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Abstra
tThe s
attering of a time-harmoni
 plane elasti
 wave by a two-dimensional periodi
stru
ture is studied. The grating pro�le is given by a Lips
hitz 
urve on whi
h thedispla
ement vanishes. Using a variational formulation in a bounded periodi
 
ell in-volving a nonlo
al boundary operator, existen
e of solutions in quasi-periodi
 Sobolevspa
es is investigated by establishing the Fredholmness of the operator generated bythe 
orresponding sesquilinear form. Moreover, by a Relli
h identity, uniqueness isproved under the assumption that the grating pro�le is given by a Lips
hitz graph.The dire
t s
attering problem for transmission gratings is also investigated. In this
ase, uniqueness is proved ex
ept for a dis
rete set of frequen
ies.1 Introdu
tionThis paper is 
on
erned with the s
attering of a time-harmoni
 plane elasti
 wave by anunbounded periodi
 stru
ture. Su
h stru
tures are also 
alled di�ra
tion gratings and havemany important appli
ations in di�ra
tive opti
s, radar imaging and non-destru
tive testing.We refer to the monograph [8℄ for histori
al remarks and details of these appli
ations.During the last twenty years, signi�
ant progress has been made 
on
erning the mathe-mati
al analysis and the numeri
al approximation of grating di�ra
tion problems for the
ase of in
ident a
ousti
 or ele
tromagneti
 waves, using integral equation methods (e.g.,[27℄, [16℄, [22℄, [25℄, [28℄) and variational methods (e.g., [22℄, [15℄, [9℄, [6℄, [18℄, [19℄, [29℄,[7℄). In parti
ular, the variational approa
h appeared to be well adapted to the analyti
aland numeri
al treatment of rather general two-dimensional and three-dimensional periodi
di�ra
tive stru
tures involving 
omplex materials and non-smooth interfa
es.In this paper we assume that a periodi
 surfa
e divides the three-dimensional spa
e intotwo non-lo
ally perturbed half-spa
es �lled with homogeneous and isotropi
 elasti
 media.Moreover, this surfa
e is assumed to be invariant in the x3-dire
tion, and its 
ross-se
tionin the (x1, x2)-plane is to be represented by a 
urve Λ whi
h is periodi
 in x1. All elasti
waves are assumed to be propagating perpendi
ular to the x3-axis, so that the problem 
anbe treated as a problem of plane elasti
ity. The spe
ial 
ase of an inpenetrable surfa
e onwhi
h all displa
ement vanishes leads to the Diri
hlet (or �rst boundary value) problem forthe Navier system in the unbounded domain above the grating pro�le Λ, while the s
atteringby a transmission grating is modeled by a 
orresponding transmission problem on the whole
(x1, x2)-plane.The �rst attempt to rigorously prove existen
e and uniqueness of solutions for the s
atteringof elasti
 waves by unbounded surfa
es is due to T. Arens; see [2℄, [3℄ for two-dimensionaldi�ra
tion gratings and [4℄, [5℄ for more general rough surfa
es. In parti
ular, in [2℄ existen
eand uniqueness of quasi-periodi
 solutions to the Diri
hlet problem was established in the
ase that the grating pro�le Λ is given by the graph of a smooth (C2) periodi
 fun
tion.1



The existen
e proof is based on the boundary integral equation method where the solutionis sought as a superposition of single and double layer potentials.Our main aim in this paper is to study the same problem, but via a variational approa
hin general Lips
hitz domains, whi
h is broad enough to 
over most 
ases that arise in ap-pli
ations of di�ra
tion gratings. We redu
e the Navier system with Diri
hlet boundary
ondition in the unbounded domain to an equivalent strongly ellipti
 variational problem ina bounded periodi
 
ell with a non-lo
al boundary 
ondition. An expli
it representation ofthe Diri
hlet-to-Neumann (DtN) map on the arti�
ial boundary is worked out, and a detailedanalysis of this DtN map is employed to prove the strong ellipti
ity of the sesquilinear form.Applying the Fredholm alternative, we then prove that there always exists a quasiperiodi
solution for either an in
ident pressure wave or an in
ident shear wave.To extend the uniqueness result of [2℄ to grating pro�les given by a Lips
hitz graph, we usea Relli
h identity and adapt an approa
h by Ne£as [26, Chap. 5℄ to deal with the Lips
hitzboundary. This generalizes the result of [20℄ for the s
alar quasi-periodi
 Helmholtz equationto the 
ase of the Navier system. More general Relli
h identities for the Navier equation (onbounded domains) 
an be found in [14℄.Moreover, the variational approa
h is extended to the 
ase of transmission gratings where aLips
hitz interfa
e separates two homogenous elasti
 media 
hara
terized by 
onstant elasti
parameters. This allows us to obtain general existen
e results, and uniqueness is provedex
ept for a dis
rete set of frequen
ies. Note that this approa
h also applies to the 
ase ofseveral Lips
hitz interfa
es.The paper is organized as follows. In Se
tion 2 we give the mathemati
al formulation ofthe s
attering problem in the 
ase of an inpenetrable surfa
e. Following [2℄, a radiation
ondition at in�nity based on Rayleigh expansions is used. In Se
tion 3 we formulate thevariational problem in a bounded periodi
 
ell whi
h is equivalent to the boundary valueproblem. Using Korn's inequality and the Fourier series representation of the DtN map, weprove the strong ellipti
ity of the variational equation over the energy spa
e. In Se
tion 4 wepresent our solvability results for the Diri
hlet 
ase. The well-posedness for the boundaryvalue problem with mixed Diri
hlet and impedan
e boundary 
onditions is also established.In Se
tion 5 we prove existen
e and uniqueness results for the transmission problem.The problem of s
attering by a di�ra
tion grating 
an be seen as a spe
ial 
ase of s
atteringby a rough surfa
e. Note that the periodi
ity 
onsiderably simpli�es the mathemati
alargument, be
ause the 
ompa
t imbedding of Sobolev spa
es 
an be applied to a singleperiod of the unbounded domain. For a rigorous mathemati
al analysis of rough surfa
es
attering problems for the Helmholtz equation via variational methods, we refer to [11℄,[12℄, [10℄. The variational approa
h to s
attering by a rough surfa
e in an elasti
 mediumwill be the task of future work.2 Formulation of the Diri
hlet problemLet the pro�le of the di�ra
tion grating be given by a Lips
hitz 
urve Λ ⊂ R2 whi
h is2π-periodi
 in x1, and let D be the unbounded domain above Λ. We assume the region Dis �lled with an isotropi
, homogenous elasti
 medium 
hara
terized by the Lamé 
onstants
2



λ, µ satisfying µ > 0, λ + µ > 0. Let
kp := ω/

√

2µ+ λ , ks := ω/
√
µbe the 
ompressional and shear wave numbers respe
tively. We assume that a time harmoni
plane elasti
 wave uin with in
ident angle θ ∈ (−π/2, π/2) is in
ident on Λ from above, whi
his either an in
ident pressure wave taking the form

uin = uin
p (x) = θ̂ exp(ikpθ̂ · x) with θ̂ := (sin θ,− cos θ) (2.1)or an in
ident shear wave of the form

uin = uin
s (x) = θ̂⊥ exp(iksθ̂ · x) with θ̂⊥ := (cos θ, sin θ) . (2.2)The propagation of time harmoni
 elasti
 waves in D is governed by the Navier equation (orsystem)

(∆∗ + ω2)u = 0 in D , ∆∗ := µ∆ + (λ+ µ) grad div , (2.3)where u = uin + usc is the total displa
ement �eld and usc denotes the s
attered �eld. Here
ω > 0 stands for the angular frequen
y of the harmoni
 motion, and we assume for simpli
itythat the mass density of the elasti
 medium is equal to one. Moreover, we require that thetotal �eld satis�es the boundary 
ondition

u = 0 on Λ . (2.4)The periodi
ity of the stru
ture, together with the form of the in
ident waves, implies thatthe solution u must be quasiperiodi
 with phase-shift α (or α-quasiperiodi
), i.e.
u(x1 + 2π, x2) = exp(2iαπx1) u(x1, x2) , (x1, x2) ∈ D , (2.5)where either α := kp sin θ for the in
ident pressure wave (2.1), or α := ks sin θ for the in
identshear wave (2.2).To ensure well-posedness of the boundary value problem (2.3)�(2.5), a radiation 
onditionmust be imposed as x2 → +∞. First we note that the s
attered �eld usc, whi
h also satis�esthe Navier equation (2.3), 
an be de
omposed in D as

usc =
1

i
(grad ϕ+

−−→
curl ψ) with ϕ := − i

k2
p

div usc , ψ :=
i

k2
s

curl usc , (2.6)where the two 
url operators in R2 are de�ned by
curl u := ∂1u2 − ∂2u1 , u = (u1, u2)

⊤ and −−→
curl v := (∂2v,−∂1v)

