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Abstra
tWe 
onsider the third and fourth exterior boundary value problems of linear isotropi
elasti
ity and present uniqueness results for the 
orresponding inverse s
attering prob-lems with polyhedral-type obsta
les and a �nite number of in
ident plane elasti
 waves.Our approa
h is based on a re�e
tion prin
iple for the Navier equation.1 Introdu
tion and main resultsThe inverse s
attering problem of determining a bounded obsta
le by its far �eld pattern isfundamental for exploring bodies by a
ousti
, ele
tromagneti
 or elasti
 waves. Establishingthe uniqueness in this inverse problem by using the far �eld data from only one or, at most,�nitely many in
ident plane waves remains a 
hallenging open problem; see, e.g., [4℄, [8℄.Re
ent progress in this dire
tion was obtained in inverse a
ousti
 and ele
tromagneti
 s
at-tering by polyhedral s
atterers whi
h, in R3, are 
omposed of �nitely many solid polyhedraand subsets of two-dimensional planes; see [3℄, [2℄, [10℄, [6℄ for the Helmholtz equation and[11℄ for the Maxwell system. To date, there is no 
orresponding result for elasti
 wave s
at-tering, but we refer to [7℄ for uniqueness results with an in�nite number of in
ident elasti
waves in the 
ase of smooth obsta
les.It is the purpose of this paper to derive uniqueness results for polyhedral elasti
 s
attererswith �nitely many in
oming plane waves. We will fo
us on the fourth and third exteriorboundary value problems for the Navier equation where normal stress and tangential dis-pla
ement (resp. normal displa
ement and tangential stress) vanish on the boundary of theobsta
le; see [9, Chap. 1.14℄. Our approa
h exploits the above-mentioned developments ininverse a
ousti
 and ele
tromagneti
 s
attering for polyhedral s
atterers and 
ombines a re-�e
tion prin
iple for the Navier equation with a path argument. This te
hnique was �rstemployed in [2℄ for a
ousti
 s
attering by sound-soft polyhedral s
atterers and then modi�edand extended to the sound-hard 
ase [10℄, [6℄ and to ele
tromagneti
 s
attering [11℄.We will now state the dire
t and inverse elasti
 s
attering problems. Let D ⊂ R3 be as
atterer, i.e., a 
ompa
t set su
h that its exterior Dc = R3\D is 
onne
ted, and let ν denotethe unit normal ve
tor on its boundary ∂D dire
ted into Dc. The parameters λ, µ and ωare 
onstants su
h that
µ > 0 , λ + 2µ/3 > 0 , ω > 0 . (1.1)As usual, a · b denotes the s
alar produ
t and a× b denotes the ve
tor produ
t of a, b ∈ R3.The propagation of time harmoni
 elasti
 waves in Dc is governed by the Navier equation(or system)

(∆∗ + ω2)u = 0 in Dc , ∆∗ := µ∆ + (λ + µ) grad div , (1.2)where u denotes the displa
ement �eld. Any solution u of (1.2) 
an be de
omposed as
u = up + us , up := (−1/k2

p) grad div u , us := (1/k2
s) curl curl u , (1.3)1



where kp := ω/
√

2µ + λ, ks := ω/
√

µ are the 
ompressional and shear wave numbers respe
-tively. Moreover, up and us satisfy the ve
tor Helmholtz equations
(∆ + k2

p)up = 0 and (∆ + k2
s)us = 0 in Dc (1.4)respe
tively; note that curl curl = −∆+grad div . The tra
tion (or stress) operator on ∂Dis de�ned by

Tu := 2µ ∂νu + λ (div u) ν + µ ν × curl u . (1.5)We assume that a time harmoni
 plane elasti
 wave uin is in
ident on the s
atterer D, whi
htakes the general form
uin(x) = Ad exp(ikpd · x) + A1f1 exp(iksd · x) + A2f2 exp(iksd · x) , (1.6)where A, A1, A2 ∈ C, d, f1, f2 ∈ S2 = {x ∈ R3 : |x| = 1} and f1 · d = f2 · d = f1 · f2 = 0. Inparti
ular,

uin
p (x) = d exp(ikpd · x) (1.7)is 
alled an in
ident pressure wave, and

uj,in
s (x) = fj exp(iksd · x) , j = 1, 2 , f1 · d = f2 · d = f1 · f2 = 0 , (1.8)are in
ident shear waves propagating in dire
tion d.A solution u to (1.2) is 
alled radiating if it satis�es Kupradze's radiation 
ondition, i.e.

