
Weierstraß-Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Numerical algorithms for Schrödinger equation with

artificial boundary conditions

Raimondas Čiegis1, Inga Laukaitytė1, Mindaugas Radziunas2
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Abstract. We consider a one-dimensional linear Schrödinger problem defined on
an infinite domain and approximated by the Crank-Nicolson type finite difference
scheme. To solve this problem numerically we restrict the computational domain
by introducing the reflective, absorbing or transparent artificial boundary condi-
tions. We investigate the conservativity of the discrete scheme with respect to
the mass and energy of the solution. Results of computational experiments are
presented and the efficiency of different artificial boundary conditions is discussed.

1. Introduction

Schrödinger type mathematical models are used in many areas of physical and tech-
nological interest, e.g. in electromagnetic wave propagation, in seismic migration
and in semiconductor devices [1].

Depending on the considered real life application we frequently need to solve Schrö-
dinger type equations in infinite or, at least, quite large spatial domains using rather
fine numerical mesh [2, 3]. In these cases due to computational restrictions (CPU
time and memory resources of the computer), one has to restrict the computational
domain and to solve the problem only in the region of interest or a slightly larger
domain.

Then the main challenge is to introduce special artificial boundary conditions which
enable us to simulate accurately the asymptotical behavior of the solution and do
not induce numerical reflections at the boundaries. These boundary conditions must
give a well posed problem and discrete approximations of the new boundary value
problem should be constructed, which are stable under non-restrictive conditions on
space and time steps of the discrete grids.

There are many papers devoted to formulation and numerical analysis of absorbing
boundary conditions (ABC) for solving Schrödinger equation. In [4] the first and
second order ABC are proposed and approximated by the implicit finite difference
scheme. Stability and convergence analysis of discrete approximations of ABC on
staggered grids are given in [5]. Design of efficient discrete high-order ABC for wave
and Schrödinger type problems is considered in [6, 7].

In [2] it is proposed to define additional layers near the boundary of the domain,
where an artificial material has a property of strong absorption. Thus, instead of
absorbing boundary conditions, a special thin absorbing layer is used, which should
prevent introduction of numerical reflections from the boundaries of the restricted
computational domain.

For simple wave transport models it is possible to construct such boundary condi-
tions on the boundary of computational domain which give the exact solution of the
whole-space problem. These boundary conditions are called transparent boundary
conditions (TBC). Transparent boundary conditions were investigated for Schrödin-
ger type equations in [8, 9], for underwater acoustics in [10, 9], for hyperbolic trans-
port equations in [11]. A review on transparent and artificial BCs for linear and
nonlinear Schrödinger equations is given in [12].
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Our paper investigates the performance of numerical schemes for 1-dimensional lin-
ear Schrödinger equations with different artificial boundary conditions. By compar-
ing the numerical solutions with the initially known solution of the corresponding
problem in infinite domain we draw several conclusions about effectiveness of the
considered boundary conditions. The paper is organized as follows. In Section 2 we
give a full description of the mathematical problem and define three types of artificial
BC. The main conservation properties of the solution are proved. Section 3 is de-
voted to numerical discretization of the given problem. The main attention is given
to the efficient discretization of absorbing and transparent boundary conditions. It
is proved that the proposed difference schemes conserve the discrete analogous of
the mass and the energy. Results of computational experiments are presented and
discussed. Some final conclusions are done in Section 4.

2. Problem formulation

We consider a case of the pure initial value problem for the one dimensional Schrö-
dinger equation:

∂ũ

∂t
+ iDf

∂2ũ

∂x2
− iV (x)ũ = 0, x ∈ R, t > 0,(2.1)

ũ(x, 0) = u0(x), x ∈ R,

here a real function V (x) defines a given potential. We assume that the initial data
u0(x) is supported only on some finite domain.

For many applications, due to computational requirements, the domain of interest is
restricted to a bounded interval Ω̄X̃ = [−X̃, X̃] with a specified (and not very large)

X̃. Following [7], our goal is to formulate artificial boundary conditions and/or real
positive sink term α = α(x) on the extended interval ΩX = (−X,X) with X > X̃
as close to X̃ as possible, such that the solution u(x, t) of problem

∂u

∂t
+ iDf

∂2u

∂x2
+

(

α(x) − iV (x)
)

u = 0, x ∈ ΩX , t > 0,(2.2)

u(x, 0) = u0(x), x ∈ Ω̄X ,(2.3)

FLu(−X, t) = 0, FRu(X, t) = 0, t > 0

is close to the exact solution of (2.1), e.g. it satisfies the estimate

(2.4)

∫ T

0

∫ X̃

−X̃

|ũ(x, t) − u(x, t)|2 dxdt ≤ ε2.

It turns out that for classical boundary conditions all known algorithms that guaran-
tee the fulfilment of the condition given above are computationally very expensive.
Thus in practice, we minimize the amplitudes of reflective waves and try to avoid the
numerical introduction of oscillations of solutions. The BC operators FL,R should be
local operators in space and time and define a well-posed problem for the Schrödinger
equation.

