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Abstra
tIn this paper some analyti
al and numeri
al aspe
ts of time-dependent models with in-ternal variables are dis
ussed. The fo
us lies on elasto/vis
o-plasti
 models of monotonetype arising in the theory of inelasti
 behavior of materials. This 
lass of problems in
ludesthe 
lassi
al models of elasto-plasti
ity with hardening and vis
ous models of the Norton-Ho� type. We dis
uss the existen
e theory for di�erent models of monotone type, give anoverview on spatial regularity results for solutions to su
h models and illustrate a numeri-
al solution algorithm at an example. Finally, the relation to the energeti
 formulation forrate-independent pro
esses is explained and temporal regularity results based on di�erent
onvexity assumptions are presented.1 Introdu
tionIn metalli
 materials various phenomena on the mi
ros
ale indu
e ma
ros
opi
ally inelasti
 be-havior: The hindering of the dislo
ation motion by other dislo
ations or grain boundaries 
ausehardening e�e
ts, whi
h are observed on the ma
ros
opi
 s
ale. The nu
leation and growth ofgrain boundary 
avities initiate the development of mi
ro
ra
ks whi
h may 
ause the failure thewhole stru
ture.From the phenomenologi
al point of view the ma
ros
opi
 state of inelasti
 bodies is 
ompletelydetermined by the displa
ement or deformation �eld, the stress tensor and a �nite number ofinternal variables representing internal pro
esses on the mi
ros
ale. The 
orresponding ma
ro-s
opi
 models 
onsist of the balan
e of for
es, an evolution law for the internal variables and
onstitutive equations whi
h relate the stresses with the displa
ement gradient and the internalvariables. A thermodynami
ally 
onsistent framework for su
h models is the 
lass of generalizedstandard materials de�ned by Halphen and Nguyen Son and the more general 
lass of models ofmonotone type introdu
ed by Alber. From the mathemati
al point of view these models lead to
oupled systems of linear hyperboli
/ellipti
 partial di�erential equations and nonlinear ordinarydi�erential equations/in
lusions. A typi
al appli
ation of su
h models is elasto(vis
o)-plasti
itywith hardening at small strains. In the rate-independent 
ase an alternative energeti
 formula-tion for su
h models was proposed by Mielke et al. in the last years. This formulation provides ageneral tool to rigorously analyze e�e
ts like damage, fra
ture or hystereti
 behavior in magneti
and ferroele
tri
 bodies at both, small and �nite strains. The aim of this paper is to review somere
ent analyti
al and numeri
al aspe
ts of models of this type.The starting point for the models dis
ussed in this paper is the following: Given a time interval
[0, T ] and a state spa
e Q = U × Z let u : [0, T ] → U denote the generalized displa
ementsand z : [0, T ] → Z the internal variables. It is assumed that U and Z are real, separable andre�exive Bana
h spa
es. In the appli
ations of plasti
ity, typi
al 
hoi
es are Z = Lp(Ω) and U isidenti�ed with a suitable subspa
e of the Sobolev spa
e W 1,p(Ω). The set Ω ⊂ R

d des
ribes thephysi
al body. In the �rst 
hapters of this presentation the asso
iated elasti
 energy Ψ : Q → Ris assumed to be quadrati
 and positive semide�nite, i.e. we have
Ψ(u, z) =

1

2
〈A ( u

z ) , ( u
z )〉1



where A =
(

A11 A12
A21 A22

)
: Q = U×Z → Q∗ is a linear, bounded symmetri
 and positive semide�niteoperator. In addition to the elasti
 energy Ψ we also 
onsider the energy

E(t, u, z) = Ψ(u, z) − 〈b(t), u〉for given external loadings b ∈ C1([0, T ];U∗). The evolution law for the internal variable z is
hara
terized by a monotone, multivalued mapping G : Z → P(Z∗) with the property 0 ∈ G(0).Thereby U∗, Z∗ and Q∗ are the duals of the Bana
h spa
es U , Z and Q respe
tively and P(Z∗)denotes the power set of Z∗. The assumptions on E and G are motivated by thermodynami
al
onsiderations whi
h are 
arried out in Se
tion 2.1. There also the link to elasto-plasti
ity isexplained more detailed. The evolution model asso
iated with E and G 
onsists of the for
ebalan
e equation (1.1) whi
h is 
oupled with the evolution law (1.2) for the internal variable:Find absolutely 
ontinuous fun
tions u ∈ AC([0, T ];U) and z ∈ AC([0, T ];Z) with z(0) = z0 ∈ Zsu
h that for almost every t ∈ [0, T ] it holds
0 = ∂uE(t, u(t), z(t)) = A11u(t) +A12z(t) − b(t), (1.1)

∂tz(t) ∈ G(−∂zE(t, u(t), z(t)) = G(−(A21u(t) +A22z(t))). (1.2)Systems of this stru
ture 
onstitute the 
lass of models of monotone type introdu
ed by Alber[1℄. The sub
lass of generalized standard materials is obtained if in addition to the above it isassumed that G is the 
onvex subdi�erential of a 
onvex and proper fun
tion. The parti
ular
hoi
e G = ∂χK, where 0 ∈ K ⊂ Z is 
onvex and 
losed, and where χK denotes the 
hara
teristi
fun
tion related to K, �nally leads to the sub
lass of rate-independent evolution models. Typi
alexamples for these 
lasses of models are elasto-plasti
ity in the small strain setting 
omprising forexample linear kinemati
 hardening. An example for a rate-dependent model is the vis
o-plasti
Norton-Ho� model.The mathemati
al analysis of rate-independent elasto-plasti
 models has its roots in the fun-damental 
ontributions by Moreau, Duvaut/Lions and Johnson, [32, 53, 78℄. More re
ent in-vestigations, whi
h also 
over rate-dependent models, are due to Alber/Chelminski [2℄, see also[47℄. If A and hen
e Ψ are positive de�nite, i.e. if Ψ(u, z) ≥ α
2 (‖u‖2

U + ‖z‖2
Z) for all (u, z) ∈ Q,and if in addition G is maximal monotone, then 
lassi
al results state the existen
e of a uniquesolution (u, z) ∈ AC([0, T ];Q) for su�
iently regular given data b and z0, whi
h satisfy a 
ertain
ompatibility 
ondition.In 
ontrast to the positive de�nite 
ase it is quite 
hallenging to prove existen
e results for(1.1)�(1.2) if A is positive semide�nite, only. Typi
al examples for su
h models are the elasti
-perfe
tly plasti
 Prandtl-Reuss model and models with linear isotropi
 hardening and we referto [53, 28, 47, 23℄ for the dis
ussion of existen
e questions. In Se
tion 2.5 we present an existen
eproof for a model with a positive semi-de�nite energy Ψ under the assumption that a 
ertain
oupling 
ondition is satis�ed between the operators A12 and A22. Here, we study the solvabilityfor u ∈ Lq(S;W 1,q(Ω)) and z ∈ AC(S;Lq(Ω)) for suitable q ∈ (1,∞).Apart from existen
e results it is of great interest to gain more insight into the qualitativeproperties of solutions, su
h as spatial or temporal regularity and stability. This knowledge isthe basis for the 
onstru
tion of e�
ient and robust numeri
al algorithms. Se
tion 3 is devoted tothe dis
ussion of spatial regularity results for solutions of models of monotone type. Dependingon the positivity properties of the free energy Ψ di�erent regularity results may be a
hieved.In the positive semi-de�nite 
ase one typi
ally obtains the spatial regularity

σ ∈ L∞((0, T );H1lo
(Ω))2



for the stress tensor σ. The basi
 observation enabling this result is the fa
t that the 
omple-mentary energy, whi
h is the 
onvex 
onjugate of the free energy, is positive de�nite with respe
tto the generalized stresses, although the energy Ψ might not be positive de�nite. In addition tothe semide�nite 
ase, for positive de�nite energies the following global spatial regularity resultsare available for domains with smooth boundary: For every δ > 0 it holds
u ∈ L∞((0, T );H

3
2
−δ(Ω)) ∩ L∞((0, T );H2lo
(Ω)), (1.3)

σ, z ∈ L∞((0, T );H
1
2
−δ(Ω)) ∩ L∞((0, T );H1lo
(Ω)). (1.4)The proof of the global results relies on stability estimates for the solutions of (1.1)�(1.2) and are�e
tion argument. A dis
ussion 
on
erning the optimality of (1.3)�(1.4) as well as an overviewof the related literature is provided in Se
tions 3.2 and 3.3. Moreover, we dis
uss an examplewhi
h shows that in spite of smooth data and a smooth geometry one should not expe
t a
omparable spatial regularity result for the time derivatives ∂tu and ∂tz.In Se
tion 4 we dis
uss and analyze a numeri
al algorithm for solving rate-independent elasto-plasti
 models. After a time dis
retization with an impli
it Euler s
heme the time in
rementalproblem 
an be reformulated as a quasilinear ellipti
 system of partial di�erential equations todetermine the displa
ements at time step tk from the displa
ements and internal variables ofthe previous time step. The internal variable of the 
urrent time step then 
an be 
al
ulatedvia a straightforward update formula. Sin
e the nonlinear ellipti
 operator is not Gâteaux-di�erentiable, 
lassi
al Newton methods are not appli
able for solving the PDE. Instead wedis
uss an approa
h where we use a so-
alled slanting fun
tion instead of the derivative resultingin a Slant Newton Method. The behavior of this algorithm is illustrated at some examples.In the last se
tion, Se
tion 5, we fo
us on rate-independent models of the type (1.1)-(1.2) with

G = ∂χK. As already mentioned, in this 
ase the model (1.1)�(1.2) 
an be reformulated in theglobal energeti
 framework for rate-independent evolution pro
esses introdu
ed by Mielke andTheil [70℄. Indeed we will show in Se
tion 5 that the model is equivalent to the following problem:Find a pair (u, z) : [0, T ] → Q with (u(0), z(0)) = (u0, z0) whi
h for every t ∈ [0, T ] satis�esstability relation (S) and the energy balan
e (E)(S) for every (v, ζ) ∈ Q we have E(t, u(t), z(t)) ≤ E(t, v, ζ) + R(ζ − z(t)),(E) E(t, u(t), z(t)) +

∫ t

0
R(∂tz(τ))dτ = E(0, u(0), z(0)) +

∫ t

0
∂tE(τ, u(τ), z(τ))dτ,where R : Z → [0,∞] is the 
onvex 
onjugate of the 
hara
teristi
 fun
tion χK and hen
e is
onvex and positively homogeneous of degree one.The energeti
 framework allows for more general energies E , whi
h not ne
essarily have aquadrati
 stru
ture or stri
t 
onvexity properties, or whi
h might not be Gâteaux di�erentiablewith respe
t to u or z. The energeti
 formulation of rate-independent pro
esses provides a gen-eral tool, whi
h also applies to further physi
al phenomena like damage, fra
ture, shape memorye�e
ts or ferroele
tri
 behavior. Sin
e the energy E is not ne
essarily stri
tly 
onvex, solutionsmay o

ur whi
h are dis
ontinuous in time. A general existen
e theorem is 
ited. Subsequentit is investigated to what extend di�erent 
onvexity assumptions on the energy yield solutionswhi
h are 
ontinuous, Hölder-
ontinuous or even Lips
hitz-
ontinuous in time. These 
onvexityassumptions are dis
ussed for di�erent examples modeling elasto-plasti
ity, shape memory e�e
tsand damage. 3



2 Elasto(vis
o)-plasti
 models of monotone type2.1 Thermodynami
 frameworkIn this subse
tion we show that the problem (1.1) - (1.2) is thermodynami
ally admissible. Westart with a ma
ros
opi
 model des
ribing inelasti
 response of solids at small strains in the mostgeneral form, and then we extra
t a sub
lass of models, for whi
h the Clausius-Duhem inequalityis naturally satis�ed. This sub
lass of models 
onsists of problems of the type (1.1) - (1.2).Setting of the problemFor the subsequent analysis we restri
t ourselves only to the 3-dimensional 
ase, although allof our results hold in any spa
e-dimension. Let Ω ⊂ R
3 be a bounded domain with Lips
hitzboundary ∂Ω and let S3 be the linear spa
e of symmetri
 3×3-matri
es. Let Te denote a positivenumber (time of existen
e). For 0 ≤ t ≤ Te we introdu
e the spa
e-time 
ylinder Ωt = Ω× (0, t).The initial boundary value problem for the unknown displa
ement u(x, t) ∈ R

3, the Cau
hystress tensor T (x, t) ∈ S3 and the ve
tor of internal variables z(x, t) ∈ R
N in a quasi-stati
setting is formed by the equations

− divx T (x, t) = b(x, t), (2.1)
T (x, t) = A(ε(∇xu(x, t)) −Bz(x, t)), (2.2)

∂

∂t
z(x, t) ∈ f(ε(∇xu(x, t)), z(x, t)), (2.3)whi
h must hold for all x ∈ Ω and all t ∈ [0,∞). The initial value for z(x, t) and the Diri
hletboundary 
ondition for u(x, t) are given by

z(x, 0) = z(0)(x), for x ∈ Ω, (2.4)
u(x, t) = γ(x, t), for (x, t) ∈ ∂Ω × [0,∞). (2.5)Here ∇xu(x, t) denotes the 3× 3-matrix of �rst order derivatives of u, the deformation gradient,

(∇xu(x, t))
T denotes the transposed matrix, and

ε(∇xu(x, t)) =
1

2
(∇xu(x, t) + (∇xu(x, t))

T ) ∈ S3,is the strain tensor. The linear mapping B : R
N 7→ S3 is a proje
tor with εp(x, t) = Bz(x, t),where εp ∈ S3 is a plasti
 strain tensor. We denote by A : S3 → S3 a linear, symmetri
, positivede�nite mapping, the elasti
ity tensor. The given data of the problem are the volume for
e

b : Ω × [0,∞) 7→ R
3, the boundary displa
ement γ : ∂Ω × [0,∞) 7→ R

3, and the initial data forthe ve
tor of the internal variables z(0) : Ω 7→ R
N . The given fun
tion f : D(f) ⊆ S3×R

N 7→ 2R
Nis a 
onstitutive fun
tion with the domain D(f).The di�erential in
lusion (2.3) with a pres
ribed fun
tion f together with the equation (2.2)de�ne the material behavior. They are the 
onstitutive relations whi
h model the elasto(vis
o)-plasti
 behavior of solid materials at small strains, whereas (2.1) is the for
e balan
e arising fromthe 
onservation law of linear momentum.The initial boundary value problem (2.1) - (2.5) is written here in the most general form and,to the best of our knowledge, in
ludes all elasto(vis
o)-plasti
 models at small strains used in4



the engineering. To guarantee that by equations (2.1) - (2.5) a thermodynami
ally admissiblepro
ess is des
ribed, we 
laim the existen
e of a free energy density ψ : D(f) → [0,∞) su
h thatthe Clausius-Duhem inequality
ρ
∂

∂t
ψ(ε(∇xu), z) − divx(Tut) − b · ut ≤ 0 (2.6)holds in Ω × (0,∞) for all solutions (u, T, z) of (2.1) - (2.5). The fun
tion ρ denotes the massdensity and it is assumed to be 
onstant. The requirement (2.6) restri
ts the possible 
hoi
es of

f . Indeed, let (u, z) be a su�
iently smooth solution of (2.1) - (2.6). Firstly, we note that thesymmetry of the stress tensor implies
T · ε(∇xut) = T · ∇xut = divx(T Tut) − (divx T ) · ut.Then, as a dire
t 
onsequen
e of the Clausius-Duhem inequality (2.6), one gets with the help ofthe previous relation and the symmetry of T the following inequality

ρ∇εψ · ε(∇xut) + ρ∇zψ · zt − divx(Tut) − b · ut

= ρ∇εψ · ε(∇xut) + ρ∇zψ · zt − T · ε(∇xut) = (ρ∇εψ − T ) · ε(∇xut) + ρ∇zψ · zt
≤ 0.Due to the arbitrariness of the strain rate ε̇ = ε(∇xut), we 
on
lude that

ρ∇εψ(ε, z) = T, (2.7)
ρ∇zψ(ε, z) · ζ ≤ 0 (2.8)for every ζ ∈ f(ε, z) and for all (ε, z) ∈ D(f). Inequality (2.8) is 
alled the dissipation inequality.Therefore, we 
all the 
onstitutive equations (2.2) and (2.3) thermodynami
ally admissible if afree energy density ψ exists su
h that (2.7) and (2.8) are satis�ed.Now it is easy to extra
t a sub
lass of 
onstitutive fun
tions f , for whi
h the dissipation inequality(2.8) is naturally ful�lled. This sub
lass 
onsists of those fun
tions f , whi
h 
an be written inthe form

f(ε, z) = g(−ρ∇zψ(ε, z)), (2.9)with a suitable free energy density ψ : D(f) → [0,∞) satisfying (2.7), and with a suitablemonotone fun
tion g : D(g) ⊆ R
N → 2RN with the property 0 ∈ g(0).Relations (2.2) and (2.7) allow us to �nd the pre
ise form of the free energy density: Integrating(2.7) with respe
t to ε we 
an easily obtain that

ρψ(ε, z) =
1

2
A(ε−Bz) · (ε−Bz) + ψ1(z)with a suitable fun
tion ψ1 : D(ψ1) ⊆ R

N → [0,∞) as a 
onstant of integration. For mathemat-i
al reasons we assume in this 
hapter that the free energy density ψ has a spe
ial form, namelyit is a positive semi-de�nite quadrati
 form given by
ρψ(ε, z) =

1

2
A(ε−Bz) · (ε−Bz) +

1

2
(Lz) · z (2.10)with a symmetri
, non-negative N ×N -matrix L. Di�erentiating (2.10) with respe
t to z yields

−ρ∇zψ(ε, z) = BTA(ε−Bz) − Lz = BTT − Lz.5



In view of these 
onsiderations the initial boundary value problem (2.1) - (2.5) 
an be written as
− divx T (x, t) = b(x, t), (2.11)

T (x, t) = A(ε(∇xu(x, t)) −Bz(x, t)), (2.12)
∂

∂t
z(x, t) ∈ g(BTT (x, t) − Lz(x, t)) (2.13)
z(x, 0) = z(0)(x), (2.14)for all x ∈ Ω and all t ∈ [0,∞), together with the Diri
hlet boundary 
ondition

u(x, t) = γ(x, t) for x ∈ ∂Ω, t ∈ [0,∞). (2.15)The initial boundary value problem (2.11) - (2.15) is 
alled the problem/model of monotonetype. As we have already mentioned in the introdu
tion, this 
lass of models was introdu
ed byAlber in [1℄ and it naturally generalizes the 
lass of problems of generalized standard materialsproposed by Halphen and Nguyen Quo
 Son. We re
all that the models of generalized standardmaterials are formed by equations (2.11) - (2.15) with the monotone fun
tion g given expli
itlyby the subdi�erential of a proper 
onvex fun
tion. Typi
al examples for models of monotonetype are elasto-plasti
 models with linear or nonlinear hardening (for more details, 
onsult thebook [1, Chapter 3.3℄).First existen
e results for the 
lassi
al model of perfe
t plasti
ity (Prandtl-Reuss-model) werederived in [76, 32, 53℄. Sin
e the elasti
 energy in this 
ase is positive semide�nite, only, thedispla
ements in general belong to the spa
e of bounded deformations, only, [102, 104, 105℄. Theexisten
e theory for elasto-plasti
 models with a positive de�nite energy (like elasto-plasti
itywith linear kinemati
 hardening) was initiated by Johnson [54℄, we refer to the monographs[47, 39℄ for a histori
al survey on the subje
t. In the late 90ies these results were extended tomodels of monotone type with general maximal monotone fun
tions g, still assuming that theenergy is positive-de�nite, [1, 2℄. In [3, 23, 22, 24, 82, 84, 85℄ an approa
h for the derivationof the existen
e of solutions to the problem (2.11) - (2.15) initiated in [1℄ was 
ontinued andextended to parti
ular models of monotone type with a positive semi-de�nite energy. In thepresent paper, we brie�y dis
uss the existen
e result in [2℄ for models with a positive de�niteenergy in order to point out the main di�eren
es and di�
ulties whi
h arise in the treatment ofmonotone problems with a positive semi-de�nite energy. An existen
e proof for a spe
ial 
lasswith a positive semi-de�nite energy is dis
ussed afterwards.2.2 Fun
tion spa
es and notationFor m ∈ N, q ∈ [1,∞], we denote by Wm,q(Ω,Rk) the Bana
h spa
e of Lebesgue integrablefun
tions having q-integrable weak derivatives up to order m. This spa
e is equipped with thenorm ‖ · ‖m,q,Ω. If m = 0 we also write ‖ · ‖q,Ω. If m is not integer, then the 
orrespondingSobolev-Slobode
kij spa
e is denoted by Wm,q(Ω,Rk). We set Hm(Ω) = Wm,2(Ω), 
f. [42℄.We 
hoose the numbers p, q satisfying 1 < p, q < ∞ and 1/p + 1/q = 1. For su
h p and q one
an de�ne the bilinear form on the produ
t spa
e Lp(Ω,Rk) × Lq(Ω,Rk) by
(ξ, ζ)Ω =

∫

Ω
ξ(x) · ζ(x)dx.6



If (X,H,X∗) is an evolution triple (known also as a �Gelfand triple� or �spa
es in normal posi-tion�), then
Wp,q(0, Te;X) =

{
u ∈ Lp(0, Te;X) | u̇ ∈ Lq(0, Te;X

∗)
}is a separable re�exive Bana
h spa
e furnished with the norm

‖u‖2
Wp,q

= ‖u‖2
Lp(0,Te;X) + ‖u̇‖2

Lq(0,Te;X∗),where the time derivative u̇ of u is understood in the sense of ve
tor-valued distributions. We re-
all that the embedding Wp,q(0, Te;X) ⊂ C([0, Te],H) is 
ontinuous ([50, p. 4℄, for instan
e). Fi-nally we frequently use the spa
esW k,p(0, Te;X), whi
h 
onsist of Bo
hner measurable fun
tionswith a p-integrable weak derivatives up to order k. Observe thatW2,2(0, Te;X) = W 1,2(0, Te;X).2.3 Basi
 properties of the operator of linear elasti
ityHere, we state the assumptions on the 
oe�
ient matri
es in (2.11) - (2.13):
A ∈ L∞(Ω,Lin(S3,S3)) is symmetri
 and uniformly positive de�nite,i.e. there exists α > 0 su
h that A(x)ε · ε ≥ α ‖ε‖2 for all ε ∈ S3 and a.e. x ∈ Ω,
L ∈ L∞(Ω; Lin(RN ,RN )) is symmetri
 and positive semi-de�nite. (2.16)Sin
e the linear mapping A(x) : S3 → S3 is uniformly positive de�nite, a new bilinear form on

Lp(Ω,S3) × Lq(Ω,S3) 
an be de�ned by
[ξ, ζ]Ω = (Aξ, ζ)Ω.From [108, Theorem 4.2℄ we re
all an existen
e theorem for the following boundary value problemdes
ribing linear elasti
ity:

−divxT (x) = b̂(x), for x ∈ Ω, (2.17)
T (x) = A(x)(ε(∇xu(x)) − ε̂p(x)), for x ∈ Ω, (2.18)

u(x) =γ̂(x), for x ∈ ∂Ω. (2.19)To given b̂ ∈ W−1,q(Ω,R3), ε̂p ∈ Lp(Ω,S3) and γ̂ ∈ W 1,p(Ω,R3) the problem (2.17) - (2.19) hasa unique weak solution (u, T ) ∈ W 1,p(Ω,R3) × Lp(Ω,S3) with 1 < p < ∞ and 1/p + 1/q = 1provided A ∈ C(Ω,Lin(S3,S3)) and Ω is of 
lass C1. For p = 2 this result for the problem (2.17)- (2.19) holds provided that A satis�es 
ondition (2.16) and that Ω is a Lips
hitz domain. For
b̂=γ̂=0 there is a 
onstant C > 0 su
h that the solution of (2.17) - (2.19) satis�es the inequality

