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Abstract

Random and deterministic fragmentation models are considered. Their re-
lationship is studied by deriving different forms of the kinetic fragmentation
equation from the corresponding stochastic models. Results related to the
problem of non-conservation of mass (phase transition into dust) are discussed.
Illustrative examples are given and some open problems are mentioned.
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1 Introduction

Fragmentation models are used in many scientific and industrial areas (e.g., polymer
chemistry, nuclear physics, cell biology, mining industry). A system of particles
characterized by some positive quantity (mass, volume, size) is considered. The
time evolution of the system is determined by a random splitting mechanism.

The study of stochastic fragmentation models was initiated by Kolmogorov [6]
who gave a theoretical derivation of a distribution function that was observed ex-
perimentally for systems of mineral grains. A fragmentation equation of the form

∂

∂t
c(t, x) =

∫ ∞

x

c(t, y)ψ(y, x) dy− c(t, x)
1

x

∫ x

0

y ψ(x, y) dy (1.1)

was studied in [8]. Here c(t, x) represents the number density of particles of mass
x at time t , and ψ is a parameter determined by the fragmentation mechanism.
Though these fragmentation models are relatively simple (in particular, equation
(1.1) is linear), they have some interesting properties related to a phase transition.
Filippov [3] studied the transformation of mass into an infinite number of particles
of zero mass (called dust) in those cases where the speed of the splitting of a particle
increases sufficiently rapidly with the decrease of its mass. Later this phenomenon
was called “shattering” transition [7]. For more details and references related to
fragmentation, we refer to the recent monographs [2] concerning stochastic models,
and [1] concerning the functional analytical approach.

In this paper random and deterministic fragmentation models are considered.
In Section 2 their relationship is studied by deriving different forms of the kinetic
fragmentation equation from the corresponding stochastic models. In Section 3
results related to the problem of non-conservation of mass (phase transition into
dust) are discussed. Illustrative examples are given and some open problems are
mentioned.

2 Models

2.1 Stochastic particle models

2.1.1 Direct simulation process

The direct simulation model is based on a system of particles
(

X1(t), . . . , XN(t)(t)
)

, t ≥ 0 , N(0) = 1 , (2.1)

where N(t) denotes the number of particles. The time evolution of the system
imitates the supposed physical behaviour. Given a state (x1, . . . , xN ) , particles
behave independently. Each particle xi waits an exponentially distributed time with
parameter a(xi) and then splits into fragments z1, . . . , zk distributed according to
F (xi, dz) . The fragmentation rate a(x) is assumed to be compactly bounded
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on the state space of a single particle X = (0,∞) . The fragmentation kernel
F (x, dz) is a probability measure on the space of clouds of fragments

Z =

∞
⋃

k=2

X k . (2.2)

In particular, the average number of fragments is

nfrag(x) =
∞
∑

k=2

k F (x,X k) . (2.3)

A common assumption is the mass conservation property

F (x, {z∈Z : z1 + . . .+ zk =x}) = 1 ∀x ∈ X . (2.4)

For studying connections between the system (2.1) and deterministic equations,
it is convenient to introduce a measure-valued stochastic process. Consider the state
space

Y =

{

N
∑

i=1

δxi
: N ≥ 1 , xi ∈ X , i = 1, . . . , N

}

, (2.5)

where δx denotes the Dirac measure in x ∈ X , with the topology of weak conver-
gence. Define the kernel

q(y,Γ) =
N
∑

i=1

∫

Z

1Γ(JF (y, i, z)) a(xi)F (xi, dz) , y ∈ Y , (2.6)

where 1Γ denotes the indicator function of a Borel set Γ ∈ B(Y) , with the jump
transformation

JF (y, i, z) = y − δxi
+ δz1

+ . . .+ δzk
. (2.7)

The jump process corresponding to the kernel (2.6) is called direct simulation
process. It is represented in terms of the system (2.1) as

ξ(t, dx) =

N(t)
∑

i=1

δXi(t)(dx) (2.8)

and measures the number of particles with mass in a given subset of X .

Let F (k) denote the restrictions of the fragmentation kernel F to the sets X k .

Define the symmetrized restrictions

F (k)
sym(x, dz1, . . . , dzk) =

1

k !