⊤ ,and the s
alar fun
tions ϕ, ψ satisfy the homogeneous Helmholtz equations
(∆ + k2

p)ϕ = 0 and (∆ + k2
s)ψ = 0 in D . (2.7)Here and in the following the notation ∂jv = ∂v/∂xj is used. Note that the relations (2.6)and (2.7) follow from the well known de
omposition [23℄ of the s
attered �eld usc into its
ompressional and shear parts,

usc = up + us , up := − 1

k2
p

grad div usc , us :=
1

k2
s

−−→
curl curl usc ,3



and the fa
t that usc satis�es equation (2.3).Now, as ϕ and ψ are α-quasiperiodi
 solutions to the Helmholtz equations (2.7) in theunbounded domain D, we impose the usual outgoing wave 
ondition on them (see, e.g.,[22℄). For x2 > Λ+, we assume that ϕ, ψ have Rayleigh expansions of the form
ϕ(x) =

∑

n∈Z

Ap,n exp(iαnx1 + iβnx2) , ψ(x) =
∑

n∈Z

As,n exp(iαnx1 + iγnx2) , (2.8)where the 
onstants Ap,n, As,n ∈ C are 
alled Rayleigh 
oe�
ients and
Λ+ := max

(x1,x2)∈Λ
x2 , αn := α + n , βn :=

{ √

k2
p − α2

n if |αn| ≤ kp

i
√

α2
n − k2

p if |αn| > kp ,
(2.9)and γn is de�ned analogously as βn with kp repla
ed by ks. It follows from (2.6) that thetwo 
omponents of the s
attered �eld usc in D 
an be represented as

usc
1 =

1

i
(∂1ϕ+ ∂2ψ) , usc

2 =
1

i
(∂2ϕ− ∂1ψ) . (2.10)Therefore, we �nally obtain a 
orresponding expansion of usc into outgoing plane elasti
waves:

usc(x) =
∑

n∈Z

{

Ap,n

(

αn

βn

)

exp(iαnx1 + iβnx2)

+As,n

(

γn

−αn

)

exp(iαnx1 + iγnx2)

}

,

(2.11)for x2 > Λ+. This is the radiation 
ondition we are going to use in the following; see also[2℄. Sin
e βn and γn are real for at most a �nite number of indi
es, only a �nite numberof plane waves in (2.11) propagate into the far �eld, with the remaining evanes
ent waves(or surfa
e waves) de
aying exponentially as x2 → +∞. The above expansion 
onvergesuniformly with all derivatives in the half-plane {x ∈ R2 : x2 ≥ b}, for any b > Λ+, and theRayleigh 
oe�
ients are uniquely determined by the Fourier 
oe�
ients ûn of the fun
tion
exp(−iαx1)u

sc(x1, b):
ûn = Dn

(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

, Dn :=

(

αn γn

βn −αn

)

. (2.12)Note here that detDn = −(α2
n + βnγn) 6= 0 for all n ∈ Z. Our di�ra
tion problem 
an nowbe formulated as the following boundary value problem.Diri
hlet problem (DP): Given a grating pro�le 
urve Λ ⊂ R2 (whi
h is 2π-periodi
 in

x1) and an in
ident �eld uin of the form (2.1) or (2.2), �nd a ve
tor fun
tion u = uin +usc ∈
H1

loc(D)2 that satis�es (2.3)�(2.5) and the radiation 
ondition (2.11).3 Variational formulation of (DP)Following the approa
h of [22℄ in the 
ase of the s
alar Helmholtz equation, we propose anequivalent variational formulation of the boundary value problem (DP), whi
h is posed in a4



bounded periodi
 
ell in R2 and is enfor
ing the radiation 
ondition. Introdu
e an arti�
ialboundary
Γb := {(x1, b) : 0 ≤ x1 ≤ 2π} , b > Λ+ ,and the bounded domain

Ωb = ΩΛ,b := {(x1, x2) ∈ D : 0 < x1 < 2π, x2 < b} ,lying between the segment Γb and one period of the grating pro�le 
urve whi
h we denote by
Λ again. We assume that Λ is a Lips
hitz 
urve, so that Ωb is a bounded Lips
hitz domain.Let H1

α(Ωb) denote the Sobolev spa
e of s
alar fun
tions on Ωb whi
h are α-quasiperiodi
with respe
t to x1. We introdu
e the spa
e
Vα = Vα(Ωb) := {u ∈ H1

α(Ωb)
2 : u|Λ = 0} ,whi
h is the energy spa
e for our variational problem. In the following Vα is equipped withthe norm in the usual Sobolev spa
e H1(Ωb)

2 of ve
tor fun
tions.By the �rst Betti formula, it follows that for u, ϕ ∈ Vα

−
∫

Ωb

(∆∗ + ω2)u · ϕdx =

∫

Ωb

(aL(u, ϕ) − ω2u · ϕ) dx−
∫

Γb

ϕ · Tu ds (3.1)where the bar indi
ates the 
omplex 
onjugate, and
aL(u, ϕ) = (2µ+ λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2) + µ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+µ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1) + λ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) , (3.2)and Tu stands for the stress ve
tor or tra
tion having the form:
Tu = 2µ ∂nu+ λndiv u+ µ

(

n2 (∂1u2 − ∂2u1)
n1 (∂2u1 − ∂1u2)

)

, (3.3)where n = (n1, n2)
⊤ denotes the exterior unit normal on the boundary of Ωb. Moreover, wehave
Tu = T (µ, λ)u := 2µ ∂2u+ λ

(

0
1

)

(∂1u1 + ∂2u2)

+µ

(

1
0

)

(∂1u2 − ∂2u1) on Γb .

(3.4)Now we introdu
e the DtN map T on the arti�
ial boundary Γb. For any u ∈ H1
α(Ωb)

2, wehave
v := u|Γb

∈ H1/2
α (Γb)

2 , exp(−iαx1) v ∈ H1/2
per (Γb)

2from the tra
e theorem, where Hs
α(Γb) and Hs

per(Γb) denote the Sobolev spa
es of order s ∈ Rof fun
tions on Γb that are α-quasiperiodi
 and periodi
 respe
tively. Note that an equivalentnorm on Hs
α(Γb)

2 is given by
‖v‖Hs

α(Γb)2 =
(

∑

n∈Z

(1 + |n|)2s |v̂n|2
)1/2

,5



where v̂n ∈ C2 are the Fourier 
oe�
ients of exp(−iαx1) v(x1, b). For any v ∈ H
1/2
α (Γb)

2, wede�ne T v as the tra
tion Tusc on Γb where usc is the unique α-quasiperiodi
 solution of thehomogenous Navier equation in {x2 > b} whi
h satis�es (2.11) and usc = v on Γb. The nextlemma shows an expli
it representation of T .Lemma 1 With the notation introdu
ed in (2.9), we have
T v = T (ω, α)v = −

∑

n∈Z

Wnv̂n exp(iαnx1) for v =
∑

n∈Z

v̂n exp(iαnx1) ∈ H1/2
α (Γb)

2 , (3.5)where
Wn = Wn(ω, α) :=

1

i

(

ω2βn/dn 2µαn − ω2αn/dn

−2µαn + ω2αn/dn ω2γn/dn

)

, dn := α2
n + βnγn. (3.6)Proof. Let usc be the radiating solution of (2.3) in {x2 > 0} su
h that usc = v on Γb. Then

usc takes the form (2.11), where the 
orresponding Rayleigh 
oe�
ients Ap,n, As,n are givenby
(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

= D−1
n v̂n ; (3.7)see (2.12). Moreover, from the representation (2.10) of usc, the Rayleigh expansions (2.8),(2.11) and the relations (2.7), (3.4), we obtain

Tusc = 2µ ∂2u
sc + λ

(

0
1

)

(∂1u
sc
1 + ∂2u

sc
2 ) + µ

(

1
0

)

(∂1u
sc
2 − ∂2u

sc
1 )

= 2µ ∂2u
sc − iλ

(

0
1

)

∆ϕ + iµ

(

1
0

)

∆ψ

= 2µ
∑

n∈Z

{

iβnAp,n

(

αn

βn

)

exp(iαnx1 + iβnx2) + iγnAs,n

(

γn

−αn

)

exp(iαnx1 + iγnx2)

}

+
∑

n∈Z

{

iλk2
pAp,n

(

0
1

)

exp(iαnx1 + iβnx2) − iµk2
sAs,n

(

1
0

)

exp(iαnx1 + iγnx2)

}

.Together with (3.7), this implies
(̂T v)n =

(

2iµβnαn 2iµγ2
n − iµk2

s

2iµβ2
n + λik2

p −2iµγnαn

)(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

= i

(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)