‖ε(∇xu)‖p,Ω ≤ C‖ε̂p‖p,Ω.De�nition 2.1. For every ε̂p ∈ Lp(Ω,S3) we de�ne a linear operator Pp : Lp(Ω,S3) → Lp(Ω,S3)by Ppε̂p = ε(∇xu), where u ∈ W 1,p
0 (Ω,R3) is the unique weak solution of (2.17) - (2.19) for thegiven fun
tion ε̂p and b̂ = γ̂ = 0.Let the subset Gp ⊂ Lp(Ω,S3) be de�ned by

Gp = {ε(∇xu) | u ∈W 1,p
0 (Ω,R3)}.The following lemma states the main properties of Pp.7



Lemma 2.2. For every 1 < p <∞ the operator Pp is a bounded proje
tor onto the subset Gp of
Lp(Ω,S3). The proje
tor (Pp)

∗, whi
h is the adjoint with respe
t to the bilinear form [ξ, ζ]Ω on
Lp(Ω,S3) × Lq(Ω,S3), satis�es

(Pp)
∗ = Pq, where 1

p + 1
q = 1.This implies ker(Pp) = Hp

sol with Hp
sol = {ξ ∈ Lp(Ω,S3) | [ξ, ζ]Ω = 0 for all ζ ∈ Gq}.The proje
tion operator

Qp = (I − Pp) : Lp(Ω,S3) → Lp(Ω,S3)with Qp(L
p(Ω,S3)) = Hp

sol is a generalization of the 
lassi
al Helmholtz proje
tion.Corollary 2.3. Let (BTAQpB + L)T be the adjoint operator of
BTAQpB + L : Lp(Ω,RN ) → L

p(Ω,RN )with respe
t to the bilinear form (ξ, ζ)Ω on the produ
t spa
e Lp(Ω,RN )×Lq(Ω,RN ). Then
(BTAQpB + L)T = BTAQqB + L : Lq(Ω,RN ) → L

q(Ω,RN ).Moreover, the operator BTAQ2B + L is non-negative and self-adjoint.The last result in this 
orollary is proved in [2℄.Remark 2.4. If the matrix L is uniformly positive de�nite, then the operator BTAQ2B + L ispositive de�nite.Remark 2.5. Hp
sol is a re�exive Bana
h spa
e with dual spa
e Hq

sol.Finally we 
ite an existen
e result for the following Cau
hy problem in a Hilbert spa
e H witha maximal monotone operator A : D(A) ⊂ H → 2H :
d

dt
u(t) +A(u(t)) ∋ f(t), (2.20)

u(0) = u0. (2.21)Theorem 2.6. [11, 97℄ Assume that u0 ∈ D(A). If f ∈ W 1,1(0, Te;H), then the Cau
hyproblem (2.20) - (2.21) has a unique solution u ∈ W 1,∞(0, Te;H). If A = ∂φ, where ∂φ is thesubdi�erential of a proper 
onvex lower-semi-
ontinuous fun
tion, then for every f ∈ L2(0, Te;H)the problem (2.20) - (2.21) has a unique solution u ∈W 1,2(0, Te;H).2.4 Existen
e of solutions in the 
ase of positive de�nite energyIt is already known (see [2, Theorem 1.3℄) that the initial boundary value problem (2.11) - (2.15)has a unique solution provided the mapping z 7→ g(z) is maximal monotone and the matrix L isuniformly positive de�nite. We now state the existen
e result due to Alber and Chelminski [2℄.Theorem 2.7. Assume that the 
oe�
ient matri
es satisfy (2.16), that in addition L in (2.13)is uniformly positive de�nite and that the mapping g : R
N → 2RN is maximal monotone with8



0 ∈ g(0). Suppose that b ∈ W 2,1(0, Te;L
2(Ω,R3)) and γ ∈ W 2,1(0, Te;H

1(Ω,R3)). Finally,assume that z(0) ∈ L2(Ω,RN ) and that there exists ζ ∈ L2(Ω,RN ) su
h that
ζ(x) ∈ g(BTT (0)(x) − L(x)z(0)(x)), a.e. in Ω, (2.22)where (u(0), T (0)) is a weak solution of the elasti
ity problem (2.17)-(2.19) to the data b̂ = b(0),

ε̂p = Bz(0), γ̂ = γ(0).Then for every Te > 0 there is a unique solution of the initial boundary value problem (2.11) -(2.15)
(u, T, z) ∈W 1,2(0, Te;H

1(Ω,R3) × L2(Ω,S3) × L2(Ω,RN )).If g = ∂χK , where ∂χK is the subdi�erential of the 
hara
teristi
 fun
tion asso
iated with the
onvex, 
losed set 0 ∈ K ⊂ R
N , then it is su�
ient to require b ∈ W 1,2(0, Te;L

2(Ω,R3)) and
γ ∈W 1,2(0, Te;H

1(Ω,R3)).Remark 2.8. We note that L is uniformly positive de�nite if and only if the free energy density ψis a positive de�nite quadrati
 form on S3 ×R
N . The 
onstitutive equations for linear kinemati
hardening satisfy this requirement, while models for linear isotropi
 hardening are not 
overed.The main idea of the proof of Theorem 2.7 
onsists in the redu
tion of the equations (2.11) -(2.15) to an autonomous evolution in
lusion in a Hilbert spa
e governed by a maximal monotoneoperator. To this evolution in
lusion Theorem 2.6 is applied, whi
h allows to 
on
lude that theinitial boundary value problem (2.11) - (2.15) has a (unique!) solution. For the redu
tion itis 
ru
ial that the 
oe�
ient fun
tion L is uniformly positive de�nite. To indi
ate the maindi�eren
es between the 
ase of a positive de�nite free energy density 
ompared to a positivesemi-de�nite density we brie�y sket
h the proof of Theorem 2.7. Details 
an be found in [2℄.Proof. We note that equations (2.11) - (2.12), (2.15) form a boundary value problem for the
omponents (u(t), T (t)) of the solution. Obviously one has an additive de
omposition

(u(t), T (t)) = (ũ(t), T̃ (t)) + (v(t), σ(t)),with the solution (v(t), σ(t)) of the Diri
hlet boundary value problem (2.17) - (2.19) to the data
b̂ = b(t), γ̂ = γ(t), ε̂p = 0, and with the solution (ũ(t), T̃ (t)) of the problem (2.17) - (2.19) to thedata b̂ = γ̂ = 0, ε̂p = Bz(t). We thus obtain

ε(∇xu) −Bz = (P2 − I)Bz + ε(∇xv).Inserting this into (2.12) we re
eive that (2.13) 
an be rewritten in the form
zt(t) ∈ G

(
− (BTAQ2B + L)z(t) +BTσ(t)

)
, (2.23)where G : D(G) ⊂ L2(Ω,RN ) → 2L2(Ω,RN ) de�ned by G(ξ) = {ξ̂ ∈ L2(Ω,RN ) | ξ̂(x) ∈

g(ξ(x)) a.e.}. The fun
tion σ, as a solution of the problem (2.17) - (2.19) to the given data
b, γ, is 
onsidered as known.A

ording to Remark 2.4 the operator BTAQ2B + L is positive de�nite, therefore the equation(2.23) 
an be redu
ed to an autonomous evolution equation in L2(Ω,RN ) using the transforma-tion h(t) = −(BTAQ2B + L)z(t) +BTσ(t). It then reads as

ht(t) + C(h(t)) ∋ BTσt(t) with C(ξ) = (BTAQ2B + L)G(ξ) for ξ ∈ L2(Ω,RN ). (2.24)9



The 
ru
ial step in the proof is that the operator C is maximal monotone with respe
t to thenew s
alar produ
t [[ξ̂, ξ]] := ((BTAQ2B+L)−1ξ̂, ξ) (see [2℄). This s
alar produ
t is well de�ned,sin
e the operator BTAQ2B+L is positive de�nite due to the uniform positivity of L. Therefore,Theorem 2.6 
an be applied to (2.24) in L2(Ω,RN ) equipped with the s
alar produ
t [[ξ̂, ξ]] toderive the existen
e and uniqueness of solutions. The assumption (2.22) guarantees that theinitial value h(0) belongs to the domain of the operator C. Substituting the solution of (2.23),whi
h exists due to the equivalen
e of (2.23) and (2.24), into the boundary value problem formedby equations (2.11) - (2.12) and (2.15) yields the existen
e of (u, T ) by the existen
e theory forlinear ellipti
 problems.2.5 Existen
e of solutions in the 
ase of a positive semi-de�nite energyAs we saw in the proof of Theorem 2.7 the positivity of L plays the essential role: It allowed tode�ne a new s
alar produ
t in L2(Ω,RN ), with respe
t to whi
h the operator C from (2.24) ismaximal monotone so that Theorem 2.6 is appli
able. Obviously, this strategy 
annot be appliedif L is only positive semi-de�nite and one has to over
ome this di�
ulty. In the following werestri
t ourselves to a sub
lass of problems of monotone type with a positive semi-de�nite freeenergy density, for whi
h the existen
e of solutions 
an be veri�ed. Existen
e theorems for theentire 
lass of models of monotone type are still an open problem. For simpli
ity, we assumethat the 
oe�
ient matri
es in (2.11) - (2.13) are independent of x.Under the assumption that g is single-valued and that KerB + KerL = R
N , the authors of[3℄ showed that the initial boundary value problem (2.11) - (2.15) is equivalent to the followingproblem: for all t ∈ [0,∞) and x ∈ Ω

− divx T (x, t) = b(x, t), (2.25)
T (x, t) = A

(
ε(∇xu(x, t)) − εp(x, t)

)
, (2.26)

∂tεp(x, t) = g1

(
T (x, t),−z̃(x, t)

)
, (2.27)

∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

)
, (2.28)

u(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞), (2.29)
εp(x, 0) = ε(0)p (x), z̃(x, 0) = z̃(0)(x). (2.30)Here the ve
tor of internal variables z(x, t) is split into two parts, i.e. z(x, t) = (εp(x, t), z̃(x, t)) ∈

S3 × R
N−6. We assume for simpli
ity that ε(0)p (x) = 0. The fun
tions g1 : S3 × R

N−6 → S3and g2 : S3 × R
N−6 → R

N−6 are given su
h that (T, y) → (g1(T, y), g2(T, y)) : R
N → R

N is amonotone mapping.Following [3℄ we rewrite the problem (2.25) - (2.29) in terms of an operator H : F (ΩTe ,S3) →
F (ΩTe ,S3), where F (ΩTe ,S3) denotes the set of all fun
tions mapping ΩTe to S3. The operator
H is de�ned by the following rule: For given T and z̃(0) let (h, z̃) be a solution of the problem

h(x, t) = g1
(
T (x, t),−z̃(x, t)

) for (x, t) ∈ ΩTe , (2.31)
∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

) for (x, t) ∈ ΩTe , (2.32)
z̃(x, 0) = z̃(0)(x) for x ∈ Ω, (2.33)Then the operator H on F (ΩTe ,S3) is given by H(T ) = h. In terms of the operator H the10



problem (2.25) - (2.29) reads as follows: for all (x, t) ∈ ΩTe

−divxT (x, t) = b(x, t), (2.34)
T (x, t) = A

(
ε(∇xu(x, t)) − εp(x, t)

)
, (2.35)

∂tεp(x, t) = H(T ), (2.36)
εp(x, 0) = 0, (2.37)
u(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞). (2.38)Now we 
an state the existen
e result of [82℄ for the problem (2.34) - (2.38).Theorem 2.9. Let 2 ≤ p < ∞ and 1 < q ≤ 2 be numbers with 1/p + 1/q = 1. Assume that

H : Lp(ΩTe ,S3) → Lq(ΩTe ,S3) is maximal monotone and that the inverse H−1 is lo
ally boundedat 0 1 and strongly 
oer
ive, i.e. either D(H−1) is bounded or D(H−1) is unbounded and
〈v∗, v〉
‖v‖q,ΩTe

→ +∞ as ‖v‖q,ΩTe
→ ∞, v∗ ∈ H−1(v).Suppose that b ∈ Lp(ΩTe ,R

3) and γ ∈ Lp(0, Te,W
1,p(Ω,R3)). Then there exists a solution of theproblem (2.34) - (2.38)

u ∈ Lq(0, Te;W
1,q(Ω,R3)), T ∈ Lp(ΩTeS3), εp ∈W 1,q(0, Te, L

q(Ω,S3)).Remark 2.10. The monotoni
ity of H is implied by the monotoni
ity of the mapping (T, y) →
(g1(T, y), g2(T, y)) (see [3, Lemma 4.1℄).Remark 2.11. To gain the existen
e of solutions to (2.25) - (2.29) one has to 
he
k �rst whetherthe operator H : Lp(ΩTe ,S3) → Lq(ΩTe ,S3) is well de�ned, i.e. whether the problem (2.31)-(2.33) has a solution (not ne
essary unique). Then apply Theorem 2.9.Remark 2.12. The proof of Theorem 2.9 in [82℄ 
ontains a gap, although the result remains true.The operator de�ned in Lemma 4.1 of [82℄ is not maximal monotone as it is stated there. Theproof of this is given in the end of this se
tion.In [3℄ Theorem 2.9 is proved for H with polynomial growth and under the additional assumptionthat H is 
oer
ive. The last assumption 
auses there di�
ulties in the derivation of the existen
eof the solutions to the model of nonlinear kinemati
 hardening (see the next se
tion for moredetails). In order to show the 
oer
ivity of the operator H de�ned by the 
onstitutive relations(spe
i�
 
hoi
e of the fun
tions g1 and g2) of nonlinear kinemati
 hardening, the authors of [3℄had to impose a restri
tion on the exponents in the 
onstitutive relations for the di�erent internalvariables. The approa
h initiated in [82℄ is a
tually based on the 
onstru
tions in [3℄ and repeatsthe main steps of that work with the major di�eren
e that the general duality prin
iple for thesum of two operators from [9℄ is used to obtain the existen
e of the solutions to the problem(2.34) - (2.38). The appli
ation of this duality prin
iple allows to avoid the 
oer
ivity assumptionon H. Here we present the improved version of the proof of Theorem 2.9 presented in [82℄.Proof. Let us denote

W = Lp(Ω,S3), W = Lp(0, Te;W ), X = Hp
sol(Ω,S3), X = Lp(0, Te;X).1An operator A : V → 2V ∗ is 
alled lo
ally bounded at a point v0 ∈ V if there exists a neighborhood U of v0su
h that the set

A(U) = {Av | v ∈ D(A) ∩ U } is bounded in V ∗. 11



Repeating word by word the proof of Theorem 2.7 one 
an redu
e the initial-boundary valueproblem (2.34) - (2.38) to the following abstra
t equation
Lεp = H

(
−AQpεp + σ

)
, (2.39)where the linear operator L : W → W∗ is de�ned by

Lη = ∂tη with D(L) = {η ∈Wp,q(0, Te;W ) | η(0) = 0}.The fun
tion σ in (2.39) is given as in the proof of Theorem 2.7. Applying the operator Qq to(2.39) from the left formally and denoting τ = Qqεp we arrive at the equation
Lτ = QqH

(
−Aτ + σ

)
, (2.40)where now L : X → X ∗ denotes the operator

Lη = ∂tη with D(L) = {η ∈Wp,q(0, Te;X) | η(0) = 0}.The strategy of Theorem 2.7 is not appli
able here, sin
e the 
omposition of two operators,one of them being monotone, ξ → QqH
(
− Aξ + σ

) is not monotone in general. It turns outthat applying the general duality prin
iple (see [9℄) it is possible to �release� the monotoneoperator from another operator preserving its monotoni
ity property and use the 
lassi
al theoryof monotone operators. This is the main idea of the proof of Theorem 2.9.By the general duality prin
iple [9℄, the in
lusion (2.40) in X is equivalent to the followingin
lusion in X ∗

L−1AQqw + H−1w ∋ σ, w ∈ X ∗. (2.41)Indeed, (2.40) holds i� there exists v ∈ Lτ ∩Qqw with w = H(−Aτ + σ). Taking the inverse ofthe operators L and H gives (2.41). Thus, if we 
an solve (2.41), by the equivalen
e we obtainthat the problem (2.40) has a solution as well.Due to Lemma 2.13 here below the operator L−1AQq : D(L−1AQq) ⊂ X ∗ → X is linear andmaximal monotone.Now we 
an show that (2.41) has a solution. Note �rst that the operator H−1 is maximalmonotone as the inverse of a maximal monotone operator. Sin
e H−1 is lo
ally bounded at 0,by Lemma III.24 2 in [48℄ the point 0 belongs to the interior of D(H−1) = R(H). Therefore, theoperators L−1AQq and H−1 satisfy the 
ondition
D(L−1AQq) ∩ intD(H−1) 6= ∅,yielding that the sum L−1AQq + H−1 is maximal monotone (by Theorem II.1.7 in [11℄). The
oer
ivity of H−1 implies the 
oer
ivity of the sum, i.e.

〈
L−1AQqv + v∗, v

〉

‖v‖ ≥ 〈v∗, v〉
‖v‖ → +∞ as ‖v‖ → ∞, v∗ ∈ H−1(v).Theorem III.2.10 in [83℄ guarantees that the maximal monotone and 
oer
ive operator L−1AQq+

H−1 is surje
tive. Thus, equation (2.41) is solvable and, as 
onsequen
e, problem (2.40) has asolution.2This result is proved in a Hilbert spa
e, but it 
an be easily generalized to re�exive Bana
h spa
es.12



The 
onstru
tion of the solution of the problem (2.34) - (2.38) 
an be now performed as in [3℄:Let (v(t), σ(t)) be the solution of the Diri
hlet boundary value problem (2.17) - (2.19) to thedata b̂ = b(t), γ̂ = γ(t), ε̂p = 0 and let τ ∈ X be the unique solution of (2.40). With the fun
tion
τ let εp ∈W 1,q(0, Te, L

q(Ω,S3)) be the solution of
∂tεp(t) = H

(
−Aτ(t) + σ(t)

)
, for a.e. t ∈ (0, Te) (2.42)

εp(0) = 0. (2.43)Moreover, by the linear ellipti
 theory, there is a unique solution (ũ(t), T̃ (t)) of problem (2.17) -(2.19) to the data b̂ = γ̂ = 0, ε̂p = εp(t). The solution of (2.34) - (2.38) is now given as follows
(u, T, εp) = (ũ+ v, T̃ + σ, εp) ∈ Lq(0, Te;W

1,q(Ω,R3)) × Lp(ΩTeS3) ×W 1,q(0, Te, L
q(Ω,S3)).To see that (u, T, εp) satis�es (2.36), we apply the operator Qq to (2.42) - (2.43) from the leftand obtain

∂t(Qqεp) = QqH
(
−Aτ(t) + σ(t)

)
= ∂tτ, Qqεp(0) = τ(0) = 0.The last line implies that Qqεp = τ . Thus

T = T̃ + σ = −AQqεp + σ = −Aτ + σ ∈ Lp(ΩTeS3).The last observation 
ompletes the proof.Lemma 2.13. The operator L−1AQq : D(L−1AQq)⊂X ∗ → X is linear and maximal monotone.Proof. A

ording to Theorem 2.7 in [83℄, the operator L−1AQq is maximal monotone, if it is adensely de�ned 
losed monotone operator su
h that its adjoint (L−1AQq)
∗ is monotone. Sin
eall these properties of L−1AQq 
an be easily established, we leave their veri�
ation to the reader.More details 
an be also found in [81℄.Now we prove the result announ
ed in Remark 2.12.Lemma 2.14. The operator QpL−1 : W∗ → W is not maximal monotone (we use the notationsintrodu
ed above).Proof. Note �rst of all that the following identity

QpL−1v = L−1Qqv (2.44)holds for all v ∈ D(QpL−1) = D(L−1) 3. The previous identity (2.44) follows easily from
PpL−1v = L−1Pqv, (2.45)whi
h holds for v ∈ D(L−1). Relation (2.45) 
an be proved as follows: Choose v ∈ D(L−1).Then, a

ording to the de�nition of Pp, the boundary value problem

− divAε(∇u(x, t)) = − divAv(x, t) for x ∈ Ω, (2.46)
u(x, t) = 0 for x ∈ ∂Ω, (2.47)3Re
all that D(L−1) = {z ∈ W∗ |

R t

0
z(s)ds ∈ W} 13



has a unique solution u(t) ∈W 1,q
0 (Ω,R3), i.e. the fun
tion u satis�es the equation

(Aε(∇u(t)), ε(∇φ))Ω = (Av(t), ε(∇φ))Ω, for all φ ∈W 1,p
0 (Ω,R3).Similarly, we obtain that the problem

− divAε(∇w(x, t)) = − divA
(∫ t

0
v(x, s)ds

) for x ∈ Ω,

w(x, t) = 0 for x ∈ ∂Ωhas a unique solution w(t) ∈W 1,p
0 (Ω,R3). Integrating (2.46) we get that the identity

(
Aε

(
∇

∫ t

0
u(s)ds

)
, ε(∇φ)

)
Ω

=
(
A

(∫ t

0
v(s)ds

)
, ε(∇φ)

)
Ωholds for all φ ∈W 1,p

0 (Ω,R3). Thus, by the de�nition of Pp, we have that w(t) =
∫ t
0 u(s)ds. Thisproves (2.45).Next we show that the operator QpL−1 is not maximal monotone. To this end, 
onsider afun
tion ψ ∈ W ∗ su
h that ψ = ε(∇u) with u ∈ W 1,q

0 (Ω,R3) and ε(∇u) 6∈ W for any p > q(sin
e ε(∇u) 6∈ D(L−1) ). Obviously, su
h a fun
tion u is the solution of the problem
− divAε(∇û) = − divAψ, û ∈W 1,q

0 (Ω,R3).The last relation implies that ψ ∈ R(Pq) and 
onsequently that ψ ∈ kerQq.To show that QpL−1 is not maximal monotone, we need to �nd a pair (y∗, y) ∈ W ×W∗ su
hthat the inequality
(QpL−1v − y∗, v − y)Ω ≥ 0 (2.48)holds for all v ∈ D(L−1), but (y∗, y) 6∈ Graph (QpL−1). Take any v ∈ D(L−1). Set y = v+ψ with

ψ from above and y∗ = L−1Qqy, i.e. y∗ = L−1Qqv = QpL−1v. Then (QpL−1v− y∗, v− y)Ω = 0.Therefore (2.48) is ful�lled for all v ∈ D(L−1), but v + ψ 6∈ D(QpL−1). Thus, the proof is
omplete.2.6 Model of nonlinear kinemati
 hardeningWe apply Theorem 2.9 to the model of nonlinear kinemati
 hardening. It 
onsists of the equations(
f. [1, 3℄)
−divxT = b, (2.49)

T = A
(
ε(∇xu) − εp

)
, (2.50)

∂tεp = c1|T − k(εp − εn)|r T − k(εp − εn)

|T − k(εp − εn)| , (2.51)
∂tεn = c2|k(εp − εn)|m k(εp − εn)

|k(εp − εn)| , (2.52)
εn(0) = ε0n, εp(0) = 0, (2.53)

u = γ, x ∈ ∂Ω, (2.54)14



where c1, c2, κ > 0 are given 
onstants and εp, εn ∈ S3. The equations (2.49) - (2.53) 
an bewritten in the general form (2.25) - (2.29) with g = (g1, g2) : S3 × S3 → S3 × S3 de�ned by
(g1, g2)(T, z̃) =

(
c1|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| , c1k
1/2|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| + c2k
1/2|k1/2z̃|m z̃

|z̃|
)
,where z̃ = k1/2(εp − εn). Maximal monotoni
ity of the mapping (T, z̃) → (g1(T, z̃), g2(T, z̃))follows from the fa
t that g = (g1, g2) is the gradient of the 
ontinuous 
onvex fun
tion