∑

π

F (k)(x, dzπ(1), . . . , dzπ(k)) , k = 2, 3, . . . , (2.9)
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where the sum is taken over all permutations of {1, . . . , k} , their 1-marginals

F (k|1)
sym (x, dy) = F (k)

sym(x, dy,X , . . . ,X ) (2.10)

and the kernel

B(x, dy) =
∞
∑

k=2

k F (k|1)
sym (x, dy) . (2.11)

Let Ex denote expectation with respect to F (x, dz) . Then one obtains, for appro-
priate test functions ϕ ,

Ex

[

ϕ(z1) + . . .+ ϕ(zk)
]

=

∫

Z

[

ϕ(z1) + . . .+ ϕ(zk)
]

F (x, dz) =

∞
∑

k=2

∫

Xk

[

ϕ(z1) + . . .+ ϕ(zk)
]

F (k)
sym(x, dz1, . . . , dzk)

=

∞
∑

k=2

k

∫

X

ϕ(y)F (k|1)
sym (x, dy) =

∫

X

ϕ(y)B(x, dy) ∀x ∈ X . (2.12)

The quantity B(x,Γ) represents the average number of fragments with mass in
Γ ∈ B(X ) , resulting from the fragmentation of a particle of mass x . In particular,
the average total number of fragments (2.3) is expressed as

nfrag(x) = B(x,X ) . (2.13)

Property (2.4), which means mass conservation with probability one, implies mass
conservation on average (cf. (2.12))

∫ x

0

y B(x, dy) = x ∀x > 0 (2.14)

and

B(x, [ε, x)) <∞ ∀ ε ∈ (0, x) . (2.15)

2.1.2 Mass flow process

The one-dimensional jump process X̃(t) corresponding to the kernel

q̃(x, dy) = a(x) B̃(x, dy) , x ∈ X , (2.16)

where

B̃(x, dy) =
y

x
B(x, dy) , (2.17)

is called mass flow process. Note that the mass conservation property (2.14)
implies

∫ x

0

B̃(x, dy) = 1 . (2.18)
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Given a state x ∈ X , the process X̃ waits an exponentially distributed time with
parameter a(x) , and then jumps to a “fragment” y distributed according to the
kernel (2.17). According to (2.12), one obtains

B(x, dy) =

∫

Z

[

δz1
(dy) + . . .+ δzk

(dy)
]

F (x, dz) (2.19)

so that the kernel (2.17) can be represented via F in the form

B̃(x, dy) =

∫

Z

[z1

x
δz1

(dy) + . . .+
zk

x
δzk

(dy)
]

F (x, dz) . (2.20)

Thus, given X̃ = x , the next state can be obtained as follows: first fragments
z1, . . . , zk are generated according to the fragmentation kernel F (x, dz) ; then one of
the fragments is chosen with probabilities proportional to their individual masses.
The quantity B̃(x,Γ) represents the average total mass of fragments (normal-
ized by x) with mass in Γ ∈ B(X ) , resulting from the fragmentation of a particle of
mass x .

2.2 Fragmentation equations

The measure-valued function (cf. (2.8))

µ(t, dx) = E ξ(t, dx) (2.21)

represents the average number of particles that have mass in a given subset of
X at time t ≥ 0 . It satisfies the weak form of the fragmentation equation

d

dt

∫

X

ϕ(x)µ(t, dx) =

∫

X

∫

Z

[

ϕ(z1) + . . .+ ϕ(zk) − ϕ(x)
]

a(x)F (x, dz)µ(t, dx) ,

(2.22)

for appropriate test functions ϕ . This follows from Dynkin’s formula

d

dt
E Φ(ξ(t)) = EAΦ(ξ(t)) , (2.23)

where (cf. (2.6))

AΦ(y) =

∫

Y

[

Φ(ỹ) − Φ(y)
]

q(y, dỹ) (2.24)

and (cf. (2.5))

Φ(y) =

∫

X

ϕ(x) y(dx) =

N
∑

i=1

ϕ(xi) , y ∈ Y . (2.25)
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According to (2.12), equation (2.22) transforms into

d

dt

∫

X

ϕ(x)µ(t, dx) =

∫

X

[
∫

X

ϕ(y)B(x, dy)− ϕ(x)

]

a(x)µ(t, dx) . (2.26)

When assuming

µ(t, dx) = c(t, x) dx (2.27)

and

B(x, dy) = b(x, y) dy , (2.28)

and removing the test functions, then one obtains from (2.26) the strong form of
the fragmentation equation

∂

∂t
c(t, x) =

∫ ∞

x

c(t, y) a(y) b(y, x) dy− a(x) c(t, x) . (2.29)

The fragmentation kernel F enters equations (2.26), (2.29) via the kernel B (cf.
(2.11)).