D−1
n v̂n

=
i

dn

(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)(

αn γn

βn −αn

)

v̂n

= i

(

ω2βn/dn 2µαn − ω2αn/dn

−2µαn + ω2αn/dn ω2γn/dn

)

v̂n

= −Wnv̂n , 6



where (̂T v)n denotes the n-th Fourier 
oe�
ient of exp(−iαx1) T v = exp(−iαx1)Tu
sc. This
ompletes the proof by re
alling the de�nitions of Wn and dn in (3.6). �Next we introdu
e the sesquilinear form B(u, ϕ) de�ned by

B(u, ϕ) :=

∫

Ωb

(

aL(u, ϕ) − ω2u · ϕ
)

dx−
∫

Γb

ϕ · T u ds , ∀ u, φ ∈ Vα , (3.8)with T u := T (u|Γb
). Note that, by Lemma 1, T u takes the form

T u = −
∑

n∈Z

Wnûn exp(iαnx1) , (3.9)where ûn are the Fourier 
oe�
ients of exp(−iαx1) u(x1, b). Applying Betti's identity (3.1)to a solution u = usc + uin of (DP) and using the fa
t that
Tu = T (usc + uin) = T usc + Tuin = T u+ f0 , with f0 := Tuin − T uin ,we obtain the following variational formulation of (DP): Find u ∈ Vα su
h that

B(u, ϕ) =

∫

Γb

f0 · ϕds , ∀ ϕ ∈ Vα . (3.10)Here
f0 = fp,0 :=

2iβ0kp(λ+ 2µ)

d0

(

−α
γ0

)

exp(iαx1 − iβ0b) (3.11)for an in
ident pressure wave of the form (2.1), and
f0 = fs,0 := −2iγ0ksµ

d0

(

β0

α

)

exp(iαx1 − iγ0b) (3.12)for an in
ident shear wave of the form (2.2). The problems (DP) and (3.10) are equivalentin the following sense.Remark 1 If u ∈ H1
loc(D)2 is a solution of the boundary value problem (DP), then u|Ωbsatis�es the variational problem (3.10). Conversely, a solution u ∈ Vα(Ωb) of (3.10) 
anbe extended to a solution u = uin + usc of the Navier equation (2.3) for x2 ≥ b, where uscis de�ned by the relations (2.11), (2.12) via the Fourier 
oe�
ients ûn of exp(−iαx1) (u −

uin)(x1, b).To study the form B, the following lemma is needed. For a matrix M ∈ C2×2, let ReM :=
(M + M∗)/2, and we shall write ReM > 0 if ReM is positive-de�nite. Here M∗ is theadjoint of M with respe
t to the s
alar produ
t (·, ·)C2 in C2.Lemma 2 Let Wn = Wn(ω, α) be de�ned as in Lemma 1. Then(i) Given a �xed frequen
y ω > 0, we have ReWn > 0 for all su�
iently large |n|.(ii) There exists a su�
iently small frequen
y ω0 > 0 su
h that

(ReWn z, z)C2 ≥ C |n| |z|2 , ∀ z ∈ C2 , ∀ ω ∈ (0, ω0] , ∀ n 6= 0 (3.13)with some 
onstant C > 0 independent of ω and n.7



Proof. We 
an write the matrix Wn as
Wn =

(

an icn
−icn bn

)

, an := −i ω
2βn

dn
, bn := −i ω

2γn

dn
, cn :=

αn

dn
(ω2 − 2µdn) . (3.14)Let �rst ω > 0 be �xed. We have

βn = i
√

(n+ α)2 − k2
p ∼ i |n| , γn = i

√

(n+ α)2 − k2
s ∼ i |n| as |n| → ∞ , (3.15)and, on using Taylor expansions,

dn = α2
n + βnγn = (n+ α)2

{

1 −
√

1 − k2
p

(n+ α)2

√

1 − k2
s

(n+ α)2

}

∼ k2
p + k2

s

2
, as |n| → ∞ .

(3.16)Moreover, from (3.14)�(3.16) we have, for su�
iently large |n|,
an > 0 , bn > 0 cn ∈ R , ReWn =

(

an i cn
−i cn bn

)

. (3.17)Note that the relation Re .Wn > 0 holds if and only if
an > 0 and det(ReWn) = an bn − c2n > 0. (3.18)It is easily seen thatdet(ReWn) =

1

d2
n

(

−ω4 βn γn − α2
n (ω2 − µ dn)

2
)

=
1

dn

(

−ω4 + 4α2
n µ (ω2 − µdn)

)

,

(3.19)whi
h together with (3.16) and the relations kp = ω/
√

2µ+ λ, ks = ω/
√
µ implies that

ω2 − µ dn ∼ ω2 − µ

2

(

ω2

2µ+ λ
+
ω2

µ

)

= ω2 µ+ λ

2(2µ+ λ)
> 0 , as |n| → ∞ . (3.20)From (3.19) and (3.20) we now obtain the se
ond inequality of (3.18) for all |n| su�
ientlylarge, whi
h 
ompletes the proof of assertion (i).To prove assertion (ii), we also need to analyze the behavior of ReWn as ω → 0. Noti
ethat, for all su�
iently small ω > 0 and n 6= 0, we have the relations

βn/i ≥ C |n| , γn/i ≥ C |n| , (3.21)with a positive 
onstant C independent of ω and n. Moreover, by arguing as in (3.16),
dn = ω2 3µ+ λ

2µ (2µ+ λ)
+ O(ω4) , as ω → 0 ,whi
h yields

ω2 − µ dn = ω2 µ+ λ

2(2µ+ λ)
+ O(ω4) , as ω → 0 , (3.22)8



uniformly in n 6= 0. Thus, 
ombining (3.19), (3.21) and (3.22), we �nd that there exists asu�
iently small frequen
y ω0 > 0 su
h that, for all ω ∈ (0, ω0] and n 6= 0,
|n|−1 an ≥ c > 0 , |n|−2 det(ReWn) ≥ c > 0 ,whi
h means that the matri
es |n|−1 ReWn are uniformly positive-de�nite; 
ompare (3.18).This implies estimate (3.13) and �nishes the proof of assertion (ii). �It follows from Lemma 1 and the relations (3.14)�(3.16) that the DtN operator T mapsthe Sobolev spa
e H1/2
α (Γb)

2 
ontinuously into H−1/2
α (Γb)

2. Therefore, the sesquilinear form
B(u, ϕ) de�ned in (3.8) is bounded on the energy spa
e Vα. Setting

B(u, ϕ) = (Bu, ϕ)Ωb
∀u , ϕ ∈ Vα , (3.23)the form B obviously generates a 
ontinuous linear operator B : Vα → V ′

α. Here V ′
α denotesthe dual of the spa
e Vα with respe
t to the duality (·, ·)Ωb

extending the s
alar produ
t in
L2(Ωb)

2.We 
all a bounded sesquilinear form B(·, ·) given on some Hilbert spa
e X strongly ellipti
if there exists a 
ompa
t form q(·, ·) su
h that
|ReB(u, u)| ≥ c ||u||2X − q(u, u) , ∀ u ∈ X.To establish the strong ellipti
ity of the sesquilinear form B de�ned in (3.8), we need thefollowing auxiliary results on the bilinear form aL de�ned in (3.2), whi
h 
an be written as

aL(u, v) = λ div u div v + 2µ
2
∑

i,j=1

εij(u) εij(v) εij(u) := (∂jui + ∂iuj)/2 .Under our assumptions on the Lamé 
onstants, µ > 0, λ+µ > 0, we have the estimate (e.g.,[21, Chap. 5.4℄)
∫

G

aL(u, u) dx ≥ C(G)
2
∑

i,j=1

||εij(u)||2L2(G) , ∀ u ∈ H1(G)2 , (3.24)with a positive 
onstant C(G), for ea
h bounded Lips
hitz domain G ⊂ R2. To obtain alower bound for the se
ond term in (3.24), the well known Korn's inequality 
an be used;see e.g. [24, Chapter 10℄, [17, Chapter 3℄ for a proof.Lemma 3 For ea
h bounded Lips
hitz domain G ⊂ R2, we have the inequality
2
∑

i.j=1

||εij(v)||2L2(G) +

2
∑

i=1

||vi||2L2(G) ≥ C(G) ||v||2H1(G)2 , ∀ v ∈ H1(G)2 . (3.25)Remark 2 Let G be a bounded Lips
hitz domain in R2, and suppose that Γ0 ⊂ ∂G haspositive Lebesgue measure. Then, using (3.25) and the arguments in the proof of [17, Chapter3,Theorem 3.3℄, one 
an prove that
||v||2H1(G)2 ≤ C(G)

(

||v||2L2(Γ0)2 +
2
∑

i,j=1

||εij(v)||2L2(G)

)

, ∀ v ∈ H1(G)2 .9



In parti
ular, if v ∈ H1(G)2 satis�es v|Γ0
= 0, we see that

|v| :=

(

2
∑

i,j=1

||εij(v)||2L2(G)

)1/2is an equivalent norm of v in H1(G)2, and from (3.24) we then have the estimate
∫