φ(T, z̃) =
c1

r + 1
|T + k1/2z̃|r+1 +

c2
m+ 1

|k1/2z̃|m+1.We have the following existen
e result for the problem (2.49) - (2.54) (see also [3℄).Theorem 2.15. Let c1, c2, k be positive 
onstants and let r and m satisfy r,m > 1. Let usde�ne p = 1 + r, q = 1 + 1/r, p̂ = max {p, 1 +m} and q̂ = min {q, 1 + 1/m}. Suppose that
b ∈ Lp(ΩTe ,R

3), γ ∈ Lp(0, Te,W
1,p(Ω,R3)) and ε(0)n ∈ L2(Ω,S3). Then there exists a solution

u ∈ Lq(0, Te;W
1,q(Ω,R3)), T ∈ Lp(ΩTe ,S3),

εp ∈W 1,q(0, Te, L
q(Ω,S3)), εn ∈W 1,q̂(0, Te, L

q̂(Ω,S3))of the problem (2.49) - (2.54). Moreover, εp − εn ∈Wp̂,q̂(0, Te, L
p̂(Ω,S3)).Remark 2.16. In [3℄ Theorem 2.15 is proved provided m and r satisfy the inequality m > r. This
ondition the authors of [3℄ use to show that the operator H de�ned by the equations (2.51) -(2.53) a

ording to the rule given above is 
oer
ive.Remark 2.17. Using the theory of Orli
 spa
es and the monotone operator method similar resultsare obtained in [85℄ with the same restri
tions on m and r as in Theorem 2.15.Proof. To apply Theorem 2.9 one has to show that the operator H de�ned by (2.51) - (2.53) iswell-de�ned, the (multivalued) inverse H−1 is lo
ally bounded at 0 and 
oer
ive . The 
oer
ivityof H−1 as well as the fa
t that the well-posedness of H are shown in [82℄. Therefore, it remainsto verify that H−1 is lo
ally bounded at 0. Here we show that H−1 is not only lo
ally boundedat 0, but has even a polynomi
al growth.For the fun
tion y = εp − εn we have

∂t
k

2
|y(x, t)|2 = ky·c1|T−ky|r

T − ky

|T − ky|−ky·c2|ky|
m ky

|ky| ≤ c1

( 1

pαp
|ky|p+α

q

q
|T−ky|qr

)
−c2|ky|m+1.Here we used Young's inequality with α > 0. Therefore,

k

2
‖y(Te)‖2

2,Ω + c2‖ky‖m+1
m+1,ΩTe

≤ c1

( 1

pαp
‖ky‖p

p,ΩTe
+
αq

q
‖T − ky‖p

p,ΩTe

)
+
k

2
‖y(0)‖2

2,Ωand 
onsequently
c2‖ky‖m+1

m+1,ΩTe
≤ c1

( 1

pαp
‖ky‖p

p,ΩTe
+
αq

q
‖T − ky‖p

p,ΩTe

)
+
k

2
‖y(0)‖2

2,Ω. (2.55)On the other hand we have
‖T‖p

p,ΩTe
≤ ‖ky‖p

p,ΩTe
+ ‖T − ky‖p

p,ΩTe
. (2.56)15



Multiplying (2.56) by 1
pαp and then subtra
ting (2.55) we get the estimate

1

pαp
‖T‖p

p,ΩTe
− c2
c1
‖ky‖m+1

m+1,ΩTe
≤

( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω

≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (2.57)For su�
iently small α the 
onstant (

1
pαp − αq

q

) is positive. More pre
isely, α ∈ (0, α0) with
α0 := (q/p)1/(p+q). Later we give more pre
isely the upper bound for α.Now we derive the estimate for ‖ky‖m+1,ΩTe

in terms of ‖T‖p,ΩTe
:

∂t
k

2
|y(x, t)|2 = −(T − ky) · c1|T − ky|r T − ky

|T − ky| − ky · c2|ky|m
ky

|ky| + T · c1|T − ky|r T − ky

|T − ky|

≤ −c1|T−ky|p−c2|ky|m+1+c1|T ||T−ky|r ≤ −c1|T−ky|p−c2|ky|m+1+c1

( 1

pδp
|T |p+δ

q

q
|T−ky|qr

)
.Here we used Young's inequality with δ. Choosing δ = (q/2)1/q we arrive at the estimate

k

2
‖y(Te)‖2

2,Ω +
c1
2
‖T − ky‖p

p,ΩTe
+ c2‖ky‖m+1

m+1,ΩTe
≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T‖p

p,ΩTeand 
onsequently
c2‖ky‖m+1

m+1,ΩTe
≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T‖p

p,ΩTe
. (2.58)Thus from (2.57) and (2.58) we obtain

( 1

pαp
− 1

pδp

)
‖T‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω ≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (2.59)Choosing α = min {δ/2, α0/2} in (2.59) we obtain

C1‖T‖p
p,ΩTe

−C2 ≤ C3‖T − ky‖p
p,ΩTe

(2.60)with some positive 
onstants C1, C2 and C3. Re
alling that ‖H(T )‖q
q,ΩTe

= cq1‖T − ky‖p
p,ΩTe

, theinequality (2.60) implies
C1‖T‖p

p,ΩTe
− C2 ≤ C3c

q
1‖H(T )‖q

q,ΩTe
,whi
h yields the polynomial growth for the inverse of H(T ), i.e.

‖H−1(v)‖p,ΩTe
≤ C4(1 + ‖v‖q/p

q,ΩTe
) (2.61)with some positive 
onstant C4. Thus H−1 is 
oer
ive and bounded. Hen
e, Theorem 2.9 yieldsthe existen
e of u, T and εp. The existen
e of εn is shown in [82℄ (see also [3℄). Therefore, theproof of Theorem 2.15 is 
omplete.

16



3 Spatial regularity for elasto-(vis
o)plasti
 models of monotonetypeIn order to predi
t 
onvergen
e rates of numeri
al s
hemes, more information about higher spatialregularity of solutions is needed. Depending on the properties of the 
onstitutive fun
tion g in(2.9) di�erent results 
an be obtained.While lo
al regularity properties were derived in the re
ent years for a quite large 
lass of modelsof monotone type, only very few results are known 
on
erning the global regularity. In Se
tion3.1 we present in detail global regularity results and dis
uss their optimality in Se
tion 3.2 . Anoverview on the literature on spatial regularity results for models of monotone type, for vis
ousregularizations of these models and for models whi
h appear as a time dis
retized version of theevolution models is given in Se
tion 3.3. By S = [0, T ] we denote the time interval.3.1 Regularity for maximal monotone g and positive de�nite elasti
 energyHistori
ally, lo
al spatial regularity results were �rst dedu
ed by Seregin [93℄ for elasto-plasti
itywith linear kinemati
 or isotropi
 hardening and with a von Mises �ow rule. The proof is doneby 
arrying over lo
al regularity properties of a time-dis
retized version to the time-
ontinuousproblem. Here we follow a di�erent approa
h working dire
tly with the time-
ontinuous model.The model of monotone type formulated in (2.11)�(2.15), 
onsists of an ellipti
 system of par-tial di�erential equations, whi
h is strongly 
oupled with an evolutionary variational inequalitydes
ribing the evolution of the displa
ements u and the internal variable z subje
ted to externalloadings. There exist various powerful analyti
 tools to 
hara
terize the spatial regularity ofsystems of ellipti
 PDEs both on smooth and nonsmooth domains. The problem in the elasto-plasti
 
ase is to maintain the regularity properties of the ellipti
 system in spite of the strong
oupling between the ellipti
 system and the evolutionary variational inequality.Let Q ⊂ H1(Ω) × L2(Ω) ∋ (u(t), z(t)) denote the state spa
e and assume for the momentthat the initial datum z0 = 0. The intrinsi
 di�
ulty of proving spatial regularity results forplasti
ity problems stems from the fa
t that the �ow rule (2.12) is non smooth and has no regu-larizing terms. As a 
onsequen
e the data-to-solution-map is not Lips
hitz from W 1,1(S;Q∗) →
W 1,1(S;Q), but only as a map from W 1,1(S;Q∗) → L∞(S;Q). The latter Lips
hitz propertyis the basis for proving the lo
al and tangential regularity results in Sobolev spa
es. Roughlyspoken, the lo
al regularity of (u, z) follows from the Lips
hitz estimate

‖(uh − u, zh − z)‖L∞(S;Q) ≤ cLip ‖fh − f‖W 1,1(S;Q∗) , (3.1)where the index h indi
ates a lo
al shift of the fun
tions u and z by a (small) ve
tor h ∈ R
d.The fun
tion fh 
ontains the shifted datum f and further 
orre
tions due to the shift, so that

(uh, zh) is a solution to (2.11)�(2.13) with respe
t to the datum fh. If f is smooth enough su
hthat the estimate
sup|h|<h0

|h|−1 ‖fh − f‖W 1,1(S;Q∗) ≤ cf (3.2)is valid, then it follows that (u, z) ∈ L∞(S;H2lo
(Ω)×H1lo
(Ω)). Sin
e a similar Lips
hitz estimateis not known for the time derivatives (∂tu, ∂tz), we 
annot show that e.g. ∂tz ∈ L1(S;H1lo
(Ω)).Indeed, the example in Se
tion 3.2 reveals that the latter regularity is not valid in spite of smooth17



data. Similar arguments 
an be applied in order to derive tangential regularity properties at theboundary of smooth domains.In order to obtain information on the regularity in the normal dire
tion, the problem is re�e
tedat ∂Ω. The re�e
ted fun
tions (ũ, z̃) solve an evolution system of similar type with new datum
f̃ , whi
h 
onsists of the re�e
ted datum f and the tangential derivatives of ∇u and z: f̃ =
(fre�, ∂tang∇u, ∂tangz). Due to the terms ∂tang∇u and ∂tangz the new datum does not have thetemporal regularity allowing for an estimate like (3.2). In view of the tangential regularity results,we 
an guarantee at least that

sup|h|<h0
|h|−1

∥∥f̃h − f̃
∥∥

L∞(S;Q∗)
≤ c.Hen
e, the Lips
hitz estimate (3.1) has to be repla
ed with the following weaker version for theextended fun
tions (ũ, z̃):

‖(ũh − ũ, z̃h − z̃)‖L∞(S;Q) ≤ c
∥∥f̃h − f̃

∥∥ 1
2

L∞(S;Q∗) ≤ c |h| 12 , (3.3)see Theorem 3.2. From the latter estimate we �nally dedu
e that (u, z) ∈ L∞(S;H
3
2
−δ(Ω) ×

H
1
2
−δ(Ω)) for every δ > 0. These steps are explained in detail in Se
tions 3.1.1-3.1.3.3.1.1 Basi
 assumptions and stability estimatesThe arguments explained above are not restri
ted to the operator of linear elasti
ity o

uringin (2.11)�(2.12). We 
onsider here the 
ase with general displa
ements u : S × Ω → R

m, where
Ω ⊂ R

d is a bounded domain, and repla
e the operator of linear elasti
ity by a more generallinear ellipti
 operator. For θ ∈ R
m×d and z ∈ R

N the energy density ψ is assumed to be of theform
ψ(x, θ, z) =

1

2
〈A(x) ( θ

z ) , ( θ
z )〉 ≡ 1

2
(〈A11(x)θ, θ〉 + 〈A12(x)z, θ〉 + 〈A21(x)θ, z〉 + 〈A22(x)z, z〉)(3.4)where A ∈ L∞(Ω; Lin(Rm×d × R

N ,Rm×d × R
N)) is a given 
oe�
ient matrix and 〈·, ·〉 denotesthe inner produ
t in R

s. For u ∈ H1(Ω,Rm) and z ∈ L2(Ω,RN ) the 
orresponding elasti
 energyis de�ned as
Ψ(u, z) =

∫

Ω
ψ(x,∇u(x), z(x)) dx. (3.5)The basi
 assumptions in this se
tion are the followingR1 Ω ⊂ R

d is a bounded domain with C1,1-smooth boundary, see e.g. [42℄.R2 The 
oe�
ient matrix A belongs to C0,1(Ω,Lin(Rm×d × R
N ,Rm×d × R

N )), is symmetri
and there exists a 
onstant α > 0 su
h that Ψ(v, z) ≥ α
2

(
‖v‖2

H1(Ω) + ‖z‖2
L2(Ω)

) for all
v ∈ H1

0 (Ω) and z ∈ L2(Ω).R3 The fun
tion g:RN → 2R
N is maximal monotone with 0 ∈ g(0) and G : D(G) ⊂ L2(Ω,RN ) →

P(L2(Ω,RN )) is de�ned as G(η)={ z ∈ L2(Ω,RN ) ; z(x) ∈ g(η(x)) a.e. in Ω }.18



Observe that G is a maximal monotone operator. The energy density ψ introdu
ed in (2.10) is
ontained as a spe
ial 
ase and further examples are given in Se
tion 3.1.3.In order to shorten the presentation, the dis
ussion is restri
ted to the 
ase with vanishingDiri
hlet 
onditions on ∂Ω. Hen
e, with V = H1
0 (Ω,Rm) and Z = L2(Ω,RN ) the state spa
e

Q takes the form Q = V × Z. We investigate the spatial regularity properties of fun
tions
(u, z) : [0, T ] → Q whi
h for all v ∈ V and almost every t ∈ S satisfy

DuΨ(u(t), z(t))[v] =

∫

Ω
〈A

(
∇u(t)
z(t)

)
,
(
∇v
0

)
〉dx = 〈b(t), v〉, (3.6)

∂tz(t) ∈ G(−DzΨ(u(t), z(t)) + F (t)), (3.7)
z(0) = z0, u(t)

∣∣
∂Ω

= 0. (3.8)Here, DuΨ and DzΨ denote the variational derivatives of Ψ with respe
t to u and z, and F isa further for
ing term not present in (2.11)-(2.13). The data b, F are 
omprised in the fun
tion
(b, F ) = f : S → V ∗ × Z ≡ Q∗. We 
all the initial value z0 and the for
es f 
ompatible if thereexists u0 ∈ V with DuΨ(u0, z0) = b(0) and −DzΨ(u0, z0) + F (0) ∈ D(G), where D(G) denotesthe domain of G. The 
ompatibility assumption is equivalent to the assumption in Theorem 5.8,where the initial data shall belong to the set of stable states.Sin
e the elasti
 energy Ψ is assumed to be positive de�nite on Q, see R2, similar arguments aspointed out in Se
tion 2.4 lead to the following existen
e theorem:Theorem 3.1. Assume that R2 and R3 are satis�ed and that the data z0 ∈ L2(Ω,RN ) and
f = (b, F ) ∈ W 2,1(S;Q∗) are 
ompatible. Then there exists a unique pair (u, z) ∈ W 1,1(S;Q)satisfying (3.6)�(3.8). If G = ∂χK, where K ⊂ L2(Ω,RN ) is 
onvex, 
losed and with 0 ∈ Kand χK is the 
hara
teristi
 fun
tion of the 
onvex set K, then it is su�
ient to assume that
f = (b, F ) ∈W 1,1(S;Q∗).The next stability estimates rely on the positivity of the energy Ψ and are the basis for ourregularity results.Theorem 3.2. Assume that R2 and R3 are satis�ed.(a) There exists a 
onstant κ > 0 su
h that for all ui ∈ W 1,1(S;H1(Ω)), zi ∈ W 1,1(S;L2(Ω)),

i ∈ {1, 2}, whi
h satisfy (3.6)�(3.8) with fi ∈W 1,1(S;Q∗) and z0
i ∈ L2(Ω,RN ), it holds

‖u1 − u2‖L∞(S;H1(Ω)) + ‖z1 − z2‖L∞(S;L2(Ω)) ≤ κ
(∥∥z0

1 − z0
2

∥∥
L2(Ω)

+
∥∥f1 − f2

∥∥
W 1,1(S;Q∗)

)
.(3.9)(b) There exists a 
onstant κ > 0 su
h that for all ui ∈ L∞(S;H1(Ω)), zi ∈ W 1,1(S;L2(Ω)),

i ∈ {1, 2}, whi
h satisfy (3.6)�(3.8) with fi ∈ L∞(S;Q∗) and z0
i ∈ L2(Ω,RN ), it holds

‖u1 − u2‖L∞(S;H1(Ω)) + ‖z1 − z2‖L∞(S;L2(Ω))

≤ κ
(∥∥z0

1 − z0
2

∥∥
L2(Ω)

+
∥∥f1 − f2

∥∥
L∞(S;Q∗)

+ ‖z1 − z2‖
1
2

W 1,1(S;L2(Ω))
‖f1 − f2‖

1
2

L∞(S;Q∗)

)
.(3.10)Part (a) of the theorem gives the Lips
hitz 
ontinuity of the data-to-solution mapping T :

Z×W 1,1(S;Q∗) → L∞(S;Q); (z0, f) 7→ (u, z), while part (b) des
ribes Hölder-like 
ontinuity ofthe data-to-solution mapping in the 
ase where the data have less temporal regularity. We referto [62, 58℄ and the referen
es therein for a proof of the estimates.19



3.1.2 Lo
al spatial regularity and tangential regularityLo
al and tangential regularity results are derived with a di�eren
e quotient argument in 
om-bination with the stability estimates of Theorem 3.2. Con
erning the data it is assumed thatR4a z0 ∈ H1(Ω), f = (b, F ) ∈W 1,1(S;Y1) with Y1 = L2(Ω,Rm) ×H1(Ω,RN ).R4b z
0 ∈ H1(Ω), f = (b, F ) ∈ L∞(S;Yi) with Yi = L2(Ω,Rm) × { θ ∈ L2(Ω,RN ) ; ∂iθ ∈
L2(Ω,RN ) } for a �xed i ∈ {1, . . . , d}.Let x0 ∈ Ω and 
hoose ϕ ∈ C∞

0 (Ω,R) with ϕ ≡ 1 in a ball Bρ(x0). For h ∈ R
d, the innervariation τh : Ω → R

d is de�ned as τh(x) = x + ϕ(x)h. There exists a 
onstant h0 > 0 su
hthat the mappings τh : Ω → Ω are di�eomorphisms for every h ∈ R
d with |h| ≤ h0. Let the pair

u ∈ L∞(S;V ) and z ∈ W 1,1(S;Z) be a solution of (3.6)�(3.8). We de�ne uh(t, x) = u(t, τh(x)),
zh(t, x) = z(t, τh(x)). Straightforward 
al
ulations show that the shifted pair (uh, zh) solves(3.6)�(3.8) with respe
t to the shifted initial 
ondition z0

h and modi�ed data f̃h having theproperty
∥∥f̃h − f

∥∥
W 1,1(S;Q∗)

≤ c |h| ‖(f, u, z)‖W 1,1(S;Y1×V ×L2(Ω)) (3.11)if f satis�es R4a, and
∥∥f̃h − f

∥∥
L∞(S;Q∗)

≤ c |h| ‖(f, u, z)‖L∞(S;Yi×V ×L2(Ω)) (3.12)if f is given a

ording to R4b. The lo
al regularity Theorem 3.3 here below is now an immediate
onsequen
e of the stability estimates in Theorem 3.2.Theorem 3.3. Let 
onditions R2 and R3 be satis�ed.(a) Let (u, z) ∈ W 1,1(S;V × Z) be a solution of (3.6)�(3.8) with data satisfying R4a. Then
u ∈ L∞(S;H2lo
(Ω)) and z ∈ L∞(S;H1lo
(Ω)).(b) Let u ∈ L∞(S;V ) and z ∈ W 1,1(S;Z) be a solution of (3.6)�(3.8) with data a

ording toR4b. Then there exists h0 > 0 su
h that

sup
0<h<h0

h−
1
2 ‖∇uhei

−∇u‖L∞(S;L2(Bρ(x0))) <∞,

sup
0<h<h0

h−
1
2 ‖zhei

− z‖L∞(S;L2(Bρ(x0))) <∞.Proof. Estimate (3.11) in 
ombination with Theorem 3.2, part (a), yields
sup

|h|≤h0

|h|−1
(
‖u− uh‖L∞(S;H1(Bρ(x0))) + ‖z − zh‖L∞(S;L2(Bρ(x0)))

)
≤ ‖(f, u, z)‖W 1,1(S;Y1,V,Z)from whi
h we 
on
lude with Lemma 7.24 in [41℄ that u∈L∞(S;H2lo
(Ω)) and z∈L∞(S;H1lo
(Ω)).The results in part (b) of the theorem are obtained in a similar way.If R4b is satis�ed for all basis ve
tors ei, 1 ≤ i ≤ d, and all x0 ∈ Ω, then u(t) and z(t) belongto the Besov spa
es B 3

2
2,∞(Ω′) and B

1
2
2,∞(Ω′) for every Ω′

⋐ Ω. Via the embedding theorems20



for Besov spa
es into Sobolev-Slobode
kij spa
es we 
on
lude that u ∈ L∞(S;H
3
2
−δlo
 (Ω)) and

z ∈ L∞(S;H
1
2
−δlo
 (Ω)) for every δ > 0.In a similar way, tangential regularity properties 
an be dedu
ed after a suitable lo
al transfor-mation of the boundary to a subset of a hyperplane. Here, the assumption R1 on the smoothnessof ∂Ω is essential.Part (a) of Theorem 3.2 with a general maximal monotone fun
tion g and with ψ as in (2.10) wasproved by Alber and Nesenenko in [4, 5℄ and extended in [25℄ to an elasto-plasti
 model in
ludingCosserat e�e
ts. In the paper [58℄ the result was extended to the slightly more general situation,where the operator of linear elasti
ity and the Cosserat operators are repla
ed by a more generallinear ellipti
 system, part (b) was added and more general boundary 
onditions allowing fordi�erent kinds of boundary 
onditions in the di�erent 
omponents of u were investigated. Werefer to Se
tion 3.3 for a more detailed dis
ussion of the related literature.3.1.3 Global spatial regularityThe �rst global spatial regularity result for problems of the type (3.6)�(3.8) was proved byAlber and Nesenenko [4, 5℄. The authors showed that the lo
al and tangential regularityproperties in Theorem 3.3, part (a), already imply that the solution belongs to the spa
es

u ∈ L∞(S;H1+ 1
4 (Ω)), z ∈ L∞(S;H

1
4 (Ω)). By an iteration pro
edure the �nal regularity

u ∈ L∞(S;H1+ 1
3 (Ω)) and z ∈ L∞(S;H

1
3 (Ω)) was obtained. With a 
ompletely di�erent ar-gument, a re�e
tion argument, the result 
an be improved. This will be explained in detail inthis se
tion.To shorten the presentation we assume that there is a point x0 ∈ ∂Ω su
h that ∂Ω lo
ally 
oin
ideswith a hyperplane and that Ω lies above the hyperplane. The general 
ase 
an be redu
ed tothis situation by a suitable lo
al transformation of 
oordinates. Moreover it is assumed that thedata are given a

ording to R4a.Let C+ = (−1, 1)d−1 × (0, 1) be the upper half 
ube, C− = (−1, 1)d−1 × (−1, 0) the lower half
ube and assume that Γ = (−1, 1)d−1 × {0} ⊂ ∂Ω and that C+ ∩ Ω = C+ and C− ∩ Ω = ∅, seeFigure 1. By C = (−1, 1)d we denote the unit 
ube in R

d. Let R = I−2ed⊗ed be the orthogonalre�e
tion at Γ. The elasto-plasti
 model is extended from C+ to C by means of an odd extensionfor the displa
ements and an even extension for the internal variable and the initial datum:
ue(t, x) =

{
u(t, x) x ∈ C+

−u(t, Rx) x ∈ C−

, ze(t, x) =

{
z(t, x) x ∈ C+

z(t, Rx) x ∈ C−

, z0
e =

{
z0 in C+

z0◦R in C−

.(3.13)Moreover, the extended 
oe�
ient matrix Ae and the extended elasti
 energy are de�ned as
Ae =