If possible, the introduction of artificial boundary conditions should not destroy the
conservation or dissipation relations for the mass M and energy E of the solution
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defined in the considered finite domain ΩX :

M(t) = ‖u(·, t)‖2 , E(t) = Df‖
∂u

∂x
(·, t)‖2 +

∫ X

−X

V (x) |u(x, t)|2 dx,

where (u, v) and ‖u‖

(u, v) =

∫ X

−X

u(x)v∗(x) dx, ‖u‖ =
√

(u, u)

denote the inner product and norm of functions u, v in the L2(ΩX) space, respec-
tively. It is well known that for non-dissipative problems these quantities are con-
served.

2.1. Reflective boundary conditions. The most simple way to select the re-
quired boundary conditions is to solve problem (2.2) in a sufficiently large domain
with the following reflective boundary conditions:

(2.5) u(−X, t) = 0, u(X, t) = 0, t > 0.

These boundary conditions should be placed at a large distance from the relevant
interior domain in such a way that the reflected waves would not perturb the exact
solution. We note that this approach can lead to a very costly numerical algorithm.
In order to reduce the length of the computational domain a real positive sink
function α(x) can be introduced in the extended space domain (see [13], where this
technique was applied for wave propagation problems).

Lemma 2.1. If α(x) ≥ 0 and u(x, t) is the solution of problem (2.2), (2.3), (2.5),
then the total mass of the solution is not increased in time:

M(t) ≡ ‖u(·, t)‖2 ≤ ‖u0‖2 ≡ M(0).(2.6)

If α(x) ≡ 0 (i.e. the potential function is real valued), then the total mass and the
energy E(t) of the solution are conserved in time:

‖u(·, t)‖2 = ‖u0‖2, E(t) = E(0).(2.7)

Proof. Computing the inner product of equation (2.2) with u(x, t), integrating by
parts the diffraction operator and taking the real part of the obtained equality we
get the equation

d

dt
‖u(·, t)‖2 + 2

∫ X

−X

α(x) |u(x, t)|2 dx = 0.

Taking into account that α ≥ 0, the proof of (2.6) follows trivially. In the case
of α ≡ 0, a direct consequence is that the total mass of the solution is conserved
M(t) = M(0).

In order to prove the second equality in (2.7) we compute the inner product of
equation (2.2) with ∂

∂t
u(x, t), integrate by parts the diffraction operator, take the

imaginary part of the the obtained equality and get

(2.8)
∂

∂t

(

Df

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

2

+

∫ X

−X

V (x) |u(x, t)|2 dx
)

= 2

∫ X

−X

α(x) Im
(

u
∂u∗

∂t

)

dx.
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The absorption term disturbs the conservativity of the energy E(t). If α ≡ 0, then

we get the energy conservation law
d

dt
E(t) = 0. ¤

Since we consider a 1-dimensional problem, the equalities (2.7) imply the following
estimates of the solution in the maximum norm ‖u(·, t)‖∞ = max

−X≤x≤X
|u(x, t)|:

Lemma 2.2. Let u(x, t) be the solution of problem (2.2), (2.3), (2.5). If α(x) ≡ 0
and V (x) ≥ −qDfπ

2/4X2 for 0 ≤ q < 1 then u(x, t) is bounded unconditionally in
the maximum norm

(2.9) ‖u(·, t)‖∞ ≤
√

XE(0)/2Df (1 − q).

Proof. We apply the following Sobolev imbedding inequalities [14, 15]:

(2.10) ‖u(·, t)‖∞ ≤
√

2X

2

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

, ‖u(·, t)‖ ≤ 2X

π

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

.

The statement of the lemma follows immediately from the energy conservation law
(2.6)

E(0) = Df

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

+

∫ X

−X

V (x) |u(x, t)|2 dx ≥ Df (1 − q)

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

≥ 2Df (1 − q)

X
‖u(·, t)‖2

∞
.

¤

In [16] the discrete invariants of the solution were used to prove the convergence of
the discrete solution for the nonlinear Schrödinger problem with cubic and quintic
terms.

2.2. Absorbing boundary conditions. A convenient way to transform a large
computational domain Ω to a smaller subdomain is to use absorbing boundary
conditions. The main idea is to mimic the movement of a simple wave traveling to
the right or left directions (see, [5]).

Let us consider left/right moving single waves u(x, t) = ei(ωt±kx), where ω(k) denotes
the wave frequency and k is the wave number. Parameters ω and k are connected
by the dispersion relation, which follows from the Schrödinger equation (2.2):

ω(k) = Dfk
2 + V.

