = u
(i)
1 . The homogeneous initial value condition following

from this is 0 = w−
1 (0)− w+

1 (0) = c−1 − c+
1 , so c−1 = c+

1 =: c1. Analogously, c−2 = c+
2 =: c2. From

[ γ

κ2
∂τu2 +

ωε

κ2
∂νu1

]

Γ
= −ωε

κ2
+

∂νu
(i)
1

we have the homogeneous initial value condition

ωε+

κ2
+

d

dt
w+

1 (t)|t=0 −
ωε−
κ2
−

d

dt
w−

1 (t)|t=0 +
γ

κ2
+

σ1w+
2 (0)− γ

κ2
−

σ1w−
2 (0) = 0.

This is equivalent to
(

ωε+

κ2
+

− ωε−
κ2
−

)

c1σ1 +

(

γ

κ2
+

− γ

κ2
−

)

c2σ1 = 0.

In the same way we get
(

ωµ

κ2
−

− ωµ

κ2
+

)

c2σ1 +

(

γ

κ2
+

− γ

κ2
−

)

c1σ1 = 0.

This system has a non-trivial solution if and only if

ε+ = ε−,
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which would only be satisfied if there was no interface. It follows that c1 = c2 = 0. The system
(L, B), with B from (9), is therefore Shapiro-Lopatinskii elliptic, and the canonical matrix function
exists. Then it is shown in [33] that the operator

R( f , b) := R0 f + R1 (b − B ◦ R0 f ) , (22)

is bounded from [Hk(R2
+)]4 ×⊗4

j=1 Hk+mj+1/2(R) into [Hk+2(R2
+)]4 and that it is a right regu-

larizer for the operator A := (L, B).

As explained in detail in [8], the radiation condition (8) for the original problem induces boundary
conditions on the artificial boundaries Γ+ and Γ−. These boundary conditions involve the Dirichlet-
to-Neumann map. In general, it maps the Dirichlet data of an exterior solution to the Neumann
data. In our case, we must distinguish between the upper and the lower artificial boundary and
the Dirichlet-to-Neumann map consists of two parts. More precisely, from [8] we take the periodic
pseudodifferential operators of order 1

(T±
j )

(

u1

u2

)

(x) :=
1

2π

∞

∑
n=−∞

ei(n+α)x

(M±,1
n,j

M±,2
n,j

)

·
2π
∫

0

(

u1(x)

u2(x)

)

e−i(n+α)xdx, j = 1, 2,

acting on α-quasi-periodic functions. The exact definition of the coefficients M±,k
n,j is given in [8].

Then we have the nonlocal boundary conditions

ωε+

κ2
+

∂νu+
1 +

γ

κ2
+

∂τu+
2 + T+

1

(

u+
1

u+
2

)

= 0,

−ωµ

κ2
+

∂νu+
2 +

γ

κ2
+

∂τu+
1 + T+

2

(

u+
1

u+
2

)

= 0

(23)

on Γ+ and

−ωε−
κ2
−

∂νu1
1 −

γ

κ2
−

∂τu−
2 + T−

1

(

u−
1

u−
2

)

= 0,

ωµ

κ2
−

∂νu−
2 − γ

κ2
−

∂τu−
1 + T+

2

(

u−
1

u−
2

)

= 0

(24)

on Γ−. Now let T±
j denote the respective Dirichlet-to-Neumann maps on the half space, with Γ±

replaced by the x1-axis. Let T+ denote the boundary operator for the boundary conditions (23)
and T− shall denote the boundary operator of the boundary conditions (24), respectively.

Let T := R/2πZ denote the one-dimensional torus. Define the periodization operator

(Pu)(x) :=
∞

∑
k=−∞

u(x + 2πk),

which is a linear and continuous map from Hs(R) into Hs(T). If χ ∈ C∞
0 (R), then

P(χu) = (Pχ)u

for any periodic function u.

16



Fix a point x0 on the real line and a neighbourhood U(x0). Suppose that ζ and ξ are smooth
cut-off functions such that

U(x0) ⊂ supp ζ ⊂ supp ξ ⊂ (a, b)

and assume that the length of the interval (a, b) is smaller than the period 2π. Let Tp be a
periodic pseudodifferential operator of order r, i.e. Tp maps Hs(T) into Hs−r(T). Assume that T
is a pseudodifferential operator on Hs(R) satisfying

ξTp([Pζ]u) = ξT(ζu) (25)

for any 2π-periodic function u. Wloka’s construction ([33]) applies to non-local pseudodifferential
operators on the real line. The regularizer for the operators (A, ξT±Pζ) is constructed as in (21)
and (22) with b = 0, because both (23) and (24) have homogeneous right-hand sides. The existence
of a canonical matrix function is assured in the same way as it was done earlier for the transmission
conditions. Because of (25), the results can be carried over to periodic operators as well. Since in
the following we will construct regularizers in small neighbourhoods, we only need to consider one
type of boundary conditions at once.

(iii) We establish local regularizing properties. Suppose that x0 ∈ Ω and that the neighbourhood
U(x0) lies in the interior of Ω+ ∪Ω−. Let χ and ζ be two smooth functions with compact support
in U(x0). Then

χA ◦ Rζ = χIζ + χKζ, (26)

where K is a continuous operator of order −1 and therefore, χKζ is compact from [Hk(U(x0))]
4

into [Hk(U(x0))]
4. We call the operator R a local regularizer.

Now surround any corner point on the interface Γ with an ǫ-neighbourhood and assume that x0

either lies on the interface Γ so that a neighbourhood U(x0) does not intersect with any of these
ǫ-neighbourhoods, or that that is lies on one of the artificial boundaries Γ±. We introduce local
coordinates

κ : U(x0) → V ⊆ R
2.

To simplify the notation, consider two linear spaces X(Ω) and Y(Ω) of functions defined on Ω.
Let A : X(Ω) → Y(Ω) be a linear operator. Let further r : Y(Ω) → Y(U(x0)) be the restriction
operator, and assume that there exists a continuous extension operator i : X(U(x0)) → X(Ω).
The existence of such an extension operator is assured for Sobolev spaces on sufficiently smooth
domains. This holds true in particular for Sobolev spaces on domains with Lipschitz boundaries
(cf. [20]). Now we define

Ar := r ◦ A ◦ i : X(U(x0)) → Y(U(x0)).

Then we have the commutative diagram

X(U(x0)) Ar
// Y(U(x0))

(κ∗)−1

��
X(V)

κ∗

OO

Aκ
// Y(V).

Here, κ∗ is the pull-back map, (κ∗)−1 is the push-forward map and Aκ := (κ∗)−1 ◦ Ar ◦ κ∗ is
the push-forward of Ar. By this construction and by step (ii) we have a local regularizer and an
equation like (26) also for neighbourhoods which contain smooth parts of the interface or parts of
the smooth artificial boundaries.
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Let χS be a cut-off function with support inside the ǫ-neighbourhood of the corner point S. Suppose
that the assumption of Proposition 1 concerning the eigenvalues is satisfied. From Theorem 3.6.1
in [18] and the considerations made in the previous subsection, it follows that there exists a solution
u0 = (u+

1,0, u+
2,0, u−

1,0, u−
2,0)

⊤ of the problem

L0u0 = χS f , Bu0 = χSb (27)

in the ramified cone CS, with f = ( f +
1 , f +

2 , f−1 , f−2 )⊤ from (5), b = (b1, . . . , b4)
⊤ from (6) and B

from (9).

