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AbstratThe sattering of a time-harmoni plane elasti wave by a two-dimensional periodistruture is studied. The grating pro�le is given by a Lipshitz urve on whih thedisplaement vanishes. Using a variational formulation in a bounded periodi ell in-volving a nonloal boundary operator, existene of solutions in quasi-periodi Sobolevspaes is investigated by establishing the Fredholmness of the operator generated bythe orresponding sesquilinear form. Moreover, by a Rellih identity, uniqueness isproved under the assumption that the grating pro�le is given by a Lipshitz graph.The diret sattering problem for transmission gratings is also investigated. In thisase, uniqueness is proved exept for a disrete set of frequenies.1 IntrodutionThis paper is onerned with the sattering of a time-harmoni plane elasti wave by anunbounded periodi struture. Suh strutures are also alled di�ration gratings and havemany important appliations in di�rative optis, radar imaging and non-destrutive testing.We refer to the monograph [8℄ for historial remarks and details of these appliations.During the last twenty years, signi�ant progress has been made onerning the mathe-matial analysis and the numerial approximation of grating di�ration problems for thease of inident aousti or eletromagneti waves, using integral equation methods (e.g.,[27℄, [16℄, [22℄, [25℄, [28℄) and variational methods (e.g., [22℄, [15℄, [9℄, [6℄, [18℄, [19℄, [29℄,[7℄). In partiular, the variational approah appeared to be well adapted to the analytialand numerial treatment of rather general two-dimensional and three-dimensional periodidi�rative strutures involving omplex materials and non-smooth interfaes.In this paper we assume that a periodi surfae divides the three-dimensional spae intotwo non-loally perturbed half-spaes �lled with homogeneous and isotropi elasti media.Moreover, this surfae is assumed to be invariant in the x3-diretion, and its ross-setionin the (x1, x2)-plane is to be represented by a urve Λ whih is periodi in x1. All elastiwaves are assumed to be propagating perpendiular to the x3-axis, so that the problem anbe treated as a problem of plane elastiity. The speial ase of an inpenetrable surfae onwhih all displaement vanishes leads to the Dirihlet (or �rst boundary value) problem forthe Navier system in the unbounded domain above the grating pro�le Λ, while the satteringby a transmission grating is modeled by a orresponding transmission problem on the whole
(x1, x2)-plane.The �rst attempt to rigorously prove existene and uniqueness of solutions for the satteringof elasti waves by unbounded surfaes is due to T. Arens; see [2℄, [3℄ for two-dimensionaldi�ration gratings and [4℄, [5℄ for more general rough surfaes. In partiular, in [2℄ existeneand uniqueness of quasi-periodi solutions to the Dirihlet problem was established in thease that the grating pro�le Λ is given by the graph of a smooth (C2) periodi funtion.1



The existene proof is based on the boundary integral equation method where the solutionis sought as a superposition of single and double layer potentials.Our main aim in this paper is to study the same problem, but via a variational approahin general Lipshitz domains, whih is broad enough to over most ases that arise in ap-pliations of di�ration gratings. We redue the Navier system with Dirihlet boundaryondition in the unbounded domain to an equivalent strongly ellipti variational problem ina bounded periodi ell with a non-loal boundary ondition. An expliit representation ofthe Dirihlet-to-Neumann (DtN) map on the arti�ial boundary is worked out, and a detailedanalysis of this DtN map is employed to prove the strong elliptiity of the sesquilinear form.Applying the Fredholm alternative, we then prove that there always exists a quasiperiodisolution for either an inident pressure wave or an inident shear wave.To extend the uniqueness result of [2℄ to grating pro�les given by a Lipshitz graph, we usea Rellih identity and adapt an approah by Ne£as [26, Chap. 5℄ to deal with the Lipshitzboundary. This generalizes the result of [20℄ for the salar quasi-periodi Helmholtz equationto the ase of the Navier system. More general Rellih identities for the Navier equation (onbounded domains) an be found in [14℄.Moreover, the variational approah is extended to the ase of transmission gratings where aLipshitz interfae separates two homogenous elasti media haraterized by onstant elastiparameters. This allows us to obtain general existene results, and uniqueness is provedexept for a disrete set of frequenies. Note that this approah also applies to the ase ofseveral Lipshitz interfaes.The paper is organized as follows. In Setion 2 we give the mathematial formulation ofthe sattering problem in the ase of an inpenetrable surfae. Following [2℄, a radiationondition at in�nity based on Rayleigh expansions is used. In Setion 3 we formulate thevariational problem in a bounded periodi ell whih is equivalent to the boundary valueproblem. Using Korn's inequality and the Fourier series representation of the DtN map, weprove the strong elliptiity of the variational equation over the energy spae. In Setion 4 wepresent our solvability results for the Dirihlet ase. The well-posedness for the boundaryvalue problem with mixed Dirihlet and impedane boundary onditions is also established.In Setion 5 we prove existene and uniqueness results for the transmission problem.The problem of sattering by a di�ration grating an be seen as a speial ase of satteringby a rough surfae. Note that the periodiity onsiderably simpli�es the mathematialargument, beause the ompat imbedding of Sobolev spaes an be applied to a singleperiod of the unbounded domain. For a rigorous mathematial analysis of rough surfaesattering problems for the Helmholtz equation via variational methods, we refer to [11℄,[12℄, [10℄. The variational approah to sattering by a rough surfae in an elasti mediumwill be the task of future work.2 Formulation of the Dirihlet problemLet the pro�le of the di�ration grating be given by a Lipshitz urve Λ ⊂ R2 whih is2π-periodi in x1, and let D be the unbounded domain above Λ. We assume the region Dis �lled with an isotropi, homogenous elasti medium haraterized by the Lamé onstants
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λ, µ satisfying µ > 0, λ + µ > 0. Let
kp := ω/

√

2µ+ λ , ks := ω/
√
µbe the ompressional and shear wave numbers respetively. We assume that a time harmoniplane elasti wave uin with inident angle θ ∈ (−π/2, π/2) is inident on Λ from above, whihis either an inident pressure wave taking the form

uin = uin
p (x) = θ̂ exp(ikpθ̂ · x) with θ̂ := (sin θ,− cos θ) (2.1)or an inident shear wave of the form

uin = uin
s (x) = θ̂⊥ exp(iksθ̂ · x) with θ̂⊥ := (cos θ, sin θ) . (2.2)The propagation of time harmoni elasti waves in D is governed by the Navier equation (orsystem)

(∆∗ + ω2)u = 0 in D , ∆∗ := µ∆ + (λ+ µ) grad div , (2.3)where u = uin + usc is the total displaement �eld and usc denotes the sattered �eld. Here
ω > 0 stands for the angular frequeny of the harmoni motion, and we assume for simpliitythat the mass density of the elasti medium is equal to one. Moreover, we require that thetotal �eld satis�es the boundary ondition

u = 0 on Λ . (2.4)The periodiity of the struture, together with the form of the inident waves, implies thatthe solution u must be quasiperiodi with phase-shift α (or α-quasiperiodi), i.e.
u(x1 + 2π, x2) = exp(2iαπx1) u(x1, x2) , (x1, x2) ∈ D , (2.5)where either α := kp sin θ for the inident pressure wave (2.1), or α := ks sin θ for the inidentshear wave (2.2).To ensure well-posedness of the boundary value problem (2.3)�(2.5), a radiation onditionmust be imposed as x2 → +∞. First we note that the sattered �eld usc, whih also satis�esthe Navier equation (2.3), an be deomposed in D as

usc =
1

i
(grad ϕ+

−−→
curl ψ) with ϕ := − i

k2
p

div usc , ψ :=
i

k2
s

curl usc , (2.6)where the two url operators in R2 are de�ned by
curl u := ∂1u2 − ∂2u1 , u = (u1, u2)

⊤ and −−→
curl v := (∂2v,−∂1v)

⊤ ,and the salar funtions ϕ, ψ satisfy the homogeneous Helmholtz equations
(∆ + k2

p)ϕ = 0 and (∆ + k2
s)ψ = 0 in D . (2.7)Here and in the following the notation ∂jv = ∂v/∂xj is used. Note that the relations (2.6)and (2.7) follow from the well known deomposition [23℄ of the sattered �eld usc into itsompressional and shear parts,

usc = up + us , up := − 1

k2
p

grad div usc , us :=
1

k2
s

−−→
curl curl usc ,3



and the fat that usc satis�es equation (2.3).Now, as ϕ and ψ are α-quasiperiodi solutions to the Helmholtz equations (2.7) in theunbounded domain D, we impose the usual outgoing wave ondition on them (see, e.g.,[22℄). For x2 > Λ+, we assume that ϕ, ψ have Rayleigh expansions of the form
ϕ(x) =

