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Abstract

A plasma induced temporal break-up in filamentary propagation has re-
cently been identified as one of the key events in the temporal self-compression
of femtosecond laser pulses. An analysis of the Nonlinear Schrödinger Equa-
tion coupled to a noninstantaneous plasma response yields a set of stationary
states. This analysis clearly indicates that the emergence of double-hump,
characteristically asymmetric temporal on-axis intensity profiles in regimes
where plasma defocusing saturates the optical collapse caused by Kerr self-
focusing is an inherent property of the underlying dynamical model.

1 Introduction

Temporal compression of pulsed femtosecond laser beams within optical filaments
provides a remarkably simple mechanism for the generation of ultrashort few-cycle
pulses, in a wide spectral range from the mid infrared up to deep ultraviolet wave-
lengths [1, 2, 3, 4, 5]. One of the most outstanding features is the possibility to
obtain temporally self-compressed pulses without any need for an external disper-
sion compensation scheme, indicating that the underlying compression mechanism
differs from traditional laser pulse compression schemes [6, 7]. The self-compression
process has been analyzed to occur in three steps [8], involving an initial plasma-
induced pulse break-up, isolation of one of the fragments and subsequent compres-
sion of the latter upon further propagation. In contrast to previous explanations
(see, e.g., [11, 9, 10]) that involved a complex interplay of numerous linear and
nonlinear effects, it has been shown that self-compression can already occur due to
diffraction, Kerr self-focusing and plasma induced self-defocusing. These three spa-
tial effects completely suffice for an efficient on-axis compression of an isolated pulse
[8, 12]. Within this scheme, a plasma induced temporal break-up, causing the inter-
mittent occurrence of asymmetric double-hump field configurations, is essential for
few-cycle pulse generation in laser filaments. Similar break-ups have been reported
before, and they have typically been explained by an interplay of group dispersion
and Kerr nonlinearity [13, 14]. In filaments, it has been shown that pulse splitting
can also be promoted by the interplay of dispersion, multiphoton absorption, and
the Kerr-nonlinearity, resulting in the formation of conical waves or X-waves [15, 16].
However, we find that there is a third previously unreported scenario that may give
rise to pulse splitting. This scenario is dominated by spatial effects and manages
without any dispersive coupling of temporal slices of the pulse. While pulse splitting
in filaments has previously often been considered a compromising situation, the spa-
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tially dominated scenario is found as the key step to initiate pulse self-compression
in filaments.

In the following we present a detailed analysis of the origin of this characteris-
tic asymmetric pulse break-up. Performing numerical simulations of the Nonlinear
Schrödinger Equation (NLSE) coupled to an evolution equation for the electron
density, we show that the pulse break-up dynamics in the efficiently ionized zone is
already inherent in the interplay of only the above-mentioned three spatial effects.
We analyze the double-hump on-axis temporal intensity distributions observed in
the nonlinear focal region where plasma defocusing saturates the Kerr-based opti-
cal collapse. In this analysis we derive stationary state solutions directly from the
Nonlinear Schrödinger Equation. It turns out that the local minimum between the
sub-pulses of the characteristic double-hump solutions are located near the instant
where the conserved power profile of the pulse has its maximum, i.e., at zero tem-
poral delay. Regarding the power dependence of Kerr self-focusing, this behavior
seems counterintuitive and is therefore further investigated using a time dependent
variational approach that allows a prediction on the exact position of the local min-
imum.

2 Plasma induced pulse breaking in numerical sim-

ulations

In our simulations, we restrict ourselves to modeling spatial effects only. This dis-
regards dissipative terms and energy exchange between adjacent temporal slices,
thereby ensuring that these effects do not contribute to the observed temporal break-
up. Treatment of this scenario in a full simulation provides qualitatively identical
results [8]. Compared to the full model equations [11], the interplay between Kerr-
type self-focusing and plasma defocusing therefore represents the primary dynamic
effect during filament formation in gases. The propagation equation of this reduced
model is expressed by the NLSE coupled to an evolution equation for the electron
density [17]. Expressed in cylindrical coordinates (r, t) and in the reference frame
moving with group velocity, the propagation equation for the slowly-varying enve-
lope of complex optical field E(r, z, t) reads as

∂zE =
i

2k0r
∂rr∂rE + i

ω0

c
n2|E|2E − i

1

2n0ρc

ω0

c
ρ(I)E , (1)

where z is the propagation length. The optical field envelope E is normalized such
that the intensity is I = |E|2. The transverse Laplacian models the diffraction ef-
fects taking place in the transverse plane, with the radial distance from the optical
axis given by r =