{
A in C+

A◦R in C−

, Ψe(v, z) =
1

2

∫

Ω∪C
〈Ae (∇v

z ) , (∇v
z )〉dx (3.14)for v ∈ H1(Ω ∪C) and z ∈ L2(Ω ∪C). Te
hni
al 
al
ulations show that the extended fun
tionssatisfy for all v ∈ H1

0 (C)
∫

C
〈Ae

(
∇ue(t)
ze(t)

)
,
(
∇v
0

)
〉dx =

∫

C
be(t) · v dx,

∂tze(t) ∈ G(−DzΨe(∇ue(t), ze(t)) + Fe(t)),21



where
be(t, x) =

{
b(t, x) x ∈ C+

−b(t, Rx) − div
((
A11∇u(t) +A12z(t)

)∣∣
Rx

(R+ I)
)

x ∈ C−
, (3.15)

Fe(t, x) =

{
F (t, x) x ∈ C+

F (t, Rx) −A21,e(∇u(t)
∣∣
Rx

(R+ I)) x ∈ C−

. (3.16)The tangential regularity results from the previous se
tion guarantee that be∣∣C−
∈ L∞(S;L2(C−)).Indeed, due to the fa
tor (R + I) terms like ∂2

du and ∂dz do not appear in the de�nition of beand hen
e, tangential derivatives of ∇u and z enter in the de�nition of be, only, whi
h, byTheorem 3.3, belong to L∞(S;L2(C−)). Again from the regularity results in the previous se
-tion we obtain that ∂dFe

∣∣
C±

∈ L∞(S;L2(C±)). Taking into a

ount that u∣∣
Γ

= 0, it followsthat ∇u(R + I)
∣∣
Γ

= 0 and hen
e the tra
es of Fe

∣∣
C+

and Fe

∣∣
C−


oin
ide on Γ. This impliesthat ∂dFe ∈ L∞(S;L2(C)). The lo
al regularity result des
ribed in Theorem 3.3, part (b), istherefore appli
able and leads to the following theorem:Theorem 3.4. Assume that R1�R3 and R4a are satis�ed. Then the unique solution (u, z) ofproblem (3.6)�(3.8) satis�es: For every δ > 0

u ∈ L∞(S;H
3
2
−δ(Ω)) ∩ L∞(S;H2lo
(Ω)), z ∈ L∞(S;H

1
2
−δ(Ω)) ∩ L∞(S;H1lo
(Ω)). (3.17)Moreover, for every δ > 0 there exists a 
onstant cδ > 0 su
h that

‖u‖
L∞(S;H

3
2−δ(Ω))

+ ‖z‖
L∞(S;H

1
2−δ(Ω))

≤ cδ(
∥∥z0

∥∥
H1(Ω)

+ ‖f‖W 1,1(S;Y1)
). (3.18)We refer to [58℄ for a detailed proof of the global results and a slightly more general variant ofTheorem 3.4, where also further types of boundary 
onditions are dis
ussed.Estimates (3.9) and (3.18) allow to apply Tartar's nonlinear interpolation theorem showing thatfor data with less spatial regularity than required in Theorem 3.4, one obtains the 
orrespondingspatial regularity of the solution in a natural way. We assume here that g = ∂χK , where K ⊂ R

Nis 
onvex, 
losed and 0 ∈ K. ∂χK denotes the 
onvex subdi�erential of the 
hara
teristi
fun
tion χK asso
iated with K. Let Y0 := Q∗, Y1 := L2(Ω,Rm) × H1(Ω,RN ) and Qδ
1 :=

(H1
0 (Ω,Rm) ∩ H 3

2
−δ(Ω,Rm)) × H

1
2
−δ(Ω,RN ) for δ > 0. Due to Theorem 3.1 and the stabilityestimate (3.9) for all r, q ∈ [1,∞] the solution operator T de�ned by

T : L2(Ω,RN ) ×W 1,r(S;Y0) → Lq(S;Q), (z0, f) 7→ T (z0, f) = (u, z),where (u, z) ∈ W 1,1(S;Q) is the unique solution of (3.6)�(3.8) with data f = (b, F ) and initial
ondition z0, is well de�ned and Lips
hitz-
ontinuous. Moreover, for all δ > 0 the solutionoperator
T : H1(Ω,RN ) ×W 1,r(S;Y1) → Lq(S;Qδ

1)is a bounded operator a

ording to Theorem 3.4. Hen
e, Tartar's interpolation Theorem [103,Thm. 1℄ guarantees that for all θ ∈ (0, 1) and all p ∈ [1,∞] the following impli
ation holds true:
z0 ∈ (H1(Ω);L2(Ω))θ,p, f ∈ (W 1,r(S;Y1);W

1,r(S;Y0))θ,p

=⇒ T (z0, f) = (u, z) ∈ (Lq(S;Qδ
1);L

q(S;Q))θ,p.22



Here, (· ; ·)θ,p stands for real interpolation, see e.g. [107℄. If for example r = q = p = 2and θ ∈ (0, 1), then given z0 ∈ Hθ(Ω), b ∈ W 1,2(S; (H̃1−θ(Ω))∗), where H̃s(Ω) = { η ∈
Hs(Ω) ; ∃η̃ ∈ Hs(Rm) with supp η̃ ⊂ Ω, η̃

∣∣
Ω

= η }, and F ∈ W 1,2(S;Hθ(Ω)) we obtain that
u ∈ L2(S;H1+θ( 1

2
−δ)(Ω)) and z ∈ L2(S;Hθ( 1

2
−δ)(Ω)).Example 3.5. Theorem 3.4 and the interpolation result are appli
able to rate-independentelasto-plasti
ity with linear kinemati
 hardening and with a von Mises or a Tres
a �ow rule.Here, the ve
tor of internal variables is identi�ed with the plasti
 strains εp ∈ R

d×dsym,dev (i.e.
tr εp = 0) and the elasti
 energy takes the form

Ψ(u, εp) =

∫

Ω
ψ(ε(∇u), εp) dx with ψ(ε, εp) = 1

2A(ε− εp) · (ε− εp) + 1
2Lεp · εp, (3.19)for (ε, εp) ∈ R

d×dsym × R
d×dsym,dev. The 
oe�
ient tensors A ∈ C0,1(Ω,Lin(Rd×dsym,Rd×dsym)) and L ∈

C0,1(Ω,Lin(Rd×dsym,dev,Rd×dsym,dev)) are assumed to be symmetri
 and uniformly positive de�nite.Hen
e, due to Korn's inequality, assumption R2 is satis�ed. Let K ⊂ R
d×dsym,dev be 
onvex, 
losedand with 0 ∈ K. The set K des
ribes the set of admissible stress states. Choosing g = ∂χK asthe 
onvex subdi�erential of the 
hara
teristi
 fun
tion χK asso
iated with K, we obtain 
lassi
alrate-independent models for elasto-plasti
 material behavior. In parti
ular, the von Mises �owrule is asso
iated with the set KvM = { τ ∈ R

d×dsym,dev ; (τ · τ) 1
2 ≤ c0 }, whereas the Tres
a �owrule is based on the set KT = { τ ∈ R

d×dsym,dev ; maxi6=j |τi − τj| ≤ c0 }. Here, { τi ; 1 ≤ i ≤ d }are the eigenvalues (prin
iple stresses) of τ ∈ R
d×dsym,dev. The regularity Theorem 3.4 and theinterpolation result are appli
able to these models.Example 3.6. In [80℄ an elasti
-plasti
 model was introdu
ed whi
h in
orporates Cosserat mi-
ropolar e�e
ts. This model is analyzed in [80, 25℄ with respe
t to existen
e and lo
al regularityand in [59℄ with respe
t to global regularity of a time dis
retized version. In this model, notonly the displa
ements u but also linearized mi
ro-rotations Q are taken into a

ount. The gen-eralized displa
ements are given by the pair (u,Q) ∈ R

d × R
d×dskew ∼= R

m, whereas the internalvariable z is identi�ed with the plasti
 strain tensor z = εp ∈ R
d×dsym, dev. For u ∈ H1(Ω,Rd),

Q ∈ H1(Ω,Rd×dskew) and εp ∈ L2(Ω,Rd×dsym,dev) the elasti
 energy reads
ΨC((u,Q), εp) =

∫

Ω
µ |ε(∇u) − εp|2 + µc |skew (∇u−Q)|2 +

λ

2
|tr∇u|2 + γ |∇Q|2 dx.Here, λ, µ > 0 are the Lamé 
onstants, µc > 0 is the Cosserat 
ouple modulus and γ > 0depends on the Lamé 
onstants and a further internal length parameter. It is shown in [80℄ that

ΨC satis�es 
ondition R2. If G is 
hosen a

ording to R3, then solutions to (3.6)�(3.8) with ΨChave the global regularity properties des
ribed in Theorem 3.4. In addition, Q ∈ L∞(S;H2(Ω)),sin
e Q is 
oupled with ε(∇u) and εp through lower order terms, only, see [25℄.3.2 Dis
ussion of the regularity resultsIt is an unsolved problem whether the result in Theorem 3.4 is optimal or whether one shouldexpe
t the regularity u ∈ L∞(S;H2(Ω)), z ∈ L∞(S;H1(Ω)) for domains with smooth bound-aries. This would extend the lo
al regularity results des
ribed in Theorem 3.3 in a natural way.If u is a s
alar fun
tion, then under 
ertain 
oupling 
onditions on the 
oe�
ients the spatialregularity u ∈ L∞(S;H2(Ω)) 
an be a
hieved for the evolution model (see Se
tion 3.2.1). InSe
tion 3.2.2 we give an example whi
h shows that in spite of smooth data a similar regularityresult is not valid for the time derivatives ∂tu and ∂tz.23



3.2.1 Improved regularity for s
alar uThe regularity results in Theorem 3.4 
an be improved if u is s
alar and if 
ertain 
ompatibility
onditions between the submatri
es Aij of A and the 
onstitutive fun
tion g are satis�ed. Herethe idea is to 
onstru
t a re�e
tion operator R, whi
h is adapted to the stru
ture of the the
oe�
ient matrix A11. In 
ontrast to Se
tion 3.1.3 the problem is not re�e
ted perpendi
ularto the boundary but with respe
t to the ve
tor A11ν, where ν : ∂Ω → ∂B1(0) ⊂ R
d is theinterior normal ve
tor to ∂Ω. Due to the 
ompatibility 
onditions between the 
oe�
ients andthe 
onstitutive fun
tion g the re�e
ted data do not 
ontain se
ond spatial derivatives of u or�rst derivatives of z. Hen
e the re�e
ted data have the regularity (be, Fe) ∈W 1,1(S;Y1) insteadof (be, Fe) ∈ L∞(S;Y1) with Y1 = L2(Ωe) ×H1(Ωe). Thus, we may apply part (a) of Theorem3.3 and obtain the improved global regularity des
ribed in Theorem 3.7 here below.To be more pre
ise, the problem under 
onsideration reads: Find u : S × Ω → R, z : S ×

Ω → R
N su
h that for given A11 ∈ C0,1(Ω,Rd×dsym), A12 = A⊤

21 ∈ C0,1(Ω,Lin(RN ,Rd)) and
A22 ∈ C0,1(Ω,RN×Nsym ) we have

DuΨ(u(t))[v] =

∫

Ω
(A11∇u(t) +A12z(t)) · ∇v dx =

∫

Ω
b(t) · v dx ∀v ∈ V,

∂tz(t) ∈ G(−(A21∇u(t) +A22z(t)) + F (t)),

z(0) = z0.It is assumed that A =
(

A11 A12
A21 A22

)
∈ C0,1(Ω; R(d+N)×(d+N)) is uniformly positive de�nite. Let

ν : ∂Ω → ∂B1(0) be the interior normal ve
tor on ∂Ω. In order to formulate the 
ompatibility
onditions, we de�ne for x ∈ ∂Ω

Rν(x) = I − 2

A11(x)ν(x) · ν(x)
A11(x)ν(x) ⊗ ν(x). (3.20)The matrix Rν lo
ally determines the re�e
tion at ∂Ω. Simple 
al
ulations show that R2

ν(x) = Iand Rν(x)A11(x)R
⊤
ν(x) = A11(x). The basi
 assumptions and 
ompatibility 
onditions are:R5 Ω ⊂ R

d is a bounded domain with a C2,1-smooth boundary (it is used that ν ∈ C1,1(∂Ω)).R6 (b, F ) ∈W 1,1(S;Y1) with Y1 from R4a, z0 = 0.R7 There exists a mapping P ∈ C0,1(∂Ω,RN×N ) su
h that for every x ∈ ∂Ω the inverse matrix
(P (x))−1 exists and the following 
onditions hold for all η ∈ R

N

Rν(x)A12(x)P (x) = A12(x), P (x)⊤A22(x)P (x) = A22(x), −P (x)−1g(−P (x)−⊤η) = g(η).Theorem 3.7. [58℄ Let R5-R7 be satis�ed and assume that the pair (u, z) ∈ W 1,1(S;H1
0 (Ω) ×

L2(Ω)) solves (3.6)�(3.8). Then u ∈ L∞(S;H2(Ω)) and z ∈ L∞(S;H1(Ω)).We refer to [58℄ for a detailed proof.Example 3.8. Assume that the 
oe�
ient matrix A is 
onstant, that N = d, A12 = −A11 and
A22 = A11 + L with L ∈ R

d×dsym positive de�nite. Hen
e, Ψ(u, z)= 1
2

∫
ΩA11(∇u − z) ·(∇u − z)+

Lz · zdx. Moreover we assume that A11=I, whi
h 
an always be a
hieved after a suitable 
hangeof 
oordinates and a suitable transformation in the state spa
e of z. The mapping Rν now takesthe form Rν = I − 2ν ⊗ ν for ν ∈ ∂B1(0) and the 
ompatibility 
onditions redu
e to24



R7' Pν = Rν , R⊤
ν LRν = L and −R⊤

ν g(−Rνη) = g(η) for all η ∈ R
d.It is shown in [58℄ that R7' is satis�ed if and only if there exists α > 0 su
h that L = αI.Moreover, if g = ∂χK with K ⊂ R

d 
onvex, 
losed and 0 ∈ K, then R7' holds if and only if
K = −RνK for all ν ∈ R

d. In this situation, Theorem 3.7 yields the improved regularity result.This example shows that if the �anisotropy� in Hooke's law given by the matrix A11 is 
orrelatedwith the anisotropy in the hardening 
oe�
ients A22 and L and the 
onstitutive fun
tion g, thenthe displa
ements u(t) have full H2-regularity up to the boundary ∂Ω. It is an open questionwhether this regularity is still valid if the 
ompatibility 
ondition R7 is violated. Moreover it isnot known, whether a similar result is true for real elasto-plasti
 models, where u is not a s
alarfun
tion.3.2.2 Example: ∂tz(t) /∈ H1(Ω)The following example shows that in spite of smooth data there might exist a time interval (t1, t2)su
h that ∂tz(t) /∈ H1(Ω) for all t ∈ (t1, t2). Hen
e, one should not expe
t z ∈ W 1,1(S;H1(Ω)).The example is inspired by Seregin's paper [95℄.Let 0 < R1 < R2. We set Ω = BR2(0)\BR1(0) and 
hoose the following energy for u, z : Ω → R:
Ψ(u, z) = 1

2

∫

Ω

∣∣∇u− x
|x|z

∣∣2 + z2 dx.Moreover, g(η) := ∂χ[−1,1](η) for η ∈ R. It is assumed that u(t)∣∣
∂BR1

= 0, u(t)∣∣
∂BR2

= t,
z0 = 0 and that the remaining data (F , b) vanish. It is easily 
he
ked that the assumptionsof Theorem 3.7 are satis�ed and hen
e the problem has a unique solution with the regularity
∇u, z ∈ W 1,1(S;L2(Ω)) ∩ L∞(S;H1(Ω)). Due to the rotational symmetry of the problem thesolution does not depend on the angle and 
an be 
al
ulated expli
itly. Introdu
ing polar-
oordinates, the solution u, z : S × (R1, R2) → R has to satisfy for r ∈ (R1, R2) and t ∈ S

∂2
ru+ r−1∂ru− ∂rz − r−1z = 0 in S × (R1, R2),

∂tz ∈ ∂χ[−1,1](∂ru− 2z) in S × (R1, R2),

z(0, ·) = 0, u(t, R1) = 0, u(t, R2) = t.For t ≤ t1 := R1 ln(R2/R1) it follows that u(t, r) = t ln(r/R1)
ln(R2/R1) , z(t, r) = 0. In this regime, noplasti
 strains are present. For t > t1 the plasti
 variable z starts to grow and there exists r∗(t)su
h that z(t, r) > 0 for r < r∗ and z(r, t) = 0 for r > r∗, i.e. r∗(t) separates the plasti
 regionfrom the elasti
 region. The dependen
e of r∗ on t is given impli
itly by the relation

t(r∗) = R1 − r∗ + r∗(lnR2r∗ − lnR2
1).Simple 
al
ulations show that t(r∗) is stri
tly in
reasing, and hen
e r∗(t) ≥ R1 is stri
tly growing,as well. Moreover, for t ≥ t1 we have

u(t, r) =

{
b(t) − r + 2r∗(t) ln r if r ≤ r∗(t)

c(t) + r∗(t) ln r else , z(t, r) =

{
−1 + r∗(t)r

−1 if r ≤ r∗(t),

0 else ,with fun
tions b(t) = R1 − 2r∗(t) lnR1 and c(t) = t− r∗(t) lnR2. Sin
e ∂tr∗(t) > 0 for t ≥ t1 itfollows that ∂tz(t, ·) /∈ H1(R1, R2) for t > t1, see also Figure 1.25
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Figure 1: Example for the notation in Se
tion 3.1.3 (left); Graph of the solution z : (0, T ) ×
(R1, R2) → R (middle) and of the time derivative ∂tz (right).3.3 Regularity for variants of the elasto-plasti
 model and overview on the
orresponding literatureThe starting point for the review of the literature on spatial regularity properties of elasto-plasti
models is the system introdu
ed in (3.6)�(3.8) with the parti
ular energy density

ψ(ε, z) = 1
2

(
A(ε−Bz) · (ε−Bz) + Lz · z

) (3.21)for ε ∈ R
d×dsym and z ∈ R

N . It is assumed that A ∈ Lin(Rd×dsym,Rd×dsym) is symmetri
 and positivede�nite, L ∈ Lin(RN ,RN ) is symmetri
 and positive semi-de�nite and B ∈ Lin(RN ,Rd×dsym). The
orresponding evolution model reads
div σ(t) + b(t) = 0, σ(t) = A(ε(∇u(t)) −Bz(t)), (3.22)

∂tz(t) ∈ G(−∂zψ(ε(∇u(t)), z(t)) + F (t)). (3.23)together with initial and boundary 
onditions. Depending on the properties of L and G di�erentspatial regularity results were derived in the literature.3.3.1 Regularity for models with positive semi-de�nite elasti
 energy and mono-tone, multivalued gOnly very few regularity results are available for models where the elasti
 energy density ψ in(3.21) is positive semi-de�nite but not positive de�nite. The 
orresponding elasti
 energy is 
on-vex but not stri
tly 
onvex on the full state spa
e Q. As a 
onsequen
e, a-priori estimates likethose provided in Theorem 3.2 
annot be obtained in general. In 
ontrast, the 
omplementaryenergy, whi
h is expressed via the generalized stresses, is still 
oer
ive. The regularity investi-gations therefore typi
ally take a stress based version of (3.22)�(3.23) as a starting point. Inthis framework to the authors' knowledge only the Prandtl-Reuss model and models with linearisotropi
 hardening are dis
ussed in the literature with regard to regularity questions.The Prandtl-Reuss model des
ribes elasti
, perfe
tly plasti
 material behavior without hardening.The internal variable z is identi�ed with the plasti
 strain tensor εp ∈ R
d×dsym,dev, B = I and L = 0.Moreover, the 
onstitutive fun
tion g is typi
ally identi�ed with ∂χK , where K is a 
onvex setgiven a

ording to the von Mises or the Tres
a �ow rule, see Example 3.5.The existen
e theorems provide stresses with σ(t) ∈ L2(Ω) and u(t) ∈ BD(Ω), where BD(Ω)denotes the spa
e of bounded deformations, see e.g. [53, 67, 102, 8, 105, 28℄. Higher spatialregularity is derived by Bensoussan and Frehse [13℄ and Demyanov [31℄ for the 
ase that K isde�ned by the von Mises yield 
ondition. They obtain σ ∈ L∞([0, T ];H1lo
(Ω)), whi
h 
oin
ides26



with the lo
al results in Theorem 3.4. The stress regularity is proved by approximating thePrandtl-Reuss model with the vis
ous power-law like Norton-Ho� model [13℄ and by time dis-
retization [31℄. Tangential properties are dis
ussed in [18℄. To the author's knowledge theseare the only known spatial regularity results for the Prandtl-Reuss model. In parti
ular there isno information about higher global regularity. In the dynami
al 
ase, Shi proved a lo
al spatialresult for σ and u [96℄.If z(0) = 0, then the �rst step in the time dis
retization of the Prandtl-Reuss model leads to thestationary, elasti
, perfe
tly plasti
 Hen
ky model. Here, it is proved for the von Mises 
ase that
σ ∈ H1lo
(Ω)∩H 1

2
−δ(Ω) for every δ > 0, where Ω is a bounded Lips
hitz domain whi
h satis�es anadditional geometri
al 
ondition near those points, where the Diri
hlet and Neumann boundaryinterse
t. We refer to [12℄ and [92, 39℄ together with the referen
es therein for the lo
al resultand to [56, 15℄ for the global and a tangential result. The key of the proofs is to approximatethe Hen
ky model with nonlinear elasti
 models and to derive uniform regularity estimates forthe approximating models. In addition, the authors in [39℄ obtain a result 
on
erning partialregularity of the solutions. It is an open problem whether the global result 
an be improved in the
ase of a smooth boundary with pure Diri
hlet or pure Neumann 
onditions, see the dis
ussionin [95℄.A further typi
al elasto-plasti
 model with a positive semide�nite energy density ψ des
ribeslinear isotropi
 hardening. Here, the internal variable z 
onsists of the plasti
 strains εp and as
alar hardening variable γ 
hara
terizing the radius of the set of admissible stress states. Thequadrati
 elasti
 energy is given by ψ(ε, εp, γ) = 1

2

(
A(ε − εp) · (ε − εp) + αγ2

) for ε ∈ R
d×dsym,

εp ∈ R
d×dsym,dev and �xed α > 0. The 
onstitutive fun
tion is de�ned as g = ∂χK with K =

{ (τ, µ) ∈ R
d×dsym,dev × R ; µ ≥ 0, |τ | ≤ σ0 + σ1µ } and 
onstants σi > 0. The �rst investigations
on
erning spatial regularity in the isotropi
 
ase were 
arried out by Seregin [93℄. Here, theresults σ ∈ L∞(S;H1lo
(Ω)), γ ∈ L∞(S;H1lo
(Ω)), ∇u ∈ L∞(S;BDlo
(Ω)) were obtained bystudying the regularity properties of a time-dis
retized version and proving uniform bounds.Hölder properties of the solutions were investigated in [37℄.3.3.2 Spatial regularity for regularized modelsRepla
ing the maximal monotone 
onstitutive fun
tion G : L2(Ω,RN ) → P(L2(Ω,RN )) from(3.23) with its Yosida approximation leads to regularized elasto-vis
o-plasti
 models with aLips
hitz-
ontinuous nonlinearity in the evolution law. The therewith obtained models are asub
lass of the elasto-vis
o-plasti
 models studied e.g. by Sofonea et al., see [52, 35℄. Given anenergy Ψ : Q → R as de�ned in (3.4)�(3.5) with a 
oe�
ient matrix A ∈ L∞(Ω,Lin(Rm×d ×