(iv) We cover Ω with a finite number of open sets U(xj), take a partition of unity {χj}n
j=1 and

functions ζ j, j = 1, . . . , n so that any ζ j is equal to 1 on the support of χj. The indexing of this
set should be chosen such that no χj ∈ {χi}k

i=1 has a support containing a corner point of the
interface. According to step (iii), here we have local regularizers {Ri}k

i=1. We define

ui := Ri(χi f , χib), i = 1, . . . , k

and

u∗ :=
k

∑
i=1

ζiui +
n

∑
j=k+1

ζ ju0,j,

where u0,j satisfies the transmission problem (27) in the cone corresponding to the corner point xj

that lies in the support of χj. Since ζ j = 1 in a neighbourhood of the respective corner point, we
have

△
(

ζ jv
)

= ζ j△v + 2∇ζ j · ∇v + v△ζ j = ζ j△v

in this neighbourhood for any function v. We obtain

Lu∗ =
k

∑
i=1

ζiL0ui +
n

∑
j=k+1

ζ jLu0,j +
k

∑
i=1

Diui +
n

∑
j=k+1

Dju0,j

=
k

∑
i=1

ζiχi f +
k

∑
i=1

ζiKi( f , b) +
n

∑
j=k+1

ζ jχj f +
k

∑
i=1

Diui +
n

∑
j=k+1

Dju0,j

= f +
k

∑
i=1

ζiKi( f , b) + K0 f ,

where Ki are local regularizers, Dl denotes first order differential operators with coefficients van-
ishing near the corner points and

K0 f :=
k

∑
i=1

Diui +
n

∑
j=k+1

Djuj,0.

Since the mappings f 7→ ui : [V k
η(Ω)]2 → [Hk+2(Ω)]2 and f 7→ uj,0 : [V k

η(Ω)]2 → [V k+2
η (Ω)]2 are

continuous by definition for any k ∈ N, it follows that K0 : [V k
η(Ω)]2 → [V k+1

η (Ω)]2 is continu-

ous. Since [V k+1
η (Ω)]2 is compactly embedded into [V k

η(Ω)]2, the mapping is also compact from

[V k
η(Ω)]2 into [V k

η(Ω)]2. The transmission conditions on the interface are treated analogously (cf.
[17]). For the boundary conditions, Wloka’s construction can be applied without changes because
the artificial boundaries are smooth. The construction of the right regularizer is completed. The
following Lemma is now a direct consequence of Lemma 3 and the existence of a right regularizer.
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Lemma 6. If k + 1 − η ∈ (0, µ0) with µ0 from equation (15), then the operator

(L, B) : [V k+2
η (Ω)]2 → [V k

η(Ω)]2 ×
4
⊗

j=1

V
k+mj+1/2
η (Γ)

of problem (4) - (8) has the Fredholm property.

In order to investigate the regularity of solutions, let us recall some results about asymptotic
expansions which have been obtained in [10] for classical TM diffraction and are true for conical
diffraction as well, see [8]. Choose s > 1 with s − 1 6= Re λ for all λ ∈ ⋃

S∈S (A+
S ∪ A−

S ). Again
we switch to polar coordinates (rS, θS) centered at S ∈ S. According to the theory of asymptotic
analysis (see e.g. [17], [18], [23], [8], [10]), any solution {uj}, j = 1, . . . , 4, admits an expansion of
the form

uj(x) = ∑
S∈S

LS

∑
l=1

pl
S

∑
p=0

CS,jχS(x)dS,j,l,p(θS(x))rS(x)λS logp(rS(x)) + wj(x), (28)

where χS are cut-off functions, {{dS,j,l,p}p}l is a system of Jordan chains for the eigenvalue λS ∈
A±

S , which consists of smooth functions in θS, and pl
S depends on the geometric multiplicity of λS

and on the length of the lth Jordan chain. Furthermore wj ∈ Hs(Ω±).

Since rS(x)λS ∈ H1+ReλS−ǫ(Ω±) for any ǫ > 0, we have ∇rS(x)λS ∈ HReλS−ǫ(Ω±). On the other
hand, ∇rS(x)λS /∈ HReλS(Ω±). Thus we can remark the following.

Remark 2. Let (u1, u2) be a solution of the conical diffraction problem (4) - (8). If µ0 < 1 for the
µ0 defined in (15) and the coefficients CS,j in the asymptotic expansion (28) do not vanish, then

uj /∈ H2(Ω+)× H2(Ω−)

for j = 1, 2. This is also reflected by the fact that

V k
η(Ω) →֒ Hk(Ω+) × Hk(Ω−)

if and only if η ≤ 0. The condition 1 − η ∈ (0, µ0) means in particular that 1 − µ0 < η, so η > 0
if µ0 < 1.

Remark 3. Let b be a function defined on Ω+ which satisfies b = O(ra
S) for some a ∈ R and

c > 0 in the neighbourhood of a corner point S. If b is in V3/2
η (Γ), then a > 1 − η. In particular,

b(x) → 0 as r → 0, which is not true if the right-hand sides of (6) are restrictions of incoming
plane waves (7) or of their normal derivatives to Γ. To overcome this difficulty, we define

u+
1/2 =: u

(s)
1/2 + u

(i)
1/2,

where u
(s)
1/2 is the scattered wave, which leads to homogeneous boundary conditions on the non-

smooth interface and accordingly modified radiation conditions

u+
j (x1, x2) =

∞

∑
n=−∞

A±
j,nei(n+α)x1+

√
κ2
±−(n+α)2x2 + u

(i)
1/2 (29)

in a vicinity of Γ+. The estimate (17) from Proposition 2 then needs to be replaced with

2

∑
j=1

||uj||V k+2
η (Ω)

≤ C

{

2

∑
j=1

|| f j||V k
η(Ω) +

4

∑
j=1

||bj||
V

k+mj+1/2

η (Γ)
+

2

∑
j=1

||u(i)
j ||V k+1

η (Ω)

}

. (30)
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In order to prove unique solvability, we need the following version of Green’s formula. For simplicity
only real valued functions are considered.

Lemma 7. Let Ω be a domain with piecewise Cm boundary, m ≥ 1, and assume that η < 1 and
u, v ∈ V2

η (Ω). Then

∫

Ω

△uvdx = −
∫

Ω

∇u∇vdx +
∫

∂Ω

∂νuvds,
∫

Ω

∇u∇⊥vdx = −
∫

∂Ω

∂τuvds, (31)

where ∇⊥ = (−∂2, ∂1).

Proof. The Lemma follows by a density argument from Lemma 3.4. in [19] and formula (2.21) in
[8]. See also [2] and [12] for a detailed discussion of Green’s formula.

Proposition 3. Consider a diffraction problem of the form (4) - (8) with homogeneous bound-
ary conditions and homogeneous Helmholtz equations, i.e. f±i = 0 for i = 1, 2 and bj = 0 for

j = 1, . . . , 4, and radiation conditions (29) near Γ+. Assume that the incoming wave admits a
representation

u
(i)
1 (x1, x2) = p3eiαx1−iβx2, u

(i)
2 (x1, x2) = q3eiαx1−iβx2 (32)

near Γ+, which includes incoming plane waves with real α and β. Assume that Im k > 0 in a
subdomain Ω1 ⊆ Ω and that ǫ is constant in Ω1. Then for every η with 1 − η ∈ (0, µ0), the
conical diffraction problem (4) - (8) has a unique solution in V2

η(Ω).