G

aL(v, v) dx ≥ C(G) ||v||2H1(G)2 ,with C(G) > 0 not depending on v.We are now ready to prove the main result of this se
tion.Theorem 1 Assume that the grating pro�le Λ is a Lips
hitz 
urve. Then the sesquilinearform B de�ned in (3.8) is strongly ellipti
 over Vα. Moreover, the operator B de�ned by(3.23) is always a Fredholm operator with index zero.Proof. Sin
e u vanishes on Λ, it follows from Korn's inequality (see Lemma 3 and Remark2) that there exists a positive 
onstant C su
h that
∫

Ωb

aL(u, ū) dx ≥ C ||u||2H1(Ωb)2
= C ||u||2Vα

, ∀ u ∈ Vα . (3.26)Moreover, the operator K : Vα → V ′
α de�ned by

(Ku, ϕ)Ωb
= −ω2

∫

Ωb

u · ϕ̄ dx , ∀ u, ϕ ∈ Vα (3.27)is 
ompa
t. To prove the strong ellipti
ity of the form B de�ned in (3.8), it is now su�
ientto verify that T is the sum of a �nite dimensional operator and an operator T1 withRe {−∫
Γb

u · T1u ds

}

≥ 0 , ∀ u ∈ H1
α(Ωb)

2 . (3.28)To do so, we apply (3.9) and set
T1u := −

∑

|n|≥n0

Wn ûn , T0 := T − T1 .where n0 ∈ N is su�
iently large, so thatRe (Wnz, z)C2 ≥ 0 , ∀ z ∈ C2 , ∀ |n| ≥ n0 (3.29)by Lemma 2 (i). Then the operator T0 is �nite dimensional, and (3.28) is a 
onsequen
eof (3.29). This �nishes the proof of the strong ellipti
ity of the form B over Vα, and theFredholm property of B follows in a standard way. �

10



4 Existen
e and uniqueness resultsIn this se
tion, we establish existen
e and uniqueness theorems for the boundary value prob-lem (DP), or equivalently, the variational problem (3.10) in the 
ase of arbitrary frequen
ies.Problem (3.10) 
an also be written in the form
Bu = F0 , F0 ∈ V ′

α , (4.1)where F0 is given by the right hand side of (3.10), and the operator B : Vα → V ′
α is de�nedby (3.23) via the sesquilinear form (3.8).Let u ∈ Vα be a solution of the homogeneous equation Bu = 0. Then u 
an be extended toa radiating solution of (2.3) in D by setting u(x) = usc(x) for x2 ≥ b, where usc is de�ned bythe expansion (2.11) with the Rayleigh 
oe�
ients Ap,n, As,n, whi
h are uniquely determinedby the Fourier 
oe�
ients ûn of exp(−iαx1) u(x1, b) via the relation (2.12). We will needthe following te
hni
al result, whi
h has already been proved in [2℄. Here we prefer to givea more dire
t proof that is based on the Fourier series representation of the DtN operator.Lemma 4 If u ∈ Vα satis�es Bu = 0, then

Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks . (4.2)Proof. Taking imaginary parts in the variational equation (3.10) with ϕ = u and f0 = 0,we are going to prove thatImB(u, u) = −Im ∫
Γb

u · T u ds = −2πω2





∑

|αn|<kp

βn |Ap,n|2 +
∑

|αn|<ks

γn |As,n|2


 , (4.3)whi
h implies (4.2) sin
e the left hand side of (4.3) is zero. Rewrite the relation (2.12) inthe form
ûn = DnAn , An :=

(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

.Then the Fourier 
oe�
ients ŵn of exp(−iαx1) T u(x1, b) 
an be written
ŵn = i GnAn , Gn :=

(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)

;see the proof of Lemma 1. Hen
e we get
∫

Γb

u · T u ds = 2π
∑

n∈Z

(iGnAn, DnAn)C2 == 2π
∑

n∈Z

(iLnAn, An)C2 ,where Ln := D∗
nGn 
an be written as

Ln =

(

αn βn

γn −αn

)(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)

=

(

4µα2
n(Imβn)i+ ω2βn (ω2 − 2µα2

n)αn − 2µαnβnγn

2µαnβnγn − (ω2 − 2µα2
n)αn 4µα2

n(Imγn)i+ ω2γn

)

.11



Thus we obtainIm∫
Γb

u · T u ds = 2π Im∑
n∈Z

(iLnAn, An)C2 = 2π
∑

n∈Z

(ReLnAn, An)C2 .Finally, we note that the matrix ReLn is diagonal,ReLn = diag{en, fn} with en :=

{

ω2βn for α2
n < k2

p ,

0 for α2
n ≥ k2

p ,
fn :=

{

ω2γn for α2
n < k2

s ,

0 for α2
n ≥ k2

s .This 
ompletes the proof of (4.3). �The above lemma shows that a solution to the homogenous equation Bu = 0 
an only 
onsistof exponentially de
aying modes. Obviously this does not imply the uniqueness in problem(4.1); however, a solvability result 
an be proved by 
ombining Theorem 1 and Lemma 4.Theorem 2 Assume that the grating pro�le Λ is a Lips
hitz 
urve. Then, for all in
identwaves of the form (2.1) or (2.2), there exists a solution to the variational problem (3.10)and hen
e to problem (DP).Proof. By Theorem 1, equation (4.1) is solvable if its right hand side F0 is orthogonal (withrespe
t to the duality (·, ·)Ωb
) to all solutions v of the homogenous adjoint equation B∗v = 0.Here the adjoint operator B∗ : Vα → V ′

α of B satis�es (
f. (3.8) and (3.23))
(B∗v, ψ)Ωb

= (v,Bψ)Ωb
= B(ψ, v) =

∫

Ωb

(aL(v, ψ) − ω2 v · ψ) dx−
∫

Γb

ψ · T ∗v ds , ∀ ψ ∈ Vα ,where the adjoint T ∗ of T takes the form (
f. Lemma 1 and (3.9))
T ∗v = −

∑

n∈Z

W ∗
n v̂n exp(iαnx1) for v|Γb

=
∑

n∈Z

v̂n exp(iαnx1) .Let v ∈ Vα be an arbitrary solution of the equation B∗v = 0, i.e.,
B(ψ, v) = 0, ∀ ψ ∈ Vα . (4.4)Then we 
an extend v to a solution of (2.3) in the unbounded domain D by setting

v(x) =
∑

n∈Z

{

Ap,n

(

αn

−βn

)

exp(i αnx1i − βnx2)

+As,n

(

−γn

−αn

)

exp(i αnx1 − i γnx2)

}

,

(4.5)for x2 ≥ b, where the Rayleigh 
oe�
ients Ap,n, As,n ∈ C of v are determined by the Fourier
oe�
ients v̂n of exp(−iαx1) v|Γb
via the relation

v̂n =

(

αn −γ̄n

−β̄n −αn

)(

Ap,n exp(−iβ̄nb)
As,n exp(−iγ̄nb)

)

; (4.6)
ompare (2.12). Note that (4.5) is an expansion into in
oming plane elasti
 waves, and as inthe proof of Lemma 1, it 
an be veri�ed that Tv = T ∗v on Γb. Moreover, arguing as in the12



proof of Lemma 4, it follows that ea
h solution v of (4.4) has vanishing Rayleigh 
oe�
ientsof the in
oming modes,
Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks . (4.7)Consider �rst equation (4.1) in the 
ase of an in
ident pressure wave (2.1) where the righthand side is given by (3.10), (3.11). Then (4.7) implies that Ap,0 = As,0 = 0, hen
e

(F0, v)Ωb
=

∫

Γb

fp,0 · v ds = 0 for ea
h solution v of (4.4) ;note that kp < ks and α = α0 = kp sin θ . For an in
ident shear wave (2.2), where the righthand side of (4.1) is given by (3.10), (3.12), with α = ks sin θ, from (4.7) we only obtain
As,0 = 0 in general. However, this is enough to imply, together with (3.12) and (4.5), that

(F0, v)Ωb
=

∫

Γb

fs,0 · v ds = 2π Ap,0 fs,0 ·
(

α
−β0

)

= 0 ,for ea
h solution v of (4.4). Thus the right hand side of equation (4.1) is orthogonal to ea
hsolution of (4.4), whi
h �nishes the proof of the theorem. �We next give the main theorem of this se
tion. Supposing the grating surfa
e is givenby a Lips
hitz graph, we establish the uniqueness in the Diri
hlet problem for arbitraryfrequen
ies. Su
h a uniqueness result has already been obtained in [2℄ for smooth pro�lefun
tions; see also [22℄ in the 
ase of the s
alar Helmholtz equation. Our uniqueness proofis essentially based on a (periodi
) Relli
h identity and follows the approa
h of [20℄ in thes
alar 
ase. To deal with the Lips
hitz boundary, we adapt Ne£as' method [26, Chap. 5℄ ofapproximating the grating pro�le by smooth 
urves.Theorem 3 If Λ is a Lips
hitz graph, then the operator B : Vα → V ′
α is invertible. Inparti
ular, the variational problem (3.10) and hen
e problem (DP) have a unique solutionfor all in
ident waves of the form (2.1) or (2.2).Proof. By Theorem 1, we only need to prove the uniqueness. Let u ∈ Vα be a solution ofthe homogeneous equation Bu = 0, and let Ap,n, As,n be its Rayleigh 
oe�
ients whi
h aredetermined by the Fourier 
oe�
ients ûn of exp(−iαx1) u|Γb

via the relation (2.12).Step 1. We �rst prove that the theorem holds for periodi
 C2 graphs. In this 
ase, u ∈
H2(Ωb)

