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Abstract

A Hamiltonian framework is developed for a sequence of ultrashort optical
pulses propagating in a nonlinear dispersive medium. To this end a second-
order nonlinear wave equation is first simplified using an unidirectional ap-
proximation. All non-resonant nonlinear terms are then rigorously eliminated
using a suitable change of variables in the spirit of the canonical perturbation
theory. The derived propagation equation operates with a properly defined
complexification of the real electric field. It accounts for arbitrary dispersion,
four-wave mixing processes, weak absorption, and arbitrary pulse duration.
Thereafter the so called normal variables, i.e., classical fields corresponding to
the quantum creation and annihilation operators, are introduced. Neglecting
absorption we finally derive the Hamiltonian formulation. The latter yields the
most essential integrals of motion for the pulse propagation. These integrals
reflect the time-averaged fluxes of energy, momentum, and classical photon
number transferred by the pulse. The conservation laws are further used to
control the numerical solutions when calculating supercontinuum generation
by an ultrashort optical pulse.

1 Introduction

An evolution of the wave packet is accurately described in terms of a complex
envelope [1]. The latter results from the time-scales separation, e.g., when the
pulse contains many field cycles. A slowly-varying envelope approximation (SVEA)
reduces then the second-order wave equation for the pulse electric filed to a more
simple first-order nonlinear Schrödinger equation (NSE) for the pulse envelope [2, 3,
4]. In the frequency domain, the SVEA assumes that the pulse spectrum is narrow,
centered around a carrier frequency. On the other hand, situations for which the
SVEA lacks precision are also quite common. For instance, we mention self-focusing
[5, 6], optical shocks [7], steep pulse edge [8], and supercontinuum (SC) generation
[9]. An important example is that of a few-cycle or a sub-cycle optical pulse where
the spectrum width is comparable to the carrier frequency [10, 11, 12, 13, 14, 15]. In
all such situations the NSE cannot be applied and either a full modeling of Maxwell
equations should be undertaken [16, 17, 18, 19, 20, 21, 22, 23] or new effective models
for propagation of spectrally broad pulses should be introduced. These models can
be developed in different directions.

First, we mention a higher-order NSE which is a direct generalization of the standard
NSE. Here, an arbitrary dispersion profile is approximated by a higher-order Taylor
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expansion or, more generally, by a polynomial fit in the frequency domain. The
dispersion is then accounted for by a differential dispersion operator in the time
domain [2, 4]. The nonlinear term in the higher-order NSE is further extended to
capture an arbitrary pulse duration [24, 8, 25]. Furthermore, incorporation of Raman
scattering [26, 27], diffraction effect [24, 28, 29], and third harmonic generation [30]
have been discussed. The higher-order NSE applies to pulse propagation, optical
shocks, and SC generation [31, 32, 33, 34, 35, 36, 37, 9, 38]. However, one should note
that the dispersion profile for a very broad spectrum a priory cannot be captured by
a polynomial expansion [39]. To avoid this problem both a rational approximation
to the dispersion function and a nonlocal generalization of the NSE should be used
[40].

The second approach to the ultrashort optical pulses is to abandon the envelope
concept and to operate directly with the pulse fields. The simplified model equations
are derived assuming an unidirectional character of pulse propagation instead of
SVEA. A recent review is given in Ref. [41]. In addition, we mention a short pulse
equation in which the dispersion function is expanded with respect to the inverse
frequency [42, 43] and a more general approach with the Laurent series [44, 45,
46, 47]. Another important class of equations is given by the (mixed) modified
Korteweg-de Vries and sine-Gordon models [48, 49, 50, 51, 52, 53].

As a rule, such unidirectional propagation equations in the space-time domain ignore
absorption and use a simplified medium response function. In return, the deduced
models often allow for an exact treatment [54, 55, 56, 57] or at least for an explicit
solitary solution [41, 58, 59, 60, 61, 62, 63, 64]. Also many specific solutions to the
higher-order NSE can be found [65, 66, 67, 68, 33, 69, 70, 71, 72, 73, 74, 75, 76, 77].

The third approach is to consider pulse propagation in the spectral domain [78, 79,
80, 22]. Here, again using the unidirectional approximation, one obtains a set of
the first-order ordinary differential equations for the field harmonics Eω(z). The
deduced models are more simple than the full second-order propagation equation
and still allow for arbitrary dispersion and spectrum width.