∑

n∈Z

Ap,n exp(iαnx1 + iβnx2) , ψ(x) =
∑

n∈Z

As,n exp(iαnx1 + iγnx2) , (2.8)where the onstants Ap,n, As,n ∈ C are alled Rayleigh oe�ients and
Λ+ := max

(x1,x2)∈Λ
x2 , αn := α + n , βn :=

{ √

k2
p − α2

n if |αn| ≤ kp

i
√

α2
n − k2

p if |αn| > kp ,
(2.9)and γn is de�ned analogously as βn with kp replaed by ks. It follows from (2.6) that thetwo omponents of the sattered �eld usc in D an be represented as

usc
1 =

1

i
(∂1ϕ+ ∂2ψ) , usc

2 =
1

i
(∂2ϕ− ∂1ψ) . (2.10)Therefore, we �nally obtain a orresponding expansion of usc into outgoing plane elastiwaves:

usc(x) =
∑

n∈Z

{

Ap,n

(

αn

βn

)

exp(iαnx1 + iβnx2)

+As,n

(

γn

−αn

)

exp(iαnx1 + iγnx2)

}

,

(2.11)for x2 > Λ+. This is the radiation ondition we are going to use in the following; see also[2℄. Sine βn and γn are real for at most a �nite number of indies, only a �nite numberof plane waves in (2.11) propagate into the far �eld, with the remaining evanesent waves(or surfae waves) deaying exponentially as x2 → +∞. The above expansion onvergesuniformly with all derivatives in the half-plane {x ∈ R2 : x2 ≥ b}, for any b > Λ+, and theRayleigh oe�ients are uniquely determined by the Fourier oe�ients ûn of the funtion
exp(−iαx1)u

sc(x1, b):
ûn = Dn

(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

, Dn :=

(

αn γn

βn −αn

)

. (2.12)Note here that detDn = −(α2
n + βnγn) 6= 0 for all n ∈ Z. Our di�ration problem an nowbe formulated as the following boundary value problem.Dirihlet problem (DP): Given a grating pro�le urve Λ ⊂ R2 (whih is 2π-periodi in

x1) and an inident �eld uin of the form (2.1) or (2.2), �nd a vetor funtion u = uin +usc ∈
H1

loc(D)2 that satis�es (2.3)�(2.5) and the radiation ondition (2.11).3 Variational formulation of (DP)Following the approah of [22℄ in the ase of the salar Helmholtz equation, we propose anequivalent variational formulation of the boundary value problem (DP), whih is posed in a4



bounded periodi ell in R2 and is enforing the radiation ondition. Introdue an arti�ialboundary
Γb := {(x1, b) : 0 ≤ x1 ≤ 2π} , b > Λ+ ,and the bounded domain

Ωb = ΩΛ,b := {(x1, x2) ∈ D : 0 < x1 < 2π, x2 < b} ,lying between the segment Γb and one period of the grating pro�le urve whih we denote by
Λ again. We assume that Λ is a Lipshitz urve, so that Ωb is a bounded Lipshitz domain.Let H1

α(Ωb) denote the Sobolev spae of salar funtions on Ωb whih are α-quasiperiodiwith respet to x1. We introdue the spae
Vα = Vα(Ωb) := {u ∈ H1

α(Ωb)
2 : u|Λ = 0} ,whih is the energy spae for our variational problem. In the following Vα is equipped withthe norm in the usual Sobolev spae H1(Ωb)

2 of vetor funtions.By the �rst Betti formula, it follows that for u, ϕ ∈ Vα

−
∫

Ωb

(∆∗ + ω2)u · ϕdx =

∫

Ωb

(aL(u, ϕ) − ω2u · ϕ) dx−
∫

Γb

ϕ · Tu ds (3.1)where the bar indiates the omplex onjugate, and
aL(u, ϕ) = (2µ+ λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2) + µ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+µ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1) + λ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) , (3.2)and Tu stands for the stress vetor or tration having the form:
Tu = 2µ ∂nu+ λndiv u+ µ

(

n2 (∂1u2 − ∂2u1)
n1 (∂2u1 − ∂1u2)

)

, (3.3)where n = (n1, n2)
⊤ denotes the exterior unit normal on the boundary of Ωb. Moreover, wehave
Tu = T (µ, λ)u := 2µ ∂2u+ λ

(

0
1

)

(∂1u1 + ∂2u2)

+µ

(

1
0

)

(∂1u2 − ∂2u1) on Γb .

(3.4)Now we introdue the DtN map T on the arti�ial boundary Γb. For any u ∈ H1
α(Ωb)

2, wehave
v := u|Γb

∈ H1/2
α (Γb)

2 , exp(−iαx1) v ∈ H1/2
per (Γb)

2from the trae theorem, where Hs
α(Γb) and Hs

per(Γb) denote the Sobolev spaes of order s ∈ Rof funtions on Γb that are α-quasiperiodi and periodi respetively. Note that an equivalentnorm on Hs
α(Γb)

2 is given by
‖v‖Hs

α(Γb)2 =
(

∑

n∈Z

(1 + |n|)2s |v̂n|2
)1/2

,5



where v̂n ∈ C2 are the Fourier oe�ients of exp(−iαx1) v(x1, b). For any v ∈ H
1/2
α (Γb)

2, wede�ne T v as the tration Tusc on Γb where usc is the unique α-quasiperiodi solution of thehomogenous Navier equation in {x2 > b} whih satis�es (2.11) and usc = v on Γb. The nextlemma shows an expliit representation of T .Lemma 1 With the notation introdued in (2.9), we have
T v = T (ω, α)v = −

∑

n∈Z

Wnv̂n exp(iαnx1) for v =
∑

n∈Z

v̂n exp(iαnx1) ∈ H1/2
α (Γb)

2 , (3.5)where
Wn = Wn(ω, α) :=

1

i

(

ω2βn/dn 2µαn − ω2αn/dn

−2µαn + ω2αn/dn ω2γn/dn

)

, dn := α2
n + βnγn. (3.6)Proof. Let usc be the radiating solution of (2.3) in {x2 > 0} suh that usc = v on Γb. Then

usc takes the form (2.11), where the orresponding Rayleigh oe�ients Ap,n, As,n are givenby
(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

= D−1
n v̂n ; (3.7)see (2.12). Moreover, from the representation (2.10) of usc, the Rayleigh expansions (2.8),(2.11) and the relations (2.7), (3.4), we obtain

Tusc = 2µ ∂2u
sc + λ

(

0
1

)

(∂1u
sc
1 + ∂2u

sc
2 ) + µ

(

1
0

)

(∂1u
sc
2 − ∂2u

sc
1 )

= 2µ ∂2u
sc − iλ

(

0
1

)

∆ϕ + iµ

(

1
0

)

∆ψ

= 2µ
∑

n∈Z

{

iβnAp,n

(

αn

βn

)

exp(iαnx1 + iβnx2) + iγnAs,n

(

γn

−αn

)

exp(iαnx1 + iγnx2)

}

+
∑

n∈Z

{

iλk2
pAp,n

(

0
1

)

exp(iαnx1 + iβnx2) − iµk2
sAs,n

(

1
0

)

exp(iαnx1 + iγnx2)

}

.Together with (3.7), this implies
(̂T v)n =

(

2iµβnαn 2iµγ2
n − iµk2

s

2iµβ2
n + λik2

p −2iµγnαn

)(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

= i

(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)

D−1
n v̂n

=
i

dn

(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)(

αn γn

βn −αn

)

v̂n

= i

(

ω2βn/dn 2µαn − ω2αn/dn

−2µαn + ω2αn/dn ω2γn/dn

)

v̂n

= −Wnv̂n , 6



where (̂T v)n denotes the n-th Fourier oe�ient of exp(−iαx1) T v = exp(−iαx1)Tu
sc. Thisompletes the proof by realling the de�nitions of Wn and dn in (3.6). �Next we introdue the sesquilinear form B(u, ϕ) de�ned by

B(u, ϕ) :=

∫

Ωb

(

aL(u, ϕ) − ω2u · ϕ
)

dx−
∫

Γb

ϕ · T u ds , ∀ u, φ ∈ Vα , (3.8)with T u := T (u|Γb
). Note that, by Lemma 1, T u takes the form

T u = −
∑

n∈Z

Wnûn exp(iαnx1) , (3.9)where ûn are the Fourier oe�ients of exp(−iαx1) u(x1, b). Applying Betti's identity (3.1)to a solution u = usc + uin of (DP) and using the fat that
Tu = T (usc + uin) = T usc + Tuin = T u+ f0 , with f0 := Tuin − T uin ,we obtain the following variational formulation of (DP): Find u ∈ Vα suh that