√
x2 + y2. The remaining terms on the right-hand side account

for nonlinear self-focusing related to the Kerr effect and for plasma defocusing in-
duced by an electron plasma with density ρ. The laser carrier frequency is given
by ω0 and related to the center wavelength via λ0 = 2π/k0 = 2πc/ω0 = 800 nm.
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Figure 1: (a) Evolution of the on-axis temporal profile along z. As soon as plasma
defocusing has saturated the optical collapse, a characteristic temporal break-up
occurs. (b) Evolution of the peak intensity (solid line) and the on-axis intensity at
zero delay (dashed line). (c) On-axis temporal distribution at z = 1.55 m exhibiting
a typical double hump structure.

n2 = 10−23m2/W is the nonlinear refractive index for argon at atmospheric pres-
sure. The wavelength-dependent critical plasma density is calculated from the Drude
model according to ρc ≡ ω2

0meε0/q
2
e , where qe and me are electron charge and mass,

respectively, ε0 is the dielectric constant, c the speed of light, and ρnt denotes the
neutral density at atmospheric pressure. Neglecting recombination and collisional
ionization, the time evolution of electron density is given by [18]

ρ(I) = ρnt

⎛
⎝1 − exp

⎛
⎝−

t∫
−∞

dt′W [I(t′)]

⎞
⎠

⎞
⎠ , (2)

where plasma generation is driven by the ionization rate W [I], which is suitably
described by Perelomov-Popov-Terent’ev (PPT) theory [19]. For the numerical sim-
ulations and the analytical discussion, we use data for argon [11] at atmospheric
pressure as parameters. As initial conditions for the numerical simulations, we im-
pose a Gaussian spatio-temporal distribution for the photon density, with a pulse
duration tp = 38 fs and beam waist w0 = 2.5 mm. The input energy is Ein = 1 mJ,
corresponding to a peak input power of P = 2Pcr, where Pcr ≈ λ2/2πn2 is the
critical power for Kerr self-focusing. The beam is focused into the medium with
an f = 1.5 m lens. As no exchange of energy between time slices and no losses
are considered, the optical power P (t, z) = 2π

∫ ∞
0

rdr|E(t, r, z)|2 is conserved along
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Figure 2: (a) Intensity distribution in the (r, t)-plane as plasma defocusing initiates
the pulse break-up at z = 1.37 m. (b) Corresponding spectrogram. (c) Intensity
distribution of the split pulse at z = 1.55 m in the (r, t)-plane. (d) Corresponding
spectrogram.

propagation, i.e., ∂zP (t, z) ≡ 0. The evolution of the on-axis intensity depicted in
Fig. 1(a) reveals the crucial role of a plasma mediated temporal break-up for an effi-
cient temporal compression induced by local contraction of the spatial beam profile,
which has been termed self-pinching in Ref. [8]. In this process, filamentary com-
pression undergoes two distinct phases. Initially, while z approaches the nonlinear
focus, a dominant leading peak is observed. When the trailing part of the pulse refo-
cuses in the efficiently ionized zone (ρmax ≈ 5×1016 cm−3) a double-spiked structure
emerges. Subsequently, only one of the emerging peaks survives and experiences fur-
ther pulse shaping in the filamentary channel. The pulse breaking is initiated when
plasma defocusing starts to saturate the optical collapse (see the evolution of the
peak intensity in Fig. 1(b), solid line). Figure 2(a) depicts the intensity distribution
in the (t, r) plane at z = 1.37 m, clearly revealing defocusing of the trailing part
into a system of rings. The corresponding XFROG spectrogram [11] of the on-axis
intensity profile [Fig. 2(b)], calculated with a 10 fs Gaussian reference pulse, exhibits
an inclination due to the generation of red and blue frequencies in the leading and
trailing edge of the pulse, respectively. Upon further propagation the rear part of
this system of spatial rings merges during a refocusing stage at z = 1.55 m, and a
blue-shifted trailing subpulse is generated [Figs. 2(c) and (d)]. The on-axis temporal
profile of this strongly asymmetric temporal distribution depicted in Fig. 1(c) shows
a characteristic double-hump configuration with a local minimum at zero delay. In
the simulations, one can track the origin of this minimum to the fact that defocusing
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prevails at zero delay. Therefore, the energy contained in the spatial rings at zero
delay is not transferred back to the optical axis [dashed line in Fig. 1(b)]. From the
spectrogram representation [Fig. 2(d)] of the split pulse, it becomes obvious that
the trailing subpulse is blue-shifted with respect to the leading pulse. This spectro-
temporal split is a characteristic feature for filamentary propagation [20, 21, 22], and
it is important to note that this split is already fully explicable within the framework
of the reduced model equation that incorporates only spatial effects.