This paper puts emphasis on the improvement of the third class of models. For the
basic model introduced in Ref. [78] we demonstrate that the nonlinear terms can
to a large extent be removed by a suitable change of variables. This procedure is
common in Hamiltonian mechanics [81] and is also useful for nonlinear waves [82]. In
our case, the real electric field E(z, t) has to be replaced with a complex one E(z, t)
containing only positive harmonics. The remaining resonant nonlinear terms have a
simple “envelope” structure without use of the SVEA. A z-propagated Hamiltonian
framework is then introduced for the derived equation in terms of normal variables
A(z, t) and A∗(z, t). The latter are classical complex fields, they correspond to the
quantum creation and annihilation operators. In particular, |Aω|2 is the classical
number of photons transferred by the pulse. By construction, the Hamiltonian is
an integral of motion. The continuous symmetries of the Hamiltonian yield two
more integrals. Physically the integrals are given by the time-averaged fluxes of the
relevant physical quantities. They give an effective tool to follow the solution, e.g.,
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for the SC generation scenarios.

2 Derivation

2.1 Basic equations

A formulation of the problem and notations are described in this section. We con-
sider a sequence of linearly polarized electromagnetic pulses propagating along the
z-axis in a bulk dispersive nonlinear medium. The fields E = (E(z, t), 0, 0) and
B = (0, B(z, t), 0) are governed by Maxwell equations

∂zE = −∂tB, − 1

µ0

∂zB = ∂t(ε0E + P ). (1)

The induced medium polarization P = (P (z, t), 0, 0) depends on E(z, t) and is
determined by a sequence of nonlocal susceptibility operators χ̂(i) such that

P (E) = ε0

(
χ̂(1)E + χ̂(2)EE + χ̂(3)EEE + · · ·

)
, (2)

where χ̂(1) is a linear operator, χ̂(2) is a bilinear one and so on. The power ex-
pansion (2) assumes that pulses are propagating in a weakly nonlinear limit. In
addition, an inverse symmetry is assumed such that P (−E) = −P (E) and χ̂(2) = 0.
Equations (1)–(2) are reduced to a scalar nonlinear wave equation

∂2
zE − 1

c2
∂2

t

(
E + χ̂(1)E + χ̂(3)EEE

)
= 0 (3)

in which only linear and cubic terms are taken into account. To quantify χ̂(i) we
write E(z, t) in the frequency domain

E(z, t) =
∑

ω

Eω(z)e−iωt with ω ∈ 2π

T
Z,

where T is the period of the pulse sequence and

Eω(z) =
1

T

∫ +T/2

−T/2

E(z, t)eiωtdt = E∗
−ω(z).

Integrating Eq. (3) over one period we obtain

∂2
z

∫ +T/2

−T/2

E(z, t)dt = 0,

∫ +T/2

−T/2

E(z, t)dt = const,

so that the “pulse area” is conserved. We assume that this area is zero, Eω=0 = 0.
In the continuous spectrum limit (T →∞) this implies

Eω → 0 for ω → 0, (4)
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so that the constant component of electric field vanishes.

The operators χ̂(1) and χ̂(3) are given by convolutions(
χ̂(1)E

)
ω

= χ(1)(ω)Eω,(
χ̂(3)EEE

)
ω

=
∑

ω1+ω2+ω3=ω

χ(3)
ω1ω2ω3ωEω1Eω2Eω3 ,

where in the last equation the summation is performed only over the suitable triads
{ω1, ω2, ω3}. The linear susceptibility χ(1)(ω) yields the dielectric constant and the
propagation parameter

ε(ω) = 1 + χ(1)(ω) = ε∗(−ω),

k(ω) =
ω

c

√
ε(ω) = β(ω) + iα(ω) = −k∗(−ω),

where β(ω) and α(ω) are odd and even functions respectively. In the following we
consider a small absorption limit such that |β(ω)| � α(ω) ≥ 0 in a transparency
window to which belongs an essential part of the pulse spectrum.

If the nonlinear dispersion can be ignored one is left with the cubic Kerr medium in
which

χ(3)
ω1ω2ω3ω = χ and

(
χ̂(3)EEE

)
Kerr

= χE3. (5)

However, for a spectrally broad pulse such an approximation may be invalid and a
more general model should be used. For instance, considering a classical nonlinear
oscillator model for electrons, one obtains (Miller’s rule, see Ref. [4])

χ(3)
ω1ω2ω3ω = const · χ(1)(ω1)χ

(1)(ω2)χ
(1)(ω3)χ

(1)(ω).

