
Weierstraÿ-Institutfür Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 � 8633
Uniqueness in inverse elasti sattering with �nitelymany inident wavesJohannes Elshner1, Masahiro Yamamoto2

1 Weierstrass Institutefor Applied Analysis and StohastisMohrenstr. 3910117 BerlinGermanyE-Mail: elshner�wias-berlin.de
2 The University of TokyoDepartment of Mathematial Sienes3�8�1 Komaba MeguroTokyo 153JapanE-Mail: myama�ms.u-tokyo.a.jp

No. 1449Berlin 2009

2000 Mathematis Subjet Classi�ation. 35R30, 35B60.Key words and phrases. Inverse sattering problem, uniqueness, elasti waves, polyhedral obstale.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Stohastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



AbstratWe onsider the third and fourth exterior boundary value problems of linear isotropielastiity and present uniqueness results for the orresponding inverse sattering prob-lems with polyhedral-type obstales and a �nite number of inident plane elasti waves.Our approah is based on a re�etion priniple for the Navier equation.1 Introdution and main resultsThe inverse sattering problem of determining a bounded obstale by its far �eld pattern isfundamental for exploring bodies by aousti, eletromagneti or elasti waves. Establishingthe uniqueness in this inverse problem by using the far �eld data from only one or, at most,�nitely many inident plane waves remains a hallenging open problem; see, e.g., [4℄, [8℄.Reent progress in this diretion was obtained in inverse aousti and eletromagneti sat-tering by polyhedral satterers whih, in R3, are omposed of �nitely many solid polyhedraand subsets of two-dimensional planes; see [3℄, [2℄, [10℄, [6℄ for the Helmholtz equation and[11℄ for the Maxwell system. To date, there is no orresponding result for elasti wave sat-tering, but we refer to [7℄ for uniqueness results with an in�nite number of inident elastiwaves in the ase of smooth obstales.It is the purpose of this paper to derive uniqueness results for polyhedral elasti sattererswith �nitely many inoming plane waves. We will fous on the fourth and third exteriorboundary value problems for the Navier equation where normal stress and tangential dis-plaement (resp. normal displaement and tangential stress) vanish on the boundary of theobstale; see [9, Chap. 1.14℄. Our approah exploits the above-mentioned developments ininverse aousti and eletromagneti sattering for polyhedral satterers and ombines a re-�etion priniple for the Navier equation with a path argument. This tehnique was �rstemployed in [2℄ for aousti sattering by sound-soft polyhedral satterers and then modi�edand extended to the sound-hard ase [10℄, [6℄ and to eletromagneti sattering [11℄.We will now state the diret and inverse elasti sattering problems. Let D ⊂ R3 be asatterer, i.e., a ompat set suh that its exterior Dc = R3\D is onneted, and let ν denotethe unit normal vetor on its boundary ∂D direted into Dc. The parameters λ, µ and ωare onstants suh that
µ > 0 , λ + 2µ/3 > 0 , ω > 0 . (1.1)As usual, a · b denotes the salar produt and a× b denotes the vetor produt of a, b ∈ R3.The propagation of time harmoni elasti waves in Dc is governed by the Navier equation(or system)

(∆∗ + ω2)u = 0 in Dc , ∆∗ := µ∆ + (λ + µ) grad div , (1.2)where u denotes the displaement �eld. Any solution u of (1.2) an be deomposed as
u = up + us , up := (−1/k2

p) grad div u , us := (1/k2
s) curl curl u , (1.3)1



where kp := ω/
√

2µ + λ, ks := ω/
√

µ are the ompressional and shear wave numbers respe-tively. Moreover, up and us satisfy the vetor Helmholtz equations
(∆ + k2

p)up = 0 and (∆ + k2
s)us = 0 in Dc (1.4)respetively; note that curl curl = −∆+grad div . The tration (or stress) operator on ∂Dis de�ned by

Tu := 2µ ∂νu + λ (div u) ν + µ ν × curl u . (1.5)We assume that a time harmoni plane elasti wave uin is inident on the satterer D, whihtakes the general form
uin(x) = Ad exp(ikpd · x) + A1f1 exp(iksd · x) + A2f2 exp(iksd · x) , (1.6)where A, A1, A2 ∈ C, d, f1, f2 ∈ S2 = {x ∈ R3 : |x| = 1} and f1 · d = f2 · d = f1 · f2 = 0. Inpartiular,

uin
p (x) = d exp(ikpd · x) (1.7)is alled an inident pressure wave, and

uj,in
s (x) = fj exp(iksd · x) , j = 1, 2 , f1 · d = f2 · d = f1 · f2 = 0 , (1.8)are inident shear waves propagating in diretion d.A solution u to (1.2) is alled radiating if it satis�es Kupradze's radiation ondition, i.e.

