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A numerical simulation of the 
Jominy end-quench test 

by D. Hornberg 

Abstract 

We present a numerical algorithm for simulating the Jominy end-quench test 
and deriving contin1:1ous cooling diagrams. The underlying mathematical model for 
the austenite-pearlite phase transition is based on Scheil's Additivity Rule and the 
Johnson-Mehl equation. For the formation of martensite we compare the Koistinen-
Marburger formula with a rate law, which takes into account the irreversibility of 
this process. 

We carry out numerical simulations for the plain carbon steels C 1080 and C 100 
W 1. The results suggest that the austenite-pearlite phase change may be described 
decently by the Additivity Rule, except for the incubation time. 

On the other hand, using a rate law to describe the martensite formation is 
preferable to the Koistinen-Marburger formula, which leads to unphysical oscilla-
tions of the cooling curves in simulated CCT-diagrams. 

1 Introduction 

In this paper we describe a mathematical model for the phase transitions in eutectoid 
carbon steel and use it to develop a numerical scheme for the simulation of the .Jominy 
end-quench test. 
In this test a cylindrical steel bar is heated up to its austenitic state. Then it is put in 
a :fixation and quenched by spraying water on its lower end ( cf. Fig. 1 ). Afterwards 
the hardness is measured at increasing distances from .the quenched end. The results 
are plotted in a hardenability curve. It serves as a measure for the hardness penetration 
depth of this steel and thereby defines its range of application. 
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Test pteee in posi1t0n 

Figure 1: Diagram of the cooling device (from (19]) 

For a simulation of the Jominy test one first needs ·a mathematical model to describe the 
growth of pearlite and martensite as well as recalescence effects in the steel bar owing to 
the latent heat of the phase changes. 
A lot of work has been spent on simulating phase transitions in steel, e.g. [1], [7], (12], [13], 
[18]. The first mathematical investigation of phase transitions in steel has been carried 
through by Visintin [29], but he only considered the austenite-pearlite transformation. 
Based on this model Verdi and Visintin (28] suggested a numerical scheme for simulating 
the austenite-pearlite phase change, without presenting numerical results. In [14], the 
author developped a model for the austenite-pearlite and the austenite-martensite phase 
change that is based on Scheil's Additivity Rule and the Koistinen-Marburger formula. 
It turned out that the Koistinen and Marburger formula is an insufficient tool for simu-
lating the growth of martensite, since it does not take care of the irreversibility of this 
transition. This lead to unreasonable oscillations in the simulated OCT-diagrams. 
Then in [15] the present author investigated a new model for this phase transition, where 
the Koistinen-Marburger formula was replaced by a rate law, accounting for the irre-
versibility of the martensite formation. 
Here we present a numerical realization of this model and use .it to simulate hardenability 
curves for two different plain carbon steels. In Section 2 we briefly review the mathemat-
ical model as described in [15]. In Section 3 we discuss the numerical implementation of 
the model. Finally, in Section 4 we discuss the results of the numerical calculations. 
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Figure 2: Isothermal-transformation diagram for the plain carbon steel C 1080 (from [2]) 

2 The mathematical model 

2.1 Time-Temperature-Transformation diagrams 

In eutectoid carbon steel two phase transitions may occur: one from austenite to pearlite 
and one from austenite to martensite. The A-P transformation is driven by the diffusion 
of carbon atoms, it is time-dependent and irreversible. The A-M tran~formation is diffu-
sionless. It is temperature-dependent in such a way that the fraction of martensite only 
increases during non-isothermal stages of the cooling process. 
The evolution of the phase transitions is usually described in Time-Temperature-Trans-
formation diagrams. Figure 2 depicts an isothermal-transformation (IT-) diagram for 
the plain carbon steel C 1080. Here A,, and M,, denote the starting temperatures for the 
formation of pearlite and of martensite, respectively. 
For fixed temperatures the bold-faced curved lines indicate the beginning of the austenite-
pearlite transformation, i.e. the time when 1 per cent of the austenite has been trans-
formed, and the end of the transformation, i.e. the time when 99 per cent of the austenite 
has been transformed. 
In the non-isothermal case the phase evolutions are represented in a continuous-cooling-
transformation (CCT-) diagram. This can be derived from an isothermal-transformation 
diagram by superimposing several cooling curves on it. On each curve the beginning and 
the end of the transformation are marked. Then the connection of the respective points 
defines the CCT-diagram. Compared to an IT-diagram the transformation curves are 
moved to later time and lower temperature ( cf. Fig. 3 ) . 
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Figure 3: Derivation of a continuous-cooling from an isothermal-transformation diagram 
(from [4]) 

2.2 The austenite-pearlite phase change 

As the A-P transformation is a nucleation and growth process, it is governed by the 
nucleation rate ( the amount of nuclei of the new phase formed per unit time and volume) 
and by the growth rate of the nuclei. 
Assuming these rates to be constant and furthermore spherical growth of the nuclei, 
Johnson and Mehl [21] in 1939 derived the equation 