The group velocity of the wave is defined as v :=
∂ω

∂k
= 2Dfk. Next we use the

relation
∂u

∂x
= ±iku (for left/right moving waves, respectively), and get the following

absorbing boundary conditions

− iDf
∂u

∂x

(

− X, t) = γu(−X, t), iDf
∂u

∂x

(

X, t) = γu(X, t),(2.11)
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where γ = v/2. For such absorbing BCs simple waves traveling with a group velocity
v are absorbed completely. However, in applications, waves are composed of many
components moving with different velocities. Our goal is to investigate the efficiency
of absorbing boundary conditions in a general case, and to determine optimal values
of parameter γ in (2.11).

Lemma 2.3. Let α(x) ≡ 0 and u(x, t) is the solution of problem (2.2), (2.3), (2.11),
then the total mass of the solution is not increased in time:

M(t) ≡ ‖u(·, t)‖2 ≤ ‖u0‖2 ≡ M(0).(2.12)

The energy E(t) of the solution satisfies the following conservation equation

∂

∂t

(

Df

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

+

∫ X

−X

V (x) |u(x, t)|2 dx
)

(2.13)

= 2γ
(

Im
(

u
∂u∗

∂t

(

− X, t
)

)

+ Im
(

u
∂u∗

∂t

(

X, t
)

))

.

Proof. Computing the inner product of equation (2.2) with u(x, t), integrating by
parts the diffraction operator, using boundary conditions (2.11) and taking the real
part of the obtained equality we get the equation

d

dt
‖u(·, t)‖2 + 2γ

(

|u(−X, t)|2 + |u(X, t)|2
)

= 0.

Taking into account that γ > 0, the proof of (2.12) follows trivially.

In order to prove (2.13), we compute the inner product of equation (2.2) with
∂
∂t

u(x, t), integrate by parts the diffraction operator, use the absorbing boundary
conditions and take the imaginary part of the the obtained equality. In this case the
absorption boundary conditions disturb the conservativity of the energy E(t). ¤

In general, waves are composed of more than one component with different group
velocities. Therefore in [4] a generalization of absorbing BCs (2.11) is proposed (see
also [5], where discrete approximations of these BCs are considered):

(2.14)

p
∏

j=1

(

± iDf
∂

∂x
− γj

)

u
∣

∣

∣

x=±X
= 0.

Let us consider the case p = 2 and take α ≡ 0. In this case (2.14) and (2.2) imply:

(2.15) ±iDf
∂u

∂x

(

± X, t
)

=
1

γ1 + γ2

(

γ1γ2u − DfV u − iDf
∂u

∂t

)∣

∣

∣

x=±X
.

Let us check, if inequality (2.12) is valid for Schrödinger problem (2.2), (2.3) with
BCs (2.15). For most applications we can assume that V (±X) = 0. Computing
the inner product of equation (2.2) with u(x, t), integrating by parts the diffraction
operator, using boundary conditions (2.15) and taking the real part of the obtained
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equality we get the equation

d

dt
‖u(·, t)‖2 +

2γ1γ2

γ1 + γ2

(

|u(−X, t)|2 + |u(X, t)|2
)

= 2
Df

γ1 + γ2

(

Im

(

u
∂u∗

∂t

(

− X, t
)

)

+ Im

(

u
∂u∗

∂t

(

X, t
)

))

.

It follows from the obtained equality that generalized absorbing BCs cannot guar-
antee unconditional non increasment of the total mass.

2.3. Transparent boundary conditions. The original domain x ∈ R is divided
into three subdomains [−∞,−X], [−X,X], [X,∞], and the initial problem is di-
vided into three subproblems. Transparent BCs (TBC) are obtained by using the
assumption that in the exterior domains the solution decreases to zero as |x| → ∞
and the potentials are constant. Then the Dirichlet-to-Neumann maps are defined
at the boundaries. Since the potentials are constant, exterior problems can be solved
explicitly by the Laplace method (see [12, 17, 9]). We get the following BCs (here
we assume that V ≡ 0 in the exterior domains):

(2.16) ±iDf
∂u

∂x

(

± X, t
)

= −i

√

Df

π
eiπ/4 d

dt

∫ t

0

u(±X, s)√
t − s

ds.

We note that the nonlocal operator on the right hand side defines a fractional time
derivative

√

d

dt
v(t) :=

1√
π

d

dt

∫ t

0

v(s)√
t − s

ds.

These derivatives arise in a formal factorization of the Schrödinger equation into left
and right travelling waves [9]:

(

∂

∂x
− eiπ/4

√

Df

√

∂

∂t

) (

∂

∂x
+

eiπ/4

√

Df

√

∂

∂t

)

u(x, t) = 0.

The well-posedness of the initial boundary-value problems in a bounded domain
with transparent boundary conditions was investigated also in [18].