∂rup − ikpup = o(r−1) , ∂rus − iksus = o(r−1)uniformly in x̂ = x/r , as r = |x| → ∞ ,
(1.9)whih oinides with Sommerfeld's ondition for the ompressional and shear parts up and

us of u and the orresponding vetor Helmholtz equations (1.4); see [9, Chap. 3.2℄.Diret sattering problem (DP): Given a satterer D ⊂ R3 and an inident �eld uin ofthe form (1.6), �nd the total �eld u = uin + usc in Dc, where the sattered �eld usc satis�es(1.2) and ondition (1.9), and the total �eld u satis�es the boundary onditions of the fourthkind,
ν × u = 0 , ν · Tu = 0 on ∂D . (1.10)Diret problem (DP'): Replae the boundary onditions in (DP) by the boundary on-ditions of the third kind,
ν · u = 0 , ν × Tu = 0 on ∂D . (1.11)We refer to the monograph [9℄ for a omprehensive treatment of the basi boundary valueproblems of elastiity, inluding the boundary onditions of the third and fourth kinds. Itis well known [9, Chap. 3.6℄ that the problems (DP) and (DP') admit at most one solution

u ∈ H1
loc(D)3, and a standard method to prove existene for satterers with C2 boundaries isthe integral equation method (see [9, Chap. 7.3℄). Using the method of limiting absorption,the existene of solutions an be proved if the exterior domain Dc satis�es the one ondition;see [12, Chap. 4℄ for the ase of the exterior Neumann problem for the Helmholtz equation,and we refer to [1, Chap. 4℄ for a nie aount of the one ondition and its relation to othergeometri properties of domains. Thus, in partiular, the unique solvability of the satteringproblems (DP) and (DP') holds within the lass of polyhedral satterers whih are de�nedas follows. 2



De�nition 1 A satterer D ⊂ R3 is alled a polyhedral satterer if its boundary ∂D is a�nite union of ells. Here a ell is de�ned as the losure of an open onneted subset of atwo-dimensional plane.Note that in general a polyhedral satterer onsists of �nitely many solid polyhedra andplanar sets.To state our inverse problems, we have to introdue the far �eld pattern of the sattered�eld usc appearing in (DP) or (DP'). It is well known [9℄, [7℄ that the radiating solution uscto the Navier equation has an asymptoti behaviour of the form
usc(x) = r−1 exp(ikpr) u∞

p (x̂) x̂ + r−1 exp(iksr) u∞
s (x̂) + o(r−1)as r → ∞ , with x̂ · u∞

s (x̂) = 0 ∀x̂ ∈ S
2 ,

(1.12)uniformly in all diretions x̂. Here u∞
p is a uniquely determined salar funtion, and u∞

s is auniquely determined vetor funtion. Note that, in analogy to (1.3), we have usc = usc
p + usc

swhere usc
s is a divergene free and radiating solution to a vetor Helmholtz equation, while

usc
p is the gradient of a radiating solution of a salar Helmholtz equation.De�nition 2 The far �eld pattern of the sattered �eld usc is given by

