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Abstract

We consider the third and fourth exterior boundary value problems of linear isotropic
elasticity and present uniqueness results for the corresponding inverse scattering prob-
lems with polyhedral-type obstacles and a finite number of incident plane elastic waves.
Our approach is based on a reflection principle for the Navier equation.

1 Introduction and main results

The inverse scattering problem of determining a bounded obstacle by its far field pattern is
fundamental for exploring bodies by acoustic, electromagnetic or elastic waves. Establishing
the uniqueness in this inverse problem by using the far field data from only one or, at most,
finitely many incident plane waves remains a challenging open problem; see, e.g., [4], [8].
Recent progress in this direction was obtained in inverse acoustic and electromagnetic scat-
tering by polyhedral scatterers which, in R?, are composed of finitely many solid polyhedra
and subsets of two-dimensional planes; see [3|, [2|, [10], |6] for the Helmholtz equation and
[11] for the Maxwell system. To date, there is no corresponding result for elastic wave scat-
tering, but we refer to [7| for uniqueness results with an infinite number of incident elastic
waves in the case of smooth obstacles.

It is the purpose of this paper to derive uniqueness results for polyhedral elastic scatterers
with finitely many incoming plane waves. We will focus on the fourth and third exterior
boundary value problems for the Navier equation where normal stress and tangential dis-
placement (resp. normal displacement and tangential stress) vanish on the boundary of the
obstacle; see [9, Chap. 1.14]. Our approach exploits the above-mentioned developments in
inverse acoustic and electromagnetic scattering for polyhedral scatterers and combines a re-
flection principle for the Navier equation with a path argument. This technique was first
employed in |2| for acoustic scattering by sound-soft polyhedral scatterers and then modified
and extended to the sound-hard case [10], |6] and to electromagnetic scattering [11].

We will now state the direct and inverse elastic scattering problems. Let D C R? be a
scatterer, i.e., a compact set such that its exterior D¢ = R3\ D is connected, and let v denote
the unit normal vector on its boundary 9D directed into D¢. The parameters A\, u and w
are constants such that

p>0, X+2u/3>0, w>0. (1.1)

As usual, a - b denotes the scalar product and a x b denotes the vector product of a, b € R3.
The propagation of time harmonic elastic waves in D¢ is governed by the Navier equation

(or system)
(A" +wHu=0 in D A*:=pA+ A+ pu)grad div , (1.2)

where u denotes the displacement field. Any solution u of (1.2) can be decomposed as

u=up+us,, u,:=(—1/k)graddivu, wus:=(1/k)curl curl u, (1.3)



where ky, := w/v/2p + X, ks := w/\/p are the compressional and shear wave numbers respec-
tively. Moreover, u, and u, satisfy the vector Helmholtz equations

(A+k)u,=0 and (A+k)u,=0 in D° (1.4)
respectively; note that curl curl = —A+grad div . The traction (or stress) operator on 0D
is defined by

Tu:=2p0,u+ A(divu) v+ pv x curl u. (1.5)

We assume that a time harmonic plane elastic wave u™ is incident on the scatterer D, which
takes the general form

u(r) = Ad exp(ik,d - ¥) + Ay fi exp(ikod - x) + Agfy exp(ikyd - 1), (1.6)
WhereA, Al,AQGC, d, fl, f2682:{$€R31|I‘ :1} and fld:fgd:flfgzo In

particular,

ul(x) = d exp(ikyd - z) (1.7)

p
is called an incident pressure wave, and

ug’m(l’> :fj exp(z'ksd~x), j:1,2, fl-d:fg-d:f1~f220, (18)
are incident shear waves propagating in direction d.

A solution u to (1.2) is called radiating if it satisfies Kupradze’s radiation condition, i.e.

Oruy — ikyu, = o(r™Y),  Owus —iksus = o(r™t) 1.9)
1.9
uniformly in z=x/r, as r=|z|]— oo,

which coincides with Sommerfeld’s condition for the compressional and shear parts u, and
us of w and the corresponding vector Helmholtz equations (1.4); see [9, Chap. 3.2].