B(u, ϕ) =

∫

Γb

f0 · ϕds , ∀ ϕ ∈ Vα . (3.10)Here
f0 = fp,0 :=

2iβ0kp(λ+ 2µ)

d0

(

−α
γ0

)

exp(iαx1 − iβ0b) (3.11)for an inident pressure wave of the form (2.1), and
f0 = fs,0 := −2iγ0ksµ

d0

(

β0

α

)

exp(iαx1 − iγ0b) (3.12)for an inident shear wave of the form (2.2). The problems (DP) and (3.10) are equivalentin the following sense.Remark 1 If u ∈ H1
loc(D)2 is a solution of the boundary value problem (DP), then u|Ωbsatis�es the variational problem (3.10). Conversely, a solution u ∈ Vα(Ωb) of (3.10) anbe extended to a solution u = uin + usc of the Navier equation (2.3) for x2 ≥ b, where uscis de�ned by the relations (2.11), (2.12) via the Fourier oe�ients ûn of exp(−iαx1) (u −

uin)(x1, b).To study the form B, the following lemma is needed. For a matrix M ∈ C2×2, let ReM :=
(M + M∗)/2, and we shall write ReM > 0 if ReM is positive-de�nite. Here M∗ is theadjoint of M with respet to the salar produt (·, ·)C2 in C2.Lemma 2 Let Wn = Wn(ω, α) be de�ned as in Lemma 1. Then(i) Given a �xed frequeny ω > 0, we have ReWn > 0 for all su�iently large |n|.(ii) There exists a su�iently small frequeny ω0 > 0 suh that

(ReWn z, z)C2 ≥ C |n| |z|2 , ∀ z ∈ C2 , ∀ ω ∈ (0, ω0] , ∀ n 6= 0 (3.13)with some onstant C > 0 independent of ω and n.7



Proof. We an write the matrix Wn as
Wn =

(

an icn
−icn bn

)

, an := −i ω
2βn

dn
, bn := −i ω

2γn

dn
, cn :=

αn

dn
(ω2 − 2µdn) . (3.14)Let �rst ω > 0 be �xed. We have

βn = i
√

(n+ α)2 − k2
p ∼ i |n| , γn = i

√

(n+ α)2 − k2
s ∼ i |n| as |n| → ∞ , (3.15)and, on using Taylor expansions,

dn = α2
n + βnγn = (n+ α)2

{

1 −
√

1 − k2
p

(n+ α)2

√

1 − k2
s

(n+ α)2

}

∼ k2
p + k2

s

2
, as |n| → ∞ .

(3.16)Moreover, from (3.14)�(3.16) we have, for su�iently large |n|,
an > 0 , bn > 0 cn ∈ R , ReWn =

(

an i cn
−i cn bn

)

. (3.17)Note that the relation Re .Wn > 0 holds if and only if
an > 0 and det(ReWn) = an bn − c2n > 0. (3.18)It is easily seen thatdet(ReWn) =

1

d2
n

(

−ω4 βn γn − α2
n (ω2 − µ dn)

2
)

=
1

dn

(

−ω4 + 4α2
n µ (ω2 − µdn)

)

,

(3.19)whih together with (3.16) and the relations kp = ω/
√

2µ+ λ, ks = ω/
√
µ implies that

ω2 − µ dn ∼ ω2 − µ

2

(

ω2

2µ+ λ
+
ω2

µ

)

= ω2 µ+ λ

2(2µ+ λ)
> 0 , as |n| → ∞ . (3.20)From (3.19) and (3.20) we now obtain the seond inequality of (3.18) for all |n| su�ientlylarge, whih ompletes the proof of assertion (i).To prove assertion (ii), we also need to analyze the behavior of ReWn as ω → 0. Notiethat, for all su�iently small ω > 0 and n 6= 0, we have the relations

βn/i ≥ C |n| , γn/i ≥ C |n| , (3.21)with a positive onstant C independent of ω and n. Moreover, by arguing as in (3.16),
dn = ω2 3µ+ λ

2µ (2µ+ λ)
+ O(ω4) , as ω → 0 ,whih yields

ω2 − µ dn = ω2 µ+ λ

2(2µ+ λ)
+ O(ω4) , as ω → 0 , (3.22)8



uniformly in n 6= 0. Thus, ombining (3.19), (3.21) and (3.22), we �nd that there exists asu�iently small frequeny ω0 > 0 suh that, for all ω ∈ (0, ω0] and n 6= 0,
|n|−1 an ≥ c > 0 , |n|−2 det(ReWn) ≥ c > 0 ,whih means that the matries |n|−1 ReWn are uniformly positive-de�nite; ompare (3.18).This implies estimate (3.13) and �nishes the proof of assertion (ii). �It follows from Lemma 1 and the relations (3.14)�(3.16) that the DtN operator T mapsthe Sobolev spae H1/2
α (Γb)

2 ontinuously into H−1/2
α (Γb)

2. Therefore, the sesquilinear form
B(u, ϕ) de�ned in (3.8) is bounded on the energy spae Vα. Setting

B(u, ϕ) = (Bu, ϕ)Ωb
∀u , ϕ ∈ Vα , (3.23)the form B obviously generates a ontinuous linear operator B : Vα → V ′

α. Here V ′
α denotesthe dual of the spae Vα with respet to the duality (·, ·)Ωb

extending the salar produt in
L2(Ωb)

2.We all a bounded sesquilinear form B(·, ·) given on some Hilbert spae X strongly elliptiif there exists a ompat form q(·, ·) suh that
|ReB(u, u)| ≥ c ||u||2X − q(u, u) , ∀ u ∈ X.To establish the strong elliptiity of the sesquilinear form B de�ned in (3.8), we need thefollowing auxiliary results on the bilinear form aL de�ned in (3.2), whih an be written as

aL(u, v) = λ div u div v + 2µ
2
∑

i,j=1

εij(u) εij(v) εij(u) := (∂jui + ∂iuj)/2 .Under our assumptions on the Lamé onstants, µ > 0, λ+µ > 0, we have the estimate (e.g.,[21, Chap. 5.4℄)
∫

G

aL(u, u) dx ≥ C(G)
2
∑

i,j=1

||εij(u)||2L2(G) , ∀ u ∈ H1(G)2 , (3.24)with a positive onstant C(G), for eah bounded Lipshitz domain G ⊂ R2. To obtain alower bound for the seond term in (3.24), the well known Korn's inequality an be used;see e.g. [24, Chapter 10℄, [17, Chapter 3℄ for a proof.Lemma 3 For eah bounded Lipshitz domain G ⊂ R2, we have the inequality
2
∑

i.j=1

||εij(v)||2L2(G) +

2
∑

i=1

||vi||2L2(G) ≥ C(G) ||v||2H1(G)2 , ∀ v ∈ H1(G)2 . (3.25)Remark 2 Let G be a bounded Lipshitz domain in R2, and suppose that Γ0 ⊂ ∂G haspositive Lebesgue measure. Then, using (3.25) and the arguments in the proof of [17, Chapter3,Theorem 3.3℄, one an prove that
||v||2H1(G)2 ≤ C(G)

(

||v||2L2(Γ0)2 +
2
∑

i,j=1

||εij(v)||2L2(G)

)

, ∀ v ∈ H1(G)2 .9



In partiular, if v ∈ H1(G)2 satis�es v|Γ0
= 0, we see that

|v| :=

(

2
∑

i,j=1

||εij(v)||2L2(G)

)1/2is an equivalent norm of v in H1(G)2, and from (3.24) we then have the estimate
∫

G

aL(v, v) dx ≥ C(G) ||v||2H1(G)2 ,with C(G) > 0 not depending on v.We are now ready to prove the main result of this setion.Theorem 1 Assume that the grating pro�le Λ is a Lipshitz urve. Then the sesquilinearform B de�ned in (3.8) is strongly ellipti over Vα. Moreover, the operator B de�ned by(3.23) is always a Fredholm operator with index zero.Proof. Sine u vanishes on Λ, it follows from Korn's inequality (see Lemma 3 and Remark2) that there exists a positive onstant C suh that
∫

Ωb

aL(u, ū) dx ≥ C ||u||2H1(Ωb)2
= C ||u||2Vα

, ∀ u ∈ Vα . (3.26)Moreover, the operator K : Vα → V ′
α de�ned by

(Ku, ϕ)Ωb
= −ω2

∫

Ωb

u · ϕ̄ dx , ∀ u, ϕ ∈ Vα (3.27)is ompat. To prove the strong elliptiity of the form B de�ned in (3.8), it is now su�ientto verify that T is the sum of a �nite dimensional operator and an operator T1 withRe {−∫
Γb

u · T1u ds

}

≥ 0 , ∀ u ∈ H1
α(Ωb)