u∞(x̂) := u∞
p (x̂) x̂ + u∞

s (x̂) , x̂ ∈ S
2 . (1.13)Inverse sattering problem (IP) resp. (IP'): From the knowledge of the far �eldpattern u∞(x̂), x̂ ∈ S2, of usc = u − uin for one or several inident waves uin of �xedinidene diretion d, determine the shape of the satterer.The aim of this paper is to prove the following uniqueness results within the lass of poly-hedral satterers.Theorem 1 Let the parameters λ, µ, ω and the inidene diretion d be �xed. Then, inthe inverse problem (IP), we have uniqueness within the lass of polyhedral satterers witha single inident pressure wave of diretion d. For the inverse problem (IP'), a polyhedralsatterer is uniquely determined by the far �eld patterns for two linearly independent inidentshear waves of diretion d.In the �nal setion 3 we will mainly deal with the proof for (IP) and then sketh the or-responding modi�ations in the ase of (IP'). Our proof is essentially based on a re�etionpriniple for the Navier equation that will be established in setion 2. Unfortunately, suhan approah seems to be impossible in the ase of the physially more relevant boundaryonditions of the �rst or seond kind, whih orrespond to a lamped or free boundary ofthe elasti obstale.2 Re�etion priniple for the Navier equationLet D ⊂ R3 be a satterer, and let u be a solution to (1.2) whih is real-analyti in Dc. Forthe proof of our uniqueness result, the notion of a �at set of the displaement �eld u is ofimportane (f. also [10℄, [6℄, [11℄ for aousti and eletromagneti sattering).3



De�nition 3 Let Π be a two-dimensional plane in R3 with unit normal νΠ. A non-voidopen onneted omponent π of Π ∩ Dc will be alled a �at set of u if
νΠ × u = 0 and νΠ · Tu = 0 on π , (2.1)where T is the tration operator de�ned in (1.5).Let R = RΠ denote the re�etion with respet to Π in R

3. We are now ready to state there�etion priniple. Note that this result is already impliitly ontained in [9, Chap. 14,Thm. 3.2℄ (where a ontinuation formula at a planar boundary is given), but we prefer topresent an independent proof here.Theorem 2 Let π1 be a �at set of u di�erent from π ⊂ Π, and let G ⊂ Dc be a domainsuh that R(G) = G and π ∪ π1 ⊂ G. Then the re�etion R(π1) of π1 with respet to Π isalso a �at set of u.Proof. Step 1. Let �rst Π = {x3 = 0}, and let π ⊂ Π be a �at set of u, i.e., its omponents
uj (j = 1, 2, 3) satisfy

u1 = u2 = 0 , ∂3u3 = 0 on π , (2.2)sine ν = νΠ = (0, 0, 1) , ν × u = (−u2, u1, 0), and
ν · Tu = 2µ ν · ∂νu + λ div u = 2µ ∂3u3 + λ(∂1u1 + ∂2u2 + ∂3u3) = 0 ,implying (λ + 2µ) ∂3u3 = 0, hene ∂3u3 = 0 on π (ompare (1.1)). Then, in the domain Gwhih is symmetri with respet to {x3 = 0}, u1 and u2 must be odd symmetri in x3, and

u3 must be even symmetri in x3. Indeed, the funtion v with the omponents
vj(x) := −uj(x1, x2,−x3) = −uj(Rx) , j = 1, 2 , v3 := u3(x1, x2,−x3) = u3(Rx)satis�es equation (1.2) in G, and by (2.2) it has the same Cauhy data on π as the funtion

u, so that u = v in G.Now let π1 ⊂ Π1 be another �at set of u in G, and let ν1 be a unit normal of the plane Π1.Sine Rν1 = νR(Π1) (by hoosing the diretions of the normals suitably) and (x1, x2,−x3) ∈
R(π1) for any (x1, x2, x3) ∈ π1, it is easy to hek that the relations

ν1 × u = 0 , ν1 · Tu = 2µν1 · ∂ν1
u + λ div u = 0 on π1imply, on using the symmetry properties of uj (j = 1, 2, 3),

νR(Π1) × u|R(Π1) = −ν1 × u|π1
= 0 , νR(Π1) · Tu|R(Π1) = −ν1 · Tu|π1

= 0 ,hene R(Π1) is a �at set of u.Step 2. Assume now that the plane Π with normal ν ontains the origin. Let U ∈ R3×3 bea rotation matrix suh that x∗ = U−1x = U tx , x ∈ R3, maps the plane Π onto the plane
Π∗ = {x∗

3 = 0} with normal ν∗ = U−1ν = (0, 0, 1). Then we an redue the proof to the aseonsidered in step 1. With the solution u of the Navier equation (1.2) in G satisfying theboundary onditions (2.1) on π ⊂ Π and π1 ⊂ Π1, we assoiate the funtion
u∗(x∗) := U−1u(Ux∗) , x∗ ∈ π∗ = U−1(π) ⊂ Π∗ .4