2 ∩ Vα, and using integration by parts, we obtain
2Re∫

Ωb

(∆∗ + ω2) u · ∂2u dx =

∫

∂Ωb

(∂nu · ∂2u+ ∂tu · ∂1u+ n2 ω
2 |u|2) ds , (4.8)where ∂t denotes the tangential derivative on the boundary. Analogously, using integrationby parts again, we get

2Re∫
Ωb

grad div u · ∂2u dx = 2Re∫
∂Ωb

n1 ∂2u1 div u ds

+

∫

∂Ωb

n2 (|∂2u2|2 − |∂1u1|2) ds .
(4.9)
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Then it follows from (4.8) and (4.9) that
2Re∫

Ωb

(∆∗ + ω2)u · ∂2u dx =

∫

∂Ωb

(

µ(∂nu · ∂2u+ ∂tu · ∂1u) + n2 ω
2 |u|2

)

ds

+(λ+ µ)

{

2Re ∫
∂Ωb

n1 ∂2u1div u ds+

∫

∂Ωb

n2 (|∂2u2|2 − |∂1u1|2) ds
}

.

(4.10)Note that (4.10 is a spe
ial 
ase of the Relli
h identity for the Navier equation proved in[14, Proposition 2℄. Sin
e u vanishes on Λ, we have ∂tu = −n2 ∂1u+ n1 ∂2u = 0 on Λ, whi
himplies that
n1 ∂2u = n2 ∂1u , ∂1u = n1 ∂nu and ∂2u = n2 ∂nu on Λ .Thus the integral over Λ on the right hand side of (4.10) takes the form

∫

Λ

(

µ |∂nu|2 + (λ+ µ) |div u|2
)

n2 ds . (4.11)Moreover, using the Rayleigh expansion (2.11) of u for x2 ≥ b, one 
an verify by 
areful
al
ulations that the integral over Γb in (4.10) takes the form
∫

Γb

(

µ (|∂2u1|2 − |∂1u2|2) + (λ+ 2µ) (|∂2u2|2 − |∂1u1|2) + ω2 |u|2
)

ds

= 4πω2





∑

|αn|<k2
p

β2
n |Ap,n|2 +

∑

|αn|<k2
s

γ2
n |As,n|2



 ,

(4.12)and 
ombining (4.10)�(4.12) gives
2Re∫

Ωb

(∆∗ + ω2)u · ∂2u dx =

∫

Λ

(

µ |∂nu|2 + (λ+ µ) |div u|2
)

n2 ds

+ 4πω2





∑

|αn|<k2
p

β2
n |Ap,n|2 +

∑

|αn|<k2
s

γ2
n |As,n|2



 .

(4.13)This is just the quasiperiodi
 version of the Relli
h identity (4.10) for our variational problem(4.1). Now we observe that the left hand side of (4.13) vanishes, and by Lemma 4 theboundary term (4.12) vanishes, too. Therefore, (4.13) implies that ∂nu = 0 on Λ, using thefa
t that −n2 ≥ C > 0 on Λ. Note that Λ is assumed to be the graph of a C2 fun
tion.Finally, as a 
onsequen
e of Holmgren's uniqueness theorem and the unique 
ontinuationprin
iple, u must vanish in all of Ω.Step 2. Now we 
onsider the general 
ase that the pro�le of the di�ra
tion grating is givenby the graph
Λ = Λf :=

{

(t, f(t)) ∈ R2 : t ∈ [0, 2π]
}where f is a periodi
 Lips
hitz fun
tion of period 2π. Again we have to show that a solution

u ∈ Vα to the homogeneous problem (4.1) vanishes in Ωb = ΩΛ,b; re
all that b > max{f(t) :
t ∈ [0, 2π]}. Consider the inhomogeneous boundary value problem

(∆∗ + ω2 + i) v = g := iu in Ωb ,

v|Λ = 0 , T v − T (ω, α) v = 0 on Γb . (4.14)14



One easily veri�es that the operator B1 : Vα → V ′
α generated by the sesquilinear form

B1(v, ϕ) :=

∫

Ωb

(

aL(v, ϕ) − (ω2 + i)v · ϕ
)

dx−
∫

Γb

ϕ · T (ω, α)v dsis invertible. Indeed, as in Theorem 1 it follows that B1 is Fredholm with index zero, andarguing as in the proof of Lemma 4 we obtain that ImB1(w,w) = 0, w ∈ Vα, implies that
4πω2





∑

|αn|<k2
p

β2
n |Ãp,n|2 +

∑

|αn|<k2
s

γ2
n |Ãs,n|2



+

∫

Ωb

|w|2 dx = 0 ,where Ãp,n, Ãs,n are the Rayleigh 
oe�
ients of a solution w to the homogeneous problem(4.14) (with g = 0). Hen
e w must vanish in Ωb.Therefore v = u is the unique solution of the inhomogeneous problem (4.14) in Vα = Vα(Ωb).Following the proof of [26, Thm. 5.1.1℄, we 
hoose C∞ pro�les Λj = Λfj
su
h that theLips
hitz 
onstants of fj are uniformly bounded in j, and

Ωj
b = ΩΛj ,b ⊂ Ωb , max{|fj(t) − f(t)| : t ∈ [0, 2π]} → 0 , as j → ∞ . (4.15)Let uj ∈ Vα(Ωj

b) be the solution of the problem (4.14) for Ωj
b, whi
h is unique by step 1.Extending uj by zero to Ωb \ Ωj

b, we regard uj ∈ Vα(Ωb) as a solution of the problem (4.14)with the right hand side gj ∈ L2(Ωb) where gj denotes the extension of −iu|Ωj
b
by zero. Then,from (4.15) we have gj → g in L2(Ωb), and the invertibility of B1 implies

uj → u in Vα(Ωb) , j → ∞ . (4.16)We rewrite the boundary value problem for uj as
(∆∗ + ω2) uj = hj := i(u− uj) in Ωj

b ,

v|Λj
= 0 , Tuj − T (ω, α) uj = 0 on Γb .

(4.17)Note that uj ∈ Vα(Ωj
b) ⊂ Vα(Ωb) 
an be extended to a radiating solution of the Navier equa-tion in the unbounded domain D, using the expansion (2.11) with the Rayleigh 
oe�
ients

Aj
p,n, A

j
s,n determined by the Fourier 
oe�
ients ûj

n of exp(−iαx1) u
j(x1, b) via the relation(2.12). Applying the periodi
 Relli
h identity (4.13) to problem (4.17), we obtain

2Re∫
Ωb

hj · ∂2uj dx =

∫

Λj

(

µ |∂nuj|2 + (λ+ µ) |div uj|2
)

n2 ds + Ij ,

Ij := 4πω2





∑

|αn|<k2
p

β2
n |Aj

p,n|2 +
∑

|αn|<k2
s

γ2
n |Aj

s,n|2


 .

(4.18)Moreover, setting ϕ = uj in the variational formulation of (4.17),
B(uj, ϕ) :=

∫

Ωb

(

aL(uj, ϕ) − ω2uj · ϕ
)

dx−
∫

Γb

ϕ · T (ω, α)uj ds

= −
∫

Ωb

hj · uj dx , ϕ ∈ Vα(Ωb) ,15



and taking imaginary parts, we get (
f. (4.3))
Ij = −ImB(uj , uj) = Im (

∫

Ωb

hj · uj dx

)

,whi
h implies Ij → 0 as j → ∞ in view of (4.16) and the de�nition of hj in (4.17). From(4.18) we then have, on using the uniform estimate −n2 ≥ C > 0 on Λj for all j ∈ N,
∫

Λj

|∂nuj|2 ds→ 0 , j → ∞ . (4.19)We may identify the spa
es L2(Λj) and L2(Λ) with L2(0, 2π) via the norm
‖v ◦ fj‖L2(0,2π) =

(
∫ 2π

0

|v(t, fj(t))|2 dt
)1/2

, v ∈ L2(Λj) ,with Λ0 = Λ, f0 = f , whi
h is a uniformly equivalent norm with respe
t to j. From (4.19) weget ∂nuj|Λj
→ 0 in L2(0, 2π)2, whi
h together with uj|Λj