2 . (3.28)To do so, we apply (3.9) and set
T1u := −

∑

|n|≥n0

Wn ûn , T0 := T − T1 .where n0 ∈ N is su�iently large, so thatRe (Wnz, z)C2 ≥ 0 , ∀ z ∈ C2 , ∀ |n| ≥ n0 (3.29)by Lemma 2 (i). Then the operator T0 is �nite dimensional, and (3.28) is a onsequeneof (3.29). This �nishes the proof of the strong elliptiity of the form B over Vα, and theFredholm property of B follows in a standard way. �
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4 Existene and uniqueness resultsIn this setion, we establish existene and uniqueness theorems for the boundary value prob-lem (DP), or equivalently, the variational problem (3.10) in the ase of arbitrary frequenies.Problem (3.10) an also be written in the form
Bu = F0 , F0 ∈ V ′

α , (4.1)where F0 is given by the right hand side of (3.10), and the operator B : Vα → V ′
α is de�nedby (3.23) via the sesquilinear form (3.8).Let u ∈ Vα be a solution of the homogeneous equation Bu = 0. Then u an be extended toa radiating solution of (2.3) in D by setting u(x) = usc(x) for x2 ≥ b, where usc is de�ned bythe expansion (2.11) with the Rayleigh oe�ients Ap,n, As,n, whih are uniquely determinedby the Fourier oe�ients ûn of exp(−iαx1) u(x1, b) via the relation (2.12). We will needthe following tehnial result, whih has already been proved in [2℄. Here we prefer to givea more diret proof that is based on the Fourier series representation of the DtN operator.Lemma 4 If u ∈ Vα satis�es Bu = 0, then

Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks . (4.2)Proof. Taking imaginary parts in the variational equation (3.10) with ϕ = u and f0 = 0,we are going to prove thatImB(u, u) = −Im ∫
Γb

u · T u ds = −2πω2





∑

|αn|<kp

βn |Ap,n|2 +
∑

|αn|<ks

γn |As,n|2


 , (4.3)whih implies (4.2) sine the left hand side of (4.3) is zero. Rewrite the relation (2.12) inthe form
ûn = DnAn , An :=

(

Ap,n exp(iβnb)
As,n exp(iγnb)

)

.Then the Fourier oe�ients ŵn of exp(−iαx1) T u(x1, b) an be written
ŵn = i GnAn , Gn :=

(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)

;see the proof of Lemma 1. Hene we get
∫

Γb

u · T u ds = 2π
∑

n∈Z

(iGnAn, DnAn)C2 == 2π
∑

n∈Z

(iLnAn, An)C2 ,where Ln := D∗
nGn an be written as

Ln =

(

αn βn

γn −αn

)(

2µαnβn ω2 − 2µα2
n

ω2 − 2µα2
n −2µαnγn

)

=

(

4µα2
n(Imβn)i+ ω2βn (ω2 − 2µα2

n)αn − 2µαnβnγn

2µαnβnγn − (ω2 − 2µα2
n)αn 4µα2

n(Imγn)i+ ω2γn

)

.11



Thus we obtainIm∫
Γb

u · T u ds = 2π Im∑
n∈Z

(iLnAn, An)C2 = 2π
∑

n∈Z

(ReLnAn, An)C2 .Finally, we note that the matrix ReLn is diagonal,ReLn = diag{en, fn} with en :=

{

ω2βn for α2
n < k2

p ,

0 for α2
n ≥ k2

p ,
fn :=

{

ω2γn for α2
n < k2

s ,

0 for α2
n ≥ k2

s .This ompletes the proof of (4.3). �The above lemma shows that a solution to the homogenous equation Bu = 0 an only onsistof exponentially deaying modes. Obviously this does not imply the uniqueness in problem(4.1); however, a solvability result an be proved by ombining Theorem 1 and Lemma 4.Theorem 2 Assume that the grating pro�le Λ is a Lipshitz urve. Then, for all inidentwaves of the form (2.1) or (2.2), there exists a solution to the variational problem (3.10)and hene to problem (DP).Proof. By Theorem 1, equation (4.1) is solvable if its right hand side F0 is orthogonal (withrespet to the duality (·, ·)Ωb
) to all solutions v of the homogenous adjoint equation B∗v = 0.Here the adjoint operator B∗ : Vα → V ′

α of B satis�es (f. (3.8) and (3.23))
(B∗v, ψ)Ωb

= (v,Bψ)Ωb
= B(ψ, v) =

∫

Ωb

(aL(v, ψ) − ω2 v · ψ) dx−
∫

Γb

ψ · T ∗v ds , ∀ ψ ∈ Vα ,where the adjoint T ∗ of T takes the form (f. Lemma 1 and (3.9))
T ∗v = −

∑

n∈Z

W ∗
n v̂n exp(iαnx1) for v|Γb

=
∑

n∈Z

v̂n exp(iαnx1) .Let v ∈ Vα be an arbitrary solution of the equation B∗v = 0, i.e.,
B(ψ, v) = 0, ∀ ψ ∈ Vα . (4.4)Then we an extend v to a solution of (2.3) in the unbounded domain D by setting

v(x) =
∑

n∈Z

{

Ap,n

(

αn

−βn

)

exp(i αnx1i − βnx2)

+As,n

(

−γn

−αn

)

exp(i αnx1 − i γnx2)

}

,

(4.5)for x2 ≥ b, where the Rayleigh oe�ients Ap,n, As,n ∈ C of v are determined by the Fourieroe�ients v̂n of exp(−iαx1) v|Γb
via the relation

v̂n =

(

αn −γ̄n

−β̄n −αn

)(

Ap,n exp(−iβ̄nb)
As,n exp(−iγ̄nb)

)

; (4.6)ompare (2.12). Note that (4.5) is an expansion into inoming plane elasti waves, and as inthe proof of Lemma 1, it an be veri�ed that Tv = T ∗v on Γb. Moreover, arguing as in the12



proof of Lemma 4, it follows that eah solution v of (4.4) has vanishing Rayleigh oe�ientsof the inoming modes,
Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks . (4.7)Consider �rst equation (4.1) in the ase of an inident pressure wave (2.1) where the righthand side is given by (3.10), (3.11). Then (4.7) implies that Ap,0 = As,0 = 0, hene

(F0, v)Ωb
=

∫

Γb

fp,0 · v ds = 0 for eah solution v of (4.4) ;note that kp < ks and α = α0 = kp sin θ . For an inident shear wave (2.2), where the righthand side of (4.1) is given by (3.10), (3.12), with α = ks sin θ, from (4.7) we only obtain
As,0 = 0 in general. However, this is enough to imply, together with (3.12) and (4.5), that

(F0, v)Ωb
=

∫

Γb

fs,0 · v ds = 2π Ap,0 fs,0 ·
(

α
−β0

)

= 0 ,for eah solution v of (4.4). Thus the right hand side of equation (4.1) is orthogonal to eahsolution of (4.4), whih �nishes the proof of the theorem. �We next give the main theorem of this setion. Supposing the grating surfae is givenby a Lipshitz graph, we establish the uniqueness in the Dirihlet problem for arbitraryfrequenies. Suh a uniqueness result has already been obtained in [2℄ for smooth pro�lefuntions; see also [22℄ in the ase of the salar Helmholtz equation. Our uniqueness proofis essentially based on a (periodi) Rellih identity and follows the approah of [20℄ in thesalar ase. To deal with the Lipshitz boundary, we adapt Ne£as' method [26, Chap. 5℄ ofapproximating the grating pro�le by smooth urves.Theorem 3 If Λ is a Lipshitz graph, then the operator B : Vα → V ′
α is invertible. Inpartiular, the variational problem (3.10) and hene problem (DP) have a unique solutionfor all inident waves of the form (2.1) or (2.2).Proof. By Theorem 1, we only need to prove the uniqueness. Let u ∈ Vα be a solution ofthe homogeneous equation Bu = 0, and let Ap,n, As,n be its Rayleigh oe�ients whih aredetermined by the Fourier oe�ients ûn of exp(−iαx1) u|Γb

via the relation (2.12).Step 1. We �rst prove that the theorem holds for periodi C2 graphs. In this ase, u ∈
H2(Ωb)

2 ∩ Vα, and using integration by parts, we obtain
2Re∫

Ωb

(∆∗ + ω2) u · ∂2u dx =

∫

∂Ωb

(∂nu · ∂2u+ ∂tu · ∂1u+ n2 ω
2 |u|2) ds , (4.8)where ∂t denotes the tangential derivative on the boundary. Analogously, using integrationby parts again, we get

2Re∫
Ωb

grad div u · ∂2u dx = 2Re∫
∂Ωb

n1 ∂2u1 div u ds

+

∫

∂Ωb

n2 (|∂2u2|2 − |∂1u1|2) ds .
(4.9)
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Then it follows from (4.8) and (4.9) that
2Re∫

Ωb

(∆∗ + ω2)u · ∂2u dx =

∫

∂Ωb

(

µ(∂nu · ∂2u+ ∂tu · ∂1u) + n2 ω
2 |u|2

)

ds

+(λ+ µ)

{

2Re ∫
∂Ωb

n1 ∂2u1div u ds+

∫

∂Ωb

n2 (|∂2u2|2 − |∂1u1|2) ds
}

.