From x = Ux∗ and the relations
∇x∗ = U−1∇x , ∇x∗ · u∗(x∗) = U−1∇x · U−1u(x) = ∇x · u(x)we obtain

(∆∗
x∗ + ω2) u∗(x∗) = U−1(∆∗

x + ω2) u(x) , (2.3)
ν∗ × u∗(x∗) = U−1ν × U−1u(x) = U−1(ν × u(x)) ,

ν∗ · Tx∗u∗(x∗) = U−1ν · U−1Txu(x) = ν · Txu(x)
(2.4)sine

∆x∗ = ∇x∗ · ∇x∗ = ∆x , ∇x∗(∇x∗ · u∗(x∗)) = U−1∇x(∇x · u(x))

Tx∗u∗(x∗) = 2µ (ν∗ · ∇x∗) u∗(x∗) + λ ν∗∇x∗ · u∗(x∗) + µ ν∗ ×∇x∗ × u∗(x∗)

= 2µ U−1(ν · ∇x) u(x) + λ U−1ν ∇x · u(x) + µ U−1ν × U−1 (∇x × u(x))

= U−1Txu(x) .Here we have also used the relation U(a × b) = Ua × Ub for arbitrary vetors a, b and anyorthogonal matrix U . Then, by (2.3) and (2.4), u∗ satis�es the homogeneous Navier equationinG∗ = U−1(G) and the boundary onditions (2.1) on π∗ and π∗
1 = U−1(π1) ⊂ Π∗

1 = U−1(Π1).By step 1, the re�etion R∗(π∗
1) of π∗

1 with respet to Π∗ is also a �at set of u∗, i.e.,
νR∗(Π∗

1
) × u∗(x∗) = 0 , νR∗(Π∗

1
) · Tx∗u∗(x∗) = 0 , x∗ ∈ R∗(π∗

1) . (2.5)Finally, noting that
R∗(Π∗

1) = R∗(U−1(Π1)) = U−1(R(Π1)) , νU−1(R(Π1)) = U−1νR(Π1)and using the relations (2.4), we see from (2.5) that
U−1(νR(Π1) × u) = 0 , νR(Π1) · Tu = 0 on R(π1) ,i.e., R(π1) is also a �at set of u.Step 3. In the ase of a plane Π not passing the origin, we obtain the result from step 2 byusing the fat that the operators ∆∗ and T are invariant with respet to translations in R3.This �nishes the proof in the general ase. �Remark 1 Theorem 2 arries over to the boundary onditions (1.11) of the third kind if wereplae the onditions (2.1) in the de�nition of a �at set π ⊂ Π by

νΠ · u = 0 and νΠ × Tu = 0 on π . (2.6)The proof is analogous to that of Theorem 2; see also [9, Chap. 14, Thm. 3.3℄. Note that, inthe speial ase Π = {x3 = 0}, we have to apply even re�etion (with respet to Π) for the�rst two omponents of u and odd re�etion for the third omponent.
5



3 Proof of Theorem 1Let D be a polyhedral satterer in the sense of De�nition 1, and assume that a pressure wave
uin

p of diretion d ∈ S2 (see (1.7)) is inident on D. Let u = uin
p + usc ∈ H1

loc(D
c)3 be thesolution of the diret problem (DP), and let u∞ be the far �eld pattern of the sattered �eld

usc (see (1.13)). To prove the Theorem 1 in this ase, we use path and re�etion arguments�rst developed in [2℄ for the Helmholtz equation and later modi�ed in [10℄, [6℄. Here wefollow [6, Set. 3.1℄ in spirit, but employ the re�etion priniple of Theorem 2.Step 1: existene of a �at set of the displaement �eldAssume ontrarily that there is another polyhedral obstale D1 6= D suh that the far �eldpattern of u1 − uin
p oinides with u∞ on S2, where u1 is the solution of problem (DP) for

D1. Then we have (see, e.g., [7℄)
u1 = u in the unbounded onneted omponent Ω of R

n\(D ∪ D1) . (3.1)Moreover, sine Dc and Dc
1 are onneted, we obtain (see [5℄, [10℄ for the details) ∂Ω 6⊂ D∩D1and an assume without loss of generality that