3 Stationary states of the Nonlinear Schrödinger

Equation with plasma response

At first sight, the emergence of the central minimum and the resulting double-hump
temporal shapes may appear as a somewhat arbitrary intermediate stage in the
pulse shaping process. For a clarification of the role of these characteristic pulse
shapes which tend to appear when plasma defocusing saturates Kerr-driven optical
collapse, we search for field configurations representing stationary states. These
stationary spatio-temporal field distributions maintain a balance between competing
nonlinear effects in every temporal point. The following analysis circumvents the
limiting constraint of a fixed Gaussian radial shape, which has to be imposed in
the time-dependent variational approach carried out in [8]. To further facilitate the
calculation of stationary states to the evolution equation (1), for the ionization rate
we use the multiphoton description W [I] = σN∗|E|2N∗

. Here, σN∗ is the cross-section
for N∗-photon ionization [24]. As the relevant intensity level in argon filaments is
well above the validity of a perturbative multiphoton description, the numerical
value of σN∗ = 1.94 × 10−74 cm2N∗

W−N∗
and N∗ = 6.13 are determined by a local

fit to the ionization rate given by PPT theory. As our model completely neglects
dispersion, the time variable can be regarded as a parameter. Hence the most general
ansatz for the stationary state reads as

E = T (r, t) exp iμ(t)z, (3)

where we explicitly allow a time-dependence of the propagation constant μ. Substi-
tuting this into the dynamical equation (1) yields the following nonlinear differential
equation,

0 =
1

2k0r
∂rr∂rT +

ω0

c
n2T

3 − 1

2n0ρc

ω0

c
ρT − μ(t)T. (4)

Any solution T of this equation depends on the specific choice of μ(t), as does
the conserved optical power P = 2π

∫ ∞
0

rdrT 2, except for vanishing plasma density
ρ ≡ 0. For the latter plasma-free case, the solution of (4) corresponds to the spatial
Townes soliton [25] with an optical power P

′
cr ≈ 11.69λ2/(8π2n2), independent of the

chosen value of μ. Note that the optical power of the Townes soliton slightly differs
from the usual definition of the critical power Pcr = λ2/(2πn2), with Pcr/P

′
cr ≈ 1.075.

In the presence of plasma, the general solution of (4) requires introduction of a cut-
off time −t∗, imposing P (t) < P

′
cr for t < −t∗ similar to the variational analysis in
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Figure 3: (a) On-axis temporal intensity profiles (solid lines) and propagation con-
stant μ(t) corresponding to the orange curve(dashed line) of steady state solutions,
obtained by solving Eq. (4), imposing a Gaussian power profile. (b) depicts the
spatio-temporal representation of the curve marked in orange. Nontrivial stationary
solutions only exist within the time-window −t∗ ≤ t ≤ t∗ (t∗ ≈ 22.4 fs).

[8]. With this constraint, Kerr self-focusing cannot compensate for linear diffraction
at t < −t∗, and neither can a nontrivial stationary state exist. The solution at
t = −t∗ itself radially coincides with the Townes soliton, as we assume ρ ≡ 0 at
this very instant. Imposing a Gaussian power profile P = Pin exp

(−2t2/t2p
)

leads

to t∗ =
√

ln
√

Pin/P
′
cr. In order to obtain those functions μ(t) that give rise to

stationary solutions with a conserved Gaussian power profile, we use a standard
trust-region method [23] for nonlinear optimization in MatLab. We yield a con-
tinuum of stationary states, the on-axis intensity profiles of which are depicted in
Fig. 3(a). We also supplement the propagation constant μ(t) of the solution rep-
resented by the orange curve in Fig. 3(a). The on-axis profiles feature the same
characteristic double-hump temporal structure as in the numerical simulations. A
similar analysis on time-dependent steady-state solutions was carried out earlier in
[27, 26], however, with no prediction on pulse break-up. The intensity distribution
in the (t, r) plane shown in Fig. 3(b) demonstrates that the plasma nonlinearity
acts to defocus the temporal slices around zero delay into a spatial ring as was
also observed in the simulations [cf. Figs. 2(a) and (c)]. In summary, evaluation of
stationary solutions of (1) provides remarkable accurate predictions for the on-axis
temporal profile and pulse breaking, occurring in a regime where plasma defocusing
balances Kerr self-focusing.
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4 Variational analysis of collapse saturation