Proof. We are looking for α-quasiperiodic solutions. If u is an α-quasiperiodic function in x1, then
v := e−iαx1u is 2π-periodic in x1. Let P(v1, v2; φ, ψ) be the sesquilinear form corresponding to the
conical diffraction problem for the modulated solution v, which is given in [8]. Then the problem
can be formulated as follows: Find 2π-periodic functions v1, v2 ∈ H1(Ω) so that

J(v1, v2; φ, ψ) = −2ie−iβb

κ2
+

∫

Γ+

(

ωǫp3φ+ + ωµq3ψ+
)

ds (33)

for all 2π-periodic φ, ψ ∈ H1(Ω), φ = (φ+, φ−), ψ = (ψ+, ψ−), where Γ+ = {(x1, b) : 0 ≥ x1 ≥
2π}. According to [8], setting

J(v1, v2; φ, ψ) =

(

J
(

v1

v2

)

,

(

φ

ψ

))

(34)

generates a bounded linear operator

J : [H1(Ω)]2 → [H−1(Ω)]2.

Due to Theorem 3.1 in [8], the variational equation (33), and equivalently (4) - (8), has at most
one solution in [H1(Ω)]2. By Lemma 1, V2

η (Ω) →֒ V1
0 (Ω) for η < 1, and V1

0 (Ω) →֒ H1(Ω).
Theorem 3.1 from [8] provides uniqueness of solutions in H1(Ω) for conical diffraction problems
with absorbing materials. Therefore, there is also at most one solution in V2

η (Ω) for η < 1.

If we restrict the operator to [V2
η (Ω)]2, we have

J : [V2
η (Ω)]2 → [V0

η (Ω)]2.
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Chapter 8.3.3. from [18] tells us that J is Fredholm if and only if the operator of the strong
problem is Fredholm. By Lemma 6, J is indeed a Fredholm operator.

The adjoint operator J ∗ is given by
(

J ∗
(

v1

v2

)

,

(

φ

ψ

))

= J(φ, ψ; v1, v2).

It maps [V0
−η(Ω)]2 into [V−2

−η (Ω)]2. Moreover, we have

Re(i J(v1, v2; v1, v2)) ≥
ωβ

2π






ǫ+

∣

∣

∣

∣

∣

∣

2π
∫

0

v+
1 (x1, b)dx1

∣

∣

∣

∣

∣

∣

2

+ µ

∣

∣

∣

∣

∣

∣

2π
∫

0

v+
2 (x1, b)dx1

∣

∣

∣

∣

∣

∣

2





(35)

for every v1, v2 ∈ V2
η (Ω) (cf. the proof of Corollary 3.2 in [8]). Since V2

η (Ω) is dense in V0
−η(Ω)

for η ≤ 1, we have
(

kerJ ∗ ∩ V2
η(Ω)

)⊥
= (kerJ ∗)⊥ .

Therefore, the right-hand side of (33) vanishes for every (φ, ψ) ∈ kerJ ∗, and every ( f1, f2) which
satisfies

((

f1

f2

)

,

(

φ

ψ

))

= −2ie−iβb

κ2
+

∫

Γ+

(

ωǫp3φ+ + ωµq3ψ+
)

ds,

is orthogonal to the kernel of the adjoint operator. Since J is a Fredholm operator, we have

ranJ = (kerJ ∗)⊥ .

Thus, there is a unique solution in [V2
η (Ω)]2 for every right-hand side that satisfies (32).

4 Shape derivatives

4.1 Existence and regularity of shape derivatives

4.1.1 Smooth perturbations of the domains

Proposition 2 enables us to prove the existence of shape derivatives in the same way as it is done
in [4], which uses the theory of non-local perturbations of a domain, see [21]. Consider a vector
field T ∈ [C(Ω)]2 which is Ck+2. This vector field generates a diffeomorphism

Tǫ(v) := v + ǫT(v)

and perturbed domains
Ωǫ := Tǫ(Ω).

We can now define material and shape derivatives.

Definition 6. Let Ω be a bounded domain and assume that uǫ is the solution of the boundary
value problem

Luǫ = fǫ on Ωǫ,
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Buǫ = gǫ on ∂Ωǫ

in a function space X(Ωǫ), with Ωǫ as above. The material derivative of u := u0 in direction T is
defined as

u̇(T) :=
d(uǫ ◦ Tǫ)

dǫ

∣

∣

∣

∣

ǫ=0

with convergence in X(Ω).

We could also define a derivative

lim
ǫց0

uǫ(x)− u0(x)

ǫ
=: u′(x).

This limit is defined only pointwise, since the domains on which the functions uǫ are defined change
with ǫ. We can formally write

1

ǫ

{

(uǫ ◦ Tǫ)(x)− u0(x)
}

=
1

ǫ

{

uǫ(x)− u0(x)
}

+ ∇uǫ(x) · T(x) +O(ǫ).

This motivates the following definition.

Definition 7. Suppose that the material derivative of a function u exists in a function space X(Ω)
and that ∇u0 · T ∈ Y ⊆ X(Ω). Then the shape derivative of u is globally defined as

u′(T) := u̇(T)−∇u0 · T. (36)

If we are interested in functions on the boundary ∂Ω, we have to replace the gradient in the above
formula with its tangential component. We say that u is shape differentiable in direction T in a
function space Y, if its shape derivative u′(T) exists in Y.

Remark 4. Remark 2 stated that for µ0 < 1 solution (u1.u2) of the conical diffraction problem
(4) - (8) is likely not in [H2(Ω)]2. Then

(u1, u2)
′ /∈ [H1(Ω)]2.

If this is the case, then the variational approach of Hettlich and Kirsch ([14],[16]) cannot im-
mediately be applied to problems in domains with corners in general, because for this technique
H1-regularity of the shape derivative is a crucial requirement. For this reason we use a different
approach suggested by Bochniak and Cakoni[4] for mixed boundary value problems.