The TBCs are non-local in t and they require the storage of the solution on the
boundary at all previous time moments. It depends on a problem what strategy is
more efficient – to solve numerically the Schrödinger problem in the extended space
domain or to use the transparent boundary conditions and to store a solution at the
boundary. Our goal is to investigate the accuracy of discrete transparent boundary
conditions when the memory length is truncated at some fixed level. This problem
is close to application of the fractional Kalman filter for systems of fractional order,
arising e.g. in soft matter physics, theory of complex materials and simulations of
viscoelastic behavior (see [19] for a description of such problems and application of
the fractional Kalman filters).
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Following [7], we approximate the nonlocal TBC with a local operator of the form

± i
√

Df
∂u

∂x

(

± X, t) = βu(±X, t) +
m

∑

k=1

ak

(

u(±X, t) − dkϕ
±
k (t)

)

, m ≥ 1,(2.17)

dϕ±
k

dt
= i

(

u(±X, t) − dkϕ
±
k (t)

)

, t > 0; ϕ±
k (0) = 0.

In [7], the well-posedness of the Schrödinger initial-boundary value problem with
such approximate TBC is proved and analytic expressions for real nonnegative pa-
rameters β, dk, ak guarantying the estimate (2.4) at high m are given.

Furthermore, the role of the reflection coefficient is emphasized in [7]. Let assume
that we solve the Schrödinger initial-boundary value problem in the time interval
(0, T ]. For small m, the optimal values of coefficients β, ak and dk are obtained by
minimizing the reflection coefficient in the L2 norm with the weight 1/

(

1 + r2
)

(2.18)

T/2π
∫

0

∣

∣

∣

∣

∣

√
r − βr − ∑m

k=1

(

akr/(1 + dkr)
)

√
r + βr +

∑m
k=1

(

akr/(1 + dkr)
)

∣

∣

∣

∣

∣

2
dr

1 + r2
−→ min .

We note, that nonlocal BCs (2.16) are equivalent to the well-known impedance
boundary conditions, e.g.:

u(X, t) = −e−iπ/4

√
2π

∫ t

0

∂u

∂x
(X, t − τ) eiτ

√
τ

dτ.

Such BCs where applied for the parabolic equation model in underwater acoustics
[20] and for the numerical modelling of gyrotrons [21].

3. Finite-Difference Schemes

We introduce a uniform mesh in x on the interval [−X,X]: ω̄h = {xj : xj =
−X +jh, j = 0, . . . , J, xJ = X} and a uniform mesh in t on the interval [0, T ]: ω̄τ =
{tn : tn = nτ, n = 0, . . . , N, tN = T}. We also need sub-meshes ωh := ω̄h/{x0, xJ},
ωτ := ω̄τ/{0}. Let us define discrete functions Un

j = U(xj, t
n), (xj, t

n) ∈ ω̄h × ω̄τ .
Then we define the forward and backward difference quotients with respect to x and
the backward difference quotient and the symmetric averaging operator in time

∂xUj :=
Uj+1−Uj

h
, ∂̄xUj :=

Uj−Uj−1

h
, ∂̄tU

n :=
Un−Un−1

τ
, Un−1/2 :=

Un+Un−1

2
.

In this paper we investigate mainly the standard Crank-Nicolson approximation of
the Schrödinger equation (2.2):

(3.1) ∂̄tU
n
j + iDf∂x∂̄xU

n−1/2
j + (αj − iVj)U

n−1/2
j = 0, (xj, t

n) ∈ ωh × ωτ .

The Crank-Nicolson scheme is a very popular tool in solving nonlinear optics prob-
lems, since it leads to conservative approximations of nonlinear problems (see, e.g.
[16, 2, 22, 23, 3, 24, 25, 26, 27, 28]). Similar schemes were also studied in context of
approximate transparent and absorbing BCs [18, 29, 30, 7, 5].
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Let us introduce some mesh counterparts of the inner products and the norms in
the discrete L2(ωh) and L2(ω̄h) spaces:

(U,W )ωh
=

J−1
∑

j=1

UjW
∗
j h, (U,W )ω̄h

=
J−1
∑

j=1

UjW
∗
j h+

h

2

(

U0W
∗
0 +UJW ∗

J

)

, ‖U‖2
D = (U,U)D.

In the present paper we shall show how for different BCs the presented Crank-
Nicolson scheme allows to keep the conservation or dissipation relations for the
discrete analogues of mass Mh and energy Eh defined by

Mn
h,D = ‖Un‖2

D, En
h,D =

J
∑

j=1

Df

∣

∣∂̄xU
n
j

∣

∣

2
h + (V Un, Un)D, D = ωh, ω̄h.

3.1. Discrete reflective boundary conditions. In this section we approximate
the initial-boundary value problem (2.2), (2.3), (2.5) by the following finite-difference
scheme











∂̄tU
n
j + iDf∂x∂̄xU

n−1/2
j + (αj − iVj)U

n−1/2
j = 0, (xj, t

n) ∈ ωh × ωτ ,

Un
0 = 0, Un

J = 0, tn ∈ ωτ ,

U0
j = u0(xj), xj ∈ ω̄h.

(3.2)

Now we will prove that the finite difference scheme (3.2) conserves the discrete
analogs of mass Mn

h,ωh
and energy En

h,ωh
.