S := (∂D1\D) ∩ ∂Ω 6= ∅ .. (3.2)It follows from (3.1) and (3.2) that there exists a ell F ⊂ S suh that ondition (1.10) issatis�ed on F . Denoting by Π the plane (with normal ν) ontaining F and by int(F ) theinterior of the set F , we �nd a �at set π of u suh that int(F ) ⊂ π ⊂ Π.Next we verify that π must be bounded. Note that the sattered �eld usc satis�es
lim

|x|→∞
{|usc(x)| + |∇usc(x)|} = 0 . (3.3)This follows from the deomposition usc = usc

p + usc
s (see (1.3)) and the fat that bothterms usc

p and usc
s satisfy relation (3.3) as radiating solutions of the orresponding Helmholtzequations (1.4) (see [3℄, [10℄). If π were unbounded, then ondition (1.10) on π and (3.3)would imply that
ν × uin

p → 0 , ν · Tuin
p → 0 , as |x| → ∞ on Π . (3.4)From the �rst relation of (3.4) and (1.7), we obtain ν × d = 0, hene ν = ±d. From theseond relation, we then have (2µ + λ)kp = 0 sine

ν · Tuin
p = 2µ ν · ∂νu

in
p + λ div uin

p + µ ν · (ν × curl uin
p )

= {2µ (ν · d)2 + λ|d|2} ikp exp(ikpd · x) .Hene kp = 0 whih is a ontradition proving the boundedness of any �at set of u.Step 2: path argumentChoose a point P ∈ int(F ) and a ontinuous and injetive path γ(t), t ≥ 0, starting at
P = γ(0) and leading to in�nity in the onneted set Ω. Let M be the set of intersetionpoints of γ with all �at sets of u. By Step 1, M 6= ∅. Furthermore, M is bounded sine a�at set of u outside a su�iently large ball would be unbounded. (Note that ∂D is bounded,and u is real-analyti in Dc.) 6



Moreover, the set M is also losed, hene ompat. Let {xn} be a sequene of intersetionpoints of �at sets πn, xn ∈ πn, with the path γ, and suh that xn onverges to a point x0 ∈ γ.Choosing a unit normal νn to πn and passing to a onvergent subsequene νn → ν0, one annow prove that the plane Π0 through x0 with unit normal ν0 ontains a �at set π0 of u suhthat x0 ∈ π0; see the arguments in the proof of [10, Lemma 2℄.Thus there exists t∗ ≥ 0 suh that no �at set of u an interset γ(t) for t > t∗. Let π∗ ⊂ Π∗be a �at set passing γ(t∗) and lying on a plane Π∗.Step 3: re�etion argument and �nal ontraditionFollowing the argument of [2, Lemma 3.7℄, we now apply the re�etion priniple of Theorem 2to prove the existene of a �at set π′ interseting γ(t) at some t′ > t∗ whih is a ontradition.Let R denote the re�etion with respet to the plane Π∗, and hoose x+ = γ(t∗ + ε) for
ε > 0 su�iently small and x− = R(x+). Let G± be the onneted omponent of Dc\π∗ontaining x±, and denote by E± the onneted omponent of G± ∩ R(G∓) ontaining x±.Setting E = E+ ∪ π∗ ∪ E−, we observe that E is a onneted open set whose boundaryonsists of ells of ∂D and R(∂D). Then, by Theorem 2, u satis�es the boundary onditions(1.10) on ∂E and E ∩ Π∗. Moreover, E is bounded sine otherwise Π∗ would ontain anunbounded �at set of u.Hene, γ(t) must interset ∂E at some t′ > t∗, so that there exists a �at set π′ passing γ(t′).This ontradition �nishes the proof of the theorem in the ase of the inverse problem (IP).
�We now disuss the neessary modi�ations in the above proof for the inverse problem (IP')orresponding to the third exterior boundary value problem (DP') for the Navier equation.Assume that the two (linearly independent) shear waves uj,in

s , j = 1, 2, of diretion d (see(1.8)) are inident on a polyhedral satterer D. Let uj ∈ H1
loc(D

c)3 be the solution of thediret problem (DP') with inident plane wave uj,in
s .De�nition 4 Let Π be a two-dimensional plane in R3 with unit normal ν. A non-void openonneted omponent π of Π ∩ Dc is alled a �at set of (u1, u2) if