We return to our transmission problem. Let Tǫ be a smooth perturbation as above. Since we are
only interested in perturbations of the interface Γ, we assume that for every ǫ we have ∂Ωǫ = ∂Ω.
The perturbed interface will be denoted by Γǫ. If we are interested in functions on the boundary
∂Ω, we have to replace the gradient in the above formula with its tangential component. We
investigate the transmission problem

△u+,ǫ
1 + κ2

+u+,ǫ
1 = f +

1 in Ω+
ǫ ,

△u−,ǫ
1 + κ2

−u−,ǫ
1 = f 1

− in Ω−
ǫ ,

△u+,ǫ
2 + κ2

+u+,ǫ
2 = f 2

+ in Ω+
ǫ ,

△u−,ǫ
2 + κ2

−u−,ǫ
2 = f 2

− in Ω−
ǫ ,
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with transmission conditions
[ γ

κ2
∇uǫ

2 · τǫ +
ωε

κ2
∇uǫ

1 · νǫ

]

Γ
= −ωǫ+

κ2
+

∇u
(i)
1 · νǫ,

[ γ

κ2
∇uǫ

1 · τǫ −
ωµ

κ2
∇uǫ

2 · νǫ

]

Γ
=

ωµ

κ2
+

∇u
(i)
2 · νǫ,

[uǫ
1]Γ = −u

(i)
1 ,

[uǫ
2]Γ = −u

(i)
2

on Γǫ and a radiation condition (8) with u±
j replaced by u±,ǫ

j . Here, νǫ is the unit normal to the
perturbed interface Γǫ and τǫ is the unit tangential vector to Γǫ. By the coordinate transform
x 7→ xǫ := Tǫ(x) we get

△ǫ(u+,ǫ
1 ◦ Tǫ) + κ2

+(u+,ǫ
1 ◦ Tǫ) = f +

1 ◦ Tǫ in Ω+,

△ǫ(u−,ǫ
1 ◦ Tǫ) + κ2

−(u−,ǫ
1 ◦ Tǫ) = f−1 ◦ Tǫ in Ω−,

△ǫ(u+,ǫ
2 ◦ Tǫ) + κ2

+(u+,ǫ
2 ◦ Tǫ) = f +

2 ◦ Tǫ in Ω+,

△ǫ(u−,ǫ
2 ◦ Tǫ) + κ2

−(u−,ǫ
2 ◦ Tǫ) = f−2 ◦ Tǫ in Ω−,

(37)

with transmission conditions
[ γ

κ2
∇ǫ(uǫ

2 ◦ Tǫ) · (τǫ ◦ Tǫ) +
ωε

κ2
∇ǫ(uǫ

1 ◦ Tǫ) · (νǫ ◦ Tǫ)
]

Γ
= −ωε+

κ2
+

∇ǫ(u
(i)
1 ◦ Tǫ) · (νǫ ◦ Tǫ),

[ γ

κ2
∇ǫ(uǫ

1 ◦ Tǫ) · (τǫ ◦ Tǫ)−
ωµ

κ2
∇ǫ(uǫ

2 ◦ Tǫ) · (νǫ ◦ Tǫ)
]

Γ
=

ωµ

κ2
+

∇ǫ(u
(i)
2 ◦ Tǫ) · (νǫ ◦ Tǫ),

[uǫ
1 ◦ Tǫ]Γ = −u

(i)
1 ◦ Tǫ, (38)

[uǫ
2 ◦ Tǫ]Γ = −u

(i)
2 ◦ Tǫ

on Γ and a radiation condition (8) with u±
j replaced by u±,ǫ

j ◦ Tǫ and A±
j,n replaced by A±,ǫ

j,n . Here

△ǫ = ∂2
x1,ǫ

+ ∂2
x2,ǫ

is the Laplacian and ∇ǫ = (∂x1,ǫ , ∂x2,ǫ)
⊤ is the gradient with respect to xǫ. As it

is shown in [4], the operators △ǫ and ∇ǫ depend smoothly on ǫ and admit the Taylor expansion

△ǫ = △ + ǫ△̃ + ǫ2△R(ǫ),

∇ǫ = ∇+ ǫ∇̃+ ǫ2∇R(ǫ),

with

△̃u = div
(

[I div T − (DT⊤ + DT)]∇u
)

− div T△u,

∇̃u = −DT⊤ · ∇u,
(39)

where DT denotes the Jacobian of T. We return to the investigation of the transmission problem.
Inserting the formal ansatz

uǫ
j ◦ Tǫ =: u0

j + ǫu̇j + ǫ2vj(x) (40)

into the transformed boundary value problem on Ω, taking into account that ḟ±j = 0 for j = 1, 2,
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and comparing the terms of order ǫ, yields

△u̇+
1 + κ2

+u̇+
1 = −△̃u+,0

1 in Ω+,

△u̇−
1 + κ2

−u̇−
1 = −△̃u−,0

1 in Ω−,

△u̇+
2 + κ2

+u̇+
2 = −△̃u+,0

2 in Ω+,

△u̇−
2 + κ2

−u̇−
2 = −△̃u−,0

2 in Ω−,

(41)

and
[ γ

κ2
∇u̇2 · τ +

ωε

κ2
∇u̇1 · ν

]

Γ
=− ωε+

κ2
+

∇u
(i)
1 · ν̇ −

[ γ

κ2
∇̃u0

2 · τ +
ωε

κ2
∇̃u0

1 · ν
]

Γ

−
[ γ

κ2
∇u0

2 · τ̇ +
ωε

κ2
∇u0

1 · ν̇
]

Γ
,

[ γ

κ2
∇u̇1 · τ − ωµ

κ2
∇u̇2 · ν

]

Γ
=

ωµ

κ2
+

∇u
(i)
2 · ν̇ −

[ γ

κ2
∇̃u0

1 · τ − ωµ

κ2
∇̃u0

2 · ν
]

Γ
(42)

−
[ γ

κ2
∇u0

1 · τ̇ − ωµ

κ2
∇u0

2 · ν̇
]

Γ
,

[u̇1]Γ =− u̇
(i)
1 = 0,

[u̇2]Γ =− u̇
(i)
2 = 0

on the interface Γ. Near Γ+ and Γ−, we use the ansatz

A±,ǫ
j,n =: A±,0

j,n + ǫȦ±
j,n + ǫ2R±

j,n(ǫ). (43)

Expanding uǫ
j ◦ Tǫ into a Taylor series at ǫ = 0, and using (43) together with (40), yields

u̇±
j (x) =

∞

∑
n=−∞

{

Ȧ±
j,n + A±,0

j,n

(

i(n + α)
(

κ2
± − (n + α)2

)1/2

)

· T

}

ei(n+α)x1+
√

κ2
±−(n+α)2x2 (44)

near the artificial boundaries. It remains to show that the solution u̇ of the transmission problem
(41)+(42)+(44) is indeed the material derivative of uj for j = 1, 2, i.e. we have to show that

2

∑
j=1

||uǫ
j ◦ Tǫ − u0

j − ǫu̇j||V l
η(Ω) ≤ Cǫ2 (45)

for some suitable l and η. In fact we will prove this for l = k + 2, k ≥ 0. By straightforward
calculations we see that the functions v±j = u±,ǫ

j ◦ Tǫ − u±,0
j − ǫu̇±

j satisfy the equation

△ǫv±j + κ2
±v±j = −ǫ2

(

△Ru±,0
j + △̃u̇±

j

)

− ǫ3△Ru̇±
j in Ω± (46)

for j = 1, 2. With νǫ = ν0 + ǫν̇ + ǫ2νR and τǫ = τ0 + ǫτ̇ + ǫ2τR the transmission conditions on Γ

become
[ γ

κ2
∇ǫv2 · (τǫ ◦ Tǫ) +

ωε

κ2
∇ǫv1 · (νǫ ◦ Tǫ)

]

Γ
=

= ǫ2

{

−ωε+

κ2
+

∇̃u
(i)
1 · ν̇ −

[ γ

κ2

(

∇u̇2 · τ̇ +∇u0
2 · τR + ∇̃u0

2 · τ̇ + ∇̃u̇2 · τ +∇Ru0
2 · τ

)

+ (47)
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+
ωε

κ2

(

∇u̇1 · ν̇ +∇u0
1 · νR + ∇̃u0

1 · ν̇ + ∇̃u̇1 · ν +∇Ru1 · ν
)]

Γ

}

+ P1(ǫ3, ǫ4, ǫ5)

and
[ γ

κ2
∇ǫv1 · (τǫ ◦ Tǫ) −

ωµ

κ2
∇ǫv2 · (νǫ ◦ Tǫ)

]

Γ
=

= ǫ2

{

ωµ

κ2
+

∇̃u
(i)
2 · ν̇ −

[ γ

κ2

(

∇u̇1 · τ̇ +∇u0
1 · τR + ∇̃u0

1 · τ̇ + ∇̃u̇1 · τ +∇Ru0
1 · τ

)

+

+
ωµ

κ2

(

∇u̇2 · ν̇ + ∇u0
2 · νR + ∇̃u0

2 · ν̇ + ∇̃u̇2 · ν +∇Ru2 · ν
)]

Γ

}

+P1(ǫ3, ǫ4, ǫ5), (48)

[v1]Γ = 0,

[v2]Γ = 0.