Remark 2.1 When a and b satisfying (cf. (2.14))
∫ x

0

y b(x, y) dy = x ∀x > 0 (2.30)

are given, then

ψ(x, y) = a(x) b(x, y) (2.31)

transforms equation (2.29) into equation (1.1). On the other hand, given some
function ψ ≥ 0 , one defines

a(x) =
1

x

∫ x

0

y ψ(x, y) dy (2.32)

and

b(x, y) =
x

∫ x

0
uψ(x, u) du

ψ(x, y) (2.33)

to obtain equation (2.29) from equation (1.1). Note that the function b defined in
(2.33) satisfies (2.30).

In analogy with (2.21), (2.8), we define the measure-valued function

µ̃(t, dx) = E ξ̃(t, dx) where ξ̃(t, dx) = δX̃(t)(dx) . (2.34)
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This function represents the distribution of the process X̃(t) . It satisfies the weak
form of the mass flow equation

d

dt

∫

X

ϕ(x) µ̃(t, dx) =

∫

X

[
∫

X

ϕ(y) B̃(x, dy) − ϕ(x)

]

a(x) µ̃(t, dx) , (2.35)

for appropriate test functions ϕ . This follows from Dynkin’s formula (2.23), with
Y ,Φ, q replaced by X , ϕ and q̃ (cf. (2.16)), respectively. When assuming

µ̃(t, dx) = c̃(t, x) dx (2.36)

and (2.28), and removing the test functions, then one obtains from (2.35) the strong
form of the mass flow equation

∂

∂t
c̃(t, x) =

∫ ∞

x

c̃(t, y) a(y) b̃(y, x) dy − a(x) c̃(t, x) , (2.37)

where

b̃(x, y) = b(x, y)
y

x
. (2.38)

Remark 2.2 Equations (2.26) and (2.35), as well as (2.29) and (2.37), are equiv-
alent in the sense that their solutions can be transformed into each other via the
relationships

µ̃(t, dx) = αxµ(t, dx) , c̃(t, x) = αx c(t, x) , ∀ t ≥ 0 , (2.39)

for some α > 0 . If the solutions are unique, then a correspondence between the direct
simulation process and the mass flow process can be established. Note that µ(0, dx)
represents the distribution of X1(0) (cf. (2.1)), while µ̃(0, dx) is the distribution of
X̃1(0) . When assuming

∫

X

xµ(0, dx) < ∞ (2.40)

and defining

µ̃(0, dx) =
xµ(0, dx)
∫

X
y µ(0, dy)

(2.41)

then (2.39) implies

µ̃(t, dx) =
1

∫

X
y µ(0, dy)

xµ(t, dx) ∀ t ≥ 0 . (2.42)

If

µ(0, dx) = δx0
(dx) for some x0 ∈ X ,

then the initial states of both processes are the same. According to (2.21), the
measure-valued function xµ(t, dx) represents the average total mass of parti-
cles that have mass in a given subset of X at time t ≥ 0 .
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2.3 Binary fragmentation

Mass conservation (2.4) implies that in a binary fragmentation model one of the two
fragments is obtained as a deterministic function of the other. Thus, the general
form of a binary fragmentation kernel is

F (x, dz) = F (2)(x, dz1, dz2) = F (1)(x, dz1) δx−z1
(dz2) , (2.43)

where F (1) is a probability kernel on X . Introduce F
(1)
sym by

∫

X

ϕ(y)F (1)
sym(x, dy) =

1

2

∫

X

[ϕ(y) + ϕ(x− y)]F (1)(x, dy) , (2.44)

for appropriate test functions ϕ , and note that
∫

X

ϕ(y)F (1)
sym(x, dy) =

∫

X

ϕ(x− y)F (1)
sym(x, dy) . (2.45)

One obtains
∫

X

∫

X

ψ(z1, z2)F
(2)
sym(x, dz1, dz2) =

1

2

∫

X

∫

X

ψ(z1, z2)F
(2)(x, dz1, dz2) +

1

2

∫

X

∫

X

ψ(z1, z2)F
(2)(x, dz2, dz1)

=
1

2

∫

X

ψ(z1, x− z1)F
(1)(x, dz1) +

1

2

∫

X

ψ(x− z2, z2)F
(1)(x, dz2)

=

∫

X

ψ(y, x− y)F (1)
sym(x, dy) =

∫

X

∫

X

ψ(z1, z2)F
(1)
sym(x, dz1) δx−z1

(dz2) ,

for appropriate test functions ψ , so that

F (2)
sym(x, dz1, dz2) = F (1)

sym(x, dz1) δx−z1
(dz2) (2.46)

and (cf. (2.11))

B(x, dy) = 2F (1)
sym(x, dy) . (2.47)

Thus, in the binary (mass conserving) case, the function B does not only determine
the average number of fragments, but also their distribution (provided the fragments
are considered indistinguishable).