(4.10)Note that (4.10 is a speial ase of the Rellih identity for the Navier equation proved in[14, Proposition 2℄. Sine u vanishes on Λ, we have ∂tu = −n2 ∂1u+ n1 ∂2u = 0 on Λ, whihimplies that
n1 ∂2u = n2 ∂1u , ∂1u = n1 ∂nu and ∂2u = n2 ∂nu on Λ .Thus the integral over Λ on the right hand side of (4.10) takes the form

∫

Λ

(

µ |∂nu|2 + (λ+ µ) |div u|2
)

n2 ds . (4.11)Moreover, using the Rayleigh expansion (2.11) of u for x2 ≥ b, one an verify by arefulalulations that the integral over Γb in (4.10) takes the form
∫

Γb

(

µ (|∂2u1|2 − |∂1u2|2) + (λ+ 2µ) (|∂2u2|2 − |∂1u1|2) + ω2 |u|2
)

ds

= 4πω2





∑

|αn|<k2
p

β2
n |Ap,n|2 +

∑

|αn|<k2
s

γ2
n |As,n|2



 ,

(4.12)and ombining (4.10)�(4.12) gives
2Re∫

Ωb

(∆∗ + ω2)u · ∂2u dx =

∫

Λ

(

µ |∂nu|2 + (λ+ µ) |div u|2
)

n2 ds

+ 4πω2





∑

|αn|<k2
p

β2
n |Ap,n|2 +

∑

|αn|<k2
s

γ2
n |As,n|2



 .

(4.13)This is just the quasiperiodi version of the Rellih identity (4.10) for our variational problem(4.1). Now we observe that the left hand side of (4.13) vanishes, and by Lemma 4 theboundary term (4.12) vanishes, too. Therefore, (4.13) implies that ∂nu = 0 on Λ, using thefat that −n2 ≥ C > 0 on Λ. Note that Λ is assumed to be the graph of a C2 funtion.Finally, as a onsequene of Holmgren's uniqueness theorem and the unique ontinuationpriniple, u must vanish in all of Ω.Step 2. Now we onsider the general ase that the pro�le of the di�ration grating is givenby the graph
Λ = Λf :=

{

(t, f(t)) ∈ R2 : t ∈ [0, 2π]
}where f is a periodi Lipshitz funtion of period 2π. Again we have to show that a solution

u ∈ Vα to the homogeneous problem (4.1) vanishes in Ωb = ΩΛ,b; reall that b > max{f(t) :
t ∈ [0, 2π]}. Consider the inhomogeneous boundary value problem

(∆∗ + ω2 + i) v = g := iu in Ωb ,

v|Λ = 0 , T v − T (ω, α) v = 0 on Γb . (4.14)14



One easily veri�es that the operator B1 : Vα → V ′
α generated by the sesquilinear form

B1(v, ϕ) :=

∫

Ωb

(

aL(v, ϕ) − (ω2 + i)v · ϕ
)

dx−
∫

Γb

ϕ · T (ω, α)v dsis invertible. Indeed, as in Theorem 1 it follows that B1 is Fredholm with index zero, andarguing as in the proof of Lemma 4 we obtain that ImB1(w,w) = 0, w ∈ Vα, implies that
4πω2





∑

|αn|<k2
p

β2
n |Ãp,n|2 +

∑

|αn|<k2
s

γ2
n |Ãs,n|2



+

∫

Ωb

|w|2 dx = 0 ,where Ãp,n, Ãs,n are the Rayleigh oe�ients of a solution w to the homogeneous problem(4.14) (with g = 0). Hene w must vanish in Ωb.Therefore v = u is the unique solution of the inhomogeneous problem (4.14) in Vα = Vα(Ωb).Following the proof of [26, Thm. 5.1.1℄, we hoose C∞ pro�les Λj = Λfj
suh that theLipshitz onstants of fj are uniformly bounded in j, and

Ωj
b = ΩΛj ,b ⊂ Ωb , max{|fj(t) − f(t)| : t ∈ [0, 2π]} → 0 , as j → ∞ . (4.15)Let uj ∈ Vα(Ωj

b) be the solution of the problem (4.14) for Ωj
b, whih is unique by step 1.Extending uj by zero to Ωb \ Ωj

b, we regard uj ∈ Vα(Ωb) as a solution of the problem (4.14)with the right hand side gj ∈ L2(Ωb) where gj denotes the extension of −iu|Ωj
b
by zero. Then,from (4.15) we have gj → g in L2(Ωb), and the invertibility of B1 implies

uj → u in Vα(Ωb) , j → ∞ . (4.16)We rewrite the boundary value problem for uj as
(∆∗ + ω2) uj = hj := i(u− uj) in Ωj

b ,

v|Λj
= 0 , Tuj − T (ω, α) uj = 0 on Γb .

(4.17)Note that uj ∈ Vα(Ωj
b) ⊂ Vα(Ωb) an be extended to a radiating solution of the Navier equa-tion in the unbounded domain D, using the expansion (2.11) with the Rayleigh oe�ients

Aj
p,n, A

j
s,n determined by the Fourier oe�ients ûj

n of exp(−iαx1) u
j(x1, b) via the relation(2.12). Applying the periodi Rellih identity (4.13) to problem (4.17), we obtain

2Re∫
Ωb

hj · ∂2uj dx =

∫

Λj

(

µ |∂nuj|2 + (λ+ µ) |div uj|2
)

n2 ds + Ij ,

Ij := 4πω2





∑

|αn|<k2
p

β2
n |Aj

p,n|2 +
∑

|αn|<k2
s

γ2
n |Aj

s,n|2


 .

(4.18)Moreover, setting ϕ = uj in the variational formulation of (4.17),
B(uj, ϕ) :=

∫

Ωb

(

aL(uj, ϕ) − ω2uj · ϕ
)

dx−
∫

Γb

ϕ · T (ω, α)uj ds

= −
∫

Ωb

hj · uj dx , ϕ ∈ Vα(Ωb) ,15



and taking imaginary parts, we get (f. (4.3))
Ij = −ImB(uj , uj) = Im (

∫

Ωb

hj · uj dx

)

,whih implies Ij → 0 as j → ∞ in view of (4.16) and the de�nition of hj in (4.17). From(4.18) we then have, on using the uniform estimate −n2 ≥ C > 0 on Λj for all j ∈ N,
∫

Λj

|∂nuj|2 ds→ 0 , j → ∞ . (4.19)We may identify the spaes L2(Λj) and L2(Λ) with L2(0, 2π) via the norm
‖v ◦ fj‖L2(0,2π) =

(
∫ 2π

0

|v(t, fj(t))|2 dt
)1/2

, v ∈ L2(Λj) ,with Λ0 = Λ, f0 = f , whih is a uniformly equivalent norm with respet to j. From (4.19) weget ∂nuj|Λj
→ 0 in L2(0, 2π)2, whih together with uj|Λj

= 0 , j ∈ N, implies that Tuj|Λj
→ 0in L2(0, 2π)2. Here T denotes the tration operator de�ned in (3.3). Moreover, then it followsfrom (4.16) and the relation ϕ|Λj

→ ϕ|Λ in L2(0, 2π)2 (f. Lemma 2.4.5 in [26℄) that, bypassing to the limit in Betti's identity,
∫

Λj

ϕ · Tuj ds = B(uj, ϕ) +

∫

Ωb

hj · uj dx , ∀ ϕ ∈ H1
α(Ωb)

2 ,we obtain that B(u, ϕ) = 0 for all ϕ ∈ H1
α(Ωb)

2, hene Tu|Λ = 0. Note that the trae Tu|Λin the sense of H−1/2 is de�ned by
∫

Λ

ϕ · Tu ds = B(u, ϕ) , ∀ ϕ ∈ H1
α(Ωb)

2 .Finally, sine the Dirihlet and Neumann data of u vanish on Λ, we obtain u = 0 in Ωb bythe unique ontinuation priniple. �Remark 3 (i) Assume that Λ is given by a pieewise smooth graph having only a �nitenumber of orner points (with non-zero angles). Then the uniqueness already follows fromthe arguments in step 1 of the above proof. In that ase eah solution to problem (3.10)satis�es u ∈ H3/2+ǫ(Ωb)
2 for some ǫ > 0, so that the integration by parts in the Rellihidentity (4.10) is justi�ed. Moreover, then the uniqueness result extends to the ase that the

x2-omponent of the normal, −n2, vanishes on a subset of Λ and has a positive lower boundon the other parts, e.g, in the ase of retangular groove gratings where the pro�le onsistsof a �nite number of horizontal and vertial segments only.(ii) If the grating pro�le Λ is given by a general Lipshitz urve, we an only prove theuniqueness for all su�iently small frequenies ω. To see this, we deompose the operator Binto the sum A + K, where K is the operator de�ned in (3.27) and A is de�ned by
(Av, ϕ)Ωb