Theorem 3.1 (Discrete analogue of Lemma 2.1 ). If α(x) ≥ 0 and Un is the solution
of finite-difference scheme (3.2), then the discrete total mass of the solution is not
increased in time:

Mn
h,ωh

≤ Mn−1
h,ωh

≤ . . . ≤ M0
h,ωh

.(3.3)

If α(x) ≡ 0 (i.e. the potential function is real valued), then the discrete total mass
Mn

h,ωh
and energy En

h,ωh
of (3.2) are conserved:

Mn
h,ωh

= Mn−1
h,ωh

= . . . = M0
h,ωh

, En
h,ωh

= En−1
h,ωh

= . . . = E0
h,ωh

.(3.4)

Proof. Computing the discrete inner product of finite-difference equation (3.2) with
Un−1/2, applying the summation by parts of the discrete diffraction operator [15]
and using the homogeneous boundary conditions of (3.2), taking the real part of the
obtained equality we get the discrete mass conservation equation

‖Un‖2
ωh

+ 2(α Un−1/2, Un−1/2)ωh
= ‖Un−1‖2

ωh
.

Since αj ≥ 0, the proof of (3.3) follows trivially. If αj ≡ 0, then we get that the
total discrete mass of the solution is conserved, i.e. Mn

h,ωh
= M0

h,ωh
for any n ≥ 1.

In order to prove the energy conservation (3.4), we compute the discrete inner prod-
uct of equation (3.2) with ∂̄τU

n, apply the summation by parts of the discrete
diffraction operator and take the imaginary part of the the obtained equality:

(3.5) En
h,ωh

= En−1
h,ωh

+ 2
J−1
∑

j=1

αj Im
(

U
n−1/2
j ∂̄tU

n∗
j

)

.
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Taking into account the assumption α ≡ 0, we get the energy conservation law
(3.4). ¤

The obtained estimates prove the stability of the finite difference scheme (3.2) with
respect to the initial condition. Similarly to the analysis given in Section 2 we can
prove the discrete analogue of Lemma 2.2 and get estimates of the discrete solution
in the maximum norm.

In most cases the Crank-Nicolson scheme gives a stable approximation of nonlinear
Schrödinger equations. But for a damped nonlinear Schrödinger equation the ap-
plication of the Crank-Nicolson scheme can lead to a non stable discrete problem if
the balance of the damping force and mass compensation is approximated in non
conservative way (see, [31]).

In order to see numerical effects of the reflecting BCs we solve the initial-boundary
value problem (2.2), (2.3), (2.5) for V (x) ≡ 0, Df = 1, setting first α(x) ≡ 0. We
take a standard example of the Gaussian solution

(3.6) u(x, t) =
1

√

1 − it/w0

exp

[

−ik(x − kt) − (x − 2kt)2

4(w0 − it)

]

.

This example is chosen in many papers on numerical approximations of absorbing
and transparent BCs. We take the following values of parameters: w0 = 0.15, k = 2,
the domain of interest is defined as [−2, 2], i.e. X̃ = 2. At the initial t = 0 solution

|u(x, 0)|2 = |u0(x)|2 = e−x2/2ω0 , i.e., the initial data are mainly confined within the
interval |x| < 3

√
ω0. Both effects, the diffraction and linear transport with the wave

number k, are important in this example.

The absolute values of the exact solution are changing monotonically in time and
space (while the real and imaginary parts of the solution are rapidly oscillating).
This property is very important in solving nonlinear problems when even small
numerical oscillations can grow up significantly due to the nonlinear interaction.
Thus our prime goal is to reduce the reflections from boundaries introduced by
artificial boundary conditions (2.5).

In many papers (see [32, 4]) it is proposed to compare the properties of discrete
artificial BCs in terms of reflection. The reflection ratio at time tn is calculated as

rn =

∑f
j=s |Un

j |2
∑f

j=s |U0
j |2

, xs = −X̃, xf = X̃,

i.e. a summation is done over the domain of interest.

We compute solutions of the finite-difference scheme (3.2) for 0 ≤ t ≤ 1 with
different lengths X of the extended domain. Fig. 1a shows plots of reflection ratio
as a function of time for the exact Gaussian solution (3.6) and for the numerical
solutions simulated in restricted computational domains.

For all computations the time and space mesh steps are selected sufficiently small
in order not to influence the presented results.
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Figure 1. Numerical results for finite difference scheme (3.2): a) the
reflection ratio a function of time for the exact Gaussian solution (3.6)
and for the numerical solutions simulated in restricted computational
domains, b) plots of |Un| at t = 1 for extended domains with X = 6
and X = 15.

At the beginning the traveling wave is located in the interior of the domain of inter-
est, thus the reflection ratio as a function of time remains constant. Later, the exact
wave smoothly passes through the boundary and the reflection ratio continuously
decreases as a function of time. The presented results show that for a satisfactory
approximation of the reflection ratio of the exact solution (3.6) at higher t one needs
to increase the size X of the extended domain.