R
N ,Rm×d × R

N )) and given a Lips
hitz-
ontinuous operator F : Q → L2(Ω,RN ) these modelsread as follows:
DuΨ(u(t), z(t)) = b(t), ∂tz(t) = F(u(t), z(t)), z(0) = z0 (3.24)together with boundary 
onditions on ∂Ω. If the submatrix A11 ∈ L∞(Ω,Lin(Rm×d,Rm×d)) of

A is symmetri
 and if the indu
ed bilinear form a(u, v) =
∫
ΩA11∇u · ∇v dx is 
oer
ive on V ,then a standard appli
ation of Bana
h's �xed point theorem implies the existen
e of a uniquesolution (u, z) ∈W 1,∞(S;Q) provided that b ∈W 1,∞(S;V ∗).For these models the lo
al spatial regularity was investigated in [75℄ with a di�eren
e quotientargument and in [61℄, while the global regularity was studied in [19℄. The global regularity the-orem in [19℄ states that if the linear ellipti
 operator indu
ed by A11 is an isomorphism between27



the spa
es H1
ΓDir(Ω) ∩ H1+s(Ω) and Ys for some s ∈ (0, 1], where Ys is a suitable subspa
e of

Hs−1(Ω), then for every b ∈ W 1,∞(S;Ys) the solution of (3.24) satis�es u ∈ W 1,∞(S;H1+s(Ω))and z ∈ W 1,∞(S;Hs(Ω)). In this way, global regularity properties of ellipti
 operators on pos-sibly nonsmooth domains and with mixed boundary 
onditions dire
tly in�uen
e the regularityproperties of the vis
ous evolution model (3.24). The proof is 
arried out by deriving uniformregularity bounds for the sequen
e of approximating solutions generated via the Bana
h �xedpoint theorem. Here it is not needed that the elasti
 energy Ψ is 
oer
ive on Q, the 
oer
ivityof a(u, v) :=
∫
ΩA11∇u · ∇v dx on V is su�
ient.While for elasto-plasti
ity models (with a multivalued monotone 
onstitutive fun
tion g) lo
alregularity results 
an be dedu
ed by proving uniform regularity bounds for the sequen
e of theapproximating Yosida-regularized models, see e.g. [5℄, it is an unsolved problem, how to obtainuniform bounds in order to 
arry over global spatial regularity results from the vis
ous model tothe elasto-plasti
 limit problem.A further possibility to regularize elasto-plasti
 models is to repla
e the 
onstitutive fun
tion

G = ∂χK with a power-law like ansatz. This approa
h is used in [105℄ in order to regularize thePrandtl-Reuss model. Assume again that z = εp ∈ R
d×dsym,dev, B = I, L = 0 and repla
e ∂χKvM(
f. Example 3.5) with

gN (σ) = c1−N
0

∣∣σD
∣∣N−2

σD,for σ ∈ R
d×dsym. Here, σD = σ− 1

d tr σ I denotes the deviatori
 part of the tensor σ. The parameter
N > 1 is a strain hardening exponent, whereas c0 
an be interpreted as a yield stress. Theresulting vis
ous model is the so 
alled Norton/Ho� model and 
onsists of the relation (3.22)whi
h is 
ompleted by the evolution law ∂tεp(t) = gN (σ(t)). For N → ∞, the Norton/Ho�model approximates the Prandtl/Reuss model [105℄. After eliminating the plasti
 strains εp oneobtains the usual form of the Norton/Ho� model:

div σ(t) + b(t) = 0, A−1∂tσ(t) + c1−N
0

∣∣σD(t)
∣∣N−2

σD(t) = ∂tε(∇u(t)).Bensoussan/Frehse [12℄ proved the lo
al spatial regularity result σ ∈ L∞((0, T );H1lo
(Ω)) for thestress tensor via a di�eren
e quotient argument. A global result seems not to be available in theliterature.A time dis
retization of the Norton/Ho� model leads to the stationary Norton/Ho� or Ram-berg/Osgood model, whi
h is given by equation (3.22) in 
ombination with the relation ε(∇u) =

A−1σ + c1−N
0

∣∣σD
∣∣N−2

σD. Several authors studied lo
al and global regularity and the Hölderproperties of the stresses and displa
ements of this model for domains with smooth boundariesas well as for domains with nonsmooth boundaries [12, 101, 55, 56, 14, 33℄.3.3.3 Spatial regularity for time in
remental versionsA further way to prove regularity properties of elasto-vis
oplasti
 models is to study the smooth-ness of solutions to time-dis
retized versions and to derive regularity bounds whi
h are uniformwith respe
t to the time step size. This method was applied e.g. in [93℄ to obtain lo
al results,while for global results uniform bounds are not known. We dis
uss here global regularity prop-erties for the time dis
retized version under the assumption that the elasti
 energy Ψ is 
oer
iveand that g = ∂χK with a 
onvex and 
losed set K. The di�erent equivalent formulations of28



the dis
retized equations, whi
h we present here below, are 
ommonly used in a 
omputational
ontext of elasto-plasti
ity, [99, 98℄.Let R1 and R2 be satis�ed and assume that g = ∂χK , where K ⊂ R
N is 
onvex, 
losed and with

0 ∈ K. Let further K = { η ∈ L2(Ω) ; η(x) ∈ K a.e. in Ω }. A time dis
retization via an impli
itEuler s
heme leads to the following problem with ∆t = T/n, 0 = tn0 < tn1 < . . . < tnn = T : Find
(un

k , z
n
k ) ∈ V × L2(Ω), 1 ≤ k ≤ n, whi
h satisfy

DuΨ(un
k , z

n
k ) − b(tnk ) = 0, 1

∆t(z
n
k − zn

k−1) ∈ ∂χK(−DzΨ(un
k , z

n
k )). (3.25)Observe that zn

k solves (3.25) if and only if
zn
k = argmin{F (un

k , η, z
n
k−1,∆t) ; η ∈ L2(Ω) }, (3.26)

F (un
k , η, z

n
k−1,∆t) =

1

2

∫

Ω
A22(η − zk−1) · (η − zk−1) dx+ ∆t χK(−(A21∇un

k +A22z
n
k )). (3.27)In terms of the new variables Σtrial

k = −(A21∇un
k + A22z

n
k−1) and Σk = −(A21∇un

k + A22z
n
k ), itfollows that zk satis�es (3.26) if and only if

zn
k = zn

k−1 +A−1
22 (Σtrial

k − Σk), (3.28)
Σk = argmin{ F̃ (θ,Σtrial

k ,∆t) ; θ ∈ L2(Ω) }, (3.29)
F̃ (θ,Σtrial

k ,∆t) =
1

2

∫

Ω
A−1

22 (θ − Σtrial
k ) · (θ − Σtrial

k ) dx+ ∆t χK(θ). (3.30)Sin
e the 
oe�
ient matrix A−1
22 indu
es a s
alar produ
t on L2(Ω), Σk 
an be interpreted asthe proje
tion of Σtrial

k onto the 
onvex and 
losed set K with respe
t to this s
alar produ
t. Let
PA−1

22 ,K : L2(Ω) → L2(Ω) be the proje
tion operator on K. Hen
e, Σk = PA−1
22 ,K(Σtrial

k ) and inaddition, Σk(x) = PA−1
22 (x),K(Σtrial

k (x)) in Ω, where PA−1
22 (x),K : R

N → R
N is the 
orrespondingpointwise proje
tion operator on K. With these notations, problem (3.25) is equivalent to thefollowing problem: Find un

k ∈ V and zn
k ∈ L2(Ω) su
h that for given zn

k−1 ∈ L2(Ω) we have
∫

Ω
M(x,∇un

k (x), zn
k−1(x)) · ∇v(x) dx = 〈b(tnk), v〉 ∀v ∈ V, (3.31)

zn
k = −A−1

22

(
A21∇un

k + PA−1
22 ,K( −A21∇un

k −A22z
n
k−1)

)
, (3.32)where the mapping M : Ω × R

m×d × R
N → R

m×d is de�ned as
M(x, F, z) = L1(x)F −A12(x)A22(x)

−1PA−1
22 (x),K

(
−A21(x)F −A22(x)z

)with the S
hur 
omplement matrix L1 = A11−A12A
−1
22 A21 ∈ C0,1(Ω,Lin(Rm×d,Rm×d)). Observethat in general M is not di�erentiable with respe
t to F and z. The Lips
hitz-
ontinuity of theproje
tion operator, assumption R2 and the assumption 0 ∈ K imply that the mapping Mhas the following properties: there exist 
onstants c1, c2 > 0 su
h that for every x, xi ∈ Ω,

F,Fi ∈ R
m×d and z, zi ∈ R

N we have
|M(x1, F, z) −M(x2, F, z)| ≤ c1(|F | + |z|) |x1 − x2| , (3.33)

|M(x, F1, z1) −M(x, F2, z2)| ≤ c2(|F1 − F2| + |z1 − z2|), (3.34)
M(x, 0, 0) = 0. (3.35)29



Moreover, M indu
es a strongly monotone operator on V , i.e. there exists a 
onstant β > 0 su
hthat for all u1, u2 ∈ V and z ∈ L2(Ω) we have:
∫

Ω

(
M(x,∇u1, z) −M(x,∇u2, z)

)
: ∇(u1 − u2) dx ≥ β ‖u1 − u2‖2

H1(Ω) .This follows from the monotoni
ity of the proje
tion operator and from the fa
t that due toassumption R2, the indu
ed bilinear form b(u, v) :=
∫
Ω L1∇u · ∇v dx, u, v ∈ V , is symmetri
and V -
oer
ive. Finally, the mapping M is strongly rank-one monotone. That means that thereexists a 
onstant cLH > 0 su
h that for every x ∈ Ω, F ∈ R

m×d, z ∈ R
N , ξ ∈ R

m and η ∈ R
d wehave

(
M(x, F + ξ ⊗ η, z) −M(x, F, z)) : ξ ⊗ η ≥ cLH |ξ|2 |η|2 . (3.36)This is a 
onsequen
e of the monotoni
ity of the pointwise proje
tion operator and the positivityproperties of L1, see e.g. [108, Th. 6.1℄. Altogether it follows that M generates a quasilinearellipti
 system of PDEs of se
ond order for determining un

k . Standard existen
e results forequations involving Lips
hitz-
ontinuous, strongly monotone operators guarantee the existen
eof a unique element un
k ∈ V solving (3.31) for arbitrary data zn

k−1 ∈ L2(Ω) and b ∈ V ∗, [110℄.Moreover, un
k depends Lips
hitz-
ontinuously on the data. The regularity result in [59℄ guaranteesthat for given b(tk) ∈ L2(Ω) and zn

k−1 ∈ H1(Ω) we have the global regularity (un
k , z

n
k ) ∈ H2(Ω)×

H1(Ω) provided that R1 and R2 are satis�ed. Unfortunately it is not known how to deriveestimates for ‖un
k‖H2(Ω) whi
h are uniform with respe
t to the time step ∆t.Quasilinear ellipti
 systems of a similar stru
ture resulting from various regularizing ansatzesfor elasto-plasti
 models were also studied with respe
t to regularity questions in the referen
es[86, 20, 57, 91, 94, 38, 79, 89℄.4 Numeri
al realization via a Slant Newton MethodAs it is pointed out in Se
tion 3.3.3 one possibility to numeri
ally solve the system of elasto-plasti
ity is to solve the system of nonlinear ellipti
 equations whi
h emerges after an (impli
it)time dis
retization and an elimination of the internal variables. This system in general involves anonlinearity whi
h is not di�erentiable as an operator between fun
tion spa
es. Hen
e, a standardNewton's method, whi
h relies on the derivative of the nonlinear operator, is not appropriate tosolve the nonlinear system. Instead we dis
uss a Newton-like method, where the derivative isrepla
ed by a slanting fun
tion leading to a Slant Newton Method. This approa
h is explainedfor a rate-independent elasto-plasti
 model with linear isotropi
 hardening.4.1 Problem Spe
i�
ationConsider the Prandtl-Reuÿ elastoplasti
ity problem with isotropi
 hardening, whi
h is a spe
ial-ization of (2.1)�(2.5) in the following way: De�ne the internal variable with size N = 7 via

z(x, t) = (z1(x, t), . . . , z6(x, t), γ(x, t)), and the proje
tion
B : R

N → S3 , z 7→ εp =



z1 z4 z5
z4 z2 z6
z5 z6 z3


 . (4.1)30



For easier notation let us, from now on, denote the plasti
 strain by p instead of εp. Theasso
iated free energy density is assumed to be of the form
ψ(ε, p, γ) =

1

2
〈A(ε− p), ε− p〉F +

1

2
γ2 ,where ε ∈ S3, p ∈ S3, γ ∈ R, the Frobenius s
alar produ
t for matri
es is de�ned 〈B,C〉F =∑

ij Bij Cij, and it is assumed that the elasti
ity tensor A 
hara
terizes isotropi
 material be-havior and has the expli
it form
A : S3 → S3, ε 7→ 2µε+ λ tr ε I .Here, λ, µ > 0 are the Lamé 
onstants and des
ribe the elasti
 behavior of the material. This
hoi
e of the elasti
 energy density indu
es the following relation between the generalized plasti
strains Π = (p, γ) ∈ S3 × R and the generalized stresses Σ = (T, α) ∈ S3 × R:

T = ∂εψ(ε, p, γ) = −∂pψ(ε, p, γ) = A(ε− p) ,

α = −∂γψ(ε, p, γ) = −γ .The 
onstitutive �ow law (2.3) in the Prandtl-Reuss 
ase with isotropi
 hardening reads
∂tΠ(x, t) ∈ ∂χK(Σ(x, t)) , (4.2)where ∂χK denotes the subgradient of the indi
ator fun
tion regarding the 
onvex set K ofadmissible generalized stresses, whi
h is given by

K = {Σ ∈ S3 × R ; φ(Σ) ≤ 0 } (4.3)with the yield fun
tion
φ(Σ) = ‖dev T‖F − Ty(1 +Hα) + χ[0,∞)(α). (4.4)The parameters yield stress Ty > 0 and modulus of hardening H > 0 des
ribe the plasti
 behaviorof the material, the deviator, a proje
tion onto the tra
e-free subspa
e of S3, is 
al
ulated by

dev T = T − (tr T/ tr I) I, and the Frobenius norm reads ‖T‖2
F = 〈T, T 〉F . Noti
e, that (4.2)is a spe
ialization of (2.3). Geometri
ally spoken, the subgradient ∂χK des
ribes the normal
one of the 
onvex set of admissible stresses K at the point Σ. In other words, the pres
ription

∂Π
∂t ∈ ∂χK(Σ) means that either there is no solution with respe
t to the generalized strain Π (if
Σ is not in K), or Π remains 
onstant (if Σ is in the interior of K), or ∂Π

∂t has to be 
hosen su
hthat it is orthogonal to the boundary of the set of admissible stresses K at the point Σ (if Σ ison the boundary of K).Summarizing, the problem of Prandtl-Reuÿ elastoplasti
ity with isotropi
 hardening reads: Findthe displa
ement u(x, t) ∈ R
3, the plasti
 strain p(x, t) ∈ S3, and the hardening parameter

α(x, t) ∈ R, whi
h solve
− divx T (x, t) = b(x, t) , (4.5)

T (x, t) = A(ε(u(x, t)) − p(x, t)) , (4.6)
∂ Π

∂t
(x, t) ∈ ∂χK(Σ(x, t)) , where Π = (p,−α) and Σ = (T, α) , (4.7)

Π(x, 0) = Π(0)(x) , (4.8)
u(x, t) = γD(x, t) , if x ∈ ΓD ⊂ ∂Ω , (4.9)

T (x, t)n(x, t) = γN (x, t) , if x ∈ ΓN ⊂ ∂Ω . (4.10)31



We turn to the numeri
al solution of the problem (4.5)�(4.10). The algorithm des
ribed in thisse
tion is of Newton's type, enjoying the property of lo
al super-linear 
onvergen
e. It is aninteresting question for future investigation, whether there is a more general 
lass of problems
overed by the laws (2.1)�(2.5), to whi
h this algorithm is appli
able.We de�ne V :=
[
H1(Ω)

]3, V0 := { v ∈ V ; v = 0 on ΓD }, VD := { v ∈ V ; v = uD on ΓD } for
uD ∈

[
H1/2(ΓD)

]3, Q :=
[
L2(Ω,S3)

], and R := R ∪ {+∞}.Analogously to the dis
ussion in Se
tion 5 the problem (4.5)�(4.10) may equivalently be formu-lated in the global energeti
 framework based on the energy
E(t, u,Π) =

∫

Ω
ψ(ε(∇u), p, γ) dx − 〈b(t), u〉and the dissipation potential

R(u, p, γ) =

∫

Ω
ρ(p(x), γ(x)) dxfor u ∈ VD, p ∈ Q and γ ∈ L2(Ω). The density ρ is given as the 
onvex 
onjugate of χK and hasthe stru
ture

ρ(p, γ) = χ∗
K(p, γ) =

{
Ty ‖p‖F if tr p = 0 and ‖p‖F ≤ − γ

TyH ,

∞ otherwise .Using an impli
it Euler-dis
retization for a partition 0 = t0 < t1 < . . . < tn = T and the sets
L2

+(Ω) = { f ∈ L2(Ω) ; f ≥ 0 almost everywhere } ,
L2
−(Ω) = { f ∈ L2(Ω) ; f ≤ 0 almost everywhere } ,the time dis
retized problem reads:Problem 4.1. Given (uk−1, pk−1, γk−1) ∈ VD ×Q× L2

−(Ω) �nd (uk, pk, γk) ∈ VD ×Q× L2
−(Ω)su
h that

(uk, pk, γk) ∈ argmin{ E(tk, v, q, ξ) + R(v − uk−1, q − pk−1, ξ − γk−1) ; (v, q, ξ) ∈ VD ×Q× L2
−(Ω) } .It is shown in [21, 6℄ that the hardening variable αk = −γk 
an be eliminated from the min-imization problem in su
h a way that for determining (uk, pk,−αk) one 
an equivalently solvethe following problem:Problem 4.2. Given (uk−1, pk−1, αk−1) ∈ VD ×Q×L2

+(Ω) �nd (uk, pk, αk) ∈ VD ×Q×L2
+(Ω)su
h that

(uk, pk) ∈ argmin{ J̄k(v, θ) ; (v, θ) ∈ VD ×Q } , (4.11)
αk = αk−1 + TyH ‖pk − pk−1‖F . (4.12)Here, the global energy fun
tional J̄k : VD ×Q→ R is de�ned by

J̄k(v, q) :=
1

2
‖ε(v) − q‖2

A + ψk(q) − lk(v) , (4.13)32



with
〈q1, q2〉A :=

∫

Ω
〈Aq1(x) , q2(x)〉F dx , ‖q‖A := 〈q, q〉1/2

A , (4.14)
α̃k(q) := αk−1 + TyH‖q − pk−1‖F , (4.15)
ψk(q) :=

{ ∫
Ω

(
1
2 α̃k(q)

2 + Ty‖q − pk−1‖F

)
dx if tr q = tr pk−1 ,

+∞ else , (4.16)
lk(v) :=

∫

Ω
bk · v dx+

∫

ΓN

γN,k · v ds . (4.17)The body for
e b(tk) = bk ∈
[
L2(Ω)

]3 and the tra
tion γN (tk) = γN,k ∈
[
H−1/2(ΓN )

]3 are given.The fun
tional J̄k expresses the me
hani
al energy of the deformed system at the kth time step.Noti
e, that J̄k is smooth with respe
t to the displa
ements v, but not with respe
t to the plasti
strains q.4.2 Solver AnalysisIn [21℄ a method of an alternate minimization regarding the displa
ement v and the plasti
 strain
q was investigated to solve Problem 4.2. The global linear 
onvergen
e of the resulting methodwas shown and a lo
al super-linear 
onvergen
e was 
onje
tured. Another interesting te
hniqueis to redu
e Problem 4.2 to a minimization problem with respe
t to the displa
ements v only.This 
an be a
hieved by substituting the known expli
it minimizer of Jk with respe
t to theplasti
 strain �eld for some given displa
ement v, namely by q = p̃k(ε(v)). We will observethat su
h a redu
ed minimization problem is smooth with respe
t to the displa
ements v and itsderivative is expli
itly 
omputable.The following theorem is formulated for fun
tionals mapping from a Hilbert spa
e H providedwith the s
alar produ
t 〈◦, ⋄〉H and the norm ‖·‖2

H
:= 〈·, ·〉H. If a fun
tion F is Fré
het di�eren-tiable, we shall denote its derivative in a point x by DF (x) and its Gâteaux di�erential in thedire
tion y by DF (x ; y). We refer to [34℄ 
on
erning the de�nitions of 
onvex, proper, lowersemi-
ontinuous, and 
oer
ive.Theorem 4.3. Let the fun
tion f : H × H → R be de�ned

f(x, y) =
1

2
‖x− y‖2

H + ψ(x) (4.18)where ψ is a 
onvex, proper, lower semi-
ontinuous, and 
oer
ive fun
tion of H into R. Then
F (y) := infx∈H f(x, y) maps into R, and there exists a unique fun
tion x̃ : H → H su
h that
F (y) = f(x̃(y), y) for all y ∈ H. Moreover, it holds:1. F is stri
tly 
onvex and 
ontinuous in H.2. F is Fré
het di�erentiable with the Fré
het derivative

DF (y) = 〈y − x̃(y) , ·〉H for all y ∈ H . (4.19)Proof. See [77, 7.d. Proposition℄.We apply Theorem 4.3 to Problem 4.2 and obtain the following proposition.33



Proposition 4.4. Let k ∈ {1, . . . , n} denote the time step, and let J̄k be de�ned as in (4.13).Then there exists a unique mapping p̃k : Q→ Q satisfying
J̄k (v, p̃k (ε (v))) = inf

q∈Q
J̄k (v, q) ∀v ∈ VD . (4.20)Let Jk be a mapping of VD into R de�ned as

Jk(v) := J̄k(v, p̃k(ε(v))) ∀v ∈ VD . (4.21)Then, Jk is stri
tly 
onvex and Fré
het di�erentiable. The asso
iated Gâteaux di�erential reads
DJk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉A − lk(w) ∀w ∈ V0 (4.22)with the s
alar produ
t 〈◦, ⋄〉A de�ned in (4.14) and lk de�ned in (4.17).Proof. The fun
tional J̄k : V × Q → R de�ned in (4.13) using (4.14), (4.16) and (4.17) 
an bede
omposed in J̄k(v, q) = fk(ε(v), q)−lk(v), where the fun
tional fk : Q×Q→ R reads fk(s, q) :=

1
2‖q − s‖2

A + ψk(q). Theorem 4.3 states the existen
e of a unique minimizer p̃k : Q → Q whi
hsatis�es the 
ondition fk(s, p̃k(s)) = infq∈Q fk(s, q), where the fun
tional Fk(s) := fk(s, p̃k(s))is stri
tly 
onvex and di�erentiable with respe
t to s ∈ Q. Sin
e the strain ε(v) is a Fré
hetdi�erentiable, linear and inje
tive mapping from VD into Q, the 
omposed fun
tional Fk(ε(v))is Fré
het di�erentiable and stri
tly 
onvex with respe
t to v ∈ VD. Considering the Fré
hetdi�erentiability and linearity of lk with respe
t to v ∈ VD, we 
on
lude the stri
t 
onvexity andFré
het di�erentiability of the fun
tional Jk de�ned in (4.21). The expli
it form of the Gâteauxdi�erential DJk(v ; w) in (4.22) results from the linearity of the two mappings lk and ε, and theFré
het derivative DFk(ε(v) ; ·) = 〈ε(v) − p̃k(ε(v)) , ·〉A as in (4.19), 
ombined with the 
hainrule.The minimizer p̃k 
an be 
al
ulated by hand (see [6, 43℄) and it exa
tly re
overs the 
lassi
alreturn mapping algorithm [98℄. Let the trial stress T̃k : Q → Q at the kth time step and theyield fun
tion φk−1 : Q→ R at the k − 1st time step be de�ned by
T̃k(q) := A(q − pk−1) and φk−1(T ) := ‖dev T‖F − Ty(1 +H αk−1) . (4.23)Then, the minimizer p̃k reads

p̃k(ε(v)) =
1

2µ+ T 2
yH

2
max{0, φk−1(T̃k(ε(v)))}

dev T̃k(ε(v))