Here, P1/2(ǫ3, ǫ4, ǫ5) are polynomials in ǫ involving the powers ǫ3, ǫ4, ǫ5 with coefficients ∇̃u̇±
j ·

ν̇, ∇̃u±,0
j · νR,∇Ru±,0

j · ν̇,∇Ru̇±
j · ν,∇u̇±

j · νR, ∇̃u̇±
j · νR,∇Ru±,0

j · νR,∇Ru̇±
j · ν̇,∇Ru̇±

j · νR. Since

u±,ǫ
j · Tǫ, u±,0

j and u̇±
j all satisfy a radiation condition, this also applies to v±j .

Non-local perturbation theory tells us that the operator Sǫ of the transmission problem (46) - (48),
which maps a solution (v1, v2) to the corresponding right-hand side, is a small perturbation of the
operator S of the original problem. Therefore, if S is invertible, this is also true for Sǫ by a Neumann
series argument. Moreover, since (u±,0

j )j=1,...,4 is a solution of the conical diffraction problem with
homogeneous Helmholtz equations and smooth incoming waves or their normal derivatives as right-
hand sides of the boundary conditions we see by Proposition 2 that u±,0

j ∈ Vk+2
η (Ω±). Hence,

∇u±,0
j |Γ ∈ Vk+1/2

η (Γ) and △Ru±,0
j ∈ Vk

η (Ω±) because △R is an operator of second order.

Now (u̇±
j )j=1,...,4 is a solution of an inhomogeneous conical diffraction problem with −△̃u±,0

j on the
right-hand sides of the Helmholtz equations and the right-hand sides of the boundary conditions
are ∇u±,0

j · ν and ∇u±,0
j · τ respectively. Therefore u̇±

j ∈ Vk+2
η (Ω±) also by Proposition 2 and

△̃u̇±
j ,△Ru̇±

j ∈ Vk
η (Ω±), ∇u̇±

j |Γ, ∇̃u̇±
j |Γ ∈ Vk+1/2

η (Γ).

Additionally ∇̃u±,0
j |Γ,∇Ru±,0

j |Γ ∈ Vk+1/2
η (Γ) and all coefficients of the ǫ-powers in Pi(ǫ3, ǫ4, ǫ5),

i = 1, 2 belong to Vk+1/2
η (Γ). The incoming wave is smooth and therefore fulfills all necessary

smoothness assumptions as well. In the norm of this space, Pi(ǫ3, ǫ4, ǫ5) = O(ǫ3) for i = 1, 2.

By these considerations, we can apply Proposition 2 to the perturbed problem above and immedi-
ately obtain (45). Summarizing we can state the following theorem.

Theorem 1. Suppose that the conical diffraction problem has a unique solution (u1, u2) belonging
to [V k+1

η (Ω)]2 and that the assumptions of Proposition 1 are satisfied. Then, according to Propo-

sition 1, (u1, u2) ∈ [V k+2
η (Ω)]2. Furthermore, the material derivative (u̇1, u̇2) exists and belongs

to [V k+2
η (Ω)]2 and the shape derivative (u′

1, u′
2) lies in [V k+1

η (Ω)]2.

4.1.2 Piecewise smooth perturbations

Regular perturbations of the identity that were considered in the previous section leave the the
angles at corner points unchanged. If we want to change those angles, we have to allow piecewise
smooth perturbations. In this case, a Dirac delta occurs in the first equation of (39). Consequently,
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Figure 3: Boundary perturbation near a corner point

we need a different representation of the perturbed boundary for the coordinate transform x 7→ xǫ,
that leads to the perturbed problem (37) + (38).

The following statements can be found with more detailed explanations in [21], Chapter 5.5.2. Let
{Vj : j = 1, . . . , J} be an open covering of the interface Γ. In each set which does not include

a corner point, we introduce local coordinates (ξ
j
1, ξ

j
2) with the ξ

j
2-axis pointing in the normal

direction at Γ. Then the perturbed interface Γǫ can be given in each Vj by ξ
j
2 = ǫTj(ξ

j
1) with

a smooth function Tj and small positive ǫ. Now we introduce new coordinates (ζ
j
1, ζ

j
2) given by

ζ
j
1 = ξ

j
1 and ζ

j
2 = ξ

j
2 − ǫTj(ξ

j
1)χj(ξ

j
2), where χj is a cut-off function with a support containing Vj

and χj ≡ 1 on Vj. In this way, we generate a coordinate transform

(ξ
j
1, ξ

j
2) 7→ (ζ

j
1, ζ

j
2) : Γǫ ∩ Vj → Γ ∩ Vj (49)

for the smooth parts of the boundary. In each cone CS = {x = x(r, θ) ∈ R2 : r > 0, θ ∈ (−θ0, θ0)}
with origin S, we proceed in the following way. The perturbed boundary ∂CS(ǫ) of the cone can
be given by

y±2 = ǫH(y±1 ), y±1 ≥ 0

with (y±1 , y±2 ) denoting cartesian coordinates with origin S. The y±1 -axis is given by {x : θ = ±θ0}
and the y±2 -axis by {x : θ = ±θ0 ± π/2}. Furthermore, H is a smooth function with

H(t) = atξ + O(tξ+1), ξ ≥ 1. (50)

An illustration is given in Figure 4. Then the domain CS(ǫ) is given by

θ0 − ǫrξ−1b(r, ǫ) ≤ θ ≤ θ0 + ǫrξ−1b(r, ǫ) (51)

with a smooth function b. Then one can construct a mapping of CS(ǫ) onto CS by introducing
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new polar coordinates (R, Θ) with

R = r, Θ = θ0

(

θ0 + ǫrξ−1b(r, ǫ)
)−1

θ. (52)

With the local coordinate transforms (49) and (52) we can assemble a diffeomorphism

Tǫ : Ωǫ 7→ Ω,

where Ωǫ is the perturbed domain.

For simplicity, we consider only functions H which are linear, i.e. the perturbation of a cone is
again a cone. If H(t) = at with a > 0, then b(r, ǫ) = ǫ−1 arctan(aǫ) and the perturbed cone CS(ǫ)
is given by angles θ which satisfy

−θ0 − arctan(aǫ) ≤ θ ≤ θ0 + arctan(aǫ).