Both, the numerical simulations as well as the stationary states calculated directly
from the NLSE confirm that the emerging double-hump intensity distributions are
defocused around zero delay. These time-slices actually contain the highest optical
energy. As the strength of Kerr self-focusing is related to the optical power rather
than intensity, this behaviour may be considered counterintuitive. In the following,
we scrutinize the position of the local minimum in the double hump structure.
This minimum is generally observed to occur when the competing nonlinear effects
balance each other at any instant. In a time-dependent variational approach [18, 28],
this condition gives rise to the nonlinear integral equation

0 = 1 − P (t)

Pcr
+ κP 2(t)

×
t∫

−∞

dt′
IN∗+1(t′)

P (t′)
1(

I(t) + N∗I(t′) P (t)
P (t′)

)2 (5)

for the on-axis intensity profile I(t) of the stationary state. A continuum of solutions
of (5) is shown in Fig. 4(a). Quite remarkably, these solutions are in good agreement
with the solutions derived directly from the NLSE, showing the characteristic double-
hump structure with a minimum around zero delay. In order to calculate the exact
position of the minimum we differentiate (5) with respect to the retarded time
variable t and subsequently set ∂/∂t I(t) = 0 in the resulting expression. This yields
the nonlinear integral equation

0 = Ġ(t)I2(t) +
κ

(1 + N∗)2

IN∗+1(t)

P (t)

− 2κN∗ Ṗ (t)

I(t)

t∫
−∞

dt′K[t, t′, I(t), I(t′)] (6)

with κ = k2
0N

∗σN∗ρnt/πρc and

G(t) =
1 − P (t)/Pcr

P 2(t)

and an integral kernel

K[t, t′, I(t), I(t′)] =
IN∗+2(t′)

P 2(t′)
(
1 + N∗ I(t′)P (t)

I(t)P (t′)

)3 ,

in which Pcr = λ2
0/(2πn0n2). The nonlinear integral equation (6) is basically a

generalization of a Volterra-Urysohn integral equation [29], with a kernel depending
not only on I(t′) but also on I(t). Combining a Clenshaw-Curtis quadrature scheme
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Figure 4: (a) On-axis intensity profile of steady state solutions calculated from a
variational approach according to Eq. (5). The solid red line represents a solution
to Eq. (6), indicating the position of the local minimum. (b) depicts the spatio-
temporal representation of the curve marked in orange.

for the integral term of (6) with a Chebyshev expansion of the unknown function
I(t) yields a set of nonlinear equations for the expansion coefficient [30], which are
solved utilizing standard algorithms for nonlinear optimization in Matlab [23]. The
solution of this equation is depicted by the solid red line in Fig. 4(a). Moving along
this line towards positive times, the local minimum of the solution appears more
pronounced.

This indicates that the pulse splitting mechanism works most effectively in the
vicinity of zero delay. Our analysis therefore explains the peculiarity of the split
preferentially occurring at the instant of maximum power inside the pulse. Although
the variational approach provides a good estimate on the exact on-axis temporal
profile of the steady states shown in Fig. 3(a), one can certainly not expect an
exact coincidence with the exact solutions, as the variational approach imposes a
fixed Gaussian radial shape of the pulse as shown in Fig. 4(b). In particular, the
simplifying assumption of a Gaussian spatial profile neglects the fact that plasma
defocusing actually gives rise to the formation of spatial rings. Nevertheless, our
analysis corroborates a tendency for self-pinching and pulse break-up.

5 Conclusions

Starting from an independently obtained observation of filamentary pulse-breakup
both in numerical simulations and experimental investigations, we investigated sta-
tionary states of the NLSE coupled to a noninstataneous plasma response. The
resulting solutions provide a remarkable prediction for the plasma-induced break-up
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scenario in the strongly ionized filament channel. The quality of the exact solutions
compares favorably to stationary solution obtained in [8] from a time dependent
variational approach. In particular, the position of the local minimum separating
the individual sub-pulses is directly obtained from a nonlinear integral equation.
Both, the exact and the variational approach of deriving stationary solutions to the
NLSE corroborates the temporal break-up observed in the numerical simulations and
the emergence of local minima of the intensity profile around zero delay. In sum-
mary, we conclude that when plasma defocusing saturates the optical breakdown,
our assumption of emerging steady state profiles offers deep insight on the dynam-
ical behavior and underlying mechanisms of a physical system that was previously
only accessible in detailed numerical simulations.
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