On the other hand, if some measure B satisfies the symmetry condition (2.45),
then

∫

X

y B(x, dy) =

∫

X

(x− y)B(x, dy) = xB(x,X ) −
∫

X

y B(x, dy)

and

B(x,X ) =
2

x

∫

X

y B(x, dy) . (2.48)
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According to (2.48), condition (2.14) concerning mass conservation on average and
the “binary condition”

B(x,X ) = 2 ∀x ∈ X (2.49)

are equivalent. Thus, any measure B satisfying the symmetry condition (2.45) and
either the mass conservation condition (2.14) or the “binary condition” (2.49) is
generated by a binary stochastic fragmentation model via (2.47) and (2.46).

When assuming

F (1)(x, dy) = 1(0,x)(y) f
(1)(x, y) dy , (2.50)

one obtains from (2.28) and (2.47) that

b(x, y) = 2 f (1)
sym(x, y) = f (1)(x, y) + f (1)(x, x− y) . (2.51)

The function b is symmetric, i.e.

b(x, y) = b(x, x− y) . (2.52)

In the case of equation (1.1), the symmetry assumption

ψ(x, y) = ψ(x, x− y) (2.53)

implies symmetry of b defined in (2.33) and mass conservation (cf. (2.30)). One
obtains, in analogy with (2.48),

1

x

∫ x

0

y ψ(x, y) dy =
1

2

∫ x

0

ψ(x, y) dy (2.54)

so that equation (1.1) takes the form

∂

∂t
c(t, x) =

∫ ∞

x

c(t, y)ψ(y, x) dy− c(t, x)
1

2

∫ x

0

ψ(x, y) dy . (2.55)

The representations (2.32), (2.33) take the form

a(x) =
1

2

∫ x

0

ψ(x, y) dy (2.56)

and

b(x, y) =
2

∫ x

0
ψ(x, s) ds

ψ(x, y) (2.57)

so that (2.47) implies

f (1)(x, y) =
1

∫ x

0
ψ(x, u) du

ψ(x, y) . (2.58)

Thus, in equation (2.55), the normalized function ψ represents the distribution of the
fragment, while the normalization function is the doubled intensity of fragmentation.
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Example 2.3 (deterministic binary fragmentation) Consider a function κ such
that

κ(x) ∈ (0, x) ∀x > 0 ,

and (cf. (2.43))

F (1)(x, dy) = δκ(x)(dy) .

One obtains (cf. (2.47))

B(x, dy) = δκ(x)(dy) + δx−κ(x)(dy)

and (cf. (2.17))

B̃(x, dy) =
κ(x)

x
δκ(x)(dy) +

(

1 − κ(x)

x

)

δx−κ(x)(dy) . (2.59)

In the direct simulation model, a particle of mass x splits into the pieces κ(x) and
x− κ(x) . In the mass flow model, the particle x jumps into the state

y =







κ(x) with probability κ(x)
x

x− κ(x) with probability 1 − κ(x)
x
.

(2.60)

When choosing

κ(x) =
x

2

then the jumps in the mass flow model are deterministic, from x to x
2
.

2.4 Homogeneous fragmentation

A fragmentation kernel is called homogeneous if it satisfies

F (x, dz) =

∫

S[0,1]

δs1 x,...,sk x(dz)F (1, ds) ∀x > 0 , (2.61)

where F (1, ds) is a probability measure on the set of partitions

S[0, 1] = {s1, . . . , sk > 0 : s1 + . . .+ sk = 1 , k = 2, 3, . . .} (2.62)

of the unit interval. One obtains (cf. (2.9)-(2.11))

F (k)
sym(x, dz1, . . . , dzk) =

1

k !

∑

π

∫

Sk[0,1]

δs1 x,...,sk x(dzπ(1), . . . , dzπ(k))F
(k)(1, ds1, . . . , dsk)

=

∫

Sk[0,1]

δs1 x,...,sk x(dz1, . . . , dzk)F
(k)
sym(1, ds1, . . . , dsk) ,
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F (k|1)
sym (x, dy) =

∫ 1

0

δu x(dy)F
(k|1)
sym (1, du)

and

B(x, dy) =

∫ 1

0

δu x(dy)B(1, du) . (2.63)

The mass conservation condition (2.14) reduces to

∫ 1

0

uB(1, du) = 1 . (2.64)

The average number of fragments (2.13) takes the form

nfrag(x) =

∫ 1

0

B(1, du) (2.65)

and does not depend on x . It follows from (2.63) that (cf. (2.17))

B̃(x, dy) =
y

x

∫ 1

0

δu x(dy)B(1, du) =

∫ 1

0

δu x(dy) uB(1, du) . (2.66)