In the polar coordinates (R, Θ) we have

R = r, Θ = θ0 (θ0 + arctan(aǫ))−1 θ.

The Laplace operator in these coordinates is

△ǫu =
∂2

∂R2
u +

1

R

∂

∂R
u +

(

1 + θ−1
0 arctan(aǫ)

)−2 1

R2

∂2

∂Θ2
u

and the gradient is

∇ǫu =

{

∂

∂R
u

}

~R +

{

(

1 + θ−1
0 arctan(aǫ)

)−1 1

R

∂

∂Θ
u

}

~Θ,

where ~R and ~Θ are the unit vectors in the polar coordinate system. As before, we can expand
these operators into Taylor series and obtain

△ǫu =
∂2

∂R2
u +

1

R

∂

∂R
u +

1

R2

∂2

∂Θ2
u
(

1 − 2ǫaθ0 +O(ǫ2)
)

and

∇ǫu =

{

∂

∂R
u

}

~R +

{

1

R

∂

∂Θ
u

}

~Θ
(

1 − ǫaθ0 + O(ǫ2)
)

.

Now we can proceed in the same way as in the previous section. We only have to replace the per-
turbation of the identity, that has been considered there, with the diffeomorphism Tǫ constructed
in this section.

Theorem 2. By the above considerations, Theorem 1 is also true for perturbations which change
the angle at corner points.

Theoretically, this theorem could also be stated for the more general case that ξ > 1 in equation
(50). According to [21], we obtain the following. In polar coordinates with respect to r and θ we
have

∂

∂x1
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,
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∂

∂x2
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ

and

1

r

∂

∂θ
=

1

R

(

1 +
1

θ0
ǫRξ−1b(R, ǫ)

)−1 ∂

∂Θ
,

∂

∂r
=

∂

∂R
−
(

1 +
1

θ0
ǫRξ−1b(R, ǫ)

)−1 [ ∂

∂r

(

1 +
1

θ0
ǫrξ−1b(r, ǫ)

)]

r=R

Θ
∂

∂Θ
.

Expanding this in a Taylor series at ǫ = 0 yields

1

r

∂

∂θ
≍ 1

R

(

1 +
∞

∑
k=1

ǫk
k

∑
j=1

Rj(ξ−1) θ
−j
0

(k − j)!

(

∂

∂ǫ

)k−j

bj(R, 0)

)

∂

∂Θ
,

∂

∂r
≍ ∂

∂R
− 1

R

∞

∑
k=1

ǫk
k

∑
j=1

Rj(ξ−1) θ
−j
0

(k − j)!

(

ξ − 1 +
R

j

∂

∂R

)(

∂

∂ǫ

)k−j

bj(R, 0)Θ
∂

∂Θ

(53)

The differential operators of the perturbed transmission problem (45) - (48) can be represented by
series of so-called admissible operators if ξ ≥ 1. These are defined as follows (see also [18]).

Definition 8. The operator
P(x, Dx) = ∑

α≤k

pα(x)Dα
x

is called admissible of order k in the vicinity of a corner point S if the coefficients pα have the form

pα(x) = r|α|−k p
(0)
α (r, θ)

in this neighbourhood, where p
(0)
α ∈ C∞((0, ∞)× C±

S ) ∩ C([0, ∞)× C±
S ) and

(rDr)
jD

γ
θ

(

p
(0)
α (r, θ) − p

(0)
α (0, θ)

)

→ 0

for every j = 0, 1, . . . as r → 0 uniformly with respect to θ ∈ C±
S . As usual, (r, θ) are polar

coordinates in the cone C±
S with origin S. P is said to be a model operator if it has the form

P(x, Dx) = r−k
k

∑
j=0

pj(θ, Dθ)(rDr)
j

with pj(θ, Dθ) being differential operators of order ≤ k − j with smooth coefficients on C±
S . If P

is a boundary operator, then additionally P(x, Dx)u|∂C±
S

has to depend only on u|∂C±
S

for every

smooth function u in the vicinity of ∂C±
S .

To apply the theory used in Chapter 1, we need admissibility of the occurring differential operators.
According to [18], every model operator is admissible. It is easy to show that the differential
operators in (4) - (8) are model operators. If ξ < 1, then the perturbed transmission problem is
not admissible any more because the coefficients in (53) do not behave in the way that was required
in Definition 8, and Proposition 1 is no longer true.

The concept of admissibility does not apply to the boundary conditions (23) and (24) because of the
occurring pseudodifferential operators and because the artificial boundaries do not have corners.
The theory of the first section also includes this kind of operators, see Chapter 9 of Wloka’s book
[33], where pseudodifferential boundary operators are treated explicitely for smooth boundaries.
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Remark 5. The symmetric structure of (51) is not necessary for the above considerations. We
could also represent the perturbed boundary by two functions H1 and H2 with

H1(t) = a1tξ1 +O(tξ1+1), H2(t) = a2tξ2 + O(tξ2+1), ξ1, ξ2 ≥ 1.

The inequality (51) would then change to

−θ0 − ǫrξ1−1b1(r, ǫ) ≤ θ ≤ θ0 + ǫrξ2−1b2(r, ǫ)

with smooth functions b1 and b2. Define

θ1 := −θ0 − ǫrξ1−1b1(r, ǫ),

θ2 := θ0 + ǫrξ2−1b2(r, ǫ).

The new polar coordinates

R = r, Θ = θ0θ−1
1

(

θ1

θ1 − θ2
θ − θ1θ2

θ1 − θ2

)

+ θ0θ−1
2

(

θ2

θ2 − θ1
θ − θ2θ1

θ2 − θ1

)

induce a mapping of CS(ǫ) onto CS. This is similar to (52) and allows essentially the same
considerations, only with more long-winded notation.

4.2 Characterization of the shape derivative

Once the shape differentiability of the solution of the conical diffraction problem has been proved,
the diffraction problem for the u̇j is no longer merely formal. Indeed it is a valid characterization of
the material derivative. We could now establish a similar characterization for the shape derivative
by inserting its definition (7).

Let us assume that the shape derivative u′
j of the solution of (4) - (8) exists in V l

η(Ω) for some
l ∈ Z, l ≥ 0, η ∈ R. Inserting (7) into

△u̇±
j + κ2

±u̇±
j = −△̃u±

j ,

we get

△
(

u±
j

)′
+ κ2

±
(

u±
j

)′
+ △

(

∇u±
j · T

)

+ κ2
±
(

∇u±
j · T

)

= −△̃u±
j .

If T is only piecewise smooth, then this equation has to be understood in the sense of distributions.
Straightforward calculations and the Helmholtz equation yield

△
(

∇u±
j · T

)

+ △̃u±
j = T · ∇

(

△u±
j

)

= −κ2
±
(

∇u±
j · T

)

.

Thus
(

u±
j

)′
also satisfies the homogeneous Helmholtz equation in Ω. Let us now investigate the

radiation condition. Let Γ be a part of the boundary ∂Ω and let

u±
j (x) = r±j (x)

for every x in a neighbourhood of Γ±. The perturbed boundary condition is

u±
j,ǫ(x + ǫT(x)) = r±j,ǫ(x + ǫT(x)).
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We expand this into a Taylor series and get r±j,0 6= r±j,ǫ if ǫ 6= 0. We have u±
j,0 = r±j,0 in a neighbour-

hood of Γ, not only on Γ itself. Hence, ∇r±j,0 = ∇u±
j,0, and it follows that

(

u±
j

)′
=
(

r±j
)′

+∇r±j,0 · T −∇u0 · T =
(

r±j
)′

.