In the following we deal with the general nonlinear susceptibility χ
(3)
ω1ω2ω3ω only as-

suming that it is symmetric with respect to all permutations of frequencies as sug-
gested by Miller’s rule. The nonlinear absorption is ignored, i.e., χ

(3)
ω1ω2ω3ω is real and

an even function of frequencies. The Kerr model (5) is used as an illustration in the
numerical section.

To proceed we write the nonlinear wave equation (3) in the frequency domain

∂2
zEω + [β(ω) + iα(ω)]2Eω +

ω2

c2

(
χ̂(3)EEE

)
ω

= 0. (6)

Equation (6) is the starting point of our considerations. In the next sections it
is simplified using an unidirectional approximation, introducing a proper complex
electric field, and eliminating non-resonant terms. Then the Hamiltonian framework
and integrals of motion are introduced and interpreted for the resulting model.

2.2 Unidirectional approximation

As explained in the previous section both the nonlinear and the absorption terms
in Eq. (6) are taken small. An unidirectional approximation results from this as-
sumption. In a first step, completely neglecting the both small terms in Eq. (6),
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we see that Eω(z) ∼ e±iβ(ω)z for the forward and the backward waves respectively.
Assuming that the forward wave dominates we can write

[i∂z + β(ω)]Eω(z) ≈ 0, (7)

where a small contribution of the backward wave, nonlinearity, and absorption ap-
pears on the right-hand-side in a second step. To calculate this contribution we
return to Eq. (6) and apply an exact identity

∂2
z + β2(ω) = 2β(ω)[i∂z + β(ω)]− [i∂z + β(ω)]2 (8)

According to Eq. (7) the second term in Eq. (8) is now neglected. Then Eq. (6) is
transformed to the unidirectional form

i∂zEω + β(ω)Eω = −iα(ω)Eω −
ω2

2c2β(ω)

∑
ω1+ω2+ω3=ω

χ(3)
ω1ω2ω3ωEω1Eω2Eω3 , (9)

which yields the desired generalization of Eq. (7). One can repeat the procedure
using Eq. (9) to better approximate [i∂z +β(ω)]2 in Eq. (8) and once again inserting
the result into Eq. (6). By doing this we establish which terms (e.g., αE3 and α2E)
are neglected when deriving Eq. (9).

A scalar first-order propagation model (9) was suggested in Ref. [78]. An arbitrary
polarization was discussed in Refs. [79, 80]. In the next sections Eq. (9) is first
simplified by eliminating the non-resonant nonlinear terms. This procedure follows
a general strategy for a weakly nonlinear system [82]. Thereafter a Hamiltonian
framework is introduced for the simplified equation.

2.3 Resonances

A natural approach to Eq. (9) is to simplify it by a suitable change of variables. In
the spirit of Eq. (2) we use a power expansion, define

Ẽω = Eω +
ω2

2c2β(ω)

∑
ω1+ω2+ω3=ω

χ
(3)
ω1ω2ω3ωEω1Eω2Eω3

β(ω)− β(ω1)− β(ω2)− β(ω3)
+ · · · , (10)

write Eq. (9) in terms of Ẽω(z), and obtain an equation

i∂zẼω + β(ω)Ẽω = −iα(ω)Ẽω + h.o.t. (11)

in which the high-order-terms can be neglected because they correspond to the terms
neglected when obtaining Eq. (9). All nonlinearities are then eliminated and we
have formally reduced Eq. (9) to a linear model (11). However, such an elimination
is possible only for non-resonant triads {ω1, ω2, ω3}. The resonant frequencies are
defined by the conditions

ω1 + ω2 + ω3 = ω, (12)

β(ω1) + β(ω2) + β(ω3) = β(ω). (13)
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Ω1 Ω2

Ω3
Ω1=Ω

Ω2+Ω3=0

Ω2=Ω

Ω1+Ω3=0

Ω3=Ω

Ω1+Ω2=0

Ω1+Ω2+Ω3=Ω

ΒHΩ1L+ ΒHΩ2L+ ΒHΩ3L= ΒHΩL

Figure 1: The thick curves show solutions of the resonance conditions (12)–(13) for
a bulk fluoride glass (ω corresponds to 0.8 µm, ε(ω) is taken from [39]). The dashed
region corresponds to four-wave mixing processes that change the total number of
photons. The dashed part of the resonance curves is usually small. It is neglected
in this paper.