= 0 , j ∈ N, implies that Tuj|Λj
→ 0in L2(0, 2π)2. Here T denotes the tra
tion operator de�ned in (3.3). Moreover, then it followsfrom (4.16) and the relation ϕ|Λj

→ ϕ|Λ in L2(0, 2π)2 (
f. Lemma 2.4.5 in [26℄) that, bypassing to the limit in Betti's identity,
∫

Λj

ϕ · Tuj ds = B(uj, ϕ) +

∫

Ωb

hj · uj dx , ∀ ϕ ∈ H1
α(Ωb)

2 ,we obtain that B(u, ϕ) = 0 for all ϕ ∈ H1
α(Ωb)

2, hen
e Tu|Λ = 0. Note that the tra
e Tu|Λin the sense of H−1/2 is de�ned by
∫

Λ

ϕ · Tu ds = B(u, ϕ) , ∀ ϕ ∈ H1
α(Ωb)

2 .Finally, sin
e the Diri
hlet and Neumann data of u vanish on Λ, we obtain u = 0 in Ωb bythe unique 
ontinuation prin
iple. �Remark 3 (i) Assume that Λ is given by a pie
ewise smooth graph having only a �nitenumber of 
orner points (with non-zero angles). Then the uniqueness already follows fromthe arguments in step 1 of the above proof. In that 
ase ea
h solution to problem (3.10)satis�es u ∈ H3/2+ǫ(Ωb)
2 for some ǫ > 0, so that the integration by parts in the Relli
hidentity (4.10) is justi�ed. Moreover, then the uniqueness result extends to the 
ase that the

x2-
omponent of the normal, −n2, vanishes on a subset of Λ and has a positive lower boundon the other parts, e.g, in the 
ase of re
tangular groove gratings where the pro�le 
onsistsof a �nite number of horizontal and verti
al segments only.(ii) If the grating pro�le Λ is given by a general Lips
hitz 
urve, we 
an only prove theuniqueness for all su�
iently small frequen
ies ω. To see this, we de
ompose the operator Binto the sum A + K, where K is the operator de�ned in (3.27) and A is de�ned by
(Av, ϕ)Ωb

=

∫

Ωb

aL(v, ϕ) dx−
∫

Γb

ϕ · T v ds , ∀ v, ϕ ∈ Vα . (4.20)From Lemma 1 we get, for any v ∈ Vα,Re{−∫
Γb

v · T v ds
}

= 2π
∑

n 6=0

Re (Wnv̂n, v̂n)C2 + 2πRe (W0v̂0, v̂0)C2 , (4.21)16



where v̂n are the Fourier 
oe�
ients of exp(−iαx1) v(x1, b). For the last term in (4.21) wehave
|(W0û0, v̂0)C2 | = O (ω)|v̂0|2 as ω → 0 ;see the de�nition of Wn in (3.6). Then it follows from Lemma 2 (ii) applied to the se
ondterm in (4.21) and from estimate (3.26) that the operator A de�ned in (4.20) is 
oer
ive,i.e.,
|Re (Av, v)Ωb

| ≥ C ‖v‖2
Vα
, ∀ v ∈ Vα ,if ω is su�
iently small. Here the 
onstant C > 0 does not depend on ω. Finally, we have

‖K‖Vα→V ′
α

= O (ω2) as ω → 0 ,whi
h implies that the operator B = A + K is always invertible if ω is su�
iently small.(iii) Relying on the above uniqueness result for small frequen
ies, it is possible to prove theinvertibility of the operator B for all frequen
ies ω > 0 with the possible ex
eption of adis
rete set in (0,∞); see Theorem 6 below in the 
ase of the transmission problem.To 
on
lude this se
tion, we present an existen
e and uniqueness result in the 
ase where theDiri
hlet 
ondition (2.4) in the di�ra
tion problem (DP) is repla
ed by the mixed Diri
hletand Robin boundary 
onditions:
u = 0 on ΛD , Tu− iηu = 0 on ΛI . (4.22)We assume that Λ has a Lips
hitz disse
tion Λ = ΛD ∪ Σ ∪ ΛI , where ΛD and ΛI aretwo disjoint and relative open subsets of Λ having Σ as their 
ommon boundary (see [24,p. 99℄). On ΛI , η ∈ C is assumed to be a 
onstant with Re η > 0. In this 
ase, the proofof uniqueness be
omes easy be
ause of the impedan
e 
oe�
ient η on ΛI . The boundary
onditions (4.22) lead to the following variational problem in the bounded periodi
 
ell Ωb:Find u ∈ Eα := {v ∈ H1
α(Ωb)

2 : v = 0 on ΛD} su
h that
∫

Ωb

(

aL(u, ϕ) − ω2u · ϕ
)

dx− iη

∫

ΛI

u · ϕds−
∫

Γb

ϕ · T u ds

=

∫

Γb

f0 · ϕds , ∀ ϕ ∈ Eα ,

(4.23)where f0 is de�ned by (3.11) for an in
ident pressure wave, and by (3.12) for an in
identshear wave.Theorem 4 If ΛI 6= ∅ , then there always exists a unique solution u ∈ Eα to the variationalproblem (4.23).Proof. It follows from the proof of Theorem 1 that the operator generated by the sesquilinearform of (4.23) is a Fredholm operator with index zero. Thus it is enough to prove theuniqueness. Letting f0 = 0, u = ϕ and taking imaginary parts in (4.23), we have (
f. (4.3))
−Re η ∫

ΛI

|u|2 ds = Im∫
Γb

u · T u ds ≥ 0 ,whi
h implies that u = 0 on ΛI . This means that u has vanishing Diri
hlet and Neumanndata on ΛI , and as a 
onsequen
e of the unique 
ontinuation prin
iple, u = 0 on Ωb. �17



5 Solvability results for transmission gratingsThe aim of this se
tion is to provide a solvability theory of quasiperiodi
 transmission prob-lems for the two-dimensional Navier system. Suppose the whole (x1, x2)-plane is �lled withelasti
 materials whi
h are homogenous above and below a 
ertain periodi
 interfa
e Λ. Weassume throughout this se
tion that Λ is a 2π-periodi
 Lips
hitz 
urve. Let D± be the un-bounded domains above and below Λ respe
tively. We assume that the Lamé 
oe�
ients
µ± , λ± in D± are 
onstants satisfying µ± > 0 , λ± +µ± > 0, and that the mass densities ρ±are positive 
onstants in these subdomains. Let

k±p := ω
√

ρ±/(2µ± + λ±) , k±s := ω
√

ρ±/µ± (5.1)be the 
orresponding 
ompressional and shear wave numbers respe
tively. As in Se
tion 2we assume that a time harmoni
 plane elasti
 wave uin with in
ident angle θ is in
ident on
Λ from D+, whi
h is either an in
ident pressure wave of the form (2.1), or an in
ident shearwave of the form (2.2), with kp, ks repla
ed by k+

p , k
+
s . Then we are looking for the totaldispla
enent �eld u,

u = uin + u+ in D+ , u = u− in D− , (5.2)where the s
attered �elds u± satisfy the 
orresponding α-quasiperiodi
 Navier equations
(∆∗ + ω2ρ±) u± = 0 in D± , with u±(x1 + 2π, x2) = exp(2iαπx1) u

±(x1, x2) , (5.3)and either α := k+
p sin θ for an in
ident pressure wave, or α := k+

s sin θ for an in
identshear wave. On the interfa
e the 
ontinuity of the displa
ement and the stress lead to thetransmission 
onditions
uin + u+ = u− , T+(uin + u+) = T−u− on Λ , (5.4)where the 
orresponding stress operators are de�ned as in (3.3), with µ, λ repla
ed by

µ±, λ±. Finally, we need to impose appropriate radiation 
onditions on the s
attered �eldsas x2 → ±∞. Introdu
e the notation
Λ+ := max

(x1,x2)∈Λ
x2 , Λ− := min

(x1,x2)∈Λ
x2 ,let αn := α + n, and de�ne β±

n and γ±n as in (2.9) with kp, ks repla
ed by k±p , k±s . Then weinsist that the s
attered �elds u± admit the following Rayleigh expansions (
f. (2.11)), for
x2 ≷ Λ±:

u±(x) =
∑

n∈Z

{

A±
p,n

(

αn

±β±
n

)

exp(iαnx1 ± iβ±
n x2)

+A±
s,n

(

±γ±n
−αn

)

exp(iαnx1 ± iγ±n x2)

}

,

(5.5)where for any b+ > Λ+, b− < Λ−, the Rayleigh 
oe�
ients are related with the Fourier
oe�
ients û±n of exp(−iαx1) u
±(x1,±b) by the relations (
f. (2.12))

û±n = D±
n A

±
n , D±

n :=

(

αn ±γ±n
±β±

n −αn

)

, A±
n :=

(

A±
p,n exp(±iβ±

n b
±)

A±
s,n exp(±iγ±n b±)

)