‖dev T̃k(ε(v))‖F

+ pk−1 . (4.24)We obtain a smooth minimization problem by using Jk as in (4.21) with p̃k as in (4.24):Problem 4.5. Find uk ∈ VD su
h that Jk(uk) = infv∈VD
Jk(v).Remark 4.6. Problem 4.5 is uniquely solvable. This is due to the fa
t that fun
tional Jk is stri
tly
onvex, 
oer
ive, proper and lower semi-
ontinuous (see, e. g., [34, Chapter II, Proposition 1.2℄).Solving Problem 4.5 numeri
ally might be realized by applying Newton's Method vj+1 = vj −(

D 2Jk(v
j)

)−1
DJk(vj) . Unfortunately, the se
ond derivative of Jk does not exist sin
e the max-fun
tion in (4.24) is not di�erentiable. Therefore, we apply a Newton-like method whi
h usesslanting fun
tions (see [26℄) instead of the se
ond derivative. We shall 
all su
h a method a SlantNewton Method. 34



Figure 2: Problem setup.Hen
eforth, let X and Y be Bana
h spa
es, and L(X,Y ) denote the set of all linear mappingsof X into Y .De�nition 4.7. Let U ⊆ X be an open subset and x ∈ U . A fun
tion F : U → Y is said to beslantly di�erentiable at x if there exists a mapping F o : U → L(X,Y ) whi
h is uniformly boundedin an open neighborhood of x, and a mapping r : X → Y with limh→0‖r(h)‖Y ‖h‖−1
X = 0 su
hthat F (x + h) = F (x) + F o(x + h)h + r(h) holds for all h ∈ X satisfying (x + h) ∈ U . Wesay, F o(x) is a slanting fun
tion for F at x. F is 
alled slantly di�erentiable in U if there exists

F o : U → L(X,Y ) su
h that F o is a slanting fun
tion for F for all x ∈ U . F o is then 
alled aslanting fun
tion for F in U .Theorem 4.8. Let U ⊆ X be an open subset, and F : U → Y be a slantly di�erentiable fun
tionwith a slanting fun
tion F o : U → L(X,Y ). We suppose, that x∗ ∈ U is a solution to thenonlinear problem F (x) = 0. If F o(x) is non-singular for all x ∈ U and {‖F o(x)−1‖L(Y,X) : x ∈
U} is bounded, then the Newton-like iteration

xj+1 = xj − F o(xj)−1F (xj) (4.25)
onverges super-linearly to x∗, provided that ‖x0 − x∗‖X is su�
iently small.The proof 
an be found in [26, Theorem 3.4℄ or [49, Theorem 1.1℄.We apply the Slant Newton Method (4.25) to elastoplasti
ity by 
hoosing F = DJk as in (4.22).The max-fun
tion is slantly di�erentiable [49, Proposition 4.1℄ as a mapping of Lp(Ω) into Lq(Ω)if p > q but not if p ≤ q. Therefore, if it holds φk−1(T̃k(ε(v))) ∈ L2+δ(Ω) for some δ > 0, then
DJk (
f. (4.22),(4.24)) has a slanting fun
tion whi
h reads

(DJk)o (v;w, w̄) := 〈ε(w) − p̃o
k(ε(v); ε(w)) , ε(w̄)〉A (4.26)with a slanting fun
tion for p̃k, e. g.,

p̃o
k(ε(v) ; q) :=





0 if βk ≤ 0 ,

ξ
(
βk dev q + (1 − βk)

〈dev T̃k , dev q〉F
‖dev T̃k‖

2
F

dev T̃k

) else , (4.27)where the abbreviations ξ := 2µ
2µ+T 2

y H2 , T̃k := T̃k(ε(v)) and βk :=
φk−1(T̃k)

‖dev T̃k‖F
with φk−1 and T̃kde�ned in (4.23) are used. (DJk)

o in Equation (4.26) is 
ommonly known as the 
onsistenttangent, see [98℄. For �xed v ∈ VD, the bilinear form (DJk)
o (v; ·, ·) in (4.26) is ellipti
 andbounded in V0 (see [43, Lemma 2℄). 35



Corollary 4.9. Let k∈{1, . . . , n}, δ>0 be �xed and tk denote the kth time step. Let the mapping
DJk : VD → V0

∗ be de�ned DJk(v) := DJk(v ; ◦) as in (4.22), and (DJk)
o : VD → L(V0, V0

∗)be de�ned (DJk)o (v) := (DJk)o (v ; ⋄, ◦) as in (4.26). Then, the Slant Newton iteration
vj+1 = vj −

[
(DJk)

o (vj)
]−1

DJk(vj)
onverges super-linearly to the solution uk of Problem 4.5, provided that ‖v0−uk‖V is su�
ientlysmall, and that φk−1(T̃k(ε(v))) as in (4.23) is in L2+δ(Ω) for all v ∈ VD.Proof. We 
he
k the assumptions of Theorem 4.8 for the 
hoi
e F = DJk. Let v ∈ VD bearbitrarily �xed. The mapping (DJk)o (v) : V0 → V0
∗ serves as a slanting fun
tion for DJk at

v, sin
e φk−1(T̃k(ε(v))) is in L2+δ(Ω). Moreover, (DJk)o (v) : V0 → V0
∗ is bije
tive if and only ifthere exists a unique element w in V0 su
h, that for arbitrary but �xed f ∈ V0

∗ there holds
(DJk)

o (v ; w, w̄) = f(w̄) ∀w̄ ∈ V0 . (4.28)Sin
e the bilinear form (DJk)o (v) is ellipti
 and bounded (see [43, Lemma 4.9℄), we apply theLax-Milgram Theorem to ensure the existen
e of a unique solution w to (4.28). Finally, with κ1denoting the v-independent ellipti
ity 
onstant for (DJk)o (v; ⋄, ◦), the uniform boundedness of
[(DJk)o (·)]−1 : VD → L(V0

∗, V0) follows from the estimate
‖[(DJk)

o (v)]−1‖ = sup
w∗∈V0

∗

‖[(DJk)
o (v)]−1 w∗‖

‖w∗‖V0
∗

= sup
w∈V0

‖w‖V

‖(DJk)o (v ; w, ·)‖V0
∗

= sup
w∈V0

inf
w̄∈V0

‖w‖V ‖w̄‖V

|(DJk)
o (v ; w, w̄)| ≤ sup

w∈V0

‖w‖2
V

|(DJk)o (v ; w,w)| ≤
1

κ1
.Remark 4.10. Noti
e the required assumption on the integrability of φk−1(T̃k(ε(v))). It is stillan open question, under whi
h extra 
onditions this property 
an be satis�ed for all v ∈ VD,or, at least for all Newton iterates vj . The lo
al super-linear 
onvergen
e in the spatially dis-
rete 
ase (after FE-dis
retization) 
an be shown without any additional assumption, see [43,Theorem 4.14℄.4.3 Numeri
al ExamplesFinite Element Method with nodal linear shape fun
tions was used in the test examples be-low. The interested reader is referred to [44, 45, 46℄ for more 
onvergen
e tables and numeri
alexamples. The super-linear 
onvergen
e was observed in both 2D and 3D 
omputations.4.3.1 2D-ExampleWe simulate the deformation of a s
rew-wren
h under pressure, the problem geometry is shownin Figure 2. A s
rew-wren
h sti
ks on a s
rew (homogeneous Diri
hlet boundary 
ondition) anda surfa
e load g is applied to a part of the wren
h's handhold in interior normal dire
tion. Thematerial parameters are set

λ = 1.15e8 N
m , µ = 7.7e7 N

m , Ty = 2e6 N
m , H = 0.001 ,36



Figure 3: Elastoplasti
 zones (left) and yield fun
tion (right) of the deformed wren
h geometry.The displa
ement is magni�ed by a fa
tor 10 for visualization reasons.and the tra
tion intensity amounts |g| = 6e4 N
m . Figure 3 shows the yield fun
tion (right) andthe elastoplasti
 zones (left), where purely elasti
 zones are light, and plasti
 zones are dark.Table 1 reports on the super-linear 
onvergen
e of the Newton-like method for graded uniformmeshes. The implementation was done in Matlab.DOF: 202 . . . 10590 41662 165246 658174 2627070j=1: 1.000e+00 . . . 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00j=2: 6.510e-04 . . . 3.394e-01 4.344e-01 4.682e-01 5.038e-01 5.417e-01j=3: 4.238e-09 . . . 4.018e-02 5.786e-02 8.919e-02 1.892e-01 2.552e-01j=4: 1.266e-12 . . . 1.009e-03 3.076e-03 1.642e-02 2.253e-02 3.049e-02j=5: . . . 2.679e-07 4.550e-05 1.473e-03 7.595e-04 1.294e-03j=6: 3.817e-13 2.244e-09 1.014e-04 6.519e-05 1.264e-04j=7: 6.000e-13 2.628e-08 7.342e-09 8.528e-06j=8: 1.047e-12 1.892e-12 4.153e-08j=9: 3.638e-12Table 1: The relative error in displa
ements |vj − vj−1|ε/

(
|vj |ε + |vj−1|ε

) is displayed for in-
reasing degrees of freedom (DOF), where |v|ε :=
(∫

Ω〈ε(v) , ε(v)〉F dx
)1/2.4.3.2 3D-ExampleThis three dimensional test example is similar to a two dimensional example in [100℄. Figure 4shows the quarter of a thin plate (−10, 10) × (−10, 10) × (0, 2) with a 
ir
ular hole of the radius

r = 1 in the middle. One elastoplasti
 time step is performed, where a surfa
e load g with theintensity |g| = 450 N
m2 is applied to the plate's upper and lower edge in outer normal dire
tion.Due to the symmetry of the domain, the solution is 
al
ulated on one quarter of the domain only.Thus, homogeneous Diri
hlet boundary 
onditions in the normal dire
tion (gliding 
onditions)are 
onsidered for both symmetry axes. The material parameters are set

λ = 110744
N

m2
, µ = 80193.8

N

m2
, σY = 450

√
2/3

N

m2
, H =

1

2
.Di�erently to the original problem in [100℄, the modulus of hardening H is nonzero, i.e., hardeninge�e
ts are 
onsidered. Figure 5 shows the norm of the plasti
 strain �eld p (right) and the37



Figure 4: Here, the geometry of the example domain is outlined. Due to reasons of symmetry,only one of the quarters is solved.
oarsest re�nement of the geometry (left). Table 2 reports on the 
onvergen
e of the SlantNewton Method. The implementation was done in C++ using the NETGEN/NGSolve softwarepa
kage developed by J. S
höberl [90℄.

Figure 5: The Frobenius norms of the total strain ε (left) and of the plasti
 strain p (right).5 Rate-independent evolutionary pro
esses � Temporal regular-ity of solutionsThis se
tion is devoted to the sub
lass of quasistati
, rate-independent evolutionary pro
esses.The time-evolution of a system 
an be 
onsidered as rate-independent if the time s
ales imposedto the system from the exterior are mu
h larger than the intrinsi
 ones, i.e. if the externalloadings evolve mu
h slower than the internal variables. Throughout this se
tion we will applythe energeti
 formulation of a rate-independent pro
ess. This approa
h does not use the 
lassi
alformulation (2.1)�(2.5) but 
onsiders the energy fun
tional E : [0, T ] × Q → R∞ =: R ∪ {∞}and the dissipation distan
e D : Q × Q → [0,∞] related to the evolution equation (2.3) in anappropriate state spa
e Q, whi
h is assumed to be a Bana
h spa
e with dual Q∗. An energeti
solution of the rate-independent system (Q, E ,D) is de�ned as follows38



DOF: 717 5736 45888 367104j=1: 1.000e+00 1.000e+00 1.000e+00 1.000e+00j=2: 1.013e-01 1.254e-01 1.367e-01 1.419e-01j=3: 7.024e-03 6.919e-03 7.159e-03 6.993e-03j=4: 1.076e-04 9.359e-05 1.263e-04 1.176e-04j=5: 2.451e-08 6.768e-07 1.744e-06 1.849e-06j=6: 7.149e-15 6.887e-12 4.874e-09 1.001e-08j=7: 4.298e-13 2.368e-14Table 2: This table outlines the 
onvergen
e of the Slant Newton Method in 3D. We observesuper-linear 
onvergen
e and (almost) a 
onstant number of iterations at ea
h re�nement.De�nition 5.1. The pro
ess q=(u, z) : [0, T ] → Q is an energeti
 solution of the rate-independentsystem (Q, E ,D), if t 7→ ∂tE(t, q(t)) ∈ L1((0, T )), if for all t ∈ [0, T ] we have E(t, q(t)) < ∞ andif the global stability inequality (S) and the global energy balan
e (E) are satis�ed:Stability : for all q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃), (S)Energy balan
e : E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0
∂ξE(ξ, q(ξ)) dξ (E)with DissD(q, [0, t]) := sup

∑N
j=1 D(q(ξj−1), q(ξj)), where the supremum is taken over all parti-tions of [0, t].In Se
tion 5.1.1 we will 
larify the relations between the 
lassi
al and the energeti
 formulation.Sin
e the 
onditions (S) & (E) do not require that q̇ exists, an energeti
 solution may in generalhave jumps with respe
t to time. In parti
ular, (S) provides the uniform boundedness of E(t, q(t))and hen
e (E) yields that q : [0, T ] → Q is only of bounded variation in time with respe
t tothe dissipation distan
e providing an L1-norm in spa
e. This means that in general the timederivative q̇ is only given as a Radon-measure. Therefore, Se
tion 5.2 pays spe
ial attention tothe temporal regularity of energeti
 solutions. It is investigated how their temporal regularity
an be improved due to additional 
onvexity assumptions on the energy E . In Se
tion 5.2.1it is explained that stri
t 
onvexity of E on Q yields 
ontinuity of the solutions with respe
tto time. Se
tion 5.2.2 deals with the Hölder- and Lips
hitz-
ontinuity of energeti
 solutions,whi
h 
an be obtained by 
laiming a kind of uniform 
onvexity on E . In Se
tion 5.3 the theoryintrodu
ed in Se
tion 5.2 is applied to evolutionary pro
esses modeling plasti
ity, damage orphase transformations in shape memory alloys and we give examples on stored elasti
 energydensities that lead to su
h improved temporal regularity.5.1 The energeti
 formulation of rate-independent pro
essesThe outline of this se
tion is to 
larify the energeti
 formulation of rate-indepedent pro
esses.Thereto Se
tion 5.1.1 indi
ates the relation of energeti
 solutions to the 
on
ept of solution usedin the Se
tions 2, 3. Moreover Se
tion 5.1.2 gives a short introdu
tion to the existen
e theoryof energeti
 solutions. At this point we want to start our dis
ussion with the mathemati
al
hara
terization of rate-independen
e.The energeti
 formulation of a rate-independent pro
ess is solely based on an energy fun
tional

E : [s, T ] × Q → R∞, whi
h depends on time t and the state q, and a dissipation potential39



R : Q → [0,∞] depending on the velo
ity q̇. It is assumed that the potential R is 
onvex andpositively 1-homogeneous, i.e. R(0) = 0 and R(λv) = λR(v) for all λ> 0 and all v ∈Q. Due tothese two properties R satis�es a triangle inequality, i.e. for all q1, q2, q3∈Q it holds
R(q1−q2) = 2R

(
1
2 (q1−q3) + 1

2(q3−q2)
)
≤ 2

(
1
2R(q1−q3) + 1

2R(q3−q2)
)

= R(q1−q3) + R(q3−q2) .Hen
e the dissipation potential generates a dissipation distan
e
D(q, q̃) = R(q̃ − q) , (5.1)whi
h is an extended pseudo-distan
e on the state spa
e Q. This means that D satis�es theaxioms of a metri
 (positivity, triangle inequality), ex
ept symmetry and it may attain the value

∞, as we will see in the examples of Se
tion 5.3.Rate-independen
e of a pro
ess (Q, E ,R) with the initial 
ondition q(s) = q0 ∈ Q, the givenexternal loadings b ∈ C1([s, T ],Q∗) and a solution q : [s, T ] → Q 
an be de�ned using aninput-output operator
H[s,T ] : Q× C1([s, T ],Q∗) → L∞([s, T ],Q) ∩BVD([s, T ],Q), (q0, b) 7→ q , (5.2)where BVD([s, T ],Q) := {q : [s, T ] →Q|DissD(q, [s, T ])<∞}. Thus, the input-output operatormaps the given data (q0, b) onto a solution of the problem. Therewith the rate-independen
e ofthe system (Q, E ,R) 
an be 
hara
terized as followsDe�nition 5.2. An evolutionary pro
ess (Q, E ,R), whi
h 
an be expressed by (5.2), is 
alledrate-independent if for all s⋆ < T⋆ and all α ∈ C1([s⋆, T⋆]) with α̇ > 0 and α(s⋆) = s, α(T⋆) = Tthe following holds:

H[s⋆,T⋆](q0, b ◦ α) = H[s,T ](q0, b) ◦ α . (5.3)We verify now that the positive 1-homogeneity of R implies (5.3). We prove this impli
ationfor input-output operators H[s,t] :Q×C1([s, t],Q∗)→W 1,1([s, t],Q). Thereby, Q is in general aLebesgue or Sobolev spa
e de�ned with respe
t to a domain Ω ⊂ R
d. By molli�
ation, see also [7℄,one 
an therefore show that for any q∈BVD([0, T ],Q) there is a sequen
e (qn)n∈N⊂C∞([0, T ],Q)satisfying qn→q in L1([0, T ]×Ω), DissD(qn, [0, t])<C and DissD(qn, [0, t])→DissD(q, [0, t]) for all

t∈ [0, T ]. Thus, the above mentioned impli
ation also holds true for the input-output operatorsfrom (5.2).Proposition 5.3. Let H[s,T ] : Q × C1([s, T ],Q∗) → W 1,1([s, t],Q), (q0, b) 7→ q, be the input-output-operator for the rate-independent system (Q, Eb,R), where Eb depends 
ontinuously on theexternal loading b and where R is 
onvex and positively 1-homogeneous. Then (5.3) holds true.Proof. Let s⋆ < T⋆ and α ∈ C1([s⋆, T⋆]) with α̇ > 0 and α(s⋆) = s, α(T⋆) = T. In parti
ularit holds s⋆ = α−1(s), T⋆ = α−1(T ) and (α−1)′ > 0. Assume that q : [s, T ] → Q is an energeti
solution of (Q, Eb,R, ) satisfying q(s) = q0. Hen
e (S)&(E) are satis�ed for all t ∈ [s, T ]. Now thetime interval is res
aled, i.e. t = α(t⋆) for all t ∈ [s, T ]. Then (S) implies that Eb◦α(t⋆, q ◦α(t⋆)) ≤
Eb◦α(t⋆, q̃)+D(q◦α(t⋆), q̃) for all q̃ ∈ Q, i.e. (S) holds true for all t⋆ ∈ [s⋆, T⋆] for q◦α : [s⋆, T⋆] → Qand the system (Q, Eb◦α,R).For a fun
tion q ∈ W 1,1([s, T ],Q) it holds that DissD(q, [s, t]) =

∫ t
s R(q̇(ξ)) dξ, whi
h 
an beveri�ed by applying the positive 1-homogeneity of R and the mean value theorem of di�eren-tiability to the de�nition of DissD(q, [s, t]). Then, for s = α(s⋆) and t = α(t⋆) the appli
a-tion of the 
hain rule on q(α(t⋆)) together with the positive 1-homogeneity of R imply that40



∫ t
s R(q̇(ξ)) dξ=

∫ t⋆
s⋆

R(∂αq(α(ξ)))α̇(ξ) dξ=
∫ t⋆
s⋆

R(∂αq(α(ξ))α̇(ξ)) dξ=
∫ t⋆
s⋆

R(∂ξq ◦ α(ξ)) dξ, whi
hproves that DissD(q, [s, t]) = DissD(q ◦ α, [s⋆, t⋆]). Again by the 
hain rule we 
al
ulate that∫ t
s ∂ξEb(ξ, q(ξ)) dξ =

∫ t⋆
s⋆
∂αEb◦α(ξ, q(ξ))α̇(ξ) dξ =

∫ t⋆
s⋆
∂ξEb◦α(ξ, q(ξ)) dξ and hen
e (E) is veri�edfor all t⋆ ∈ [s⋆, T⋆] for q ◦ α and (Q, Eb◦α,R). Moreover the initial 
ondition is satis�ed sin
e

q0 = q(s) = q ◦ α(s⋆).With the same arguments we 
an verify for an energeti
 solution q⋆ : [s⋆, T⋆]→Q of (Q, Eb◦α,R)with q⋆(s⋆) = q0 that q⋆ ◦ α−1 satis�es (S)&(E) with (Q, Eb,R) for all t ∈ [s, T ] and with q0 =
q⋆(s⋆)=q⋆ ◦ α−1(s). Thus, (5.3) is proved.5.1.1 Di�erent 
on
epts of solutions and their relationsIn this se
tion we 
larify the relation of energeti
 solutions with other types of solutions. To doso, we only treat the simplest 
ase here, namely when E : [0, T ] ×Q → R∞ is quadrati
, i.e.

