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Abstract

We study deviation from the Poissonian statistics of the frequency spacing
distribution, appearing due to coupling of polarizational and transverse degrees
of freedom in a perfectly square vertical cavity surface emitting laser. The
deviation can be controlled by strength of the intracavity anisotropy and its
alignment to the device boundaries.

1 Introduction

The topics related to ’quantum chaos’ constantly attracts a strong attention [1,
2, 3]. In this field behavior of complex quantum- (or wave-) systems is studied,
often in relation to integrability of the corresponding classical systems. One of
the most known class of systems are quantum billiards. From physical point of
view, different types of resonators, ranging from acoustic and microwave resonators
to optical cavities and quantum dots (QD) belong to that class. Normally, their
behavior is fully determined by the boundaries and in a certain respect reflects the
properties of corresponding classical billiards. For simple boundaries (such as square
or circle) with fully integrable behavior the frequency spacing (FS) si ∼ Ei+1 − Ei

of the eigenvalues Ei of the operator Ĥ determining the system evolution obeys the
Poissonian distribution P (s) = e−s (where P (s) is the corresponding probability).
In the fully chaotic case the Wigner statistics P (s) = π

2
e−πs2/4 is common [4, 1, 2, 3].

Billiards with their classical counterparts being only partially chaotic demonstrate
an intermediate statistics and often referred as ’quasi-integrable’ [5, 6].

In more complicated systems as nuclei [3, 7] Wigner distribution does not reflect
anymore the complex boundaries but is determined by the complicated nature of
the operator Ĥ. In such systems the boundary conditions are often ’trivial’ in
the sense that they would lead to the integrable behavior in more simple quantum
billiard. We will hence refer to the later class of systems as to ’boundary-determined’
one whereas the former will be called ’operator-determined’ systems.

Many other physical systems beside nuclei posses an operator, complex enough to
demonstrate the Wigner or intermediate statistics for simple boundary conditions
(or at least to demonstrate a level repulsion), such as atoms and molecules under
certain conditions [1, 3], quantum algorithms [8, 9, 10], but also relatively “simple”
systems such as acoustic resonators [11] or QD in external field [12, 13, 14].

An example with QD [12, 13, 14] is of especial importance for the present article. An
electron in a QD can posses non-Poissonian statistics even for perfectly rectangu-
lar boundaries in a presence of external field because the spin of electron is directly
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connected to its movement direction. In the other words, the internal degrees of free-
dom (spin) in Ĥ are coupled to the spatial degrees of freedom defined by boundary
conditions. Such quantum billiards belong neither to purely ’boundary-determined’
systems nor to purely ’operator-determined’, because the boundary conditions are
important here. This behavior do not have a classical counterpart because the in-
ternal degrees of freedom disappear in the classical limit.

In this article we present an example of such internal-to-spatial degrees of freedom
coupling in optics. For electromagnetic waves, microwave resonators and (more
recently) microcavity lasers are considered as typical quantum billiards and the
internal degree of freedom is represented by the light polarization direction. One of
the class of microcavities which becomes recently an attractive object for quantum
chaos studies is a vertical cavity surface emitting laser (VCSEL) [15, 16, 17]. An
important property of contemporary broad area VCSELs is their high homogeneity
in the transverse direction, which allows to consider them as a two-dimensional
quantum billiards. In addition, the intracavity anisotropy is rather small allowing
simultaneous dynamics of both polarization directions and nontrivial interaction
between them.

It was recently shown [18] that in VCSELs an effective anisotropy arises which is
different for different transverse propagation directions, thus providing a mechanism
for the coupling of polarization and spatial degrees of freedom. In this article we
study the deviation from the Poissonian statistics (PS) in the square VCSEL arising
due to such coupling. The possibility of such deviation was pointed out in [18].
Here we show that the intracavity birefringence and its alignment to the boundaries
play an important role in the above mentioned mechanism, allowing to control this
deviation.

2 VCSEL as a quantum billiard

Despite the lasing process has sufficiently nonlinear nature, many properties of the
spatio-temporal distribution in broad-area VCSELs can be obtained already in a
linear approximation [18]. In this section we consider a linear operator Ĥ governing
the behavior of the optical field in VCSEL close to lasing threshold.

A typical structure of VCSEL is presented in Fig. 1. Although the working area of
VCSEL is very homogeneous in the transverse direction, the longitudinal structure
of the cavity is rather complicated. The important part is two stacks of λ/4 layers
playing the role of the cavity mirrors (distributed Bragg mirrors (DBRs)) enclosing
a thin layer representing a cavity and containing a nonlinear active media.