Direct scattering problem (DP): Given a scatterer D C R* and an incident field u™ of
the form (1.6), find the total field u = u™ + u* in D¢, where the scattered field u*¢ satisfies
(1.2) and condition (1.9), and the total field u satisfies the boundary conditions of the fourth
kind,

vxu=0, v-Tu=0 on 0D. (1.10)

Direct problem (DP’): Replace the boundary conditions in (DP) by the boundary con-
ditions of the third kind,

v-u=0, vxTu=0 on 0D. (1.11)

We refer to the monograph [9] for a comprehensive treatment of the basic boundary value
problems of elasticity, including the boundary conditions of the third and fourth kinds. It
is well known |9, Chap. 3.6| that the problems (DP) and (DP’) admit at most one solution
u € H} (D)3, and a standard method to prove existence for scatterers with C? boundaries is
the integral equation method (see |9, Chap. 7.3|). Using the method of limiting absorption,
the existence of solutions can be proved if the exterior domain D¢ satisfies the cone condition;
see [12, Chap. 4] for the case of the exterior Neumann problem for the Helmholtz equation,
and we refer to |1, Chap. 4| for a nice account of the cone condition and its relation to other
geometric properties of domains. Thus, in particular, the unique solvability of the scattering
problems (DP) and (DP’) holds within the class of polyhedral scatterers which are defined
as follows.



Definition 1 A scatterer D C R? is called a polyhedral scatterer if its boundary 0D is a
finite union of cells. Here a cell is defined as the closure of an open connected subset of a
two-dimensional plane.

Note that in general a polyhedral scatterer consists of finitely many solid polyhedra and
planar sets.

To state our inverse problems, we have to introduce the far field pattern of the scattered
field u*¢ appearing in (DP) or (DP’). It is well known [9], [7] that the radiating solution u*
to the Navier equation has an asymptotic behaviour of the form

w(z) = r" exp(ikyr) uX(2) & + =" exp(iksr) u (&) + o(r™")
(1.12)
as r—o00, with #-uX(@)=0 Vie$?,

uniformly in all directions 2. Here u,° is a uniquely determined scalar function, and ug is a
uniquely determined vector function. Note that, in analogy to (1.3), we have u® = up” + uge
where u3¢ is a divergence free and radiating solution to a vector Helmholtz equation, while
u,’ is the gradient of a radiating solution of a scalar Helmholtz equation.

Definition 2 The far field pattern of the scattered field u®® is given by

u™(2) = uX (&) & +uX(z), ze€§°. (1.13)
Inverse scattering problem (IP) resp. (IP’): From the knowledge of the far field
pattern u>®(z), & € S?, of u*® = u — u™ for one or several incident waves u™ of fixed
incidence direction d, determine the shape of the scatterer.

The aim of this paper is to prove the following uniqueness results within the class of poly-
hedral scatterers.

Theorem 1 Let the parameters A, u, w and the incidence direction d be fized. Then, in
the inverse problem (IP), we have uniqueness within the class of polyhedral scatterers with
a single incident pressure wave of direction d. For the inverse problem (IP’), a polyhedral
scatterer is uniquely determined by the far field patterns for two linearly independent incident
shear waves of direction d.

In the final section 3 we will mainly deal with the proof for (IP) and then sketch the cor-
responding modifications in the case of (IP’). Our proof is essentially based on a reflection
principle for the Navier equation that will be established in section 2. Unfortunately, such
an approach seems to be impossible in the case of the physically more relevant boundary
conditions of the first or second kind, which correspond to a clamped or free boundary of
the elastic obstacle.

2 Reflection principle for the Navier equation

Let D C R3 be a scatterer, and let u be a solution to (1.2) which is real-analytic in D°. For
the proof of our uniqueness result, the notion of a flat set of the displacement field u is of
importance (cf. also [10], [6], [11] for acoustic and electromagnetic scattering).