E(t, q) := 1
2 〈A q, q〉 − 〈b(t), q〉 (5.4)for the given linear, symmetri
, positive de�nite operator A : Q → Q∗ and the given externalloading b ∈ C1([0, T ],Q∗). Thereby Q is a Bana
h spa
e and qn → q in Q indi
ates the 
on-vergen
e of a sequen
e (qn) ⊂ Q in the weak topology of Q. As it 
an be easily veri�ed in thissetting, E satis�es1. Continuity: If ‖qn − q‖Q → 0, then |E(t, qn) − E(t, q)| → 0 for all t ∈ [0, T ].2. Coer
ivity: There is a 
onstant c > 0 su
h that E(t, q) ≥ c‖q‖2

Q for all q ∈ Q and all
t∈ [0, T ]. (Cf. R2 in Se
tion 3.1.1)3. Uniform 
onvexity: There is a 
onstant cA > 0 su
h that for all t ∈ [0, T ], all q0, q1 ∈ Qand all θ ∈ [0, 1] it holds

E(t, θq1+(1−θ)q0) ≤ θE(t, q1) + (1−θ)E(t, q0) − cAθ(1−θ)‖q1−q0‖2
Q. (5.5)4. Uniform 
ontrol of the powers: For all q ∈ Q with E(t⋆, q) <∞ for some t⋆ ∈ [0, T ] wehave ∂tE(·, q) ∈ L1([0, T ]) with ∂E(t, q) = −〈ḃ(t), q〉 and there are 
onstants c1 > 0, c2 ≥ 0su
h that |∂tE(t, q)| ≤ c1(E(t, q) + c2).5. Uniform 
ontinuity of the powers: For all (t, qn) → (t, q) in Q it holds ∂tE(t, qn) →

∂tE(t, q).6. Closedness of stable sets: If (tn, qn) satisfy (S) for all n ∈ N and (tn, qn) → (t, q) in
[0, T ] ×Q, then also (t, q) satis�es (S).7. Di�erentiability: For all t ∈ [0, T ] and all q ∈ Q the energy fun
tional E(t, ·) is Gâteaux-di�erentiable with DqE(t, q) = Aq − b(t).Thereby Items 1-5 and 7 
an be easily veri�ed using the properties of A and b. Item 6 
anbe obtained by 
hoosing q̃n = qn+v−q with v ∈ Q for all n ∈ N, whi
h yields D(qn, q̃n) =

R(q̃n − qn) = R(v− q) for all n ∈ N. Sin
e b is 
ontinuous in time we have 〈b(tn), q̃n〉 → 〈b(t), v〉and sin
e A ∈ Lin(Q,Q∗) it holds 〈A(v− q), qn〉 → 〈A(v− q), q〉. Using these observations in (S)for all n ∈ N one re
overs (S) for the limit (t, q).41



In Se
tion 5.1.2 it is explained that the properties 1�6 together with the properties of the ex-tended pseudo-distan
e D : Q×Q → R∞ allow to prove the existen
e of an energeti
 solution.Furthermore in Se
tion 5.2.2 it is dis
ussed that property 3 yields Lips
hitz-
ontinuity of theenergeti
 solution q : [0, T ] → Q with respe
t to time, i.e. there is a 
onstant CL > 0 su
h that
‖q(s)−q(t)‖Q ≤ CL|s−t|. Hen
e q ∈W 1,∞([0, T ],Q), whi
h means that q̇ exists a.e. in [0, T ].Sin
e the dissipation potential R : Q → [0,∞] is 
onvex and positively 1-homogeneous but notne
essarily di�erentiable we introdu
e its subdi�erential

∂vR(v) := {q∗ ∈ Q∗ |R(w) ≥ R(v) + 〈q∗, w−v〉 for all w ∈ Q} . (5.6)Due to the validity of 1�7 and (5.6) we may 
onsider the subdi�erential formulation (SDF) andthe formulation as a variational inequality (VI), whi
h dire
tly use q̇, as alternative formulationsto the energeti
 one. The subdi�erential formulation of the evolutionary pro
ess reads as followsDe�nition 5.4 (Subdi�erential formulation). For a given initial 
ondition q0 ∈ Q �nd q :
[0, T ] → Q su
h that for a.e. t ∈ [0, T ] it holds

0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) ⊂ Q∗ and q(0) = q0 ∈ Q . (SDF)Moreover (SDF) is equivalent to −DqE(t, q) ∈ ∂R(q̇) and due to the de�nition of the subdi�er-ential we may equivalently formulate the rate-independent pro
ess as a variational inequalityDe�nition 5.5 (Variational inequality). For a given inital 
ondition q0 ∈ Q �nd q : [0, T ] → Qsu
h that for a.e. t ∈ [0, T ] and for all v ∈ Q it holds
〈DqE(t, q), v − q̇〉 + R(v) −R(q̇) ≥ 0 and q(0) = q0 ∈ Q . (VI)Between the three di�erent formulations (S) & (E), (SDF) and (VI) the following relation holdsLemma 5.6. If E : Q → R∞ satis�es the properties 1�7, if D : Q ×Q → [0,∞] is an extendedpseudo-distan
e and lower semi
ontinuous on the Bana
h spa
e Q and if q0 satis�es (S) at t = 0,every energeti
 solution of the rate-independent system (Q, E ,D) also is a solution in the senseof (SDF) as well as (VI) and vi
e versa, i.e. (S)& (E) ⇔ (SDF) ⇔ (VI).Proof. Let q : [0, T ] → Q solve (S) & (E). By Theorem 5.13 we have q ∈ W 1,∞([0, T ],Q), sothat DissD(q, [0, t]) =

∫ t
0 R(q̇(ξ)) dξ for all t ∈ [0, T ]. Hen
e (E) reads E(t, q(t))+

∫ t
0 R(q̇(ξ)) dξ =

E(0, q(0))+
∫ t
0 ∂tE(ξ, q(ξ)) dξ. Applying d

dt leads to d
dtE(t, q(t))+R(q̇(t)) = ∂tE(t, q(t)) for almostall t ∈ [0, T ]. Using the 
hain rule on d

dtE(t, q(t)) yields
〈DqE(t, q(t)), q̇(t)〉 + R(q̇(t)) = 0 . (Eloc)Furthermore, inserting q(t) + hv for v ∈ Q in (S) together with Item 7 results in

〈DqE(t, q(t)), v〉 + R(v) ≥ 0 for all v ∈ Q (Sloc)and subtra
ting (Eloc) from (Sloc) �nally yields (VI), whi
h is equivalent to (SDF).Assume now that q solves (VI) and (SDF) for a.e. t ∈ [0, T ]. Multiply (VI) by h > 0 and put
v = q̃

h . For h → 0 one obtains (Sloc). Due to the 
onvexity and the Gâteaux-di�erentiablilityof E(t, ·) for all q ∈ Q we �nd from (Sloc) with v = q̃ − q(t) that 0 ≤ 〈DqE(t, q(t)), q̃ − q(t)〉 +
R(q̃ − q(t)) ≤ E(t, q̃) − E(t, q(t)) + R(q̃ − q(t)) for a.e. t ∈ [0, T ]. But sin
e q : [0, T ] → Q is42



Lips
hitz-
ontinuous in time and sin
e E(·, q̃) is 
ontinuous for all q̃ ∈ Q we observe that (S)holds for all t ∈ [0, T ]. Now (E) has to be proven. Choosing thereto v = q̇(t) in (Sloc) gives
〈DqE(t, q(t)), q̇(t)〉 + R(q̇(t)) ≥ 0 and v = 0 in (VI) yields 〈DqE(t, q(t)),−q̇(t)〉 − R(q̇(t)) ≥ 0,whi
h proves (Eloc). By integrating (Eloc) over [0, t] we verify that (E) holds for all t ∈ [0, T ].The equivalen
e established in Lemma 5.6 is in general only true for energies satisfying theuniform 
onvexity inequality in property 3. For 
onvex energies it 
an be veri�ed if energeti
solutions are supplied with su�
ient temporal regularity. In the 
ase of non
onvex energies, orenergies whi
h are 
onvex but not jointly 
onvex in q = (u, z), energeti
 solutions are of boundedvariation with respe
t to time. Hen
e they may have jumps in time and the time-derivative isonly a Radon-measure. Relations between the three di�erent formulations with q̇ as a Radon-measure are dis
ussed in [70℄. Furthermore it 
omments on their relations in the 
ase of doublynonlinear problems, whi
h were introdu
ed in [27℄ and where E is only subdi�erentiable but notGâteaux-di�erentiable.In many appli
ations the dissipation potential only depends on the internal variable z, not onthe full state q = (u, z), i.e. R(q̇) = R̃(ż), so that ∂R(q̇) = ∂u̇R̃(ż) × ∂żR̃(ż) = {0} × ∂R̃(ż).This is also the 
ase in the setting of plasti
ity studied in Se
tions 2, 3. Using the dualitytheory of fun
tionals one 
an establish a relation between the �ow rule given by (2.3) and(2.9) and the dissipation potential R : Z → [0,∞] under the assumption that Z is a re�exiveBana
h spa
e. In view of the de�nition of the subdi�erential ∂R(z) = {z∗ ∈ Z∗ |R(z̃)−R(z) ≥
〈z∗, z̃−z〉 for all z̃ ∈ Z} the dire
t 
al
ulation of the Legendre-Fen
hel transform of the positively
1-homogeneous dissipation potential R : Z → [0,∞] yields that its dual fun
tional is given as theindi
ator fun
tion of ∂R(0), i.e. R∗(z∗) = supz∈Z

(
〈z∗, z〉 − R(z)

)
= I∂R(0)(z

∗) for all z∗ ∈ Z∗,where I∂R(0)(z
∗) = 0 if z ∈ ∂R(0) and I∂R(0)(z

∗) = ∞ otherwise.Sin
e R : Z → [0,∞] is assumed to be 
onvex and lower semi
ontinuous on the re�exive Bana
hspa
e Z the theorem of Fen
hel-Moreau implies that R = (R∗)∗, see [51℄. Assume now thatthe dissipation potential is an integral fun
tional, i.e. for all z ∈ Z it is R(z) =
∫
ΩR(z(x)) dx,where R is a positively 1-homogeneous, 
onvex density and Ω ⊂ R

d is a d-dimensional domain.Then [51, p. 296, Th. 1℄ states that R∗(·) =
( ∫

ΩR(·) dx
)∗

=
∫
ΩR

∗(·) dx, i.e. for the density
R : V → [0,∞], where V ∈ {R,Rd,Rd×d}, holds the analogous relation to its Legendre-Fen
heltransformed: R(z) = R∗∗(z) for all z ∈ V. Thus, between the subdi�erential formulation (SDF)of De�nition 5.4 and the �ow rule given by (2.3) and (2.9) we have established the relation
ż ∈ g(−∇zψ(e, z)) = ∂R∗(−∇zψ(e, z)), where R∗ is the Legendre-Fen
hel transformed of thedensity R of the positively 1-homogeneous dissipation potential R.Throughout this 
hapter we will in general 
onsider dissipation potentials R : Z → [0,∞] of theform

R(z) =

∫

Ω
R(z) dx with R : V → [0,∞], R(z) =

{
̺|z| if z ∈ A ⊂ V ,
∞ otherwise , (5.7)where 0 < ̺0 ≤ ̺ ∈ L∞(Ω).Example 5.7. For KvM={τ ∈ R

d×d
sym,dev | |τ | ≤ c0} from Example 3.5 it is RvM (εp) = c0|εp| forall εp ∈ R

d×d
sym,dev.

43



5.1.2 Existen
e of energeti
 solutionsThe quasistati
 evolution of me
hani
al pro
esses in solids su
h as elasto-plasti
 deformations,damage, 
ra
k propagation or 
onta
t angle hystheresis of droplets have been analyzed in various
ontributions, amongst these e.g. [28, 63, 40, 29, 16, 30℄. All these pro
esses 
an be des
ribed interms of an energy fun
tional E and a dissipation distan
e D, so that the energeti
 formulationfrom De�nition 5.1 applies. Within the works [65, 71, 36, 69℄ an abstra
t existen
e theoryfor energeti
 solutions of rate-independent pro
esses has been developed. It is based on theassumption that D : Z × Z → [0,∞] satis�esQuasi-distan
e: ∀ z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇔ z1 = z2 and
D(z1, z3) ≤ D(z1, z2) + D(z2, z3);

(D1)Lower semi-
ontinuity: D : Z × Z → [0,∞] is weakly seq. lower semi-
ontinuous. (D2)and it uses the following assumptions on the energy E : [0, T ] ×Q → R∞Compa
tness of energy sublevels: ∀ t∈[0, T ] ∀E∈R :
LE(t) := {q ∈ Q | E(t, q) ≤ E} is weakly seq. 
ompa
t. (E1)Uniform 
ontrol of the power: ∃ c0∈R ∃ c1>0 ∀ (tq, q)∈[0, T ]×Q with E(tq, q) <∞ :

E(·, q) ∈ C1([0, T ]) and |∂tE(t, q)| ≤ c1(c0+E(t, q)) for all t∈[0, T ].
(E2)These properties ensure the following existen
e result for energeti
 solutions of rate-independentpro
esses.Theorem 5.8 ([69℄). Let (Q, E ,D) satisfy 
onditions (E1), (E2) and (D1), (D2). Moreover, letthe following 
ompatibility 
onditions hold: For every sequen
e (tk, qk)k∈N with (tk, qk) ⇀ (t, q)in [0, T ] ×Q and (tk, qk) satisfying (S) for all k ∈ N we have

∂tE(t, qk) → ∂tE(t, q) , (C1)
(t, q) satis�es (S) . (C2)Then, for ea
h initial 
ondition (t = 0, q0) satisfying (S) there exists an energeti
 solution q :

[0, T ] → Q for (Q, E ,D) with q(0) = q0.The proof of Theorem 5.8 is based on a time-dis
retization, where 
onditions (E1), (D2) ensurethe existen
e of a minimizer for the time-in
remental minimization problem at ea
h time-step.Thereto the dire
t method of the 
al
ulus of variations is applied. In parti
ular 
onditions (E1)and (D2) 
an be veri�ed if E and D are 
onvex and 
oer
ive. Hen
e, for a given partition
Π := {0 = t0 < t1 < . . . < tM = T}, for every k = 1, . . . ,M one has to�nd qk ∈ argmin{E(tk, q̃) + D(zk−1, z̃) | q̃ = (ũ, z̃) ∈ Q} . (IP)One then de�nes a pie
ewise 
onstant interpolant qΠ with qΠ(t) := qk−1 for t ∈ [tk−1, tk) and
qΠ(T ) = qM . Choosing a sequen
e (Πm)m∈N of partitions, where the �neness of Πm tends to 0 as
m→ ∞, it is possible to apply a version of Helly's sele
tion prin
iple to the sequen
e (qΠm)m∈N,see thereto [65℄. Using (E2) and the 
ompatibility 
onditions (C1), (C2) it 
an be shown thatthe limit fun
tion ful�lls the properties (S) and (E) of an energeti
 solution. See e.g. [69℄ for adetailed proof. 44



In various works this abstra
t theory has been applied to prove the existen
e of energeti
 solutionsto rate-independent pro
esses in the �eld of plasti
ity, damage, delamination, 
ra
k-propagation,hystheresis or shape memory alloys, amongst these [66, 68, 106, 87, 60, 70, 73, 72℄. The way toverify the abstra
t 
onditions depends on the properties of the pro
ess under 
onsideration. Inparti
ular, unidire
tional pro
esses su
h as damage or delamination pro
esses require additionalte
hiques to obtain 
ompatibility 
ondition (C2). In su
h a setting the dissipation distan
e takesthe form (5.7) with A 6= V , where the value ∞ models the unidire
tionality, i.e. it prohibitshealing. This leads to the fa
t that the dissipation distan
e is neither 
ontinuous nor weakly
ontinuous on Z, so that (C2) 
annot be dire
tly obtained from the stability of the approximatingsequen
e (tk, qk) → (t, q) in [0, T ] ×Q. Su
h unidire
tional pro
esses and alternative te
hniquesto prove (C2) are studied in [68, 106, 87℄.Finally it is worth mentioning that the quadrati
 energy de�ned in (5.4), whi
h satis�es Items1�7 �ts into the abstra
t setting of (E1), (E2) and Theorem 5.8.5.2 The temporal regularity of energeti
 solutionsThe two properties (S)& (E) provide a very weak result on the temporal regularity of an energeti
solution only. (S) implies that E(t, q(t)) is uniformly bounded for all t ∈ [0, T ] and under theassumption of 
oer
ivity we �nd q ∈ L∞([0, T ],Q). Furthermore one obtains from (E) that
DissD(z, [0, T ]) is �nite and hen
e z ∈ BV ([0, T ], L1(Ω)). Thus neither the 
omponent u nor
z of an energeti
 solution has to be 
ontinuous � not to mention 
ontinuously di�erentiable intime. In other words, it 
annot be ex
luded that an energeti
 solution has jumps with respe
tto time. The aim of this se
tion is to dis
uss settings whi
h lead to a better temporal regularityof an energeti
 solution. In parti
ular we want to obtain 
ontinuity in time, so that jumps areforbidden.5.2.1 Continuity with respe
t to timeIn this se
tion we dis
uss the temporal 
ontinuity of energeti
 solutions, whi
h 
an be obtainedin settings that guarantee unique minimizers of the fun
tional Jz∗ : Q → R∞, Jz∗(q̃) = E(t, q̃)+
D(z∗, z̃) for any z∗ ∈ Z. In the following the results are sket
hed. The details are developed in[106, Th. 4.2, 4.3℄.The uniqueness of the minimizer, whi
h is guaranteed by the stri
t 
onvexity of Jz−(t), enablesto state the following jump relationsLemma 5.9 (Jump relations). Assume that (Q, E ,D) satis�es (E1)�(C2). Moreover,

∀ t ∈ [0, T ] ∀ q = (u, z) ∈ S(t) : {u} = Argmin
ũ∈U

E(t, ũ, z). (5.8)Then, for all t ∈ [0, T ] the weak limits q−(t) = w-limτ→t− q(τ) and q+(t) = w-limτ→t+ q(τ)(where q−(0) := q(0) and q+(T ) = q(T )) exist and satisfy
E(t, q−(t)) = E(t, q(t)) + D(q−(t), q(t)),

E(t, q(t)) = E(t, q+(t)) + D(q(t), q+(t)),

D(q−(t), q+(t)) = D(q−(t), q(t))+D(q(t), q+(t)).

(5.9)
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The existen
e of the limits z−(t) = w-limτ→t− z(τ) and z+(t) = w-limτ→t+ z(τ) is due to
DissD(z, [0, T ]) < ∞ for an energeti
 solution, see [65℄. From (E1) one �nds u(t±k ) ⇀ v± for
t±k → t and (C2) yields that (t, v±, z±) satisfy (S). Due to assumption (5.8) the limits v± areuniquely determined and thus they are the desired left and right limits to u±(th) in the weaksense. To verify the jump relations (5.9) the energy balan
e for the energeti
 solution q(t) is used

E(s, q(s)) + DissD(z, [r, s]) = E(r, z(r)) +

∫ s

r
∂τE(τ, q(τ)) dτ for all 0 ≤ r < s ≤ T .The �rst and the se
ond identity in (5.9) are based on the fa
t that both q−(t) and q+(t) as wellas q(t) satisfy (S). Hen
e they 
an be obtained by 
onsidering s = t together with r → t− and

r = t together with s→ t+. The third identity is due to (D1) and the �rst two identities.The next theorem provides the temporal 
ontinuity of the energeti
 solution q = (u, z) : [0, T ] →
Q = U×Z in the 
ase that the energy E(t, ·) is stri
tly 
onvex on Q. This requirement is satis�edfor an energy, whi
h is de�ned via a stored elasti
 energy density W : R

m → R∞ being stri
tly
onvex on R
m, i.e. for a bounded domain Ω ⊂ R

d it is E(t, u, z) :=
∫
ΩW

(
F (ũ+uD(t), z̃)

)
dx−

〈b(t), ũ+uD(t)〉. Thereby F (u, z) stands for all o

uring 
omponents of the pair (u, z) andall o

uring derivatives, e.g. F (u, z) = (e(u), z) for kinemati
 hardening, whereas F (u, z) =
(e(u), z,∇z) for damage. In parti
ular, F (u, z) has to be of su
h a form that it indu
es a normfor (u, z) on Q.Theorem 5.10. Let the stored elasti
 energy density W : R

m → R∞ be 
ontinuous and stri
tly
onvex on R
m. Let the the given data satisfy uD ∈ C1([0, T ],U), b ∈ C1([0, T ],U∗). Then for all

t ∈ [0, T ], z∗ ∈ Z the fun
tional Jz∗(t, q̃) =
∫
ΩW (F (ũ+uD(t), z̃)) dx−〈b(t), ũ+uD(t)〉+D(z∗, z̃)is stri
tly 
onvex in q̃. Assume that q = (u, z) : [0, T ] → Q is an energeti
 solution to (Q, E ,D).Then q is (norm-) 
ontinuous with respe
t to time, i.e. q ∈ C0([0, T ],Q).The stri
t 
onvexity allows us to show that energeti
 solutions q = (u, z) : [0, T ] → Q have weakleft and right limits q−(t) and q+(t) for all t ∈ [0, T ]. Exploiting the jump relations one obtainsthat q−(t), q(t) and q+(t) all provide the same value Jz−(t)(t, q−(t)), whi
h has to be the globalminimum by stability of q−(t). Sin
e the stri
t 
onvexity of Jz−(t) guarantees a unique minimizer,all three states must 
oin
ide and weak 
ontinuity follows. Strong 
ontinuity is dedu
ed from aresult of Visintin [109, � 2 & Th. 8℄, whi
h 
onverts weak 
onvergen
e and energy 
onvergen
einto strong 
onvergen
e by exploiting the stri
t 
onvexity on
e again.5.2.2 Hölder- and Lips
hitz-
ontinuity in timeThe temporal Hölder- or Lips
hitz-
ontinuity is based on the uniform 
onvexity of the fun
tional

Jz∗(t, q) = E(t, q) + D(z∗, z) on a subset of a suitable Bana
h spa
e V. As we will see in theexamples of Se
tion 5.3, the Bana
h spa
e V may di�er signi�
antly from the state spa
e Qthat is used to prove existen
e. This is due to fa
t that the 
hoi
e of V in�uen
es the temporalregularity obtained, so that the use of a bigger spa
e may lead to a better temporal regularityresult. The uniform 
onvexity is de�ned as followsDe�nition 5.11. The fun
tional J : V → R∞ is uniformly 
onvex on the 
onvex set M ⊂ V, ifthere exist 
onstants c⋆ > 0, 2 ≤ α <∞, su
h that for all 
onvex 
ombinations qθ := θq1+(1−θ)q0with θ ∈ (0, 1) and q0, q1 ∈ M the following holds
J (t, qθ) ≤ θJ (t, q1) + (1−θ)J (t, q0) − θ(1−θ)c⋆‖q1 − q0‖α

V . (5.10)46



For a better understanding of this notion of 
onvexity we �rst investigate the de�nition forreal valued, s
alar fun
tions. A fun
tion f : R → R is uniformly 
onvex if there are 
onstants
2 ≤ α <∞, c⋆ > 0 su
h that for all 
onvex 
ombinations qθ = (1−θ)q0 + θq1 with θ ∈ (0, 1), q0,
q1 ∈ R the following holds

f(qθ) ≤ θf(q1) + (1−θ)f(q0) − θ(1−θ)c⋆|q1−q0|α . (5.11)In other words, if f : R → R is uniformly 
onvex, then for any two points f(q0), f(q1) of itsgraph there �ts some polynomial that is quadrati
 in θ, between the fun
tion and the 
hord, seeFig. 6. Hen
e uniform 
onvexity implies stri
t 
onvexity.PSfrag repla
ements f

q0 qθ q1Figure 6: Uniformly 
onvex fun
tion.The meaning of the exponent α 
an be understood from the following example.Example 5.12. First, 
onsider the fun
tion f(q) = q2. We immediately see that f is stri
tly
onvex, sin
e f ′′(q) = 2 > 0 for all q ∈ R and by simple 
al
ulation we verify f(qθ) =
θf(q1)+(1−θ)f(q0)−θ(1−θ)(q1−q0)2. But there are also fun
tions being stri
tly 
onvex although
f ′′(q) = 0 for some q ∈ R. Su
h a 
andidate is e.g. f(q) = q4 with f ′′(0) = 0. Sin
e f is 
on-tinuously di�erentiable, the uniform 
onvexity inequality (5.11) is equivalent to f(q1)− f(q0) ≥
f ′(q0)(q1−q0) + c⋆|q1−q0|α and hen
e equivalent to (f ′(q1)−f ′(q0))(q1−q0) − 2c⋆|q1−q0|α ≥ 0.Therewith we verify for c⋆ = 1/4 and α = 4 that (f ′(q1)−f ′(q0))(q1−q0) − 2c⋆|q1−q0|α =
1
2(q1−q0)4 + 6