Assuming

B(1, du) = b(1, u) du

one obtains
∫ x

0

ϕ(y)B(x, dy) =

∫ 1

0

ϕ(u x) b(1, u) du =

∫ x

0

ϕ(v) b
(

1,
v

x

) 1

x
dv

so that (cf. (2.28))

b(x, y) =
1

x
b
(

1,
y

x

)

(2.67)

and (cf. (2.38))

b̃(x, y) =
1

x
b
(

1,
y

x

) y

x
. (2.68)

Example 2.4 ([4]) Consider

F (1, ds) =
1

2
δ 1

2
, 1
2

(ds1, ds2) +
1

2
δ 1

2
, 1
4
, 1
4

(ds1, ds2, ds3)

and

F̂ (1, ds) =
3

4
δ 1

2
, 1
2

(ds1, ds2) +
1

4
δ 1

4
, 1
4
, 1
4
, 1
4

(ds1, ds2, ds3, ds4) .
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Note that

Fsym(1, ds) =
1

2
δ 1

2
, 1
2

(ds1, ds2) +

1

6

[

δ 1

2
, 1
4
, 1
4

(ds1, ds2, ds3) + δ 1

4
, 1
2
, 1
4

(ds1, ds2, ds3) + δ 1

4
, 1
4
, 1
2

(ds1, ds2, ds3)
]

and F̂sym(1, ds) = F̂ (1, ds) . It is obvious that Fsym(1, ds) 6= F̂sym(1, ds) . One obtains
(cf. (2.11))

B(1, du) = 2F (2|1)
sym (1, du) + 3F (3|1)

sym (1, du) = δ 1

2

(du) +
1

2

[

δ 1

2

(du) + 2 δ 1

4

(du)
]

=
3

2
δ 1

2

(du) + δ 1

4

(du)

and

B̂(1, du) = 2 F̂ (2|1)
sym (1, du) + 4 F̂ (4|1)

sym (1, du) = B(1, du) .

Thus, in this example the fragmentation equations for both kernels are identical,
but the distributions of the random clouds of fragments differ. In particular, the
probability of having k = 2, 3, 4 fragments cannot be determined from B .

Example 2.5 (power law) Consider

b(x, y) = C(x) yβ .

Mass conservation condition (2.14) implies

C(x) =
x

∫ x

0
yβ+1 dy

=
β + 2

xβ+1
, β > −2 ,

so that

b(x, y) =
β + 2

xβ+1
yβ (2.69)

and (2.67) holds. The average number of fragments (2.65) is

∫ 1

0

b(1, u) du =







β+2
β+1

∈ [2,∞) if − 1 < β ≤ 0

∞ if − 2 < β ≤ −1 .

Example 2.6 (homogeneous binary fragmentation) Consider a probability mea-
sure P on (0, 1) and (cf. (2.43))

F (1)(x, dy) =

∫ 1

0

δu x(dy)P (du) .

12



One obtains (cf. (2.44), (2.47))

B(1, du) = 2Psym(du) .

The choice

P (du) = δc(du) for some c ∈ (0, 1)

corresponds to the deterministic fragmentation with κ(x) = c x (cf. Example 2.3).
If P has a density p , then one obtains

b(1, u) = p(u) + p(1 − u) .

Note that both p(u) = 1 and p(u) = 2 u give the same b(1, u) = 2 that corresponds
to the power law case with β = 0 .

Example 2.7 (log-normal distribution) The mass flow process in discrete time
can be represented in the form (cf. (2.66))

X̃(t) = X̃0

t
∏

i=1

ui , t = 1, 2, . . . ,

where u1, u2, . . . are independent identically distributed random variables with distri-
bution uB(1, du) on (0, 1) . Note that

log X̃(t) = log X̃0 +
t
∑

i=1

log ui . (2.70)

If

α :=

∫ 1

0

(log u) uB(1, du) > −∞ , (2.71)

then (2.70) and the law of large numbers imply

P

(

lim
t→∞

log X̃(t)

t
= α

)

= 1 .

If (2.71) holds and

σ2 :=

∫ 1

0

(log u)2 uB(1, du)− α2 < ∞ ,

then (2.70) and the central limit theorem imply

lim
t→∞

P

(

log X̃(t) − α t√
σ2 t

< x

)

=
1√
2π

∫ x

−∞

exp

(

−y
2

2

)

dy .