=

∫

Ωb

aL(v, ϕ) dx−
∫

Γb

ϕ · T v ds , ∀ v, ϕ ∈ Vα . (4.20)From Lemma 1 we get, for any v ∈ Vα,Re{−∫
Γb

v · T v ds
}

= 2π
∑

n 6=0

Re (Wnv̂n, v̂n)C2 + 2πRe (W0v̂0, v̂0)C2 , (4.21)16



where v̂n are the Fourier oe�ients of exp(−iαx1) v(x1, b). For the last term in (4.21) wehave
|(W0û0, v̂0)C2 | = O (ω)|v̂0|2 as ω → 0 ;see the de�nition of Wn in (3.6). Then it follows from Lemma 2 (ii) applied to the seondterm in (4.21) and from estimate (3.26) that the operator A de�ned in (4.20) is oerive,i.e.,
|Re (Av, v)Ωb

| ≥ C ‖v‖2
Vα
, ∀ v ∈ Vα ,if ω is su�iently small. Here the onstant C > 0 does not depend on ω. Finally, we have

‖K‖Vα→V ′
α

= O (ω2) as ω → 0 ,whih implies that the operator B = A + K is always invertible if ω is su�iently small.(iii) Relying on the above uniqueness result for small frequenies, it is possible to prove theinvertibility of the operator B for all frequenies ω > 0 with the possible exeption of adisrete set in (0,∞); see Theorem 6 below in the ase of the transmission problem.To onlude this setion, we present an existene and uniqueness result in the ase where theDirihlet ondition (2.4) in the di�ration problem (DP) is replaed by the mixed Dirihletand Robin boundary onditions:
u = 0 on ΛD , Tu− iηu = 0 on ΛI . (4.22)We assume that Λ has a Lipshitz dissetion Λ = ΛD ∪ Σ ∪ ΛI , where ΛD and ΛI aretwo disjoint and relative open subsets of Λ having Σ as their ommon boundary (see [24,p. 99℄). On ΛI , η ∈ C is assumed to be a onstant with Re η > 0. In this ase, the proofof uniqueness beomes easy beause of the impedane oe�ient η on ΛI . The boundaryonditions (4.22) lead to the following variational problem in the bounded periodi ell Ωb:Find u ∈ Eα := {v ∈ H1
α(Ωb)

2 : v = 0 on ΛD} suh that
∫

Ωb

(

aL(u, ϕ) − ω2u · ϕ
)

dx− iη

∫

ΛI

u · ϕds−
∫

Γb

ϕ · T u ds

=

∫

Γb

f0 · ϕds , ∀ ϕ ∈ Eα ,

(4.23)where f0 is de�ned by (3.11) for an inident pressure wave, and by (3.12) for an inidentshear wave.Theorem 4 If ΛI 6= ∅ , then there always exists a unique solution u ∈ Eα to the variationalproblem (4.23).Proof. It follows from the proof of Theorem 1 that the operator generated by the sesquilinearform of (4.23) is a Fredholm operator with index zero. Thus it is enough to prove theuniqueness. Letting f0 = 0, u = ϕ and taking imaginary parts in (4.23), we have (f. (4.3))
−Re η ∫

ΛI

|u|2 ds = Im∫
Γb

u · T u ds ≥ 0 ,whih implies that u = 0 on ΛI . This means that u has vanishing Dirihlet and Neumanndata on ΛI , and as a onsequene of the unique ontinuation priniple, u = 0 on Ωb. �17



5 Solvability results for transmission gratingsThe aim of this setion is to provide a solvability theory of quasiperiodi transmission prob-lems for the two-dimensional Navier system. Suppose the whole (x1, x2)-plane is �lled withelasti materials whih are homogenous above and below a ertain periodi interfae Λ. Weassume throughout this setion that Λ is a 2π-periodi Lipshitz urve. Let D± be the un-bounded domains above and below Λ respetively. We assume that the Lamé oe�ients
µ± , λ± in D± are onstants satisfying µ± > 0 , λ± +µ± > 0, and that the mass densities ρ±are positive onstants in these subdomains. Let

k±p := ω
√

ρ±/(2µ± + λ±) , k±s := ω
√

ρ±/µ± (5.1)be the orresponding ompressional and shear wave numbers respetively. As in Setion 2we assume that a time harmoni plane elasti wave uin with inident angle θ is inident on
Λ from D+, whih is either an inident pressure wave of the form (2.1), or an inident shearwave of the form (2.2), with kp, ks replaed by k+

p , k
+
s . Then we are looking for the totaldisplaenent �eld u,

u = uin + u+ in D+ , u = u− in D− , (5.2)where the sattered �elds u± satisfy the orresponding α-quasiperiodi Navier equations
(∆∗ + ω2ρ±) u± = 0 in D± , with u±(x1 + 2π, x2) = exp(2iαπx1) u

±(x1, x2) , (5.3)and either α := k+
p sin θ for an inident pressure wave, or α := k+

s sin θ for an inidentshear wave. On the interfae the ontinuity of the displaement and the stress lead to thetransmission onditions
uin + u+ = u− , T+(uin + u+) = T−u− on Λ , (5.4)where the orresponding stress operators are de�ned as in (3.3), with µ, λ replaed by

µ±, λ±. Finally, we need to impose appropriate radiation onditions on the sattered �eldsas x2 → ±∞. Introdue the notation
Λ+ := max

(x1,x2)∈Λ
x2 , Λ− := min

(x1,x2)∈Λ
x2 ,let αn := α + n, and de�ne β±

n and γ±n as in (2.9) with kp, ks replaed by k±p , k±s . Then weinsist that the sattered �elds u± admit the following Rayleigh expansions (f. (2.11)), for
x2 ≷ Λ±:

u±(x) =
∑

n∈Z

{

A±
p,n

(

αn

±β±
n

)

exp(iαnx1 ± iβ±
n x2)

+A±
s,n

(

±γ±n
−αn

)

exp(iαnx1 ± iγ±n x2)

}

,

(5.5)where for any b+ > Λ+, b− < Λ−, the Rayleigh oe�ients are related with the Fourieroe�ients û±n of exp(−iαx1) u
±(x1,±b) by the relations (f. (2.12))

û±n = D±
n A

±
n , D±

n :=

(

αn ±γ±n
±β±

n −αn

)

, A±
n :=

(

A±
p,n exp(±iβ±

n b
±)

A±
s,n exp(±iγ±n b±)

)

. (5.6)18



Note that detD±
n 6= 0 for all n ∈ Z. The di�ratition problem for transmission gratings annow be formulated as the following boundary value problem.Transmission problem (TP): Given a grating pro�le urve Λ ⊂ R2 (whih is 2π-periodiin x1) and an inident plane pressure or shear wave uin, �nd a vetor funtion u ∈ H1

loc(R
2)2that satis�es (5.2)�(5.5).Following the approah of Setion 3, we redue the problem (TP) to a variational problem ina bounded periodi ell in R2, enforing the transmission and radiation onditions. Introduearti�ial boundaries

Γ± := {(x1, b
±) : 0 ≤ x1 ≤ 2π} , b+ > Λ+ , b− < Λ−and the bounded domains

Ω = Ωb−,b+ := (0, 2π) × (b−, b+) , Ω± := D± ∩ Ω .The DtN maps T ± on the arti�ial boundaries Γ± have the Fourier series representations(f. (5.6) and Lemma 1)
T ±u± := −

∑

n∈Z

W±
n û

±
n exp(iαnx1) , u± =

∑

n∈Z

û±n exp(iαnx1) ∈ H1/2
α (Γ±)2 , (5.7)where the matries W±

n = W±
n (ω, α) take the form (f. (3.6))

W±
n :=

1

i

(

ω2ρ±β±
n /d

±
n 2µ±αn − ω2ρ±αn/d

±
n

−2µ±αn + ω2ρ±αn/d
±
n ω2ρ±γ±n /d

±
n

)

, d±n := α2
n + β±

n γ
±
n . (5.8)Applying the �rst Betti formula on eah subdomain Ω± to a solution of (TP), and using thetransmission onditions (5.4) at the interfae and the DtN operators (5.7), we obtain thefollowing variational formulation of (TP) on the bounded domain Ω: Find u ∈ H1

α(Ω)2 suhthat
B(u, ϕ) :=

∫

Ω

(

aL(u, ϕ) − ω2ρ u · ϕ
)

dx−
∫

Γ+

ϕ · T +u ds−
∫

Γ−

ϕ · T −u ds

=

∫

Γ+

f0 · ϕds , ∀ ϕ ∈ H1
α(Ω)2 .