In the vicinity of a resonant triad the transformation (10) is singular and cannot be
applied. Actually, the nonlinear terms in Eq. (9) can only be eliminated in some
subregions of the three-dimensional space of triads.

For a non-dispersive medium with β(ω)/ω = const the second resonance condi-
tion (13) is trivial, the transformation (10) is always singular, and a further reduction
of the unidirectional model (9) is not possible. In a dispersive medium Eqs. (12)–
(13) define several resonance curves in the three-dimensional space of triads. Note
that for any dispersion law β(ω), the conditions (12)–(13) are satisfied for

{ω1, ω2, ω3} = p{ω′,−ω′, ω}, ω′ ∈ R, (14)

where p stays for an arbitrary permutation. These universal solutions correspond
to the three straight lines shown in Fig. 1. In simple cases (e.g., for the Drude
model) no other resonance curves are possible. Further (medium-specific) solutions
of Eqs. (12)–(13) may appear for a more complex dispersion law, an example for a
bulk fluoride glass is shown in Fig. 1.

In what follows we assume that for ω > 0 the solutions of Eqs. (12)–(13) contain one
negative and two positive frequencies. This condition is motivated by the universal
solution (14). With respect to the further possible solutions we therefore neglect
the dashed parts of the resonance curves shown in Fig. 1. The approximation can
easily be understood by analogy with quantum mechanics. The dashed regions
correspond to the to four-wave mixing (FWM) processes in which either a photon is
decaying into three new ones or vice versa. The only four-wave process that we take
into account is the mutual scattering of two photons such that their total number
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remains unchanged. This leads to a considerable simplification of Eq. (9), as shown
in the next section.

2.4 Complex field

To simplify Eq. (9) we first write it in such a way that contributions of the positive
and negative frequencies are explicitly distinguished. To this end we introduce a
complex electric field E(z, t) which, in contrast to the standard real E(z, t), contains
only positive harmonics

E(z, t) = 2
∑
ω>0

Eω(z)e−iωt. (15)

Here

Eω>0 =
1

2
Eω and Eω<0 = E∗

−ω =
1

2
E∗−ω,

the latter equations can be combined into a single one

Eω =
Eω + E∗−ω

2
, (16)

because Eω<0 = 0 by construction.

The conjugated field E∗(z, t) contains only negative harmonics, note that (E∗)ω and
(Eω)∗ must be distinguished. Namely, taking the complex conjugate of Eq. (15) we
obtain

(E∗)−ω = (Eω)∗ = E∗ω. (17)

Using Eqs. (16) and (17) we get

Eω =
Eω + (E∗)ω

2
, E(z, t) =

E(z, t) + E∗(z, t)
2

,

so that E(z, t) is the real part of E(z, t). Using the latter relations together with
the definition of χ̂(3), we decompose χ̂(3)EEE and write Eq. (9) as

i∂zEω + [β(ω) + iα(ω)]Eω +
ω2

8c2β(ω)
×(

χ̂(3)EEE + 3χ̂(3)EE∗E + 3χ̂(3)E∗EE∗ + χ̂(3)E∗E∗E∗
)

ω
= 0. (18)

Here, e.g., (
χ̂(3)EE∗E

)
ω

=
∑

ω1−ω2+ω3=ω

χ(3)
ω1ω2ω3ωEω1E∗ω2

Eω3 ,

in accord with the presupposed symmetries of χ
(3)
ω1ω2ω3ω and Eq. (17). The summation

is automatically carried out over positive frequencies. Each cubic term in Eq. (18)
corresponds to a different four-wave process, all such terms but χ̂(3)EE∗E can be
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eliminated by a suitable redefinition of variables Eω → Ẽω in the spirit of Eq. (10) as
explained in the previous section. The only remaining term has resonance conditions

ω, ωi > 0, ω1 + ω3 = ω + ω2,

β(ω1) + β(ω3) = β(ω) + β(ω2),

and corresponds to the scattering of photons. The actual values of Eω and Ẽω are
very close to each other, in other words we can simply neglect the unimportant
terms in Eq. (18) and finally write

i∂zEω + [β(ω) + iα(ω)]Eω +
3ω2

8c2β(ω)