∂rup − ikpup = o(r−1) , ∂rus − iksus = o(r−1)uniformly in x̂ = x/r , as r = |x| → ∞ ,
(1.9)whi
h 
oin
ides with Sommerfeld's 
ondition for the 
ompressional and shear parts up and

us of u and the 
orresponding ve
tor Helmholtz equations (1.4); see [9, Chap. 3.2℄.Dire
t s
attering problem (DP): Given a s
atterer D ⊂ R3 and an in
ident �eld uin ofthe form (1.6), �nd the total �eld u = uin + usc in Dc, where the s
attered �eld usc satis�es(1.2) and 
ondition (1.9), and the total �eld u satis�es the boundary 
onditions of the fourthkind,
ν × u = 0 , ν · Tu = 0 on ∂D . (1.10)Dire
t problem (DP'): Repla
e the boundary 
onditions in (DP) by the boundary 
on-ditions of the third kind,
ν · u = 0 , ν × Tu = 0 on ∂D . (1.11)We refer to the monograph [9℄ for a 
omprehensive treatment of the basi
 boundary valueproblems of elasti
ity, in
luding the boundary 
onditions of the third and fourth kinds. Itis well known [9, Chap. 3.6℄ that the problems (DP) and (DP') admit at most one solution

u ∈ H1
loc(D)3, and a standard method to prove existen
e for s
atterers with C2 boundaries isthe integral equation method (see [9, Chap. 7.3℄). Using the method of limiting absorption,the existen
e of solutions 
an be proved if the exterior domain Dc satis�es the 
one 
ondition;see [12, Chap. 4℄ for the 
ase of the exterior Neumann problem for the Helmholtz equation,and we refer to [1, Chap. 4℄ for a ni
e a

ount of the 
one 
ondition and its relation to othergeometri
 properties of domains. Thus, in parti
ular, the unique solvability of the s
atteringproblems (DP) and (DP') holds within the 
lass of polyhedral s
atterers whi
h are de�nedas follows. 2



De�nition 1 A s
atterer D ⊂ R3 is 
alled a polyhedral s
atterer if its boundary ∂D is a�nite union of 
ells. Here a 
ell is de�ned as the 
losure of an open 
onne
ted subset of atwo-dimensional plane.Note that in general a polyhedral s
atterer 
onsists of �nitely many solid polyhedra andplanar sets.To state our inverse problems, we have to introdu
e the far �eld pattern of the s
attered�eld usc appearing in (DP) or (DP'). It is well known [9℄, [7℄ that the radiating solution uscto the Navier equation has an asymptoti
 behaviour of the form
usc(x) = r−1 exp(ikpr) u∞

p (x̂) x̂ + r−1 exp(iksr) u∞
s (x̂) + o(r−1)as r → ∞ , with x̂ · u∞

s (x̂) = 0 ∀x̂ ∈ S
2 ,

(1.12)uniformly in all dire
tions x̂. Here u∞
p is a uniquely determined s
alar fun
tion, and u∞

s is auniquely determined ve
tor fun
tion. Note that, in analogy to (1.3), we have usc = usc
p + usc

swhere usc
s is a divergen
e free and radiating solution to a ve
tor Helmholtz equation, while

usc
p is the gradient of a radiating solution of a s
alar Helmholtz equation.De�nition 2 The far �eld pattern of the s
attered �eld usc is given by