. (5.6)18



Note that detD±
n 6= 0 for all n ∈ Z. The di�ra
tition problem for transmission gratings 
annow be formulated as the following boundary value problem.Transmission problem (TP): Given a grating pro�le 
urve Λ ⊂ R2 (whi
h is 2π-periodi
in x1) and an in
ident plane pressure or shear wave uin, �nd a ve
tor fun
tion u ∈ H1

loc(R
2)2that satis�es (5.2)�(5.5).Following the approa
h of Se
tion 3, we redu
e the problem (TP) to a variational problem ina bounded periodi
 
ell in R2, enfor
ing the transmission and radiation 
onditions. Introdu
earti�
ial boundaries

Γ± := {(x1, b
±) : 0 ≤ x1 ≤ 2π} , b+ > Λ+ , b− < Λ−and the bounded domains

Ω = Ωb−,b+ := (0, 2π) × (b−, b+) , Ω± := D± ∩ Ω .The DtN maps T ± on the arti�
ial boundaries Γ± have the Fourier series representations(
f. (5.6) and Lemma 1)
T ±u± := −

∑

n∈Z

W±
n û

±
n exp(iαnx1) , u± =

∑

n∈Z

û±n exp(iαnx1) ∈ H1/2
α (Γ±)2 , (5.7)where the matri
es W±

n = W±
n (ω, α) take the form (
f. (3.6))

W±
n :=

1

i

(

ω2ρ±β±
n /d

±
n 2µ±αn − ω2ρ±αn/d

±
n

−2µ±αn + ω2ρ±αn/d
±
n ω2ρ±γ±n /d

±
n

)

, d±n := α2
n + β±

n γ
±
n . (5.8)Applying the �rst Betti formula on ea
h subdomain Ω± to a solution of (TP), and using thetransmission 
onditions (5.4) at the interfa
e and the DtN operators (5.7), we obtain thefollowing variational formulation of (TP) on the bounded domain Ω: Find u ∈ H1

α(Ω)2 su
hthat
B(u, ϕ) :=

∫

Ω

(

aL(u, ϕ) − ω2ρ u · ϕ
)

dx−
∫

Γ+

ϕ · T +u ds−
∫

Γ−

ϕ · T −u ds

=

∫

Γ+

f0 · ϕds , ∀ ϕ ∈ H1
α(Ω)2 .

(5.9)Here the domain integral is understood as the sum of the integrals
∫

Ω±

(

a±L(u, ϕ) − ω2ρ± u · ϕ
)

dxwhere the bilinear forms a±L are de�ned as in (3.2), with µ, λ repla
ed by µ±, λ±, and theright hand side is given by (
f. (3.10)�(3.12))
f0 = fp,0 :=

2iβ+
0 k

+
p (λ+ + 2µ+)

d+
0

(

−α
γ+

0

)

exp(iαx1 − iβ+
0 b

+) (5.10)for an in
ident pressure wave, and
f0 = fs,0 := −2iγ+

0 k
+
s µ

+

d+
0

(

β+
0

α

)

exp(iαx1 − iγ+
0 b

+) (5.11)19



for an in
ident shear wave. As in (3.23), the sesquilinear form B de�ned in (5.9) generatesa 
ontinuous linear operator B from H1
α(Ω)2 into its dual (H1

α(Ω)2)′, with respe
t to thepairing (u, ϕ)Ω =
∫

Ω
u · ϕ̄, via

B(u, ϕ) = (Bu, ϕ)Ω , ∀u , ϕ ∈ H1
α(Ω)2 . (5.12)The following lemma extends Lemma 4 to the transmission 
ase.Lemma 5 Let B be the operator de�ned in (5.12). If u ∈ H1

α(Ω)2 satis�es Bu = 0, then
A±

p,n = 0 for |αn| < k±p and A±
s,n = 0 for |αn| < k±s , (5.13)where A±

p,n, A
±
s,n are the Rayleigh 
oe�
ients of u de�ned via (5.6) with the Fourier 
oe�-
ients û±n of exp(−iαx1) u(x1, b

±).Proof. As in the proof of Lemma 4, we 
an verify the identityImB(u, u) = −Im ∫
Γ+

u · T +u ds− Im∫
Γ−

u · T −u ds (5.14)
= −2πω2





∑

|αn|<k+
p

β+
n |A+

p,n|2 +
∑

|αn|<k+
s

γ+
n |A+

s,n|2 +
∑

|αn|<k−
p

β−
n |A−

p,n|2 +
∑

|αn|<k−
s

γ−n |A−
s,n|2



 ,and taking imaginary parts in the variational equation (5.9) with ϕ = u and f0 = 0, we thenobtain the relation (5.13). �The following result extends Theorems 1 and 2 to the transmission problem.Theorem 5 (i) The sesquilinear form B de�ned by (5.9) is strongly ellipti
 over H1
α(Ω)2,and the operator B de�ned in (5.12) is Fredholm with index zero.(ii) For all in
ident plane pressure or shear waves, there exists a solution to the variationalproblem (5.9) and hen
e to problem (TP).Proof. (i) It follows from the estimate (3.24) applied to the subdomains Ω± and from Korn'sinequality (see Lemma 3) on Ω that there exist positive 
onstants c, C su
h that

∫

Ω

(

aL(u, ū) + c |u|2
)

dx ≥ C ||u||2H1(Ω)2 , ∀ u ∈ H1
α(Ω)2 . (5.15)As in the proof of Theorem 1, from Lemma 2 (i) we obtainRe {−∫

Γ±

u · T ±
1 u ds

}

≥ 0 , ∀ u ∈ H1
α(Ω)2 (5.16)by setting (
f. (5.7), (5.8))

T ±
1 u := −

∑

|n|≥n0

W±
n û±n , T ±

0 := T ± − T ±
1 ,where û±n are the Fourier 
oe�
ients of exp(−iαx1) u(x1, b

±) and n0 is su�
iently large.Note that the operators T ±
0 are �nite dimensional. Moreover, the operator K : H1

α(Ω)2 →
(H1

α(Ω)2)′ de�ned by
(Ku, ϕ)Ω = −(ω2 + c)

∫

Ω

u · ϕ̄ dx , ∀ u, ϕ ∈ H1
α(Ω)220



is 
ompa
t. Now the strong ellipti
ity of the form B de�ned in (5.9) follows from (5.15) and(5.16).(ii) To ensure existen
e of solutions, we only need to prove that the relation
∫

Γ+

f0 · v ds = 0 (5.17)holds for all v ∈ H1
α(Ω)2 in the null spa
e of the adjoint operator, i.e., B∗v = 0, where f0is the right hand side de�ned in (5.10) and (5.11) respe
tively; see the proof of Theorem 2.Here the adjoint B∗ of B satis�es (
f. (5.9) and (5.12)), for all ψ ∈ H1

α(Ω)2,
(B∗v, ψ)Ω = B(ψ, v) =

∫

Ω

(aL(v, ψ) − ω2 v · ψ) dx−
∫

Γ+

ψ · (T +)∗v ds−
∫

Γ−

ψ · (T −)∗v ds ,where the adjoints (T ±)∗ take the form (
f. (5.7) and (5.8))
(T ±)∗v = −

∑

n∈Z

(W±
n )∗ v̂±n exp(iαnx1) for v|Γ± =

∑

n∈Z

v̂±n exp(iαnx1) .Let v ∈ H1
α(Ω)2 be an arbitrary solution of the equation B∗v = 0, i.e.,

B(ψ, v) = 0 , ∀ ψ ∈ H1
α(Ω)2 . (5.18)We 
an extend v to a solution of (2.3) in R2 by using the Rayleigh expansions (5.5) for

x2 ≥ b+ and x2 ≤ b− respe
tively, with β±
n , γ

±
n repla
ed by −β±

n , −γ±n . Here the Rayleigh
oe�
ients A±
p,n, A

±
s,n of v are determined by the Fourier 
oe�
ients v̂±n of exp(−iαx1) v|Γ±via the relations (5.6), again with β±

n , γ
±
n repla
ed by −β±

n , −γ±n ; 
ompare (4.5) and (4.6).Arguing as in the proof of Lemma 5, we now obtain that ea
h solution v of (5.18) hasvanishing Rayleigh 
oe�
ients of the in
oming modes in D+,
A+

p,n = 0 for |αn| < k+
p and A+

s,n = 0 for |αn| < k+
s . (5.19)Finally, re
alling the de�nition of f0 (see (5.10) or (5.11)), the relation (5.17) follows from(5.19) as in the proof of Theorem 2. �Following the approa
h in [18℄, [19℄, [29℄ in the 
ase of ele
tromagneti
 di�ra
tion gratings,we �nally establish some uniqueness results for the variational problem (5.9) and hen
e forthe boundary value problem (TP).Theorem 6 If uin is an in
ident pressure wave of the form (2.1) (with kp = k+

p ), then(i) There exists ω0 > 0 su
h that the variational problem (5.9) admits a unique solution
u ∈ H1