∑
ω1−ω2+ω3=ω

χ(3)
ω1ω2ω3ωEω1E∗ω2

Eω3 = 0. (19)

The new model (19), with which we deal in the rest of this paper, compromises
properties of both the spectral propagation models and the envelope models. For
instance, an arbitrary β(ω) is captured and a familiar invariance with respect to
the phase shifts (Eω → Eωeiθ with θ = const) is retained. Equation (19) can be
considered as a simplification of the model (9) introduced in Ref. [78]. In some cases
(e.g., for the Drude dispersion model) no further assumptions are required for the
derivation of (19) from (9), both models have the same field of applications. The
proof originates from the Hamiltonian perturbation theory [81, 82] and is based on a
stepwise canceling of the non-resonant nonlinear terms as explained in the previous
section. For an arbitrary dispersion law, Eq. (19) is valid if the contribution of
1 → 3 and 3 → 1 four-wave processes can be neglected. The latter assumption is
often harmless, but the vanishing dispersion case in which all FWM interactions are
important and reduction of (9) to (19) is not possible.

Last but not least, Eq. (19) operates with the complex electric field E(z, t) introduced
by Eq. (15). This quantity contains only positive frequencies and is a replacement of
the familiar complex envelope. Note, that the transformation to normal variables,
that is described in the next section, contains

√
ω and is naturally applied to E(z, t).

We now turn to the construction of the Hamiltonian framework for Eq. (19).

3 Hamiltonian framework

A standard way to obtain first-order Hamiltonian equations is to perform a Legendre
transformation of a second-order Lagrangian equation [83]. This procedure is dis-
cussed in Ref. [84] for the second-order nonlinear wave equation and the t-propagated
picture. It leads to a complicated multivalued expression for the canonical momen-
tum. The unidirectional Eq. (19) is more simple to deal with because it is of first
order. Some care is required because the space coordinate z serves as an effective
time. Consider, for instance, a standard continuity equation ∂tρ + ∂zj = 0 for a
physical quantity with the density ρ(z, t) and the flux density j(z, t) in one space
dimension. Normally, the conserved integral is given by the “charge”

∫
ρ(z, t)dz.
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For the z-propagated picture we have the mean “current”
∫

j(z, t)dt = const. Re-
turning to the optical pulses we see that energy and momentum transfered by the
pulse for −∞ < t < ∞ should not depend on the observation point z. The con-
served quantities correspond then to the time-averaged fluxes of the relevant physical
variables.

3.1 Normal variables

We introduce a new complex field A(z, t). Like the complex electric field E(z, t), it
contains only positive frequencies

A(z, t) =
∑
ω>0

Aω(z)e−iωt.

The harmonics Aω(z) are defined by the relation

Eω(z) = iω

√
2

β(ω)
Aω(z), ω > 0. (20)

Writing Eq. (19) in terms of A(z, t) we obtain

i∂zAω + [β(ω) + iα(ω)]Aω +
∑

ω1−ω2+ω3=ω

Tω1ω2ω3ωAω1A∗
ω2
Aω3 = 0, (21)

with

Tω1ω2ω3ω4 =
3

4c2

ω1ω2ω3ω4χ
(3)
ω1ω2ω3ω4

[β(ω1)β(ω2)β(ω3)β(ω4)]1/2
.

Now, defining the Hamiltonian as

H =
∑

ω

β(ω)|Aω|2 +
∑

ω1+ω3=ω2+ω4

1

2
Tω1ω2ω3ω4Aω1A∗

ω2
Aω3A∗

ω4
, (22)

and neglecting the α-term (absorption) in Eq. (21), we can write Eq. (21) as

i∂zAω +
δH

δA∗
ω

= 0. (23)

Equation (23) is a complex representation of the canonical Hamiltonian equations
(see, e.g., Ref. [82]). The fields A(z, t) and A∗(z, t) are complex canonical variables.
In the next section we demonstrate that they also correspond to the creation and
annihilation operators.