13



Note that (cf. (2.34), (2.42), (2.21))

P

(

log X̃(t) < x
)

= P

(

X̃(t) < ex
)

=

∫ ex

0

µ̃(t, dy) =
1

∫

X
y µ(0, dy)

∫ ex

0

y µ(t, dy)

=
E
∫ ex

0
y ξ(t, dy)

E
∫∞

0
y ξ(0, dy)

=
E
∑

i: Xi(t)<ex Xi(t)

EX1(0)

=
1

EX1(0)
E

∑

i: log Xi(t)<x

Xi(t) ,

which is the average total mass of those particles having the logarithm of their mass
less than x , normalized by the average total mass in the system. Kolmogorov [6]
obtained a similar distribution property by studying the appropriately normalized
quantity

E

∑

i: log Xi(t)<x

1 ,

which is the average total number of those particles having the logarithm of their
mass less than x .

3 Results concerning mass conservation

Here we study the problem whether the identities

∫ ∞

0

x c(t, x) dx =

∫ ∞

0

x c(0, x) dx ,

in terms of the solution of equation (2.29), or

∫ ∞

0

x ξ(t, dx) =

∫ ∞

0

x ξ(0, dx) = X1(0) ,

in terms of the stochastic process (2.8), are fulfilled for all t ≥ 0 . It turns out that
these mass conservation properties do not hold for certain fragmentation models.

3.1 Non-conservative solutions

The classical paper covering the topic of mass conservation for fragmentation models
is [3]. Filippov starts from the direct simulation model determined by the functions
B̃(x, (0, y)) (cf. (2.20)), which represent the (normalized by x) average total mass
of fragments of mass less than y originating from the breakage of a particle of mass
x . Studying quantities that represent the average sum of masses of particles of mass
less than x (cf. Remark 2.2), the mass flow equation (2.35) is derived. Indeed, with

14



test functions ϕ(y) = 1(0,x)(y) , equation (2.35) takes the form

∂

∂t
µ̃(t, (0, x)) =

∫ ∞

0

[

B̃(y, (0, x)) − 1(0,x)(y)
]

a(y) µ̃(t, dy)

=

∫ ∞

x

a(y) B̃(y, (0, x)) µ̃(t, dy) ,

which is identical to [3, eq. (2)]. Based on this equation, the mass flow process is
introduced. Finally, in Section 9b, the following necessary and sufficient condition
for mass conservation in the homogeneous case is given.

Theorem 3.1 Let the fragmentation rate a be bounded on compacts and converge
monotonically to +∞ as x→ 0 . Assume

B̃(x, (0, y)) = f
(y

x

)

(3.1)

and
∫ 1

0

f(λ)

λ
dλ <∞ . (3.2)

Then a necessary and sufficient condition for mass conservation is

∫ δ

0

1

x a(x)
dx = ∞ for some δ > 0 . (3.3)

A very general homogeneous fragmentation model is studied in [4], where also
precise conditions for mass conservation are proved. When restricting the model
to the situation considered in this paper, the corresponding result reduces to the
following.

Theorem 3.2 Let the fragmentation rate a be continuous and decreasing near zero.
Consider the function (cf. (2.62))

Φ(q) =

∫

S[0,1]

(

1 −
k
∑

i=1

s
q+1
i

)

F (1, ds) , q ≥ 0 , (3.4)

and assume

Φ′(0+) <∞ . (3.5)

Then (3.3) is a necessary and sufficient condition for mass conservation.

Note that assumption (3.1) implies

f(λ) = B̃(1, (0, λ)) =

∫ λ

0

uB(1, du) , 0 < λ ≤ 1 , (3.6)
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so that

∫ 1

0

f(λ)

λ
dλ =

∫ 1

0

1

λ

∫ λ

0

uB(1, du) dλ =

∫ 1

0

∫ 1

0

1

λ
1(0,λ)(u) u d λB(1, du)

=

∫ 1

0

∫ 1

u

1

λ
u dλB(1, du) =

∫ 1

0

| log u| uB(1, du) . (3.7)

Function (3.4) takes the form (cf. (2.9)-(2.11))

Φ(q) = 1 −
∞
∑

k=2

∫

(

k
∑

i=1

s
q+1
i

)

F (k)(1, ds1, . . . , dsk)

= 1 −
∞
∑

k=2

∫

(

k
∑

i=1

s
q+1
i

)

F (k)
sym(1, ds1, . . . , dsk) (3.8)

= 1 −
∞
∑

k=2

k

∫ 1

0

uq+1 F (k|1)
sym (1, du) = 1 −

∫ 1

0

uq+1B(1, du)

so that

Φ′(q) =

∫ 1

0

| log u| uq+1B(1, du) . (3.9)

Function (3.9) is non-negative, decreasing and finite, for all q > 0 , since the function
| log u| uq is bounded on (0, 1) . According to (3.7) and (3.9), both assumptions (3.2)
and (3.5) are equivalent and take the form (cf. (2.70))

∫ 1

0

| logu| uB(1, du) <∞ . (3.10)

According to (2.64), condition (3.10) can be written as

E | log ξ| < ∞ , (3.11)

where ξ is a random variable with distribution uB(1, du) on (0, 1) . Sufficient con-
ditions are

E ξ−ε =

∫ 1

0

u1−εB(1, du) < ∞ , for some ε > 0 ,

and, in particular, the finiteness of the average number of fragments (2.65),

∫ 1

0

B(1, du) < ∞ .