In our case, r±j is of the form

r±j (x1, x2) =
∞

∑
n=−∞

A±
j,nei(n+α)x1+

√
κ2
±−(n+α)2x2 .

Hence, its shape derivative has the form

(

r±j
)′

(T)(x1, x2) =
∞

∑
n=−∞

(

A±
j,n

)′
(T)ei(n+α)x1+

√
κ2
±−(n+α)2x2 .

In order to formulate transmission conditions for shape derivatives for transmission problems, we
state the following Lemma.

Lemma 8. Suppose that Ω is a domain with piecewise Cm boundary, m ≥ 1, that the function u
is shape differentiable in direction T on Ω and that u|∂Ω is also shape differentiable in direction T.
Then the shape derivative of the domain integral

F(Ω)(u) =
∫

Ω

udx

in direction T is

F′(Ω; T)(u) =
∫

Ω

u′(T)dx +
∫

∂Ω

u(T · ν)ds.

Let κ̃ be the curvature of ∂Ω and let {Sj}m
j=1 be the set of corner points of ∂Ω. The shape derivative

of the boundary integral

G(Ω)(u) =
∫

∂Ω

uds

in direction T is given by

G′(Ω; T)(u) =
∫

∂Ω

u′(T)ds +
∫

∂Ω

{∂νu + uκ̃(T · ν)} ds +
m

∑
j=1

ζ j,

where
ζ j = u(Sj)[T(Sj+1) · τ−(Sj+1)]− u(Sj)[T(Sj) · τ+(Sj)],

with ν± and τ± denoting the left, resp. the right limit of the unit normal and the unit tangent
vector. If u is only defined on ∂Ω, then

G′(Ω; T)(u) =
∫

∂Ω

u′(T)ds +
∫

∂Ω

uκ̃(T · ν)ds +
m

∑
j=1

ζ j.

Proof. See [31], Chapters 2.31, 2.33 and 3.8.
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This Lemma can now be used for the characterization of transmission conditions over the interface.
We apply a technique from [31]. Again, we discuss a simple model problem first and then use the
results to characterize shape derivatives of solutions of the more complicated problem (4) - (8).
Let (u1, u2) be a shape differentiable solution of the transmission problem

△u1 + κ2
+u1 = 0 in Ω+

△u2 + κ2
−u2 = 0 in Ω−

∂νu1 − ∂τu2 = ∂νu(i) on Γ

u1 − u2 = u(i) on Γ

and suitable boundary conditions on Γ±, with Ω, Γ and Γ± as described in Section 1.2. The exact
form of the boundary conditions is not important because we are only interested in the transmission
conditions. Let uj be an α-quasiperiodic functions satisfying uj ∈ Vk

η (Ω±), j = 1, 2 with k ≥ 2 and
η < 1. Assume further that v is a test function which satisfies the same regularity requirements
as u1 and u2, that eiαx1v(x1, x2) is periodic in x1, ∂νv = 0 on Γ+ ∪ Γ− ∪ Γ and v = 0 on Γ+ ∪ Γ−.
Then Green’s formula yields

∫

Ω+

{

∇u1∇v − κ2
+u1v

}

dx −
∫

Ω−

∇u2∇⊥vdx −
∫

Γ

{∂νu1 − ∂τu2} vds = 0.

Note that, because of the periodicity, the contributions of the boundary integrals over the parts
of the boundary parallel to the x2-axis cancel out. By Lemma 8 and by the chain rule for Fréchet
derivatives, taking the shape derivative in direction T gives

∫

Ω+

∇u′
1∇vdx −

∫

Ω−

∇u′
2∇⊥vdx −

∫

Ω+

κ2
+u′

1vdx +
∫

Γ

∇u1∇v[T · ν]ds +
∫

Γ

∇u2∇⊥v(T · ν)ds

−
∫

Γ

κ2
+u1v(T · ν)ds =

∫

Γ

(

∂νu
(i)
1

)′
vds +

∫

Γ

κ̃∂νu
(i)
1 v(T · ν)ds +

m

∑
j=1

ζ j,

where κ̃ denotes the curvature of Γ and

ζ j = ν− · ∇u(i)(Sj+1)v(Sj+1)[T(Sj+1) · τ−(Sj+1)]− ν+ · ∇u(i)(Sj)v(Sj)[T(Sj) · τ+(Sj)]. (54)

Since
∫

Ω+

{

∇u′
1∇v − κ2

+u′
1v
}

dx −
∫

Γ

∂νu′
1vds = 0

and
∫

Ω−

∇u′
2∇⊥vdx +

∫

Γ

∂τu′
2vds = 0,

it follows that
∫

Γ

{

∂νu′
1 − ∂τu′

2

}

vds =
∫

Γ

{

−∇u2∇⊥v −∇u1∇v + κ2
+u1v

}

(T · ν)ds

+
∫

Γ

(

∂νu
(i)
1

)′
vds +

∫

Γ

∂νu
(i)
1 vκ̃(T · ν)ds +

m

∑
j=1

ζ j.

(55)

Let
divΓV := (divV − (DV · ν) · ν)|Γ
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denote the tangential divergence of a vector field V. As usual, DV is the Jacobian of the vector
field V. Additionally, let

∇u|τ := ∇u − (ν · ∇u)ν = (τ · ∇u)τ

be the tangential gradient of u. Then by
∫

Γ

(∇u · V + udivΓV) ds =
∫

Γ

(∂νu + κ̃u)(V · ν)ds,

which is formula (2.145) from [31], it follows that
∫

Γ

∇u1∇v(T · ν)ds = −
∫

Γ

vdivΓ((T · ν)∇u1)ds +
∫

Γ

κ̃(T · ν)[∇u1 · ν]vds

= −
∫

Γ

vdivΓ ((T · ν)∇u1|τ) ds.

The last equality is Proposition 2.57 in [31]. In the same way we obtain
∫

Γ

∇u2∇⊥v(T · ν)ds = −
∫

Γ

∇⊥u2∇v(T · ν)ds

=
∫

Γ

vdivΓ

(

(T · ν)∇⊥u2

)

ds −
∫

Γ

κ̃(T · ν)[∇⊥u2 · ν]vds

=
∫

Γ

vdivΓ

(

(T · ν)∇⊥u2|τ
)

ds.

Inserting this into (55) yields
∫

Γ

{

∂νu′
1 − ∂τu′

2

}

vds =
∫

Γ

divΓ

(

(T · ν)
{

∇u1|τ −∇⊥u2|τ
})

vds +
∫

Γ

κ2
+u1(T · ν)vds+

+
∫

Γ

(

∂νu(i)
)′

vds +
∫

Γ

κ̃∂νu(i)(T · ν)vds +
m

∑
j=1

ζ j.

Now consider the jumps u′
1 − u′

2. We have
∫

Γ

{u1 − u2}vds =
∫

Γ

u(i)vds.