Generally, the waves reflected from the boundary return back to the computational
domain and disturb the solution. Even in the case of the large artificial domain
with X = 6 the obtained reflected solution is highly oscillating (see, Fig. 1b, where
numerical solutions computed in a truncated domains with X = 6, 15 are plotted
at t = 1). Only in the case of X = 15 the numerical solution approximates very
well the exact solution (3.6). These oscillations prove that a good approximation
of the reflection ratio is not sufficient indicator of the accuracy in the maximum
norm, since it defines an averaged characteristic of the solution. As a conclusion,
we note that such simple reflective artificial BCs cannot be recommended for simu-
lations of nonlinear interactions of laser waves in real world applications, since the
nonlinearities are defined pointwise, not in averaged sense.

In order to damp parasitic waves reflected from the boundary we formulate near
the boundary an absorbing layer with the absorbing coefficient α0. Let us consider
the extended domain with X = 3 and take the following absorbing layer α(x) = 0,
if |x| ≤ 2.5 and α(x) = α0 otherwise. We have computed the solution of the
finite-difference scheme (3.2) for 0 ≤ t ≤ 0.5 with different values of the absorption
coefficient α0 and have determined the optimal value of α0, when oscillations of the
reflected waves are reduced in most effective way. In Fig. 2a we present the modulus
of the exact solution and the numerical solutions computed in a truncated domain
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without absorption layer and with the optimal value α0 = 10. The oscillations are
reduced essentially when the absorbing layer is optimized.
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exact
alpha = 0

alpha = 10

alpha = 50

a) b)

Figure 2. Numerical results for finite difference scheme (3.2) in the
extended domain with X = 3 and various values of the absorption
coefficient: a) plots of |Un| for the solution (3.6) and for the numerical
solutions with α0 = 0, 10, b) plots of |Un| for the numerical solutions
with α0 = 0, 10, 50.

If we try further to increase the value of α0, then reflective boundaries are produced
at X̂ = X − ∆xl and amplitudes of oscillations again start to increase. Such a
situation is illustrated in Fig. 2b, where the numerical solution is presented for
α0 = 50.

In many problems of optics and optoelectronics, however, we have a nonvanishing
potential V which can prevent or accelerate the diffractive spreading of the optical
field. In the following example we set again the damping function α ≡ 0, X = 4,
assume the potential V (x) = 50, |x| ≥ Xδ = 2, and V (x) = 0 for |x| < Xδ

and compute the solution of the finite difference scheme (3.2) starting with initial
function u0 defined by (3.6). Fig. 3a plots the modulus of the numerical solutions
|Un| for three different time moments t = 0.2, 0.4, 0.8. In Fig. 3b we present the plot
of computed reflection ratio as a function of time in the domain [−Xδ, Xδ]. It is
clear that the traveling wave is localized in the domain of interest during the whole
integration time and only a small part of the mass has moved outside of this domain.
Since the maximal norm of the numerical solution is bounded, the oscillations of the
numerical solution do not increase in time.

In the case of the inverse potential with V (x) = −50 for |x| ≥ Xδ instead of a
localization of the numerical solution we can observe the acceleration of the field
spreading out of computational domain. Results of computations are presented in
Fig. 4.

3.2. Absorbing boundary conditions. In this section we approximate the initial-
boundary value problem (2.2), (2.3) with absorbing boundary conditions (2.11) by
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Figure 3. Solutions of the finite difference scheme (3.2) with V = 50
at various time moments: a) plots of |Un| for t = 0.2, 0.4, 0.8, b)
reflection ratio as a function of time.
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Figure 4. Solutions of the finite difference scheme (3.2) with a neg-
ative potential V = −50 for |x| ≥ Xδ at various time moments: a)
plots of |Un| for t = 0.2, 0.4, 0.8, b) reflection ratio as a function of
time.

the following finite-difference scheme






























∂̄tU
n
j + iDf∂x∂̄xU

n−1/2
j − iVjU

n−1/2
j = 0, (xj, t

n) ∈ ωh × ωτ ,

−iDf∂xU
n−1/2
0 − h

2

(

∂̄tU
n
0 − iV0U

n−1/2
0

)

= γU
n−1/2
0 , tn ∈ ωτ ,

iDf ∂̄xU
n−1/2
J − h

2

(

∂̄tU
n
J − iVJU

n−1/2
J

)

= γU
n−1/2
J ,

U0
j = u0(xj), xj ∈ ω̄h.