ν · uj = 0 and ν × Tuj = 0 on π , j = 1 , 2 . (3.5)Then the re�etion priniple of Remark 1 arries over to this ase. To prove Theorem 1 forproblem (IP') by repeating the above arguments in steps 1-3, it is su�ient to prove theboundedness of a �at set of (u1, u2). To do so, it is enough to verify that, for an unbounded�at set π, the relations
ν · uj,in

s → 0 , ν × Tuj,in
s → 0 , as |x| → ∞ on π , j = 1 , 2 , (3.6)lead to a ontradition. Note that (3.6) follows from (3.3) and (3.5), and (1.8) and the �rstrelations of (3.6) imply ν ·fj = 0, j = 1, 2, hene ν = ±d. Together with the seond relationsof (3.6), we then obtain µ ks = 0 whih is impossible. Note that, on π,

ν × Tu = 2µ ν × ∂νu + µ ν × (ν × curl u) ,and thus, using d · fj = 0, j = 1, 2,
ν × ∂νu

j,in
s = iks (ν × fj) (ν · d) exp(iksd · x) = iks (d × fj) exp(iksd · x) ,

ν × (ν × curl uj,in
s ) = iks d × (d × (d × fj)) exp(iksd · x) = −iks (d × fj) exp(iksd · x) .7



Remark 2 Unfortunately, our approah does not give the uniqueness in (IP') with onlyone inident shear wave. Note that then the boundedness of a orresponding �at set of thedisplaement �eld u annot be proved in general. Of ourse, the uniqueness in (IP') with oneinident shear wave holds in the ase of two-dimensional elastiity.Remark 3 In both inverse problems (IP) and (IP'), we an prove the uniqueness within themore restritive lass of polyhedral obstales with a single inident plane elasti wave of thegeneral form (1.6). Here a polyhedral satterer is alled a polyhedral obstale if it onsistsof �nitely many solid polyhedra only. In this ase, following the approah of [6℄, we have toallow unbounded �at sets of the displaement �eld and need to show that their number mustbe �nite; see [6, Lemma 2℄ for aousti sattering. Then the arguments of [6, Set. 3.2℄ implythe desired uniqueness results. The details will be presented in a future paper.AknowledgmentsThis paper was written during the �rst author's stay in January/February of 2009 at theGraduate Shool of Mathematial Sienes of the University of Tokyo, and the stay wassupported by Global COE Program �The Researh and Training Center for New Develop-ment in Mathematis�. The work was ontinued while the seond author was visiting theWeierstrass Institute for Applied Analysis and Stohastis in Marh/April of 2009, and hethanks the Institute and the DFG Researh Center Matheon for the support.Referenes[1℄ Adams, R.A. and Fournier, J.J.F. 2003 Sobolev Spaes 2nd edn (Amsterdam: AademiPress)[2℄ Alessandrini, G. and Rondi, L. 2005 Determining a sound-soft polyhedral satterer bya single far-�eld measurement Pro. Am. Math. So. 133 1685�1691 (Corrigendum:http://arxiv.org/abs/math.AP/0601406)[3℄ Cheng, J. and Yamamoto, M. 2003 Uniqueness in an inverse sattering problem withnon-trapping polygonal obstales with at most two inoming waves Inverse Problems19 1361�1384 (Corrigendum: Inverse Problems 21 1193)[4℄ Colton, D. and Kress, R. 1998 Inverse Aousti and Eletromagneti Sattering 2nd edn(Berlin: Springer)[5℄ Elshner, J. and Yamamoto, M. 2006 Uniqueness in determining polygonal sound-hardobstales with a single inoming wave Inverse Problems 22 355�364[6℄ Elshner, J. and Yamamoto, M. 2008 Uniqueness in determining polyhedral sound-hardobstales with a single inoming wave Inverse Problems 24 035004[7℄ Hähner, P. and Hsiao, G.C. 1993 Uniqueness theorems in inverse obstale sattering ofelasti waves Inverse Problem 9 525-534[8℄ Isakov, V. 2006 Inverse Problems for Partial Di�erential Equations 2nd edn (New York:Springer) 8
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