Taking the shape derivative on both sides yields

∫

Γ

({u1 − u2}v)′ds +
∫

Γ

{

∂ν(u1 − u2) + κ̃u(i)
}

(T · ν)vds +
m

∑
l=1

ξl =

=
∫

Γ

(u(i))′vds +
∫

Γ

κ̃u(i)(T · ν)vds +
m

∑
l=1

ρl,

where

ξ j = {u1 − u2}(Sj+1)v(Sj+1)[T(Sj+1) · τ−(Sj+1)]− {u1 − u2}(Sj)v(Sj)[T(Sj) · τ+(Sj)]
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and
ρj = u(i)(Sj+1)v(Sj+1)[T(Sj+1) · τ−(Sj+1)]− u(i)(Sj)v(Sj)[T(Sj) · τ+(Sj)].

The incoming wave does not depend on the geometry, consequently (u(i))′ = 0. Furthermore, we
have

v′ = ∂νv(T · ν).

If we assume that the jump of the normal derivative of v across the interface is zero, we get
∫

Γ

{u′
1 − u′

2}vds = −
∫

Γ

∂ν(u1 − u2)(T · ν)vds −
m

∑
l=1

ξl +
m

∑
l=1

ρl = −
∫

Γ

∂ν(u1 − u2)(T · ν)vds,

because the two sums cancel out and the incoming wave does not depend on Γ. Thus, it follows
that

u′
1 − u′

2 = −∂ν(u1 − u2)(T · ν).

Summarizing everything, we have obtained that the shape derivative of the solution of the model
problem satisfies Helmholtz system

△u′
1 + κ2

+u′
1 = 0 in Ω+

△u′
2 + κ2

−u′
2 = 0 in Ω−

with transmission conditions
∫

Γ

{

∂νu′
1 − ∂τu′

2

}

vds =
∫

Γ

divΓ

(

(T · ν)
{

∇u1|τ −∇⊥u2|τ
})

vds +
∫

Γ

κ2
+u1(T · ν)vds+

+
∫

Γ

(

∂νu(i)
)′

vds +
∫

Γ

κ̃∂νu(i)(T · ν)vds +
m

∑
j=1

ζ j,

u′
1 − u′

2 = − ∂ν(u1 − u2)(T · ν),

with ζ j from (54), on Γ. We assumed a suitable boundary condition for the model problem, but we
did not investigate this in general. Nevertheless, if this suitable boundary condition is a radiation
condition of the form (8), then the shape derivatives u′

j also satisfies this radiation condition.
We see that the operator of the problem that characterizes the shape derivative is the same as
the operator of the original model problem. Only the right-hand side changes. These results
can be carried over to our original problem (4) - (8). We obtain the following theorem on the
characterization of shape derivatives.

Theorem 3. Assume that (u0
1, u0

2) ∈ [V k+2
η (Ω)]2 is the unique solution of the problem (4) - (8).

Define

ζ j := ν− · ωε+

κ2
+

∇u
(i)
1 (Sj+1)v(Sj+1)[T(Sj+1) · τ−(Sj+1)]− ν+ · ωε+

κ2
+

∇u
(i)
1 (Sj)v(Sj)[T(Sj) · τ+(Sj)]

and

ξ j := ν− · ωµ

κ2
+

∇u
(i)
2 (Sj+1)v(Sj+1)[T(Sj+1) · τ−(Sj+1)]− ν+ · ωµ

κ2
+

∇u
(i)
2 (Sj)v(Sj)[T(Sj) · τ+(Sj)]

with ν±, τ± and {Sj}m
j=1 from Lemma 8. Then the shape derivative of (u0

1, u0
2) exists in [V k+1

η (Ω)]2.

It satisfies the Helmholtz system

△(u+
1 )′ + κ2

+(u+
1 )′ = 0 in Ω+
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△(u−
1 )′ + κ2

−(u−
1 )′ = 0 in Ω−

△(u+
2 )′ + κ2

+(u+
2 )′ = 0 in Ω+

△(u−
2 )′ + κ2

−(u−
2 )′ = 0 in Ω−

with the transmission conditions
∫

Γ

[ γ

κ2
∂τu′

2 +
ωε

κ2
∂νu′

1

]

Γ
vds =

∫

Γ

divΓ

(

(T · ν)
[ γ

κ2
∇u0

2|τ +
ωε

κ2
∇⊥u0

1|τ
]

Γ

)

vds

−
∫

Γ

{

κ̃(T · ν)
ωε+

κ2
+

∂νu
(i)
1 +

ωε+

κ2
ν′ · ∇u

(i)
1

}

vds

+
∫

Γ

κ2
+(T · ν)

[

u0
1

]

Γ
vds −

m

∑
j=1

ζ j,

∫

Γ

[ γ

κ2
∂τu′

1 −
ωµ

κ2
∂νu′

2

]

Γ
vds =

∫

Γ

divΓ

(

(T · ν)
[ γ

κ2
∇u0

1|τ −
ωµ

κ2
∇⊥u0

2|τ
]

Γ

)

vds

+
∫

Γ

{

κ̃(T · ν)
ωµ

κ2
+

∂νu
(i)
2 +

ωµ

κ2
ν′ · ∇u

(i)
2

}

vds

+
∫

Γ

κ2
+(T · ν)

[

u0
2

]

Γ
vds +

m

∑
j=1

ξ j

and
[

u′
1

]

Γ
= −∂ν [u1]Γ (T · ν),

[

u′
2

]

Γ
= −∂ν [u2]Γ (T · ν)

on the interface Γ and a radiation condition of the form (8).

Remark 6. (i) The weak formulation of the transmission condition in Theorem 3 can formally be
written in the following form involving Dirac deltas:

[ γ

κ2
∂τu′

2 +
ωε

κ2
∂νu′

1

]

Γ
=divΓ

(

(T · ν)
[ γ

κ2
∇u0

2|τ +
ωε

κ2
∇⊥u0

1|τ
]

Γ

)

− κ̃(T · ν)
ωε+

κ2
+

∂νu
(i)
1 +

ωε+

κ2
ν′ · ∇u

(i)
1

+ κ2
+(T · ν)

[

u0
1

]

Γ
−

m

∑
j=1

ζ j,

[ γ

κ2
∂τu′

1 −
ωµ

κ2
∂νu′

2

]

Γ
=divΓ

(

(T · ν)
[ γ

κ2
∇u0

1|τ −
ωµ

κ2
∇⊥u0

2|τ
]

Γ

)

+ κ̃(T · ν)
ωµ

κ2
+

∂νu
(i)
2 +

ωµ

κ2
ν′ · ∇u

(i)
2

+ κ2
+(T · ν)

[

u0
2

]

Γ
+

m

∑
j=1

ξ j

with
ζ j := ν− · ωε+

κ2
+

∇u
(i)
1 (T · τ−)δSj+1

− ν+ · ωε+

κ2
+

∇u
(i)
1 (T · τ+)δSj
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and
ξ j := ν− · ωµ

κ2
+

∇u
(i)
2 (T · τ−)δSj+1

− ν+ · ωµ

κ2
+

∇u
(i)
2 (T · τ+)δSj

.

(ii) In the case of incoming plane waves, according to Remark 3, we set

u+
1/2 =: u

(s)
1/2 + u

(i)
1/2.

Since the incoming waves do not depend on the geometry, their shape derivatives vanish. The
terms in Theorem 3 involving u

(i)
1/2 drop as well.
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