Despite the complicated longitudinal cavity structure the description of VCSEL can
be reduced to exclude the longitudinal degrees of freedom from the consideration
[19]. This is possible because VCSEL operates predominantly in a single longitudinal
mode. After such reduction and linearization of the resulting equations near lasing
threshold [18], the complex longitudinal cavity structure is described by a single
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Figure 1: (color online). The longitudinal structure of a typical VCSEL (a), the
typical transverse intensity distribution encountered at low temperatures (b)-(d)
[23]

linear operator defining evolution of the complex vector field envelope E(r⊥, t) with
time:

Ė(r⊥, t) = iĤE(r⊥, t), (1)

where dot means the partial time derivative and r⊥ = {x, y} are the transverse
coordinates and Ĥ is a linear operator acting on a set of functions f(r⊥).

It should be noted that the Eq. (1) is valid, strictly speaking, only close to threshold.
However, the structure of modes and the dispersion relation defined by this equation
is valid also far from threshold [20].

2.1 Ĥ for transversely infinite device

The operator Ĥ is most easily described for the infinite VCSEL (i. e. without
transverse boundaries). In this case, their eigenfunctions are the tilted waves of
the type E ∼ e−ir⊥k⊥ with certain transverse wavevector k⊥ = {kx, ky}. Therefore,
Ĥ can be written in the transverse Fourier space as a multiplication to a matrix-
function β∞(k⊥):

F [ĤE(r⊥, t)] = β∞(k⊥)E(k⊥, t), (2)

where F [f(r⊥)] ∼ ∫
feir⊥k⊥dxdy is the transverse Fourier transform. β∞ is a 2× 2-

matrix acting on the harmonics of the electric field E with k⊥-dependent coefficients.
In k⊥-space Eq. (1) can be written as Ė(k⊥) = β∞(k⊥)E(k⊥).

Close to lasing threshold, losses and gain in laser compensate each other, therefore
the operator Ĥ is rather close to Hermitian one. For simplicity, in the following we
neglect the non-hermitian part of the operator. In this approximation (and assuming
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the laser infinite in transverse directions) the matrix β∞ can be written as

β∞(k⊥) = ak2
⊥ + Γ + bs(k⊥), (3)

where a and b are the parameters defined by the device structure, k⊥ = |k⊥| is the
modulus of transverse wavevector (and hence the first term in Eq. (3) represents the
’trivial’ part of our billiard problem, i.e. the kinetic energy of free-moving ’particle’).
The second term is the intracavity phase anisotropy, which in the Cartesian basis
formed by principal anisotropy axis can be written as Γ = diag(γp,−γp), where
diag(·, ·) is a 2× 2 diagonal matrix with corresponding elements on the diagonal, γp

is strength of the anisotropy. The amplitude anisotropy is neglected in the present
consideration.

The matrix s(k⊥) represents the DBR reflection phases. In the infinite device,
the reflection from DBR can be represented by a k⊥-depended matrix R(k⊥), so
that the reflected field Er(k⊥) is connected to the incident field Ei(k⊥) as Er =
REi. The (k⊥-dependent) eigenvectors of R are named s- and p- waves and have
polarization parallel and perpendicular to k⊥, correspondingly (i.e. they are radially
and azimuthal polarized). In the polarization basis, which axes coincide with s- and
p- waves R has a form R = diag(Rs, Rp) with Rs = |Rs|eiss, Rp = |Rp|eisp being the
reflections for s- and p- waves with corresponding phases ss and sp [21, 22]. In the
following we assume that the both reflectors are equivalent. Under these conditions,
s = diag(ss, sp). Because s is k⊥ dependent matrix and in general ss �= sp, the last
term in Eq. (3) introduces a k⊥-dependent anisotropy.

2.2 Reduction to a square aperture

The theory above was developed for an infinite device. Now we introduce square
boundaries determined physically by the oxidation aperture which leads to a guiding
of the cavity modes in the transverse direction. The modes of a square waveguide
(neglecting the rest of the cavity) can be under certain simplifications written as
E

(x)
nm = fn(πx/a)fm(πy/a)nx, E

(y)
nm = fn(πx/a)fm(πy/a)ny, where a is the waveguide

size, x, y are unit vectors in corresponding directions, fn(z) = cos(nz) if n is odd
and sin(nz) if n is even.