u∞(x̂) := u∞
p (x̂) x̂ + u∞

s (x̂) , x̂ ∈ S
2 . (1.13)Inverse s
attering problem (IP) resp. (IP'): From the knowledge of the far �eldpattern u∞(x̂), x̂ ∈ S2, of usc = u − uin for one or several in
ident waves uin of �xedin
iden
e dire
tion d, determine the shape of the s
atterer.The aim of this paper is to prove the following uniqueness results within the 
lass of poly-hedral s
atterers.Theorem 1 Let the parameters λ, µ, ω and the in
iden
e dire
tion d be �xed. Then, inthe inverse problem (IP), we have uniqueness within the 
lass of polyhedral s
atterers witha single in
ident pressure wave of dire
tion d. For the inverse problem (IP'), a polyhedrals
atterer is uniquely determined by the far �eld patterns for two linearly independent in
identshear waves of dire
tion d.In the �nal se
tion 3 we will mainly deal with the proof for (IP) and then sket
h the 
or-responding modi�
ations in the 
ase of (IP'). Our proof is essentially based on a re�e
tionprin
iple for the Navier equation that will be established in se
tion 2. Unfortunately, su
han approa
h seems to be impossible in the 
ase of the physi
ally more relevant boundary
onditions of the �rst or se
ond kind, whi
h 
orrespond to a 
lamped or free boundary ofthe elasti
 obsta
le.2 Re�e
tion prin
iple for the Navier equationLet D ⊂ R3 be a s
atterer, and let u be a solution to (1.2) whi
h is real-analyti
 in Dc. Forthe proof of our uniqueness result, the notion of a �at set of the displa
ement �eld u is ofimportan
e (
f. also [10℄, [6℄, [11℄ for a
ousti
 and ele
tromagneti
 s
attering).3



De�nition 3 Let Π be a two-dimensional plane in R3 with unit normal νΠ. A non-voidopen 
onne
ted 
omponent π of Π ∩ Dc will be 
alled a �at set of u if
νΠ × u = 0 and νΠ · Tu = 0 on π , (2.1)where T is the tra
tion operator de�ned in (1.5).Let R = RΠ denote the re�e
tion with respe
t to Π in R

3. We are now ready to state there�e
tion prin
iple. Note that this result is already impli
itly 
ontained in [9, Chap. 14,Thm. 3.2℄ (where a 
ontinuation formula at a planar boundary is given), but we prefer topresent an independent proof here.Theorem 2 Let π1 be a �at set of u di�erent from π ⊂ Π, and let G ⊂ Dc be a domainsu
h that R(G) = G and π ∪ π1 ⊂ G. Then the re�e
tion R(π1) of π1 with respe
t to Π isalso a �at set of u.Proof. Step 1. Let �rst Π = {x3 = 0}, and let π ⊂ Π be a �at set of u, i.e., its 
omponents
uj (j = 1, 2, 3) satisfy

u1 = u2 = 0 , ∂3u3 = 0 on π , (2.2)sin
e ν = νΠ = (0, 0, 1) , ν × u = (−u2, u1, 0), and
ν · Tu = 2µ ν · ∂νu + λ div u = 2µ ∂3u3 + λ(∂1u1 + ∂2u2 + ∂3u3) = 0 ,implying (λ + 2µ) ∂3u3 = 0, hen
e ∂3u3 = 0 on π (
ompare (1.1)). Then, in the domain Gwhi
h is symmetri
 with respe
t to {x3 = 0}, u1 and u2 must be odd symmetri
 in x3, and

u3 must be even symmetri
 in x3. Indeed, the fun
tion v with the 
omponents
vj(x) := −uj(x1, x2,−x3) = −uj(Rx) , j = 1, 2 , v3 := u3(x1, x2,−x3) = u3(Rx)satis�es equation (1.2) in G, and by (2.2) it has the same Cau
hy data on π as the fun
tion

u, so that u = v in G.Now let π1 ⊂ Π1 be another �at set of u in G, and let ν1 be a unit normal of the plane Π1.Sin
e Rν1 = νR(Π1) (by 
hoosing the dire
tions of the normals suitably) and (x1, x2,−x3) ∈
R(π1) for any (x1, x2, x3) ∈ π1, it is easy to 
he
k that the relations

ν1 × u = 0 , ν1 · Tu = 2µν1 · ∂ν1
u + λ div u = 0 on π1imply, on using the symmetry properties of uj (j = 1, 2, 3),