In the power law case (2.69) one obtains

B(1, du) = (β + 2) uβ du
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so that (3.10) is fulfilled for all β > −2 . Note that, for any c ∈ (0, 1) ,

∫ c

0

1

x | log x|γ dx < ∞ ∀ γ > 1

and
∫ c

0

1

x | log x|γ dx = ∞ ∀ γ ≤ 1 .

This allows one to construct examples such that (3.11) does not hold.

3.2 Explosion properties

Consider a locally compact separable metric space Y and a compactly bounded
kernel q(y, dỹ) on Y . Let Y0, Y1, . . . be a Markov chain in Y with the transition
kernel

1

λ(y)
q(y, dỹ) , (3.12)

where

λ(y) = q(y,Y) . (3.13)

Let T0, T1, . . . be a sequence of independent random variables exponentially dis-
tributed with parameter 1 and independent of (Yk) . Define jump times

τ0 = 0 τl =
l−1
∑

k=0

Tk

λ(Yk)
l = 1, 2, . . .

and explosion time

τ∞ = lim
l→∞

τl .

The minimal jump process (cf., e.g., [9, p.69]) is a process on the one-point
compactification Y ∪ {∆} defined as

Y ∆(t) =

{

Yl : τl ≤ t < τl+1

∆ : t ≥ τ∞

The minimal jump process is called regular if

P (τ∞ = ∞) = 1

and explosive if

P (τ∞ <∞) > 0 .
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Up to the explosion time its time evolution is the same as for a standard jump
process. Given a state y , the process waits an exponentially distributed time with
parameter λ(y) and jumps to ỹ according to the distribution (3.12).

A necessary and sufficient condition for regularity is

P

(

∞
∑

k=0

1

λ(Yk)
= ∞

)

= 1 . (3.14)

Thus, boundedness of λ is sufficient for regularity. In order to get explosion, λ
should be unbounded and (Yk) should converge to ∆ with an appropriate speed.

The following results were proved in [10].

Theorem 3.3 Assume the fragmentation rate satisfies

a(x) ≥ C

xα
∀x > 0 for some α > 0 and C > 0 . (3.15)

Then the direct simulation process explodes almost surely, for any initial distribution.

Theorem 3.4 Assume (3.15) and
∫ x

0

(y

x

)α

B̃(x, dy) ≤ γ < 1 ∀x > 0 . (3.16)

Then the mass flow process explodes almost surely, for any initial distribution.

In the homogeneous case, condition (3.16) takes the form (cf. (2.66))

∫ 1

0

uα+1B(1, du) < 1

and is fulfilled for all α > 0 .

The following example illustrates that the assertion of Theorem 3.4 might be
wrong, if assumption (3.16) does not hold.

Example 3.5 ([10]) Consider deterministic binary fragmentation (cf. Example 2.3)
with

κ(x) =







x
2

+ 1
4

if x > 1
2

x
2

otherwise.

Condition (3.16) takes the form (cf. (2.59))

(

κ(x)

x

)α+1

+

(

1 − κ(x)

x

)α+1

≤ γ < 1 ∀x > 0
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and is not fulfilled for xց 1
2
. If x0 >

1
2
, then the sequence

xk =
1

2
+

2x0 − 1

2k+1
k = 0, 1, . . .

satisfies limk→∞ xk = 1
2
. Thus, there is no explosion on this trajectory, for any

compactly bounded fragmentation rate. On the other hand, there is a transition
from xk to

κ(xk) =
1

4
+

2x0 − 1

2k+2
+

1

4
= xk+1

with probability κ(xk)
xk

(cf. (2.60)). The trajectory of “slowest decay” (xk) has a
non-zero probability

lim
k→∞

κ(x0)

x0

κ(x1)

x1

. . .
κ(xk)

xk

=
1

x0

lim
k→∞

κ(xk) =
1

2 x0

.

Thus, for x0 >
1
2
, the mass flow process does not explode almost surely.