(5.9)Here the domain integral is understood as the sum of the integrals
∫

Ω±

(

a±L(u, ϕ) − ω2ρ± u · ϕ
)

dxwhere the bilinear forms a±L are de�ned as in (3.2), with µ, λ replaed by µ±, λ±, and theright hand side is given by (f. (3.10)�(3.12))
f0 = fp,0 :=

2iβ+
0 k

+
p (λ+ + 2µ+)

d+
0

(

−α
γ+

0

)

exp(iαx1 − iβ+
0 b

+) (5.10)for an inident pressure wave, and
f0 = fs,0 := −2iγ+

0 k
+
s µ

+

d+
0

(

β+
0

α

)

exp(iαx1 − iγ+
0 b

+) (5.11)19



for an inident shear wave. As in (3.23), the sesquilinear form B de�ned in (5.9) generatesa ontinuous linear operator B from H1
α(Ω)2 into its dual (H1

α(Ω)2)′, with respet to thepairing (u, ϕ)Ω =
∫

Ω
u · ϕ̄, via

B(u, ϕ) = (Bu, ϕ)Ω , ∀u , ϕ ∈ H1
α(Ω)2 . (5.12)The following lemma extends Lemma 4 to the transmission ase.Lemma 5 Let B be the operator de�ned in (5.12). If u ∈ H1

α(Ω)2 satis�es Bu = 0, then
A±

p,n = 0 for |αn| < k±p and A±
s,n = 0 for |αn| < k±s , (5.13)where A±

p,n, A
±
s,n are the Rayleigh oe�ients of u de�ned via (5.6) with the Fourier oe�-ients û±n of exp(−iαx1) u(x1, b

±).Proof. As in the proof of Lemma 4, we an verify the identityImB(u, u) = −Im ∫
Γ+

u · T +u ds− Im∫
Γ−

u · T −u ds (5.14)
= −2πω2





∑

|αn|<k+
p

β+
n |A+

p,n|2 +
∑

|αn|<k+
s

γ+
n |A+

s,n|2 +
∑

|αn|<k−
p

β−
n |A−

p,n|2 +
∑

|αn|<k−
s

γ−n |A−
s,n|2



 ,and taking imaginary parts in the variational equation (5.9) with ϕ = u and f0 = 0, we thenobtain the relation (5.13). �The following result extends Theorems 1 and 2 to the transmission problem.Theorem 5 (i) The sesquilinear form B de�ned by (5.9) is strongly ellipti over H1
α(Ω)2,and the operator B de�ned in (5.12) is Fredholm with index zero.(ii) For all inident plane pressure or shear waves, there exists a solution to the variationalproblem (5.9) and hene to problem (TP).Proof. (i) It follows from the estimate (3.24) applied to the subdomains Ω± and from Korn'sinequality (see Lemma 3) on Ω that there exist positive onstants c, C suh that

∫

Ω

(

aL(u, ū) + c |u|2
)

dx ≥ C ||u||2H1(Ω)2 , ∀ u ∈ H1
α(Ω)2 . (5.15)As in the proof of Theorem 1, from Lemma 2 (i) we obtainRe {−∫

Γ±

u · T ±
1 u ds

}

≥ 0 , ∀ u ∈ H1
α(Ω)2 (5.16)by setting (f. (5.7), (5.8))

T ±
1 u := −

∑

|n|≥n0

W±
n û±n , T ±

0 := T ± − T ±
1 ,where û±n are the Fourier oe�ients of exp(−iαx1) u(x1, b

±) and n0 is su�iently large.Note that the operators T ±
0 are �nite dimensional. Moreover, the operator K : H1

α(Ω)2 →
(H1

α(Ω)2)′ de�ned by
(Ku, ϕ)Ω = −(ω2 + c)

∫

Ω

u · ϕ̄ dx , ∀ u, ϕ ∈ H1
α(Ω)220



is ompat. Now the strong elliptiity of the form B de�ned in (5.9) follows from (5.15) and(5.16).(ii) To ensure existene of solutions, we only need to prove that the relation
∫

Γ+

f0 · v ds = 0 (5.17)holds for all v ∈ H1
α(Ω)2 in the null spae of the adjoint operator, i.e., B∗v = 0, where f0is the right hand side de�ned in (5.10) and (5.11) respetively; see the proof of Theorem 2.Here the adjoint B∗ of B satis�es (f. (5.9) and (5.12)), for all ψ ∈ H1

α(Ω)2,
(B∗v, ψ)Ω = B(ψ, v) =

∫

Ω

(aL(v, ψ) − ω2 v · ψ) dx−
∫

Γ+

ψ · (T +)∗v ds−
∫

Γ−

ψ · (T −)∗v ds ,where the adjoints (T ±)∗ take the form (f. (5.7) and (5.8))
(T ±)∗v = −

∑

n∈Z

(W±
n )∗ v̂±n exp(iαnx1) for v|Γ± =

∑

n∈Z

v̂±n exp(iαnx1) .Let v ∈ H1
α(Ω)2 be an arbitrary solution of the equation B∗v = 0, i.e.,

B(ψ, v) = 0 , ∀ ψ ∈ H1
α(Ω)2 . (5.18)We an extend v to a solution of (2.3) in R2 by using the Rayleigh expansions (5.5) for

x2 ≥ b+ and x2 ≤ b− respetively, with β±
n , γ

±
n replaed by −β±

n , −γ±n . Here the Rayleighoe�ients A±
p,n, A

±
s,n of v are determined by the Fourier oe�ients v̂±n of exp(−iαx1) v|Γ±via the relations (5.6), again with β±

n , γ
±
n replaed by −β±

n , −γ±n ; ompare (4.5) and (4.6).Arguing as in the proof of Lemma 5, we now obtain that eah solution v of (5.18) hasvanishing Rayleigh oe�ients of the inoming modes in D+,
A+

p,n = 0 for |αn| < k+
p and A+

s,n = 0 for |αn| < k+
s . (5.19)Finally, realling the de�nition of f0 (see (5.10) or (5.11)), the relation (5.17) follows from(5.19) as in the proof of Theorem 2. �Following the approah in [18℄, [19℄, [29℄ in the ase of eletromagneti di�ration gratings,we �nally establish some uniqueness results for the variational problem (5.9) and hene forthe boundary value problem (TP).Theorem 6 If uin is an inident pressure wave of the form (2.1) (with kp = k+

p ), then(i) There exists ω0 > 0 suh that the variational problem (5.9) admits a unique solution
u ∈ H1

α(Ω)2 for all inident angles and for all frequenies ω ∈ (0, ω0].(ii) For all but a sequene of ountable frequenies ωj, ωj → ∞, the variational problem (5.9)(with �xed inidene angle θ) admits a unique solution u ∈ H1
α(Ω)2.Proof. (i) Assuming there exists a solution u ∈ H1

α(Ω)2 to the homogenous problem (5.9),so that B(u, u) = 0, we shall prove that u = 0 in Ω. Applying Lemma 2 (ii) to the DtNoperators (5.7), we obtain that, for all ω ∈ (0, ω0] with ω0 su�iently small,
I := Re (−∫

Γ+

u · T +u ds−
∫

Γ−

u · T −u ds

)

= 2π
∑

n∈Z

(Re (W+
n û

+
n , û

+
n )C2 + Re (W−

n û
−
n , û

−
n )C2

) (5.20)
≥ C

∑

n 6=0

(

|n|(|û+
n |2 + |û−n |2)

)

+ Re (W+
0 û

+
0 , û

+
0 )C2 + Re (W−

0 û
−
0 , û

−
0 )C2 ,21



where û±n are the Fourier oe�ients of exp(−iαx1) u(x1, b
±). Here and in the following Cdenotes various positive onstants not depending on u and ω. Let A±

p,n, A
±
p,n be the Rayleighoe�ients of u whih are de�ned via the relations (5.6).Sine k+

s > k+
p , it follows from Lemma 5 that A+

p,0 = A+
s,0 = 0, whih implies û+

0 = 0. Reallthat
β±

n =
√

(k±p )2 − α2
n , γ±n =

√

(k±s )2 − α2
n , αn = n + k+

p sin θ , α = α0 (5.21)in the ase of an inident pressure wave with inidene angle θ, where the square roots arehosen suh that their imaginary parts are non-negative. Therefore, the estimate (5.20) anbe written as
I ≥ C

(

||u||2
H

1/2
α (Γ+)2

+
∑

n 6=0

|n||û−n |2
)