Definition 3 Let II be a two-dimensional plane in R?® with unit normal v. A non-void
open connected component w of I N D¢ will be called a flat set of u if

vmxu=0 and vgp-Tu=0 on m, (2.1)

where T is the traction operator defined in (1.5).

Let R = Ry denote the reflection with respect to II in R3. We are now ready to state the
reflection principle. Note that this result is already implicitly contained in |9, Chap. 14,
Thm. 3.2| (where a continuation formula at a planar boundary is given), but we prefer to
present an independent proof here.

Theorem 2 Let 7 be a flat set of u different from = C 11, and let G C D¢ be a domain
such that R(G) = G and 1 Um C G. Then the reflection R(my) of m with respect to 11 is
also a flat set of u.

Proof. Step 1. Let first II = {x3 = 0}, and let 7 C II be a flat set of u, i.e., its components
uj (j =1,2,3) satisfy
Uy =uy =0, O3u3 =0 on 7, (2.2)

since v = vy = (0,0,1), v X u = (—usg, u,0), and
v-Tu= 2,ul/ . 8,/&—'— Adiv u = 2,[183”3 + >\(81U1 +82u2 —|—83U3) = 0,

implying (A 4 2u) O3uz = 0, hence O3uz = 0 on 7 (compare (1.1)). Then, in the domain G
which is symmetric with respect to {x3 = 0}, u; and uy must be odd symmetric in x3, and
uz must be even symmetric in x3. Indeed, the function v with the components

vj(x) == —uj(x1, 20, —x3) = —u;(Rx), j=1,2, vs3:=uz(z1, 2, —x3) = us(Rx)
satisfies equation (1.2) in G, and by (2.2) it has the same Cauchy data on 7 as the function

u, so that u = v in G.

Now let m; C II; be another flat set of v in G, and let v; be a unit normal of the plane II;.
Since Ry = vpm,) (by choosing the directions of the normals suitably) and (xq, zo, —x3) €
R(m) for any (x1,x9,x3) € 71, it is easy to check that the relations

nxu=0, v-Tu=2uv -0,u+Adivu=0 on m
imply, on using the symmetry properties of u; (j = 1,2, 3),
VR(Hl) X U‘R(l'h) = —1 X u|7r1 = 0, VR(Hl) . T’UJ‘R(Hl) = —U - TU|7F1 = 0,

hence R(II) is a flat set of w.

Step 2. Assume now that the plane II with normal v contains the origin. Let U € R3*3 be
a rotation matrix such that z* = U~'z = Uz, = € R3, maps the plane II onto the plane
[1* = {z} = 0} with normal v* = U~'v = (0,0, 1). Then we can reduce the proof to the case
considered in step 1. With the solution u of the Navier equation (1.2) in G satisfying the
boundary conditions (2.1) on 7 C IT and m; C IIy, we associate the function

u*(z*) = U u(Uz*), a*en"=UYx)CII*.



From z = Uz™* and the relations

Ve =U'V,, Ve -u'(2*)=U"'V, -Ultu(z) =V, - u()

we obtain
(A% +w?)u'(@") = U (A + w?) u(), (2.3)
Vi xuf (@) = U v x U tu(z) = U (v x u(x)),
(2.4)
v Tpeu*(2*) = U v - U ' Tu(x) = v - Tyu(x)
since

Apr =V Ve = Ny, Ve (Ve - u*(2%)) = UV (V- u(z))
Tou(2®) =2 (V" - V) u™(2") + A" Ve - 0™ (2") + p v X Ve x u*(x)
=2uU v -V )u(@) + AU WV, -u(z) +pU v x U (V, x u(r))
= U 'Tu(z).

Here we have also used the relation U(a x b) = Ua x Ub for arbitrary vectors a, b and any
orthogonal matrix U. Then, by (2.3) and (2.4), u* satisfies the homogeneous Navier equation
in G* = U~'(G) and the boundary conditions (2.1) on 7* and 7§ = U~!(m) C I} = U~ }(Ty).
By step 1, the reflection R*(w}) of w] with respect to II* is also a flat set of u*, i.e.,

Vrery) X u'(2%) =0, vpear - Tpeu(2") =0, 2" € R*(7}). (2.5)
Finally, noting that
RA(IT) = R (UH () = UT(R(I)) - v gaany = U™ vian)
and using the relations (2.4), we see from (2.5) that
U (vray xu) =0, wvpmy -Tu=0 on R(m),

i.e., R(m) is also a flat set of w.