3.2 Integrals of motion

In this section we neglect absorption and obtain integrals of motion for the pulse
propagation. By construction, the Hamiltonian function (22) conserves for Eq. (23).
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Further integrals are obtained from the continuos symmetries of the Hamiltonian
(a canonical analog of Noether’s theory, see Ref. [83]). Note, that (22) is invariant
under the phase shift Aω → Aωeiθ, this transformation is generated by a differential
equation i∂θAω +Aω = 0, the latter can be written in the Hamiltonian form

Aω → Aωeiθ ⇔ i∂θAω +
δ

δA∗
ω

∑
ω′

|Aω′|2 = 0.

Therefore the quantity

N =
∑

ω

|Aω|2 (24)

is an integral of motion for the model (23). Furthermore, (22) is invariant under
another continuous transformation Aω → Aωeiωs, which we first write in the differ-
ential form i∂sAω + ωAω = 0, and then in the Hamiltonian form

Aω → Aωeiωs ⇔ i∂sAω +
δ

δA∗
ω

∑
ω′

ω′|Aω′|2 = 0.

The quantity

P =
∑

ω

ω|Aω|2 (25)

is another integral of motion for the model (23). It is of interest to relate expres-
sions (22), (24), and (25) to the pulse parameters.

Using an analogy with the quantum mechanics one can interpret |Aω|2 as a classical
number of photons for a given frequency. The integrals N , P , and H correspond
then to a mean number of photons, energy, and momentum transfered by the pulse
(per unit area in the xy-plane). For instance, consider the mean energy flux JE

which is given by time-averaging of the Pointing vector

JE =
1

T

∫ +T/2

−T/2

EB

µ0

dt =
1

µ0

∑
ω

EωB∗
ω.

Using Eq. (1) and the unidirectional approximation (7) we express the magnetic
field

Bω(z) =
∂zEω(z)

iω
=

β(ω)

ω
Eω(z)

and obtain

JE =
∑
ω>0

2β(ω)

µ0ω
|Eω|2 =

∑
ω

β(ω)

2µ0ω
|Eω|2 =

∑
ω

ω|Aω|2

µ0

,

so that JE = P/µ0. A more complicated but similar calculation relates H and the
averaged momentum flux JM = H/µ0.

The most direct application of the integrals of motion is to control the numerical
solutions, e.g., when calculating SC generation by an ultrashort optical pulse. Before
addressing these issues we summarize our results by writing them in a space domain.
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3.3 Space formulation

To obtain a space formulation of the pulse propagation model (19) we introduce a
real refractive index n(ω) and a nonlocal pseudodifferential operator D̂n, where

n(ω) =
β(ω)c

ω
and

(
D̂nE

)
ω

= n(ω)Eω. (26)

The operator D̂n is somewhat similar to the dispersion operator which is tradition-
ally used in the higher-order NSE (see Introduction). However, in contrast to the
dispersion operator, D̂n is bounded, nonsingular, and invertible. It is a positive op-
erator so that the square root D̂√

n can be defined. Using D̂n and ignoring absorption
we obtain a space form of Eq. (19)

∂zE +
1

c
∂t

[
D̂nE +

3

8
D̂−1

n

(
χ̂(3)EE∗E

)]
= 0, (27)

which is a nonlinear nonlocal hyperbolic propagation equation. An envelope ana-
logue of Eq. (27) for a Kerr medium was suggested in Ref. [40]. The conserved mean
energy flux JE and the mean momentum flux JM are determined by

2cµ0JE =
∑

ω

n(ω)|Eω|2 =
1

T

∫ +T/2

−T/2

|D̂√
nE|2dt,

and

2c2µ0JM =
∑

ω

n2(ω)|Eω|2 +
∑

ω1+ω3=ω2+ω4

3

16
χ(3)

ω1ω2ω3ω4
Eω1E∗ω2

Eω3E∗ω4
=

1

T

∫ +T/2

−T/2

[
|D̂nE|2 +

3

16
E∗

(
χ̂(3)EE∗E

)]
dt.

The particle number integral reads

2cN =
∑

ω

n(ω)

ω
|Eω|2 =

1

T

∫ +T/2

−T/2

E∗D̂n(i∂t)
−1Edt,

and is finite due to the condition (4). If the time-averaged electric field is nonzero,
the total number of the involved photons is infinite.