In the terms of the k⊥ they are nothing but a four-spot configurations in k⊥-space
(see Fig. 2):

k1 = (kx, ky), k2 = (kx,−ky), (4)
k3 = (−kx, ky), k4 = (−kx,−ky). (5)

For the case of the whole cavity (taking account also the DBRs) the situation be-
comes more complicated. The modes of the waveguide are polarizationally degener-
ate. Therefore, any combination of the two modes with fixed kx, ky in Eq. (4) (but
different polarizations) is also a waveguide eigenmode. However, no of these modes
are also the modes of DBRs, because the directions of DBR mode polarization are
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Figure 2: (color online). The polarizational mode structure of DBR and waveguide
modes in a square VCSEL in k⊥-plane. The mode structure of the waveguide is
given by four spot configuration (see Eq. (4)) with equal polarization in every spot
(short blue arrows). In contrast, the polarization eigen-directions of the DBR modes
(long red arrows) are either parallel or perpendicular to k⊥ in every spot. Possible
orthogonally-polarized configurations arte marked by either solid or dashed line
styles.

different for every k⊥-spot (Fig. 2, red long lines). Therefore, no combination of
waveguide mode with wavenumber kx, ky is an eigenfunction of the full problem
Eq. (1) with square boundary conditions.

The eigenfunctions of Eq. (1) exist, but they are thus the combinations of the waveg-
uide modes with different wavevectors k⊥. Physically that means, that reflection
from DBR rescatters the eigenmodes of the waveguide into another waveguide modes
(with different k⊥). This rescattering creates in essence the connection between the
transverse and polarizational degrees of freedom because it is purely ’vectorial’ effect
and disappear if we do not take into account polarization [18].

We can construct the operator acting on the modes of the waveguide βc using β∞ as
a starting point. We then provide extension of β to the four-spot configuration of
Eq. (4), Eq. (5), which gives us the operator βk = diag {β(k1), β(k2), β(k3), β(k4)}
(diag (. . .) is 8×8 block-diagonal matrix with corresponding 2×2 matrices on the di-
agonal). Then we transform the matrix to the basis of cos(kxx), cos(kyy), sin(kxx), sin(kyy)
functions (from a exp(ikxx + ikyy) one, which a describe single spot in k⊥ space):

βc = SβkS
−1, (6)

where matrix S is

S =
1

4

⎛
⎜⎜⎝

� � � �

−i · � −i · � i · � i · �
−i · � i · � −i · � i · �
−� � � −�

⎞
⎟⎟⎠ , (7)

5



where � =
(

1 0
0 1

)
is a 2 × 2 unit matrix.

The matrix βc is defined on a space more general than the one formed by the simple
waveguide modes, because it contains arbitrary combinations of sin, cos functions.
The “suspicious” modes in βc are rescattered into the true waveguide modes with
different k⊥. We then obtain the resulting operator βs.

βijklmn
s =

∑
i′j′k′l′m′n′

T ijklmn
i′j′k′l′m′n′β

i′j′k′l′m′n′
c , (8)

where T is an operator defined below, i, j, i′, j′ are polarization indices taking values
x and y, k, l, k′, l′ are the indices numbering the x-indices of transverse modes (i. e.,
for example, sin(πkx/a) or cos(πlx/a)) and m, n, m′, n′ are the corresponding y-
indices. The resulting matrix βijklmn

s acts on the field as

E
(i)
km =

∑
j,l,n

βijklmn
s E

(j)
ln , (9)

The elements of operator T ijklmn
i′j′k′l′m′n′ are given by the expression (up to normalizing

constant):

T ijklmn
i′j′k′l′m′n′ =

∫ a/2

−a/2

f
(i)
k f (i)

m f
(i′)
k′ f

(i′)
m′ f

(j)
l f (j)

n f
(j′)
l′ f

(j′)
n′ dxdy, (10)

where by f
(i)
m the vectorial extensions of functions fm are denoted: f

(x)
m = {fm, 0}

and f
(y)
m = {0, fm}. Not all the elements of T off the diagonal (which represent

rescattered modes) are zeros. The integrals in Eq. (10) can be elementary calculated
analytically for every particular combination of indexes. In general, non-diagonal
elements are decaying as ∼ 1

k−l
1

m−n
off the main diagonal (k = l, m = n).

The matrix βijklmn
s represents the operator Ĥ in basis of waveguide modes. For

the purposes of comparison let us define now the matrix βp, where the coupling
of polarization and transverse degrees of freedom is neglected. In such matrix, we
neglect the modes which are rescattered to the other wavevectors due to unmatching
of the polarizations of DBRs and the waveguide (as shown in Fig. 2). It can be
written in terms of components of the full matrix βs:

βijklmn
p = δklδnmβijklmn

s , (11)

where δnm is the Kronecker δ-symbol.