2(q21−q20)2 ≥ 0 and thus we 
on
lude that (5.11) holds for f(q) = q4 with c⋆ = 1/4and α = 4.This notion of 
onvexity is now transfered to the 
ontext of energy fun
tionals. The theorembelow generalizes the ideas developed in [70, 74℄, where Lips
hitz-
ontinuity with respe
t to timewas derived. The generalization has two aspe
ts. First it is emphasized that the 
onvexityproperties 
an be formulated with respe
t to a norm ‖ ·‖V that may di�er signi�
antly from thatunderlying the state spa
e Q. In parti
ular, if Q is 
hosen as small as possible under preservationof the 
oer
ivity of E (see (E1)), it may be an advantage to investigate the temporal regularityof energeti
 solutions with respe
t to the norm of a larger Bana
h spa
e V ⊃ Q, sin
e temporalregularity may improve. Se
ond, as 
an be seen from (5.10) the notion of uniform 
onvexity isnot restri
ted to the exponent α = 2, so that a weaker lower bound is admissible due to α ≥ 2.Previous work [70, 74℄ asked α = 2 and β = 1 and enfor
ed the uniform 
onvexity 
onditionon whole Q, while the theorem below only requires it on sublevels. In fa
t, the formulationof the 
onditions on sublevels is su�
ient, sin
e an energeti
 solution q : [0, T ] → Q satis�es
q(t) ∈ LE⋆(s) for some �xed E⋆ > 0 and all s, t ∈ [0, T ]. This is due to stability (S) and thetemporal Lips
hitz-estimate |E(s, q) − E(t, q)| ≤ cE |s− t| for a 
onstant cE > 0 and for all �xedstates q ∈ Q with E(r, q) < E for some r ∈ [0, T ], whi
h is a dire
t 
onsequen
e of (E2) andGronwall's inequality.Theorem 5.13 (Temporal Hölder-
ontinuity). Let (Q, E ,D) be a rate-independent system, where
Q is a 
losed, 
onvex subset of a Bana
h spa
e X . Let LE(t) = {q ∈ Q | E(t, q) ≤ E}. Assume47



that there is a Bana
h spa
e V and that there are 
onstants α ≥ 2, β ≤ 1 su
h that for all E∗there exist 
onstants C∗, c∗ > 0 so that for all t ∈ [0, T ], q0, q1 ∈ LE⋆(t) and all θ ∈ [0, 1] thefollowing holds:
E(t, qθ) + D(z0, zθ) + c∗θ(1−θ)‖q1−q0‖α

V ≤ (1−θ)
(
E(t, q0)+D(z0, z0)

)
+ θ

(
E(t, q1)+D(z0, z1)

)(5.12a)
|∂tE(t, q1) − ∂tE(t, q0)| ≤ C∗‖q1 − q0‖β

V , (5.12b)where (uθ, zθ) = qθ = (1−θ)q0 + θq1.Then, any energeti
 solution q : [0, T ] → Q of (Q, E ,D) is Hölder-
ontinuous from [0, T ] to Vwith the exponent 1/(α−β), i.e. there is a 
onstant CH > 0 su
h that
‖q(s)−q(t)‖V ≤ CH|t−s|1/(α−β) for all s, t ∈ [0, T ] . (5.13)The main idea of the proof is to use uniform 
onvexity inequality (5.12a) to derive an improvedstability estimate, whi
h 
ontains the additional term c∗θ(1−θ)‖q1−q0‖α

V . Using assumption(5.12b) one obtains an upper estimate for ‖q1−q0‖α
V from the energy balan
e. Finally the Hölderestimate (5.13) 
an be proved with the aid of a di�erential inequality and Gronwall's lemma.The details are 
arried out in [106℄.5.3 Appli
ationsIn this se
tion we dis
uss examples for uniformly 
onvex stored elasti
 energy densities arisingfrom various types of rate-independent pro
esses, su
h as plasti
ity, phase transformations inshape memory alloys and damage. All these appli
ations 
an be treated as rate-independentpro
esses in terms of the energeti
 formulation. As the unknowns their models involve the thelinearized strain tensor e(u) = 1

2(∇u+∇uT ) in terms of the displa
ement �eld u : Ω → R
d and aninternal variable z whi
h may be s
alar-, ve
tor- or tensor valued depending on the problem. Theway, how u and z are linked in the model di�ers and here we distinguish between energies, whi
h
ompose the di�erent variables additively, su
h as in the Example 3.5 for kinemati
 hardening,and energies whi
h use a multipli
ative 
omposition of the variables, su
h as in the 
ase ofdamage, see Examples 5.16�5.18.5.3.1 Additive energies: Plasti
ity, phase transformations in shape memory alloysIn the following we treat two appli
ations with quadrati
 energies. We will obtain that V = Q inthese settings, that α = 2 and β = 1, so that energeti
 solutions are Lips
hitz-
ontinuous withrespe
t to time. This regularity is in good a

ordan
e with the results proven in [70℄ and with
lassi
al existen
e results for elastoplasti
ity.Example 5.14. As a �rst example for Theorem 5.13 we 
onsider the parti
ular situation where

E(t, ·) is quadrati
. Let Q be a re�exive Bana
h spa
e and assume that A ∈ Lin(Q,Q∗) is alinear, bounded operator with 〈Aq, q〉 ≥ c‖q‖2
Q for all q ∈ Q and for some 
onstant c > 0. Given

qD ∈ C1([0, T ],Q) and b ∈ C1([0, T ],Q∗) the energy E : [0, T ] ×Q → R is de�ned by
E(t, q) = 1

2〈A(q+qD(t)), (q+qD(t))〉 − 〈b(t), q+qD(t)〉 .48



Moreover assume that the dissipation distan
e D : Z × Z → [0,∞] is de�ned as D(z1, z2) =
R(z2−z1) with R : Z → [0,∞) being positively 1-homogeneous, 
onvex, weakly sequentiallylower semi
ontinuous and satisfying R(z) ≤ cR‖z‖Z for all z ∈ Z and for a 
onstant cR > 0.Then, for all qi ∈ Q, the system (Q, E ,D) satis�es the assumptions (5.12) with V = Q, α = 2and β = 1. Thus, from (5.13) we obtain that energeti
 solutions q : [0, T ] → Q are Lips
hitz-
ontinuous with ‖q(s) − q(t)‖Q ≤ CH |s− t| 1

2−1 .Thereby the uniform 
onvexity inequality (5.12a) is a dire
t 
onsequen
e of (5.5) and the 
on-vexity of D. Estimate (5.12b) 
an be vieri�ed by straight forward 
al
ulations.Observe that the models of elastoplasti
ity with linear kinemati
 hardening and of elastoplasti
itywith Cosserat mi
ropolar e�e
ts from Examples 3.5 and 3.6 �t into this framework. Let us �nallynote that the result on the temporal Lips
hitz-
ontinuity due to Theorem 5.13 is in a

ordan
ewith known results for equations of this type, see e.g. [17, 47℄.Example 5.15 (The Souza-Auri

hio model for thermally driven phase transformations in shapememory alloys[73℄). In the 
ontext of phase transformations in shape memoryalloys the internal variable z : Ω → R
d×d
sym,dev is the mesos
opi
 transformation strain re�e
tingthe phase distribution. The dissipation distan
e, whi
h measures the energy dissipated due tophase transformation, is assumed to take the form D(z, z̃) = ̺‖z−z̃‖L1(Ω) with ̺ > 0.The phase transformations are 
onsidered to be thermally indu
ed. For a body that is small inat least one dire
tion, it is reasonable to assume that the temperature ϑ ∈ C1([0, T ],H1(Ω)),with Cϑ := ‖ϑ‖C1([0,T ],H1(Ω)), is a priori given, sin
e it in�uen
es the transformation pro
ess likean applied load, see [10℄. Thus the energy density takes the form

W (F (u, z), ϑ) = 1
2

(
e(u)−z

)
: B(ϑ) :

(
e(u)−z

)
+ h(z, ϑ) + σ

2 |∇z|2with the 
onstant σ > 0 and the elasti
ity tensor B ∈ C1([ϑmin, ϑmax],R
(d×d)×(d×d)) beingsymmetri
 and positive de�nite for all ϑ, i.e. there are 
onstants cB1 , cB2 > 0 so that cB1 |A|2 ≤ A :

B : A ≤ cB2 |A|2 for all A ∈ R
d×d. Moreover, let cBϑ := ‖B‖C1([ϑmin,ϑmax],R(d×d)×(d×d)). The fun
tion

h : R
d×d
sym,dev × R → R is given by

h(z, ϑ) := c1(ϑ)
√
δ2 + |z|2 + c2(ϑ)|z|2 + 1

δ (|z|−c3(ϑ))3+ ,where δ > 0 is 
onstant and ci ∈ C1([ϑmin, ϑmax]) with 0 < c1i ≤ ci(ϑ) for all ϑ ∈ [ϑmin, ϑmax]and cϑi := ‖ci‖C1([ϑmin,ϑmax]), i = 1, 2, 3. Thereby c1(ϑ) is an a
tivation threshold for the initi-ation of martensiti
 phase transformations, c2(ϑ) measures the o

uren
e of an hardening phe-nomenon with respe
t to the internal variable z and c3(ϑ) represents the maximum modulus oftransformation strain that 
an be obtained by alignment of martensiti
 variants. Furthermore
(f)+ := max{0, f}. For given data b ∈ C1([0, T ],H−1(Ω,Rd)) and uD ∈ C1([0, T ],H1(Ω,Rd))the energy fun
tional is de�ned by E(t, q) =

∫
ΩW (F (u+uD(t), z), ϑ) dx−〈b(t), u+uD(t)〉. Hen
ewe have

∂tE(t, q) =

∫

Ω

(
∂uW (F (u+uD, z), ϑ) : e(u̇D)+ϑ̇ ∂ϑW (F (u+uD, z), ϑ)

)
dx− 〈ḃ, u+uD〉 − 〈b, u̇D〉,

∂uW (F (u+uD, z), ϑ) : u̇D = (e(u+uD)−z):B(ϑ):e(u̇D) ,

ϑ̇ ∂ϑW (F (u+uD, z), ϑ) = ϑ̇
(
(e(u+uD)−z):∂ϑB(ϑ):(e(u+uD)−z) + ∂ϑh(ϑ, z)

)
.To gain a Lips
hitz-estimate for ∂tE(t, ·) for the present model it is important that Theorem 5.13is formulated for energy-sublevels LE⋆(t) = {q ∈ Q | E(t, q) ≤ E⋆}, sin
e this provides the bound49



‖ui‖H1+‖zi‖H1 ≤ CE⋆. Thus for all (u0, z0), (u1, z1) ∈ LE⋆(t) it holds
∫

Ω
|ϑ̇

(
e(u1−u0)−(z1−z0)

)
:∂ϑB(ϑ):

(
e(u1−u0)−(z1−z0)

)
|dx ≤ Cϑc

B

ϑ

(
‖e(u1−u0)‖L2+‖z1−z0‖L2

)2

≤ Cϑc
B

ϑ

( 1∑

i=0

‖e(ui)‖L2+‖zi‖L2

)(
‖e(u1−u0)‖L2+‖z1−z0‖L2

)

≤ 2CE⋆Cϑc
B

ϑ

(
‖u1−u0‖H1+‖z1−z0‖L2

)
.Furthermore the appli
ation of the main theorem on di�erentiable fun
tions yields

|
√
δ2+|z1|2−

√
δ2+|z0|2| ≤ |z1−z0|,

||z1|2−|z0|2| ≤ 2(|z1|+|z0|)|z1−z0|,
|(|z1|−c3(ϑ))3+−(|z0|−c3(ϑ))3+| ≤ 2(|z1|+|z0|)2|z1−z0|,so that

∫

Ω
|∂ϑh(ϑ, z1)−∂ϑh(ϑ, z0)| ≤ ‖z1−z0‖L1

(
cϑ1 + 2(Ld(Ω)CE⋆)

1
2 cϑ2 + 6

δ c
ϑ
3CE⋆

)
≤ C̃⋆‖z1−z0‖L2with C̃⋆ := Ld(Ω)

1
2

(
cϑ1 + 2(Ld(Ω)CE⋆)

1
2 cϑ2 + 6

δ c
ϑ
3CE⋆

)
, where Ld(Ω) denotes the d-dimensionalLebesgue-measure of Ω. Therefore Lips
hitz-estimate (5.12b) holds true with β = 1 and with

C⋆ = (C̃⋆ + 2CE⋆Cϑc
B

ϑ + cBϑcD + cl).Now it has to be veri�ed that the density W is uniformly 
onvex with respe
t to F (u, z). Theretowe �rst 
al
ulate that wθ:B(ϑ):wθ ≤ θw1:B(ϑ):w1+(1−θ)w0:B(ϑ):w0−θ(1−θ)cB1 |w1−w0|2 for
wi=ei−zi with (ei, zi) ∈ R

d×d
sym × R

d×d
sym,dev, i = 0, 1, wθ = θw1 + (1−θ)w0 with θ ∈ (0, 1).Thereby a binomi
 formula and the positive de�niteness of B(ϑ) for all ϑ were applied. Theuniform 
onvexity of |∇z|2 = ∇z : ∇z 
an be obtained similarly. We now show that h is uni-formly 
onvex. We immediately see that h̃1(z) := (δ2 + |z|2) 1

2 is 
onvex in z. Furthermore,sin
e h̃3(z) := (|z| − c3(ϑ))3+ is the 
omposition of the monotone fun
tion x3 and the 
onvexfun
tion (·)+, we 
on
lude that also h̃3(z) is 
onvex in z. Additionally we obtain with similar
al
ulations as applied for the other quadrati
 terms that h̃2(z) := |z|2 is uniformly 
onvex. Sin
e
ci(ϑ) ≥ c1i > 0 for all ϑ ∈ [ϑmin, ϑmax] and i = 1, 2, 3 we have proven that h is uniformly 
onvexin z with h(zθ, ϑ) ≤ θh(z1, ϑ) + (1−θ)h(z0, ϑ) − θ(1−θ)c12|z1−z0|2. Summing up all terms andtaking into a

ount all prefa
tors yields a uniform 
onvexity estimate for W, whi
h leads to
E(t, qθ) ≤ θE(t, q1) + (1−θ)E(t, q0) − θ(1−θ)

(
cB

1
2 ‖w1−w0‖2

L2 + σ
2 ‖∇(z1−z0)‖2

L2 + c12‖z1−z0‖2
L2

)
.Thereby we have used that the term des
ribing the work of the external loadings is linear in u.Moreover we �nd with Korn's inequality that ‖w1−w0‖2

L2 ≥ 1
2‖e(u1)−e(u0)‖2

L2 − ‖z1−z0‖2
L2 ≥

1
2C2

K
‖u1−u0‖2

H1 − ‖z1−z0‖2
L2 . Under the assumption that (c12 − (cB1 /2)) > 0 we 
on
lude that(5.12a) holds for α = 2, c∗ := min

{
cB1 /(4C

2
K), σ/2, (c12−(cB1 /2))

} and the spa
e
V = Q = {ũ ∈ H1(Ω,Rd) | ũ = 0 on ΓD} × {z̃ ∈ H1(Ω,Rd×d

sym,dev)}.Hen
e any energeti
 solution q : [0, T ] → Q is temporally Lips
hitz-
ontinuous: q ∈ C0,1([0, T ],Q).50



5.3.2 Multipli
ative energies: DamageIn the following we apply the temporal regularity results stated in Theorems 5.10 and 5.13 toenergies used in the modeling of partial, isotropi
 damage pro
esses. Thereby, damage meansthe 
reation and growth of 
ra
ks and voids on the mi
ro-level of a solid material. To des
ribethe in�uen
e of damage on the elasti
 behavior of the material one de�nes an internal variable,the damage variable z(t, x) ∈ [z⋆, 1], as the volume fra
tion of undamaged material in a neigh-bourhood of material dependent size around x ∈ Ω at time t ∈ [0, T ]. Thus z(t, x)=1 meansthat the material around x is perfe
tly undamaged, whereas z(t, x)=z⋆ ≥ 0 stands for maximaldamage of the neighbourhood. The 
ondition z⋆ > 0 models partial damage and the fa
t that
z is s
alar valued re�e
ts the isotropy of the damage pro
ess, whi
h means that the 
ra
ks andvoids are presumed to have a uniform orientation distribution in the material. Furthermore itis assumed that damage is a unidire
tional pro
ess, so that healing is forbidden and ż(t, x) ≤ 0.This 
ondition is preserved by the dissipation distan
e, i.e. for ̺ > 0 it is

D(z0, z1) :=

{∫
Ω ̺(z0 − z1) dx if z1 ≤ z0,

∞ else, (5.14)whi
h punishes a de
rease of damage with the value ∞. The energy in the framework of damageis given by
E(t, u, z) :=

∫

Ω
W̃ (e(u+uD(t)), z) dx+

∫

Ω

κ

r
|∇z|r dx−

∫

Ω
l(t)(u+uD(t)) dx . (5.15)The �rst term in (5.15) is the stored elasti
 energy, the se
ond des
ribes the in�uen
e of damagewith 1 < r <∞ and κ > 0 and the third term a

ounts for the work of the external loadings.As in the previous se
tions we set W (F (u, z)) = W̃ (e(u+uD(t)), z)+ κ

r |∇z|r. In engineering, seee.g. [64℄, a typi
al ansatz for the stored elasti
 energy density is the following
W̃ (e, z) := f1(z)W1(e) +W2(e) + f2(z) and ∂zW (e, z) ≥ 0 . (5.16)In Se
tion 5.2.1 we obtained that the joint stri
t 
onvexity of W̃ in (z, e) will ensure the temporal
ontinuity of the energeti
 solution. But the 
ru
ial point, whi
h may spoil this regularity inthe 
ase of damage is, that not many stored elasti
 energy densities W̃ (e, z) := f1(z)W1(e), thatsatisfy ∂zW̃ (e, z) ≥ 0, are also jointly stri
tly 
onvex, although both f1, W1 may be 
onvex. Asa negative example we present the wellknown (1−d)-model for isotropi
 damage, see e.g. [64℄:Example 5.16. For the symmetri
, positive de�nite fourth order tensor B the stored elasti
energy density

Ŵ (e, d) =
(1−d)

2
e:B:e =

z

2
e:B:e = W̃ (e, z)is not jointly 
onvex in (e, z). This 
an be seen from 
al
ulating the Hessian; evaluating it in

(e, z)=(e, 1), e ∈ R
d×d
sym , in the dire
tion (ẽ, z̃)=(− e

2 , 1) yields D2W̃ (e, z)[(ẽ, z̃), (ẽ, z̃)] = zẽ:B:ẽ+

2z̃e:B:ẽ = −3
4 e:B:e < 0.To �nd a positive example on stored elasti
 energy densities satisfying (5.16) one may use theideas of [88℄. 51



Example 5.17. For B as in Example 5.16 the energy density Ŵ (e, z) := e:B:e
2(2−z) is jointly 
onvexin (e, z) and

W̃ (e, z) :=
e:B:e

2(2−z) +
z2

2is stri
tly 
onvex in (e, z). Cal
ulating the Hessian yields
D2Ŵ (e, z)[(ẽ, z̃), (ẽ, z̃)] =

z̃e:B:z̃e

(2−z)3 − 2
z̃e:B:ẽ

(2−z)2 +
ẽ:B:ẽ

(2−z) =
1

2−z (ê−ẽ):B:(ê−ẽ) ≥ 0with ê := z̃e/(2−z) for all (e, z̃) ∈ R
d×d
sym × [z⋆, 1]. Sin
e we have D2Ŵ (e, z)[(ẽ, z̃), (ẽ, z̃)] = 0 forall (0, z̃) whenever e = 0, we �nd that Ŵ is jointly, but not stri
tly 
onvex. We 
on
lude that

W̃ is jointly stri
tly 
onvex due to the term f(z) = z2

2 , sin
e f ′′(z) = 1, so that f ′′(z)z̃2 > 0for all z̃ 6= 0, whi
h ensures that D2W̃ (e, z)[(ẽ, z̃), (ẽ, z̃)]>0 for all (ẽ, z̃) 6= 0 and for all (e, z)∈
R

d×d
sym × [z⋆, 1].Finally we dis
uss an example whi
h refers to Theorem 5.13 on the Hölder-and Lips
hitz-
ontinuity of energeti
 solutions. With this example we want to point out the importan
e ofthe Bana
h spa
e V. We will see that its 
hoi
e is not unique and that it may lead to di�erent
onstants α > 2. This is due to the fa
t that the energy will be 
hosen non-quadrati
 in 
ontrastto the Examples 5.14�5.15. We will 
larify how the spa
e V in�uen
es the magnitude of theHölder 
onstant and explain how to a
hieve better regularity by a 
lever identi�
ation of V.Example 5.18 (The e�e
tive use of V). For B as above and 
onstants a, â, c > 0 
onsider

W (e, z,∇z) :=
e:B:e

2
√

2−z +G(e) + a
2z

2 + κ
2 |∇z|2 with G(e) := c

4(â+|dev e|2)2 (5.17)with the deviator dev e := e− tr e
d Id and the energy

E(t, u, z) :=

∫

Ω
W (e+eD(t), z,∇z) dx −

∫

Ω
b(t)(u+uD(t)) dx.We now determine V suitably. We �rst treat the 
ase of time-dependent Diri
hlet data, asinvestigated in [106℄. Similarly to the ideas applied in Example 5.12 we thereto dedu
e thefollowing uniform 
onvexity inequality for W

W (eθ, zθ) ≤ (1−θ)W (e0, z0) + θW (e1, z1) − θ(1−θ)c̃
(
|E|2 + |Z|2 + |devE|4 + |∇Z|2

) (5.18)with E := e1−e0, Z := z1−z0. For q0, q1 ∈ LE⋆(t) we 
an verify
E(t, qθ) ≤ (1−θ)E(t, q0) + θE(t, q1) − θ(1−θ)c⋆

(
‖E‖L2 + ‖Z‖L2 + ‖devE‖L4 + ‖∇Z‖L2

)α(5.19)for α = 4, c⋆ = 2−3c̃ min{(2E⋆)
2−α, (2E⋆)

4−α}. This estimate determines the Bana
h spa
e
V1 := {ũ ∈ H1(Ω,Rd) | dev e(ũ) ∈ L4(Ω,Rd×d)} × {z̃ ∈ H1(Ω)} .At this point we noti
e that the right-hand side of (5.19) is in
reased if we use the Lp̃(Ω,Rd×d)-norm for some 1 < p̃ ≤ 4, whi
h would lead to a smaller α = max{2, p̃} and hen
e to a Hölderexponent 
loser to 1. 52



In order to �nd out whether the 
hoi
e of p̃ = 2 is suitable, assumption (5.12b) has to beinvestigated. Thereto we 
al
ulate
∂tE(t, u, z)=

∫

Ω
∂eW (e(u)+eD(t), z,∇z):ėD(t) dx−

∫

Ω
ḃ(t)(u+uD(t)) dx−

∫

Ω
b(t)u̇D(t) dx .The term DG(dev e):ê = c(â+|dev e|2) 4−2

2 (dev e):ê, with G de�ned in (5.17), plays the de
isiverole in estimate (5.12b). Using Taylor expansion one 
an prove that∣∣DG(dev(ẽ1)):ėD(t) − DG(dev(ẽ0)):ėD(t)
∣∣ ≤ C

(
1+W0+W1

) p−2
p |devE|,where Wi=W (ẽi, zi,∇zi), ẽi=ei+eD(t), eD(t)=e(uD(t)) and ėD(t)∈C0([0, T ],W 1,∞(Ω,Rd×d)).Thus integration and Hölder's inequality with p̃=2 and p̃′=2 yield

∫

Ω

∣∣DG(dev(e1+eD(t))):ėD(t) − DG(dev(e0+eD(t))):ėD(t)
∣∣ dx ≤ C1‖devE‖

L
4
2
≤ C2‖u1−u0‖H1with ei = e(ui) for (ui, zi) ∈ LE⋆(t). This implies β = 1 and it is suitable to introdu
e the Bana
hspa
e

V2 := {ũ ∈ H1(Ω,Rd)} × {z̃ ∈ H1(Ω)} .With this 
hoi
e of V = V2 we have α = 2, whi
h leads to the Hölder exponent 1
α−1 = 1, sothat an energeti
 solution q : [0, T ] → Q satis�es q ∈ C0,1([0, T ],V2), whereas V = V1 yields

q ∈ C0, 1
3 ([0, T ],V1).Finally we 
onsider the 
ase of time-independent Diri
hlet data uD, i.e. u̇D(t) = 0 for all t ∈ [0, T ].Then we have ∂tE(t, q)=−

∫
Ω ḃ(t)(u+uD) dx. Therefore we may drop ‖E‖Lp in (5.19) and 
hoose

V = Q. For this 
hoi
e we �nd α = 2 and the Hölder-exponent 1/(α−1) = 1, whi
h means thatthe energeti
 solution is Lips
hitz-
ontinuous in time. This is in a

ordan
e to the regularityresult obtained [70℄, where only time-independent Diri
hlet data were applied.A
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