To take absorption into account one should replace Eq. (27) with the full Eq. (19).
In particular, n(ω) becomes complex in the linear part, but still remains purely real
in the nonlinear term! This is an important issue, because formally allowing for a
complex refractive index in Eq. (27) one obtains an unphysical nonlinear gain. We
also note that a traditional polynomial approximation to β(ω) may be unsuitable
for Eq. (19). In this case a more flexible rational representation should be used.
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4 Numerical solutions

The numerical solution of Eq. (27) with an instantaneous Kerr nonlinearity (5) is de-
scribed in this section. Here, the direct split-step Fourier approach [3] lacks precision
for a few-cycle optical pulse and relatively long (e.g., 1 cm) propagation distance,
such that the integrals of motion do not conserve. Therefore we use a de-aliased
pseudospectral method, which originates from the computational fluid dynamics
[85]. This method calculates all linear operators and derivatives in the frequency
domain and performs the nonlinear multiplications in the time domain, with the
transformations between the domains achieved by the fast Fourier transform. The
integration for the linear and nonlinear part is performed in the frequency domain
by a precise Runge-Kutta integration scheme of order eight with adaptive stepsize
control depending on the accuracy as described in Ref. [86]. Note, that operator D̂n,
which enters Eq. (27), is bounded and numerical stiffness (caused by the unbounded
dispersion operator in the higher-order NSE) is avoided in our formulation.

The particle number integral N , the mean energy flux P , and the mean momentum
flux H are used as control parameters for the accuracy of the solutions. To assure
conservation of N , P , and H for an equidistant mesh of time points we need at least
∆t = 0.6 fs. Depending on the initial pulse width, we have to use a resolution of 214

and 215 harmonics for a periodic time window T = 5ps and T = 10ps, respectively.
Several test calculation were performed for a better resolution, 217. The increase of
the harmonics number does not affect the results.

In the following we study the nonlinear propagation of femtosecond pulses in the
anomalous dispersion regime of a microstructured fiber, where complex and compre-
hensive behavior can be observed. Depending on the input pulse power and width,
the interplay of linear and nonlinear effects such as self-phase modulation (SPM),
FWM, and soliton dynamics, can lead to the generation of octave-spanning spectra.
It is well known, that the physical mechanism of the dramatic spectral broadening
process is related to the break-up of higher-order solitons [78]. The soliton fission
is caused by the formation of fundamental soliton pulses and the generation of a
non-solitonic dispersive wave into the phase-matched wavelength, leading to a spec-
trum broadened over an octave, even if the injected pulse energy is less than a few
nanojoules. Besides soliton propagation, the modulation instability (MI) is another
general feature in the anomalous dispersion regime, which affects the propagation of
an optical pulse. The MI is a well understood instability phenomenon of the NSE,
which results from the interplay between SPM and group velocity dispersion. In [37]
the ability of the MI to generate SC and the dominance of the MI for short pulses
has been demonstrated. In [38] it has been shown, that soliton fission dominates
for low input power and short pulses (100 fs) and the modulation instability has a
strong impact for high input powers at arbitrary pulse widths.

For our simulations the dispersion profile of the highly nonlinear microstructured
fiber is taken from [87]. The real refractive index is then represented by a proper
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Figure 2: Density plots of the spectral evolution for (a) t0 = 100 fs pulse with
typical signature of the modulation instability, (b) t0 = 50 fs, and (c) t0 = 10 fs
pulses generating SC by soliton fission. The spectra are shown in logarithmic scale
(dB).
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rational approximation

n(ω) =
p0 + p1(ω/PHz) + · · ·+ p5(ω/PHz)5

1 + q1(ω/PHz) + · · ·+ q5(ω/PHz)5

with parameters: p0 = 1.00654, p1 = −2.31431, p2 = 1.95942, p3 = −0.678111,
p4 = 0.120882, p5 = −0.00911063 and q1 = −2.29967, q2 = 1.94727, q3 = −0.673382,
q4 = 0.120015, q5 = −0.00905104.

As an initial condition we consider an input pulse electric field having a central
angular frequency ω0

√
χE(z, t)|t=0 =

1

2
Ψ(t)e−iω0t + c.c.,

and a hyperbolic-secant shape for the initial envelope Ψ(t) = Ψ0 sech(t/t0) with
the dimensionless amplitude Ψ0 = 0.03 and temporal width t0 = 10–100 fs. The
electric field is normalized by χ−1/2. The pulses are injected at a central frequency
ω0 = 2.32548PHz, corresponding to a pump wavelength λ0 = 810 nm in the vicinity
of the zero dispersion wavelength in the anomalous dispersion regime.