νR(Π1) × u|R(Π1) = −ν1 × u|π1
= 0 , νR(Π1) · Tu|R(Π1) = −ν1 · Tu|π1

= 0 ,hen
e R(Π1) is a �at set of u.Step 2. Assume now that the plane Π with normal ν 
ontains the origin. Let U ∈ R3×3 bea rotation matrix su
h that x∗ = U−1x = U tx , x ∈ R3, maps the plane Π onto the plane
Π∗ = {x∗

3 = 0} with normal ν∗ = U−1ν = (0, 0, 1). Then we 
an redu
e the proof to the 
ase
onsidered in step 1. With the solution u of the Navier equation (1.2) in G satisfying theboundary 
onditions (2.1) on π ⊂ Π and π1 ⊂ Π1, we asso
iate the fun
tion
u∗(x∗) := U−1u(Ux∗) , x∗ ∈ π∗ = U−1(π) ⊂ Π∗ .4



From x = Ux∗ and the relations
∇x∗ = U−1∇x , ∇x∗ · u∗(x∗) = U−1∇x · U−1u(x) = ∇x · u(x)we obtain

(∆∗
x∗ + ω2) u∗(x∗) = U−1(∆∗

x + ω2) u(x) , (2.3)
ν∗ × u∗(x∗) = U−1ν × U−1u(x) = U−1(ν × u(x)) ,

ν∗ · Tx∗u∗(x∗) = U−1ν · U−1Txu(x) = ν · Txu(x)
(2.4)sin
e

∆x∗ = ∇x∗ · ∇x∗ = ∆x , ∇x∗(∇x∗ · u∗(x∗)) = U−1∇x(∇x · u(x))

Tx∗u∗(x∗) = 2µ (ν∗ · ∇x∗) u∗(x∗) + λ ν∗∇x∗ · u∗(x∗) + µ ν∗ ×∇x∗ × u∗(x∗)

= 2µ U−1(ν · ∇x) u(x) + λ U−1ν ∇x · u(x) + µ U−1ν × U−1 (∇x × u(x))

= U−1Txu(x) .Here we have also used the relation U(a × b) = Ua × Ub for arbitrary ve
tors a, b and anyorthogonal matrix U . Then, by (2.3) and (2.4), u∗ satis�es the homogeneous Navier equationinG∗ = U−1(G) and the boundary 
onditions (2.1) on π∗ and π∗
1 = U−1(π1) ⊂ Π∗

1 = U−1(Π1).By step 1, the re�e
tion R∗(π∗
1) of π∗

1 with respe
t to Π∗ is also a �at set of u∗, i.e.,
νR∗(Π∗

1
) × u∗(x∗) = 0 , νR∗(Π∗

1
) · Tx∗u∗(x∗) = 0 , x∗ ∈ R∗(π∗

1) . (2.5)Finally, noting that
R∗(Π∗

1) = R∗(U−1(Π1)) = U−1(R(Π1)) , νU−1(R(Π1)) = U−1νR(Π1)and using the relations (2.4), we see from (2.5) that
U−1(νR(Π1) × u) = 0 , νR(Π1) · Tu = 0 on R(π1) ,i.e., R(π1) is also a �at set of u.Step 3. In the 
ase of a plane Π not passing the origin, we obtain the result from step 2 byusing the fa
t that the operators ∆∗ and T are invariant with respe
t to translations in R3.This �nishes the proof in the general 
ase. �Remark 1 Theorem 2 
arries over to the boundary 
onditions (1.11) of the third kind if werepla
e the 
onditions (2.1) in the de�nition of a �at set π ⊂ Π by

νΠ · u = 0 and νΠ × Tu = 0 on π . (2.6)The proof is analogous to that of Theorem 2; see also [9, Chap. 14, Thm. 3.3℄. Note that, inthe spe
ial 
ase Π = {x3 = 0}, we have to apply even re�e
tion (with respe
t to Π) for the�rst two 
omponents of u and odd re�e
tion for the third 
omponent.
5