Step 3. In the case of a plane II not passing the origin, we obtain the result from step 2 by
using the fact that the operators A* and T are invariant with respect to translations in R3.
This finishes the proof in the general case. U

Remark 1 Theorem 2 carries over to the boundary conditions (1.11) of the third kind if we
replace the conditions (2.1) in the definition of a flat set m C 11 by

vp-u=0 and vpxTu=0 on . (2.6)

The proof is analogous to that of Theorem 2; see also [9, Chap. 14, Thm. 3.3|. Note that, in
the special case IT = {x3 = 0}, we have to apply even reflection (with respect to II) for the
first two components of u and odd reflection for the third component.



3 Proof of Theorem 1

Let D be a polyhedral scatterer in the sense of Definition 1, and assume that a pressure wave
ui of direction d € S* (see (1.7)) is incident on D. Let u = ul + u* € H} (D°)? be the
solution of the direct problem (DP), and let u® be the far field pattern of the scattered field
u®® (see (1.13)). To prove the Theorem 1 in this case, we use path and reflection arguments
first developed in |2]| for the Helmholtz equation and later modified in [10], |6]. Here we
follow [6, Sect. 3.1] in spirit, but employ the reflection principle of Theorem 2.

Step 1: existence of a flat set of the displacement field

Assume contrarily that there is another polyhedral obstacle Dy # D such that the far field
pattern of u' — u’" coincides with u™ on S?, where u' is the solution of problem (DP) for
D;. Then we have (see, e.g., [7])

u' =u in the unbounded connected component  of R™\(DU D). (3.1)

Moreover, since D¢ and D are connected, we obtain (see [5], [10] for the details) 0Q ¢ DND;
and can assume without loss of generality that

S = (dD,\D)NIQ £0.. (3.2)

It follows from (3.1) and (3.2) that there exists a cell F* C S such that condition (1.10) is
satisfied on F. Denoting by II the plane (with normal v) containing F' and by int(F’) the
interior of the set F', we find a flat set = of u such that int(F) C = C II.

Next we verify that 7 must be bounded. Note that the scattered field u*¢ satisfies

lim {Ju*(z)| + [Vu*(z)]} = 0. (3.3)

|z|—o00

This follows from the decomposition u*® = u;® + u3® (see (1.3)) and the fact that both
terms u,° and ug® satisfy relation (3.3) as radiating solutions of the corresponding Helmholtz
equations (1.4) (see [3|, [10]). If m were unbounded, then condition (1.10) on 7 and (3.3)
would imply that

vxul —0, v-Tu'—0, as |z|]—o0 on II. (3.4)

From the first relation of (3.4) and (1.7), we obtain v x d = 0, hence v = £d. From the
second relation, we then have (2u + A)k, = 0 since

v-Tul =2pv- 0Vu;" + Adiv u)' 4 pv - (v X curl u;")
= {2u (v - d)* + \d|*} ik, exp(ik,d - x).

Hence k, = 0 which is a contradiction proving the boundedness of any flat set of w.

Step 2: path argument

Choose a point P € int(F) and a continuous and injective path ~(¢), ¢ > 0, starting at
P = ~(0) and leading to infinity in the connected set Q. Let M be the set of intersection
points of v with all flat sets of u. By Step 1, M # (). Furthermore, M is bounded since a
flat set of u outside a sufficiently large ball would be unbounded. (Note that 9D is bounded,
and wu is real-analytic in D¢.)