Figure 2 shows the density plots in the (ω, z)-plane of the spectral evolution for dif-
ferent input pulse widths. The spectra are shown on a logarithmic scale to illustrate
the fine structure of the spectrum generated. For a 100 fs-pulse spectral broadening
in the range z = 1–10mm is mainly dominated by SPM. However the significant fea-
tures of the MI can be observed. The underlying MI acts in the initial stage on the
pulse and leads to the generation of a Stokes and an anti-Stokes component. Fig. 2a
shows the appearance of two sidebands after z = 3.7 mm. This demonstrates that
also for short pulses with durations of 100 fs the modulation instability is present
and can have an impact on the propagation dynamics.

The simulations in Fig. 2b,c illustrate the typical scenario of spectral broadening
by soliton-related dynamics, for input pulses with t0 = 50 fs and t0 = 10 fs. Three
different stages are clearly observed. The initial stage of propagation is dominated by
symmetrical spectral broadening induced by SPM. An extreme spectral broadening
is then caused by pulse contraction due to the first step of soliton propagation
(Fig. 3b,d at z = 7.9mm for 50 fs and z = 2.1mm for 10 fs). In the second stage the
spectral broadening becomes asymmetric and energy is shifted to to the blue side
of the spectrum, due to soliton fission accompanied by the excitation of dispersive
waves. This is associated with the development of distinct temporal peaks that sit
upon a broader low-amplitude background (Fig. 3e,f at z = 9.9mm). The extension
of the spectrum to the blue side is related to the dispersion profile of the optical fiber
and to the input pulse power. The spectral broadening is limited by the broadening
of the temporal waveform of the pulses. In the third stage the spectral width is
already saturated, but FWM generates complicated substructures. The appearance
of the fine structure is an essential phenomenon and is extremely sensitive with
respect to the initial pulse energy.

Equation (27) reproduces all essential features of the SC evolution seen in a number
of experiments [88, 9] and in simulations with the higher-order NSE. Moreover, it
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Figure 3: Temporal evolution for selected propagation distances for a 50 fs pulse
at (a) z = 0.1mm, (c) z = 7.6mm, (e) z = 9.9mm and for a 10 fs pulse at (b)
z = 0.1mm, (d) z = 2.1mm, (f) z = 9.9mm. Pulse envelopes are shown.

goes beyond the envelope approximation and allows for an arbitrary pulse duration.
The numerical solutions are effectively controlled by the conservation laws.

5 Conclusions

Let us summarize our results. Propagation of spectrally broad ultrashort optical
pulses is considered. In a first step, we show that known propagation equations can
be simplified by a rigorous elimination of the non-resonant terms. This technique
originates from the dissipationless Hamiltonian mechanics, however, the linear ab-
sorption effect can also be taken into account. The resulting non-envelope Eq. (19)
applies to a properly chosen complex electric field in the frequency domain. The
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model (19) combines advantages of both envelope and non-envelope approaches,
it accounts for arbitrary dispersion, four-wave mixing processes, weak absorption,
and arbitrary pulse duration. The space formulation (27) is obtained in terms of a
nonlocal operator D̂n, the latter provides a natural generalization of the common
dispersion operator. It is of interest, that the linear absorption does not affect the
nonlinear term in Eq. (19). This is an important issue because careless use of the
complex refractive index, e.g., in Eq. (27), leads to an unphysical nonlinear gain in
the numerical solutions.

In a second step we neglect the absorption term and obtain a Hamiltonian frame-
work for Eq. (19). To this end the classical normal variables are introduced. These
classical creation and annihilation operators are of interest, e.g., for interpretation of
the optical experiments with event horizons [89]. As such, the Hamiltonian formula-
tion of a nonlinear wave equation has many important applications — integrability
analysis, conservation laws, stability of solitons, and power-spectrum of turbulent
states to name just a few [82, 90, 91]. Specifically we obtain the conservation laws
for the z-propagated picture. They are given by the time-averaged fluxes of relevant
physical quantities and provide a useful tool to control numerical solutions.
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[42] T. Schäfer and C. E. Wayne. Propagation of ultra-short optical pulses in cubic
nonlinear media. Physica D, 196(1-2):90–105, 2004.

[43] Y. Chung, C. K. R. T. Jones, T. Schäfer, and C. E. Wayne. Ultra-short pulses
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