3 Proof of Theorem 1Let D be a polyhedral s
atterer in the sense of De�nition 1, and assume that a pressure wave
uin

p of dire
tion d ∈ S2 (see (1.7)) is in
ident on D. Let u = uin
p + usc ∈ H1

loc(D
c)3 be thesolution of the dire
t problem (DP), and let u∞ be the far �eld pattern of the s
attered �eld

usc (see (1.13)). To prove the Theorem 1 in this 
ase, we use path and re�e
tion arguments�rst developed in [2℄ for the Helmholtz equation and later modi�ed in [10℄, [6℄. Here wefollow [6, Se
t. 3.1℄ in spirit, but employ the re�e
tion prin
iple of Theorem 2.Step 1: existen
e of a �at set of the displa
ement �eldAssume 
ontrarily that there is another polyhedral obsta
le D1 6= D su
h that the far �eldpattern of u1 − uin
p 
oin
ides with u∞ on S2, where u1 is the solution of problem (DP) for

D1. Then we have (see, e.g., [7℄)
u1 = u in the unbounded 
onne
ted 
omponent Ω of R

n\(D ∪ D1) . (3.1)Moreover, sin
e Dc and Dc
1 are 
onne
ted, we obtain (see [5℄, [10℄ for the details) ∂Ω 6⊂ D∩D1and 
an assume without loss of generality that

S := (∂D1\D) ∩ ∂Ω 6= ∅ .. (3.2)It follows from (3.1) and (3.2) that there exists a 
ell F ⊂ S su
h that 
ondition (1.10) issatis�ed on F . Denoting by Π the plane (with normal ν) 
ontaining F and by int(F ) theinterior of the set F , we �nd a �at set π of u su
h that int(F ) ⊂ π ⊂ Π.Next we verify that π must be bounded. Note that the s
attered �eld usc satis�es
lim

|x|→∞
{|usc(x)| + |∇usc(x)|} = 0 . (3.3)This follows from the de
omposition usc = usc

p + usc
s (see (1.3)) and the fa
t that bothterms usc

p and usc
s satisfy relation (3.3) as radiating solutions of the 
orresponding Helmholtzequations (1.4) (see [3℄, [10℄). If π were unbounded, then 
ondition (1.10) on π and (3.3)would imply that
ν × uin

p → 0 , ν · Tuin
p → 0 , as |x| → ∞ on Π . (3.4)From the �rst relation of (3.4) and (1.7), we obtain ν × d = 0, hen
e ν = ±d. From these
ond relation, we then have (2µ + λ)kp = 0 sin
e

ν · Tuin
p = 2µ ν · ∂νu

in
p + λ div uin

p + µ ν · (ν × curl uin
p )

= {2µ (ν · d)2 + λ|d|2} ikp exp(ikpd · x) .Hen
e kp = 0 whi
h is a 
ontradi
tion proving the boundedness of any �at set of u.Step 2: path argumentChoose a point P ∈ int(F ) and a 
ontinuous and inje
tive path γ(t), t ≥ 0, starting at
P = γ(0) and leading to in�nity in the 
onne
ted set Ω. Let M be the set of interse
tionpoints of γ with all �at sets of u. By Step 1, M 6= ∅. Furthermore, M is bounded sin
e a�at set of u outside a su�
iently large ball would be unbounded. (Note that ∂D is bounded,and u is real-analyti
 in Dc.) 6