α(Ω)2 for all in
ident angles and for all frequen
ies ω ∈ (0, ω0].(ii) For all but a sequen
e of 
ountable frequen
ies ωj, ωj → ∞, the variational problem (5.9)(with �xed in
iden
e angle θ) admits a unique solution u ∈ H1
α(Ω)2.Proof. (i) Assuming there exists a solution u ∈ H1

α(Ω)2 to the homogenous problem (5.9),so that B(u, u) = 0, we shall prove that u = 0 in Ω. Applying Lemma 2 (ii) to the DtNoperators (5.7), we obtain that, for all ω ∈ (0, ω0] with ω0 su�
iently small,
I := Re (−∫

Γ+

u · T +u ds−
∫

Γ−

u · T −u ds

)

= 2π
∑

n∈Z

(Re (W+
n û

+
n , û

+
n )C2 + Re (W−

n û
−
n , û

−
n )C2

) (5.20)
≥ C

∑

n 6=0

(

|n|(|û+
n |2 + |û−n |2)

)

+ Re (W+
0 û

+
0 , û

+
0 )C2 + Re (W−

0 û
−
0 , û

−
0 )C2 ,21



where û±n are the Fourier 
oe�
ients of exp(−iαx1) u(x1, b
±). Here and in the following Cdenotes various positive 
onstants not depending on u and ω. Let A±

p,n, A
±
p,n be the Rayleigh
oe�
ients of u whi
h are de�ned via the relations (5.6).Sin
e k+

s > k+
p , it follows from Lemma 5 that A+

p,0 = A+
s,0 = 0, whi
h implies û+

0 = 0. Re
allthat
β±

n =
√

(k±p )2 − α2
n , γ±n =

√

(k±s )2 − α2
n , αn = n + k+

p sin θ , α = α0 (5.21)in the 
ase of an in
ident pressure wave with in
iden
e angle θ, where the square roots are
hosen su
h that their imaginary parts are non-negative. Therefore, the estimate (5.20) 
anbe written as
I ≥ C

(

||u||2
H

1/2
α (Γ+)2

+
∑

n 6=0

|n||û−n |2
)

+ Re (W−
0 û

−
0 , û

−
0 )C2 , ∀ ω ∈ (0, ω0] (5.22)Furthermore, from the de�nition of W−

0 in (5.8), we have the bound
|(W−

0 û
−
0 , û

−
0 )C2| ≤ C ω |û−0 |2 ≤ C ω||u||2H1(Ω)2 . (5.23)Combining the estimates (5.20), (5.22) and (5.23) and using the de�nition of the sesquilinearform B in (5.9), we obtain for ω ∈ (0, ω0]

0 = ReB(u, u) ≥
∫

Ω

aL(u, u) dx+ C ||u||2
H

1/2
α (Γ+)2

− C ω ||u||2H1(Ω)2 ,whi
h leads to
∫

Ω

aL(u, u) dx+ C ||u||2
H

1/2
α (Γ+)2

≤ C ω ||u||2H1(Ω)2 . (5.24)Now it follows from the estimate (3.24) applied to the subdomains Ω± and from Remark 3applied to Ω that the square root of the left hand side of the inequality (5.24) is an equivalentnorm on H1
α(Ω)2. Therefore, it follows that u = 0 in Ω if the frequen
y ω is su�
iently small.(ii) To study the uniqueness for arbitrary frequen
ies ω using analyti
 Fredholm theory, itis ne
essary to repla
e equation (5.9) on the ω-dependent spa
e H1

α(Ω)2 by an equivalentvariational problem a
ting on the same energy spa
e,
V = H1

per(Ω)2 := {u ∈ H1(Ω)2 : u is 2π − periodi
 in x1} ,for ea
h ω. Re
all that (
f. (5.1) and (5.21))
α = k+

p sin θ = ω sin θ
√

ρ+/(2µ+ + λ+) . (5.25)So, instead of the operator B : H1
α(Ω)2 → (H1

α(Ω)2)′ de�ned by (5.12), we 
onsider theoperator
Bα : V → V ′ , Bαu := exp(−iαx1)B(exp(iαx1) u) , u ∈ V , (5.26)where V ′ is the dual of V with respe
t to the pairing (·, ·)Ω. Note that Bα is then generatedby the sesquilinear form

Bα(u, ϕ) := B(exp(iαx1) u, exp(iαx1)ϕ) , u , ϕ ∈ V ,22



whi
h 
an be written as (
f. (5.9))
Bα(u, ϕ) =

∫

Ω

(

aL,α(u, ϕ) − ω2ρ u · ϕ
)

dx−
∫

Γ+

ϕ · T +
α u ds−

∫

Γ−

ϕ · T −
α u ds , (5.27)where the bilinear form aL,α on Ω± is de�ned as in (3.2), with µ, λ repla
ed by µ±, λ±, and

∂1 repla
ed by the di�erential operator ∂1,α = ∂1 + iα, and where (
f. (5.7), (5.8))
T ±

α u := −
∑

n∈Z

W±
n (ω, α)û±n exp(inx1) , u|Γ± =

∑

n∈Z

û±n exp(inx1) ∈ H1/2
per (Γ±)2 . (5.28)To indi
ate the dependen
e on the frequen
y ω, we shall write Bα = B(ω) and T ±

α = T ±(ω)in the following. Note that the operator generated by the �rst term of the form (5.27)depends analyti
ally on ω ∈ C, while for the DtN operators (5.28) this is only valid if oneavoids the set of ex
eptional values (the Rayleigh frequen
ies) where one of the numbers
β±

n , γ
±
n vanishes (
f. (5.1), (5.21)):
R =

{

ω : ∃ n ∈ Z su
h that α2
n = ω2 ρ±/(2µ± + λ±) or α2

n = ω2 ρ±/µ±
}

. (5.29)It follows immediately from Theorem 5 and (5.26) that B(ω) : V → V ′ is a Fredholm operatorwith index zero for all ω > 0. Moreover, by assertion (i), we 
an 
hoose ω0 > 0 su�
ientlysmall so that B(ω0) is invertible. Then B(ω) is invertible if and only if the operator
A(ω) := I + K(ω) : V → V , K(ω) := B(ω0)

−1 (B(ω) − B(ω0)) (5.30)is invertible, where I denotes the identity operator. To prove that the operator K(ω) de�nedin (5.30) is 
ompa
t on V , we note that
((B(ω) − B(ω0)) u, ϕ)Ω = −

∫

Γ+

ϕ (T +(ω) − T +(ω0))u ds−
∫

Γ−

ϕ (T −(ω) − T −(ω0)) u ds

−(ω − ω0)

∫

Ω

ρ uϕdx , u , ϕ ∈ V , (5.31)and (
f. (5.28))
(T ±(ω) − T ±(ω0)) u = −

∑

n∈Z

(W±
n (ω, α) −W±

n (ω0, α)) û±n exp(inx1) .Then the uniform estimates
‖W±

n (ω, α) −W±
n (ω0, α)‖C2→C2 ≤ c(ω, ω0) , ∀ n ∈ Z ,together with the tra
e and imbedding theorems for periodi
 Sobolev spa
es, imply the
ompa
tness of the form (5.31) and hen
e that of K(ω).Sin
e K(ω) is a 
ompa
t operator fun
tion depending analyti
ally on ω if ω /∈ R (
f. (5.29),(5.21)) and A(ω0) is invertible, it follows from the analyti
 Fredholm theory (e.g., [13, The-orem 8.26℄) that A(ω) is invertible for all ω ∈ U := (0,∞) \ R, with the possible ex
eptionof some dis
rete subset, say D, of U . Thus assertion (ii) is proved if we show that a point

ω∗ ∈ R 
annot be an a

umulation point of D. It follows from the de�nition of β±
n , γ

±
n(
f. (5.21)) that, in some neighbourhood of ω∗, the operator fun
tions T ±(ω), and hen
e

B(ω), K(ω), A(ω), are analyti
 in z := (ω − ω∗)
1/2, where the bran
h of the root is 
hosensu
h that its imaginary part is non-negative. Then, applying [13, Theorem 8.26℄ to theoperator fun
tion A(z) = I + K(z) in a neighbourhood of z = 0, gives the desired result. �23



Remark 4 (i) For an in
ident shear wave uin, Theorem 6 holds under the additional as-sumption that k−p > k+
s , or equivalently, ρ−/(2µ− + λ−) > ρ+/µ+. Note that the relations(5.21) hold with αn = n+k+

s sin θ, so that in the proof of the 
orresponding assertion (i) oneobtains û−0 = 0 and thus estimate (5.24) with the 
orresponding boundary term on Γ−. Wedo not know whether this 
ondition 
an be removed.(ii) Assume that the elasti
 material is homogeneous above a periodi
 Lips
hitz interfa
e Λ+and below another periodi
 Lips
hitz interfa
e Λ−, whereas the elasti
 medium between Λ+and Λ− may be inhomogeneous with pie
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