+ Re (W−
0 û

−
0 , û

−
0 )C2 , ∀ ω ∈ (0, ω0] (5.22)Furthermore, from the de�nition of W−

0 in (5.8), we have the bound
|(W−

0 û
−
0 , û

−
0 )C2| ≤ C ω |û−0 |2 ≤ C ω||u||2H1(Ω)2 . (5.23)Combining the estimates (5.20), (5.22) and (5.23) and using the de�nition of the sesquilinearform B in (5.9), we obtain for ω ∈ (0, ω0]

0 = ReB(u, u) ≥
∫

Ω

aL(u, u) dx+ C ||u||2
H

1/2
α (Γ+)2

− C ω ||u||2H1(Ω)2 ,whih leads to
∫

Ω

aL(u, u) dx+ C ||u||2
H

1/2
α (Γ+)2

≤ C ω ||u||2H1(Ω)2 . (5.24)Now it follows from the estimate (3.24) applied to the subdomains Ω± and from Remark 3applied to Ω that the square root of the left hand side of the inequality (5.24) is an equivalentnorm on H1
α(Ω)2. Therefore, it follows that u = 0 in Ω if the frequeny ω is su�iently small.(ii) To study the uniqueness for arbitrary frequenies ω using analyti Fredholm theory, itis neessary to replae equation (5.9) on the ω-dependent spae H1

α(Ω)2 by an equivalentvariational problem ating on the same energy spae,
V = H1

per(Ω)2 := {u ∈ H1(Ω)2 : u is 2π − periodi in x1} ,for eah ω. Reall that (f. (5.1) and (5.21))
α = k+

p sin θ = ω sin θ
√

ρ+/(2µ+ + λ+) . (5.25)So, instead of the operator B : H1
α(Ω)2 → (H1

α(Ω)2)′ de�ned by (5.12), we onsider theoperator
Bα : V → V ′ , Bαu := exp(−iαx1)B(exp(iαx1) u) , u ∈ V , (5.26)where V ′ is the dual of V with respet to the pairing (·, ·)Ω. Note that Bα is then generatedby the sesquilinear form

Bα(u, ϕ) := B(exp(iαx1) u, exp(iαx1)ϕ) , u , ϕ ∈ V ,22



whih an be written as (f. (5.9))
Bα(u, ϕ) =

∫

Ω

(

aL,α(u, ϕ) − ω2ρ u · ϕ
)

dx−
∫

Γ+

ϕ · T +
α u ds−

∫

Γ−

ϕ · T −
α u ds , (5.27)where the bilinear form aL,α on Ω± is de�ned as in (3.2), with µ, λ replaed by µ±, λ±, and

∂1 replaed by the di�erential operator ∂1,α = ∂1 + iα, and where (f. (5.7), (5.8))
T ±

α u := −
∑

n∈Z

W±
n (ω, α)û±n exp(inx1) , u|Γ± =

∑

n∈Z

û±n exp(inx1) ∈ H1/2
per (Γ±)2 . (5.28)To indiate the dependene on the frequeny ω, we shall write Bα = B(ω) and T ±

α = T ±(ω)in the following. Note that the operator generated by the �rst term of the form (5.27)depends analytially on ω ∈ C, while for the DtN operators (5.28) this is only valid if oneavoids the set of exeptional values (the Rayleigh frequenies) where one of the numbers
β±

n , γ
±
n vanishes (f. (5.1), (5.21)):
R =

{

ω : ∃ n ∈ Z suh that α2
n = ω2 ρ±/(2µ± + λ±) or α2

n = ω2 ρ±/µ±
}

. (5.29)It follows immediately from Theorem 5 and (5.26) that B(ω) : V → V ′ is a Fredholm operatorwith index zero for all ω > 0. Moreover, by assertion (i), we an hoose ω0 > 0 su�ientlysmall so that B(ω0) is invertible. Then B(ω) is invertible if and only if the operator
A(ω) := I + K(ω) : V → V , K(ω) := B(ω0)

−1 (B(ω) − B(ω0)) (5.30)is invertible, where I denotes the identity operator. To prove that the operator K(ω) de�nedin (5.30) is ompat on V , we note that
((B(ω) − B(ω0)) u, ϕ)Ω = −

∫

Γ+

ϕ (T +(ω) − T +(ω0))u ds−
∫

Γ−

ϕ (T −(ω) − T −(ω0)) u ds

−(ω − ω0)

∫

Ω

ρ uϕdx , u , ϕ ∈ V , (5.31)and (f. (5.28))
(T ±(ω) − T ±(ω0)) u = −

∑

n∈Z

(W±
n (ω, α) −W±

n (ω0, α)) û±n exp(inx1) .Then the uniform estimates
‖W±

n (ω, α) −W±
n (ω0, α)‖C2→C2 ≤ c(ω, ω0) , ∀ n ∈ Z ,together with the trae and imbedding theorems for periodi Sobolev spaes, imply theompatness of the form (5.31) and hene that of K(ω).Sine K(ω) is a ompat operator funtion depending analytially on ω if ω /∈ R (f. (5.29),(5.21)) and A(ω0) is invertible, it follows from the analyti Fredholm theory (e.g., [13, The-orem 8.26℄) that A(ω) is invertible for all ω ∈ U := (0,∞) \ R, with the possible exeptionof some disrete subset, say D, of U . Thus assertion (ii) is proved if we show that a point

ω∗ ∈ R annot be an aumulation point of D. It follows from the de�nition of β±
n , γ

±
n(f. (5.21)) that, in some neighbourhood of ω∗, the operator funtions T ±(ω), and hene

B(ω), K(ω), A(ω), are analyti in z := (ω − ω∗)
1/2, where the branh of the root is hosensuh that its imaginary part is non-negative. Then, applying [13, Theorem 8.26℄ to theoperator funtion A(z) = I + K(z) in a neighbourhood of z = 0, gives the desired result. �23



Remark 4 (i) For an inident shear wave uin, Theorem 6 holds under the additional as-sumption that k−p > k+
s , or equivalently, ρ−/(2µ− + λ−) > ρ+/µ+. Note that the relations(5.21) hold with αn = n+k+

s sin θ, so that in the proof of the orresponding assertion (i) oneobtains û−0 = 0 and thus estimate (5.24) with the orresponding boundary term on Γ−. Wedo not know whether this ondition an be removed.(ii) Assume that the elasti material is homogeneous above a periodi Lipshitz interfae Λ+and below another periodi Lipshitz interfae Λ−, whereas the elasti medium between Λ+and Λ− may be inhomogeneous with pieewise onstant Lamé parameters λ, µ and density ρhaving jumps at ertain (�nitely many) disjoint periodi Lipshitz interfaes. Then Theorems5 and 6 an easily be extended to these more general periodi di�rative strutures.(iii) The uniqueness result of Theorem 3 does not hold for the transmission problem (TP).Even in the speial ase of two half-planes with ertain elasti parameters λ±, µ±, ρ± andthe transmission onditions (5.4) on the line {x2 = 0}, there may exist non-trivial solutionsof the homogeneous problem (Rayleigh surfae waves) that deay exponentially as x2 → ±∞;see [1℄. Hene additional onditions must be imposed on the elasti parameters to guaranteethe uniqueness. However, so far we do not know of any general result in this diretion.Referenes[1℄ Ahenbah, J.D. 1973 Wave propagation in elasti solids In: North-Holland series inApplied mathematis and mehanis Vol. 16 eds. Lauwerier, H.A. and Koiter, W.T.(Amsterdam: North Holland) 165�201[2℄ Arens, T. 1999 The sattering of plane elasti waves by a one-dimentional periodisurfae Math. Meth. Appl. Si. 22 55�72[3℄ Arens, T. 1999 A new integral equation formulation for the sattering of plane elastiwaves by di�ration gratings J. Integral Equations Appl. 11 275�297[4℄ Arens, T. 2001 Uniqueness for elasti wave sattering by rough surfaes SIAMJ.Math.Anal. 33 461�471[5℄ Arens, T. 2002 Existene of solution in elasti wave sattering by unbounded roughsurfaes Math. Meth. Appl. Si. 25 507�528[6℄ Bao, G. 1995 Finite element approximation of time harmoni waves in periodi stru-tures SIAM J. Numer. Anal. 32 1155�1169[7℄ Bao, G., Chen, Z., and Wu, H. 2005 Adaptive �nite-element method for di�rationgratings J. Opt. So. Amer. A 22 1106�1114[8℄ Bao, G., Cowsar, L., and Masters, W. eds. 2001 Mathematial Modeling in OptialSiene (Philadelphia: SIAM)[9℄ Bonnet-Bendhia, A.-S. and Starling, F. 1994 Guided waves by eletromagneti gratingsand non-uniqueness examples for the di�ration problem Math. Meth. Appl. Si. 17305-338
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