Moreover, the set M is also 
losed, hen
e 
ompa
t. Let {xn} be a sequen
e of interse
tionpoints of �at sets πn, xn ∈ πn, with the path γ, and su
h that xn 
onverges to a point x0 ∈ γ.Choosing a unit normal νn to πn and passing to a 
onvergent subsequen
e νn → ν0, one 
annow prove that the plane Π0 through x0 with unit normal ν0 
ontains a �at set π0 of u su
hthat x0 ∈ π0; see the arguments in the proof of [10, Lemma 2℄.Thus there exists t∗ ≥ 0 su
h that no �at set of u 
an interse
t γ(t) for t > t∗. Let π∗ ⊂ Π∗be a �at set passing γ(t∗) and lying on a plane Π∗.Step 3: re�e
tion argument and �nal 
ontradi
tionFollowing the argument of [2, Lemma 3.7℄, we now apply the re�e
tion prin
iple of Theorem 2to prove the existen
e of a �at set π′ interse
ting γ(t) at some t′ > t∗ whi
h is a 
ontradi
tion.Let R denote the re�e
tion with respe
t to the plane Π∗, and 
hoose x+ = γ(t∗ + ε) for
ε > 0 su�
iently small and x− = R(x+). Let G± be the 
onne
ted 
omponent of Dc\π∗
ontaining x±, and denote by E± the 
onne
ted 
omponent of G± ∩ R(G∓) 
ontaining x±.Setting E = E+ ∪ π∗ ∪ E−, we observe that E is a 
onne
ted open set whose boundary
onsists of 
ells of ∂D and R(∂D). Then, by Theorem 2, u satis�es the boundary 
onditions(1.10) on ∂E and E ∩ Π∗. Moreover, E is bounded sin
e otherwise Π∗ would 
ontain anunbounded �at set of u.Hen
e, γ(t) must interse
t ∂E at some t′ > t∗, so that there exists a �at set π′ passing γ(t′).This 
ontradi
tion �nishes the proof of the theorem in the 
ase of the inverse problem (IP).
�We now dis
uss the ne
essary modi�
ations in the above proof for the inverse problem (IP')
orresponding to the third exterior boundary value problem (DP') for the Navier equation.Assume that the two (linearly independent) shear waves uj,in

s , j = 1, 2, of dire
tion d (see(1.8)) are in
ident on a polyhedral s
atterer D. Let uj ∈ H1
loc(D

c)3 be the solution of thedire
t problem (DP') with in
ident plane wave uj,in
s .De�nition 4 Let Π be a two-dimensional plane in R3 with unit normal ν. A non-void open
onne
ted 
omponent π of Π ∩ Dc is 
alled a �at set of (u1, u2) if

ν · uj = 0 and ν × Tuj = 0 on π , j = 1 , 2 . (3.5)Then the re�e
tion prin
iple of Remark 1 
arries over to this 
ase. To prove Theorem 1 forproblem (IP') by repeating the above arguments in steps 1-3, it is su�
ient to prove theboundedness of a �at set of (u1, u2). To do so, it is enough to verify that, for an unbounded�at set π, the relations
ν · uj,in

s → 0 , ν × Tuj,in
s → 0 , as |x| → ∞ on π , j = 1 , 2 , (3.6)lead to a 
ontradi
tion. Note that (3.6) follows from (3.3) and (3.5), and (1.8) and the �rstrelations of (3.6) imply ν ·fj = 0, j = 1, 2, hen
e ν = ±d. Together with the se
ond relationsof (3.6), we then obtain µ ks = 0 whi
h is impossible. Note that, on π,

ν × Tu = 2µ ν × ∂νu + µ ν × (ν × curl u) ,and thus, using d · fj = 0, j = 1, 2,
ν × ∂νu

j,in
s = iks (ν × fj) (ν · d) exp(iksd · x) = iks (d × fj) exp(iksd · x) ,

ν × (ν × curl uj,in
s ) = iks d × (d × (d × fj)) exp(iksd · x) = −iks (d × fj) exp(iksd · x) .7



Remark 2 Unfortunately, our approa
h does not give the uniqueness in (IP') with onlyone in
ident shear wave. Note that then the boundedness of a 
orresponding �at set of thedispla
ement �eld u 
annot be proved in general. Of 
ourse, the uniqueness in (IP') with onein
ident shear wave holds in the 
ase of two-dimensional elasti
ity.Remark 3 In both inverse problems (IP) and (IP'), we 
an prove the uniqueness within themore restri
tive 
lass of polyhedral obsta
les with a single in
ident plane elasti
 wave of thegeneral form (1.6). Here a polyhedral s
atterer is 
alled a polyhedral obsta
le if it 
onsistsof �nitely many solid polyhedra only. In this 
ase, following the approa
h of [6℄, we have toallow unbounded �at sets of the displa
ement �eld and need to show that their number mustbe �nite; see [6, Lemma 2℄ for a
ousti
 s
attering. Then the arguments of [6, Se
t. 3.2℄ implythe desired uniqueness results. The details will be presented in a future paper.A
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