2.3 Numerical procedure

The set of indices βijklmn
s represent the operator Ĥ in basis of waveguide modes. For

numerical computation of the eigenvalues of such operator one have to transform
it into a square matrix. It can be done by introducing the indices I = i + 2k +
2(Nmax − Nmin + 1)m, J = j + 2l + 2(Nmax − Nmin + 1)n where Nmax and Nmin are
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the maximal and minimal possible indexes in fn (defined by cutoff). In numerical
simulation, a cut-off of high as well as low order modes were made. Physically the
high order modes are cut-off because they are not guided by the effective waveguide
formed by the oxidation layer anymore. On the other hand, we are trying to model
physical situation where predominantly high enough transverse modes are exited.
Therefore we cut-off also the modes of lowest order to reduce the matrix size. For the
simulations the values N = 40, Nmin = 20 were taken. This reasonably represents
the mode selection in real devices [15, 18]. The matrix βI,J

s is therefore a matrix of
the size ∼ 882 × 882 with corresponding number of eigenvalues.

3 The FS distribution
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Figure 3: (color online). Statistics of the eigenvalues of βs (red solid curves) and
βp (blue dot-dashed curves) for different intracavity anisotropies Γ (in particular
for different strengths γp and angles α of the main anisotropy axes in respect to
x-axis). (a) — γp = 30 ns−1, α = π/15; (b)—γp = 60 ns−1, α = π/15; (c)—γp = 30
ns−1, α = 0; For comparison, the Poisson and Wigner statistics are plotted by green
dotted lines.

The statistics P (s) of FS si ∼ Ei+1−Ei of the eigenvalues Ei of the matrices βs and
βp is presented in Fig. 3 for typical VCSEL parameters [18, 23].

For the Fig. 3(a) the birefringence γp is 30 ns−1 and the anisotropy axes are rotated
to the angle π/15 to the direction of x-axis. One can see that the the FS distri-
bution of the matrix βs (Fig. 3(a), red solid curve) is in between the Poissonian
one and the Wigner one (Fig. 3(a), green dotted curves). At it was mentioned in
the previous section, the matrix βs is the the representation of the operator Ĥ in
the basis of the square waveguide modes and includes the interaction of transverse
and polarization degrees of freedom. In contrast, for the matrix βp (with excluded
transverse-polarization interaction) the FS distribution is very close to the Poisso-
nian one (Fig. 3(a), green dashed curve).

From the previous it is follows that the polarization-spatial coupling is critical for
the deviation from the PS. The intracavity anisotropy (which is k⊥-independent
anisotropy), including its value and the tilt of the main axis in respect to the VCSEL
boundaries is an another critical parameter determining the spectral properties of
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βs. As the strength of the anisotropy γp increases (see Fig. 3(b)), the deviation
from PS decreases (although does not disappear at all). This behavior can be
explained in the following way: for large γp, the intracavity anisotropy “overcomes”
the Bragg-induced anisotropy in the sense, that the later plays less noticeable role in
determination of polarization of the eigenmodes. In the other words, with γp → ∞
the polarization degree of freedom “disappears” from the system.

In the other limit γp → 0 the deviation from PS also becomes less noticeable.
Moreover, for γp �= 0, if the angle α of the intracavity anisotropy axis (to the x-axis,
which is directed along one of the boundaries) is zero, the statistics becomes again
Poissonian (see Fig. 3(c)). This shows that the relation between the anisotropy axes
and the boundaries is another condition necessary for the deviation from PS, beside
the polarization-transverse coupling. In real devices, although the anisotropy is, as
a rule, aligned approximately to the boundaries due to the fabrication process, some
small misalignment as large as several degrees is present sometimes [23].

4 Discussion and Conclusions

As a conclusion, we have shown that the coupling of transverse and polarizational
degrees of freedom in slightly-anisotropic VCSEL, which appears due to distributed
Bragg reflectors (DBRs), can lead to deviation of the spacing distribution from the
Poissonian one even in perfectly square geometry.

The quantum billiard problem defined by Eq. (1) can be considered as a perturbation
of a “free movement” described by Ĥ ∼ Δ (see Eq. (3)) with the term ŝ + Γ as a
perturbation (here ŝ is the operator in the coordinate space corresponding to s(k⊥)
in Eq. (3)). The part ŝ is responsible for the polarization-transverse coupling. In
the presence of the misalignment of the intracavity anisotropy to the boundaries the
above mentioned rescattering becomes more “chaotic” and the spacing distribution
deviates from the Poissonian one.

The above mentioned perturbation is the essentially non-classical one because it
relies on the internal degrees of freedom of photons having no classical counter-
part. The mechanism presented here is also different from the one presented in [24],
which appears in periodically modulated optical waveguides (an optical analog of a
periodically-forced system). In particular, in contrast to [24], the deviation from PS
in VCSEL disappears in a circular geometry [17] because the term ŝ is isotropic in
this case.

In the present article, we fully disregarded the losses in the system. Although
this can be an acceptable approximation close to threshold (where losses are just
compensated by a gain), it is known that the presence of losses can influence the
statistics. This will be an interesting direction for the further study of the present
system.
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