Moreover, the set M is also closed, hence compact. Let {z,,} be a sequence of intersection
points of flat sets m,, x, € m,, with the path v, and such that x,, converges to a point zy € 7.
Choosing a unit normal v, to 7, and passing to a convergent subsequence v,, — 14, one can
now prove that the plane Il through xy with unit normal vy contains a flat set my of u such
that zg € m; see the arguments in the proof of |10, Lemma 2|.

Thus there exists t* > 0 such that no flat set of u can intersect (¢) for ¢t > t*. Let #* C IT*
be a flat set passing v(t*) and lying on a plane IT*.

Step 3: reflection argument and final contradiction
Following the argument of |2, Lemma 3.7|, we now apply the reflection principle of Theorem 2
to prove the existence of a flat set 7’ intersecting y(¢) at some t’ > ¢* which is a contradiction.

Let R denote the reflection with respect to the plane IT*, and choose T = ~(t* 4 ¢) for
e > 0 sufficiently small and 2= = R(z%). Let G* be the connected component of D¢\r*
containing z*, and denote by E* the connected component of G* N R(GF) containing z*.
Setting £ = E* Ux* U E~, we observe that E is a connected open set whose boundary
consists of cells of 9D and R(OD). Then, by Theorem 2, u satisfies the boundary conditions
(1.10) on OF and E NII*. Moreover, E is bounded since otherwise IT* would contain an
unbounded flat set of u.

Hence, v(t) must intersect OF at some ' > t*, so that there exists a flat set 7’ passing v(#').
This contradiction finishes the proof of the theorem in the case of the inverse problem (IP).

O

We now discuss the necessary modifications in the above proof for the inverse problem (IP?)
corresponding to the third exterior boundary value problem (DP’) for the Navier equation.
Assume that the two (linearly independent) shear waves u?™, j = 1,2, of direction d (see
(1.8)) are incident on a polyhedral scatterer D. Let w/ € H. _(D¢)? be the solution of the
direct problem (DP’) with incident plane wave u?™.

Definition 4 Let II be a two-dimensional plane in R® with unit normal v. A non-void open
connected component w of ILN D¢ is called a flat set of (u',u?) if

v-w =0 and vxTu =0 on m, j=1,2. (3.5)
Then the reflection principle of Remark 1 carries over to this case. To prove Theorem 1 for
problem (IP’) by repeating the above arguments in steps 1-3, it is sufficient to prove the

boundedness of a flat set of (u',u?). To do so, it is enough to verify that, for an unbounded
flat set 7, the relations

voul —0, vxTul™—0, as |z|—>00 on 7, j=1,2, (3.6)

lead to a contradiction. Note that (3.6) follows from (3.3) and (3.5), and (1.8) and the first
relations of (3.6) imply v-f; =0, j = 1,2, hence v = £d. Together with the second relations
of (3.6), we then obtain u ks = 0 which is impossible. Note that, on ,

vXxTu=2uv x oyu+pv x (vxcurl u),
and thus, using d- f; =0, j = 1,2,
v x 0,ul"™ =ik, (v X f;) (v - d) exp(iksd - ¥) = ik (d % f;) exp(ikyd - x),
v x (v x curl u™) = ikgd x (d x (d x f;)) exp(iksd - ¥) = —ik, (d x f;) exp(iksd - 7).



Remark 2 Unfortunately, our approach does not give the uniqueness in (IP’) with only
one incident shear wave. Note that then the boundedness of a corresponding flat set of the
displacement field u cannot be proved in general. Of course, the uniqueness in (IP’) with one
incident shear wave holds in the case of two-dimensional elasticity.

Remark 3 In both inverse problems (IP) and (IP’), we can prove the uniqueness within the
more restrictive class of polyhedral obstacles with a single incident plane elastic wave of the
general form (1.6). Here a polyhedral scatterer is called a polyhedral obstacle if it consists
of finitely many solid polyhedra only. In this case, following the approach of [6], we have to
allow unbounded flat sets of the displacement field and need to show that their number must
be finite; see [6, Lemma 2] for acoustic scattering. Then the arguments of [6, Sect. 3.2] imply
the desired uniqueness results. The details will be presented in a future paper.
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