3.3 Comments

Theorems 3.3, 3.4 provide less precise conditions for non-conservation of mass, com-
pared to the necessary and sufficient condition (3.3), but they cover the case of
non-homogeneous fragmentation. In this situation certain phenomena may occur
that are not possible in the homogeneous case. Example 3.5 shows that even power
like growth at zero of the fragmentation intensity is not sufficient for almost sure
explosion of the mass flow process. Due to the special structure of the function κ ,

the mass flow process stays above 1
2

with a positive probability, while the direct
simulation process always produces enough particles below 1

2
leading to explosion.

In addition, Example 3.5 provides a fragmentation model, where the property

lim
t→∞

∫ ∞

0

x c(t, x) dx = 0

related to “total loss of mass” does not seem to be fulfilled. This might be of
independent interest.

The relationship between regularity of the stochastic model and mass-conservation
for the corresponding deterministic equation is (more or less) straightforward for the
mass flow process. But it is less obvious for the direct simulation process, where
explosion can either mean that some particles reach 0 or that the number of particles
reaches ∞ . More specifically, one obtains from (2.6) that (cf. (3.13))

λ(y) =

N
∑

i=1

a(xi) , y ∈ Y .

If a is bounded by Ca , then

∞
∑

k=0

1

λ(Yk)
≥

∞
∑

k=0

1

Ca (1 + ζ1 + . . . ζk)
,
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where ζi is the number of fragments created at the i-th jump. If the number of
fragments is bounded, then condition (3.14) is fulfilled and regularity follows. A
similar argument seems to work for bounded a , when the expected number of frag-
ments is finite, but it is not obvious what happens for an infinite expected number
of fragments.

The fragmentation equation can have non-conservative solutions even when the
fragmentation rate is bounded at zero. Straightforward computations show that the
function

c(t, x) =
et

(1 + x)3
t ≥ 0 , x > 0 , (3.17)

satisfies equation (2.29) with the parameters a(x) = x and b(x, y) = 2
x

that cor-
respond to the power law case (2.69) with β = 0 . Note that multiplying equation
(2.29) by x and integrating over (0,∞) implies mass conservation

d

dt

∫ ∞

0

x c(t, x) dx = 0

provided that the term
∫ ∞

0

x

∫ ∞

x

c(t, y) a(y) b(y, x) dy dx =

∫ ∞

0

∫ y

0

x c(t, y) a(y) b(y, x) dx dy

=

∫ ∞

0

y a(y) c(t, y) dy

is finite. However, this is not the case for the function (3.17). It turns out that
there exists also a mass-conserving solution in the above example (cf., e.g., [1, Sec-
tion 8.1.2]). Note that the solutions studied in Theorems 3.1, 3.2 are unique. This
is proved using an initial state with compact support as opposed to (3.17).

One may ask which kernels B and b occurring in the kinetic equations (2.26) and
(2.29) are admissible in the sense that there exists a corresponding fragmentation
kernel F . A complete answer was given in the particular case of binary fragmenta-
tion. But it seems that this problem has not been studied in full generality even for
the power law fragmentation model. Note that the property

F

(

x,

{

z ∈ Z :

k
∑

i=1

zi 1(0,y)(zi) ≥
k
∑

i=1

(x− zi) 1(x−y,x)(zi)

})

= 1 (3.18)

holds for all y < x
2
. Indeed, due to mass conservation (2.4), there is at most one

fragment bigger than x − y . If there is no such fragment, then the right-hand side
of the inequality in (3.18) is zero. If there is one fragment z1 ≥ x− y , then (due to
mass conservation) the sum of the other fragments is x− z1 ≤ y so that both sides
equal x− z1 . Property (3.18) implies condition

∫ y

0

uB(x, du) ≥
∫ x

x−y

(x− u)B(x, du) ∀ y < x

2
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which is used in the literature to characterize admissible functions B . The problem of
admissibility does not exist for the mass flow model, since the kernel from the kinetic
equation directly defines the stochastic process. This model is very attractive both
for theoretical studies and for numerical purposes. However, the mass flow model
is restricted to the scalar case, while the direct simulation model covers the case of
multi-dimensional states.

Concerning real world examples for the transformation into dust, Filippov notes
that “in actual physical processes this does not occur, since for very small masses new
properties are exhibited, which are not taken into account in our scheme”. However,
when introducing a truncation (positive smallest mass of particles), then the model
can provide a “good approximation to real processes”. It is interesting to study the
shattering phenomenon in a discrete mass model [5]. Starting with 1 particle of mass
n one studies the time when the total mass of sufficiently small particles reaches
O(n) . This is in analogy with the approach to gelation in coagulating systems,
where one starts from n particles of mass 1 and studies the time when the largest
component reaches O(n) . Both the truncation and the discrete approach would also
be appropriate for numerical investigations of the phase transition.
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