(3.7)

Theorem 3.2 (Discrete analogue of Lemma 2.3). Let Un be the solution of finite-
difference scheme (3.7), then the discrete total mass of the numerical solution Mn

h,ω̄h
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is not increased in time:

Mn
h,ω̄h

≤ Mn−1
h,ω̄h

≤ . . . ≤ M0
h,ω̄h

.(3.8)

The discrete energy En
h,ω̄h

of the numerical solution satisfies the following conserva-
tion equation

En
h,ω̄h

− En−1
h,ω̄h

= 2γτ
(

Im U
n−1/2
0

(

∂̄tU
n
0

)∗
+ Im U

n−1/2
J

(

∂̄tU
n
J

)∗
)

.(3.9)

Proof. Computing the discrete inner product of finite-difference equation (3.2) with
Un−1/2, applying the summation by parts of the discrete diffraction operator [15] we
get the equality

(∂̄tU
n, Un−1/2)ωh

− iDf

J
∑

j=1

∣

∣∂̄xU
n−1/2
j

∣

∣

2
h + iDf ∂̄xU

n−1/2
J

(

U
n−1/2
J

)∗

− iDf∂xU
n−1/2
0

(

U
n−1/2
0

)∗ − i(V Un−1/2, Un−1/2)ωh
= 0.

Using the absorbing boundary conditions (3.2), we have

(∂̄tU
n, Un−1/2)ω̄h

− iDf

J
∑

j=1

∣

∣∂̄xU
n−1/2
j

∣

∣

2
h − i(V Un−1/2, Un−1/2)ω̄h

+ γ
(

|Un−1/2
J |2 + |Un−1/2

0 |2
)

= 0.

Taking the real part of the obtained equality we get the discrete mass conservation
equation

‖Un‖2
ω̄h

+ 2τγ
(

|Un−1/2
0 |2 + |Un−1/2

J |2
)

= ‖Un−1‖2
ω̄h

.

Since γ ≥ 0, the proof of (3.8) follows trivially.

In order to prove (3.9) we compute the discrete inner product of finite-difference
equation (3.2) with ∂̄tU

n, apply the summation by parts of the discrete diffraction
operator:

∥

∥∂̄tU
n
∥

∥

2

ωh
− iDf

J
∑

j=1

∂̄xU
n−1/2
j

(

∂̄t∂̄xU
n
j

)∗
h + iDf ∂̄xU

n−1/2
J

(

∂̄tU
n
J

)∗

− iDf∂xU
n−1/2
0

(

∂̄tU
n
0

)∗ − i(V Un−1/2, ∂̄tU
n)ωh

= 0.

Using the absorbing boundary conditions, we have

∥

∥∂̄tU
n
∥

∥

2

ω̄h
− iDf

J
∑

j=1

∂̄xU
n−1/2
j

(

∂̄t∂̄xU
n
j

)∗
h − i(V Un−1/2, ∂̄tU

n)ω̄h

+ γ
(

U
n−1/2
0

(

∂̄tU
n
0

)∗
U

n−1/2
J

(

∂̄tU
n
J

)∗
)

= 0.

Taking the imaginary part of the obtained equality we prove (3.9). ¤

We compute the solution of the finite-difference scheme (3.7) with potential V ≡ 0,
initial u0(x) determined by (3.6) for 0 ≤ t ≤ 1 and different values of the parameter
γ = 2.5, 5, 8, 10. The computational domain is fixed to the interval [−2.5, 2.5].
Fig. 5b shows plots of the reflection ratio as a function of time for the exact solution
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(3.6) and for the numerical solutions computed with γ = 5, 10. In Fig. 5a the
modulus of the exact and numerical solutions are presented at t = 0.5.
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Figure 5. Numerical solutions of the finite difference scheme (3.7)
with γ = 2.5, 5, 10: a) plots of |Un|2 at t = 0.5, b) the reflection ratio
as a function of time.

Fig. 5 shows that precision of the numerical solution depends strongly on the se-
lection of γ. Note, that in the present case the best approximation is achieved for
γ = 2.5 which is close to the half of the group velocity of the exact solution at
X = 2.5 and t = 0.5. It seems also that absorbing BCs are more robust than simple
reflective BCs.

3.3. Transparent boundary conditions. The main difficulty of the numerical
approximation of nonlocal TBCs (2.16) is linked to the presence of a convolution
operator in the BCs. Some straightforward discretizations of TBCs destroys the
unconditional stability of the basic Crank-Nicolson scheme or induce numerical re-
flection at the boundaries and therefore reduce the accuracy of the Crank-Nicolson
scheme achieved in the whole-space domain (see [18, 8, 9] for a review on different
discrete approximations of nonlocal TBCs).

Stable finite difference schemes for numerical approximation of the Schrödinger prob-
lem with the nonlocal TBCs are proposed in [18, 30, 9]. They use the standard
Crank-Nicolson scheme inside of the computational domain and introduce special
discretizations of the BC. In [30] a class of finite difference schemes is proposed, they
include various generalizations of the Crank-Nicolson scheme derived by the finite
difference, finite volume and finite element methods.

Following [9], we consider the exact discrete transparent BC (DTBC) for the Crank-
Nicolson finite difference discretization, such that the numerical solution in the re-
duced domain is the same as for the whole-space problem. The derivation of the
discrete TBC mimics the derivation of the analytic TBC (2.16) on a discrete level.
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The DTBCs are defined as follows:

Un
1 =

n
∑

k=1

Uk
0 ln−k

0 − Un−1
1 , Un

J−1 =
n

∑

k=1

Uk
J ln−k

J − Un−1
J−1 ,(3.10)

with

lkj =

(

1 + i
R

2
+

σj

2

)

δ0
k +

(

1 − i
R

2
+

σj

2

)

δ1
k + βje

ikϕj
Pk(µj) − Pk−2(µj)

2k − 1
,

ϕj = arctan
2R(σj + 2)

R2 − 4σj − σ2
j

, µj =
R2 + 4σj + σ2

j
√

(R2 + σ2
j ) (R2 + (σj + 4)2)

,

σj =
h2

Df

Vj, R =
2h2

Dfτ
, βj = − i

2

[

(R2 + σ2
j )

(

R2 + (σj + 4)2
)]1/4

e−iϕj/2, j = 0, J.

Here Pk denotes the Legendre polynomials (P−1 ≡ 0, P−1 ≡ 0) and δj
n is the Kro-

necker symbol.

The implementation of the Crank-Nicolson finite difference scheme with the discrete
TBC (3.10) requires to store the numerical solution Uk

j on boundary points j = 0, J
for all time levels (due to a nonlocal approximation of the convolution operator the
boundary data from the whole past history is used). In order to reduce the memory
requirements we will consider the accuracy of this algorithm, when the length of the
saved data is fixed to m time steps. Figure 6a shows the modulus of the numerical
solutions of (3.1), (3.10) at t = 0.5 with V ≡ 0, X = 2.5 for the full DTBC and the
truncated version of DTBC(m).
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Figure 6. Numerical solutions of the scheme (3.1) with V ≡ 0 for a)
the DTBC (3.10) and the truncated version of DTBC(m), and for b)
the approximate DTBC (3.11).

We see that a simple truncation of coefficients lkj in DTBC (3.10) induces strong
numerical reflections. Computational experiments show that these oscillations scale
as N/m, thus if the accuracy of approximation requires a smaller time step, then
the truncation parameter m should be enlarged accordingly.
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Next let us consider the Schrödinger problem with the BC (2.17), which approx-
imates TBC by using rational functions. The discrete version of this condition is
obtained by applying the finite volume method (here we consider the boundary
equation at x = X):

i
√

Df ∂̄xU
n−1/2
J − h

2
√

Df

(

∂̄tU
n
J − iVJU

n−1/2
J

)

= βU
n−1/2
J(3.11)

+
m

∑

k=1

ak

(

U
n−1/2
J − dkΦ

n−1/2
k

)

,

∂̄tΦ
n
k + i

(

dkΦ
n−1/2
k − U

n−1/2
J

)

= 0, Φ0
k = 0, k = 1, . . . ,m.(3.12)

In [7] a similar finite difference approximation is obtained by using the ghost points
at the boundaries and approximating the fluxes by the central difference formula.

At each time level a solution of (3.11) – (3.12) is computed by the following algo-

rithm. First, by using the equality Φ
n−1/2
k = Φn−1

k +
τ

2
∂̄tΦ

n
k we obtain from (3.12)

that

Φ
n−1/2
k =

1

1 + iτdk/2

(

Φn−1
k + i

τ

2
U

n−1/2
J

)

.

Substituting it into (3.11) and using the Crank-Nicolson scheme for interior points
of the grid j = 1, . . . , J − 1, we get a system with a tridiagonal matrix for vector
Un−1/2. Such systems are solved efficiently by using the factorization algorithm.

Figure 6b shows the results obtained in the case m = 1. The coefficients of the
approximate DTBC are obtained in [7] with the simplex method: β = 0.7269284,
a1 = 2.142767, d1 = 6.906263.

4. Conclusions

In this paper we consider finite difference approximations of a 1-dimensional linear
Schrödinger equation with three different types of artificial BCs. These boundary
conditions allow to compute numerically the solution of the problem given on an
infinite domain. For reflecting and absorbing BC we have proved that the discrete
solution satisfies conservation laws for the mass and the energy if such integrals are
conserved for the differential problem.

Results of computational experiments show that the reflective boundary conditions
can be applied only if artificial BCs are formulated for a sufficiently large domain
and, therefore, they cannot be used for many real world applications. The absorbing
BCs are efficient if the solution consists of only few simple waves, but, in general,
they can be more efficient than the reflective BCs. A similar effect is achieved by
using the artificial layer at the boundaries of the domain with a potential iα(x) (we
get a sink term).

Most promising are DTBC(m), where the length of memory is restricted to m time
steps and m is defined in consistent way with the discrete time step τ . Another
interesting possibility is to approximate nonlocal in time TBCs by using the rational
local approximations.
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[23] A. Jakušev, R. Čiegis, I. Laukaitytė, and V. Trofimov. Parallelization of linear algebra algo-
ritms using parsol library of mathematical objects. In R. Ciegis, D. Henty, B. Kagstrōm, and
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