( ) 1 
_!!:.f.IG3t4 

pt = - e 3 (2.1) 

for the A-P transformation in the isothermal case. Here p is the fraction of pearlite, N 
is the nucleation rate and G is the growth rate of the nuclei. 
As in [1] and [29] we use (2.1) in the parametric version 

p( t) = 1 - e -b(T)ta(T). (2.2) 

The temperature dependent coefficients a(T) and b(T) can easily be calculated using the 
transformation curves in the IT-diagram ( cf. Section 2.3). 
In the non-isothermal case, we use the additivity rule to describe the formation of pearlite: 

t 1 
j r(T(e),p(t)) de= 1. 
0 

(2.3) 

Here r(T, p) denotes the time to transform the fraction p to pearlite at constant temper-
ature T. Thus, by (2.2), 

1 

( 
ln(l - p)) ~ 

r(T,p) = - b(T) . (2.4) 
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Equation (2.4) was derived by Scheil (26) to predict the incubation period of the A-
p transformation. Later Avrami [5] and Cahn (8) showed that (3.4) can be applied to 
characterize the kinetics of a class of phase changes which they called additive. 
Although the pearlite phase change is not an additive transformation in their sense, ( cf. 
[9]), according to a comparative investigation by Hayes (11] the additivity rule is a better 
tool for predicting the course of the phase change than a rate law. Moreover, meas-
urements by Hawbolt et al. [12] show that also in quantity the A-P transformation is 
described well by the additivity rule, except for the incubation period where the pearlite 
fraction predicted by the additivity rule shows only poor coincidence with the measure-
ments. It should be noticed that equations of this type are also used for modelling fatigue 
effects, e.g. the Palmgren-Minor rule ( cf. [6]). 
A different approach to model a nucleation and growth process was chosen by Andreucci 
et al. (3]. Going back to the ideas of Johnson and Mehl they derived an integral equation 
to describe the solidification of polymers in the non-isothermal case. 

2.3 Identifying coefficients from IT-diagrams 

Assuming that the generalized Johnson -Mehl-equation (2.2) appropriately describes the 
isothermal evolution of the phase fractions we present a simple method to obtain the data 
functions a(T) and b(T) from the IT-diagrams. 
Since the bold-faced curves in these diagrams are the 'iso-fractions' p = 0.01 and p = 0.99, 
we interpret these transformation curves as the respective graphs of functions 

which measure the beginning and end of the pearlitic transformation for given temper-
ature. These data functions can be drawn from the IT-diagram. Then the wanted 
coefficients are the solution to the following nonlinear system of equations: 

0.01 
-b(T)ta(T) 1 - e s 

0.99 
-b(T)ta(T) 

1 - e f 

Simple manipulations show that the solution is given by 

a(T) 

b(T) 

ln(ln(0.01)) - ln(ln(0.99)) 
ln(t1(T)) - ln(ts(T)) 

- ln(0.99)t1(Tta(T). 
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Figure 4: The data functions a(T) and b(T) for the carbon steel C 1080. 

Figure 4 shows the behaviour of the coefficients a(T) and b(T) in the temperature range 
( Mf, As] for the plain carbon steel C 1080. For temperatures below Ms the values are 
obtained by linear extrapolation. Although it cannot be concluded from the diagram, also 
b stays positive in the whole temperature range. Hence in. the following we assume a and 
b to be continuous functions on [M,, As], bounded away from zero. 

2.4 An Initial Value Problem for the A-P transformation 

A simple way to exploit the additivity rule is to differentiate it formally with respect to 
time. Since we get an inner derivative p, rearranging terms leads to the following initial 
value problem: 

with 

p(O) 
p(t) 

po 
f(t,p(t), T), 

" ( r a de )-l 1 
f(t,p(t), T) = - Jo 8p r(T(e),p(t)) r(T(t),p(t)). 

(2. 7a) 

(2. 7b) 

(2.8) 

It may be proved ( cf. (14]) that for any given (integrable) temperature evolution T 
[O, tE] -7 [MJ, Aa], (2.7a,b) admits a unique solution p, satisfying 

0 ::; p(t) ::; Ct 8 < 1, for all t E (0, tE], (2.9) 

with a constant Ct8 , depending only on the end time tE. Moreover, we have 

p(t);::: o, (2.10) 

i.e. the irreversibility of the austenite-pearlite transformation carries over to the model. 
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Unfortunately, as figure 4 shows, the coefficient a, which was equal to 4 in the original 
Johnson-Mehl equation and assumed to be greater than 1 in [28] and [29], actually takes 
values less then 1, if the temperature is in a range just below As. In this case, we can 
prove the following 

Proposition 2.1 Let T [O, tE] -+ [MJ, As] be a continuous function, such that 

a(T(t)) < 1 for all 0 :St :Si, 

then the following are valid: 

For the proof, we refer to [14]. 

lim p( t) == 0, 
HO(+) 

lim p(t) oo. 
HO(+) 

(2.lla) 

(2.llb) 

In a nucleation and growth process the increase of the volume fraction of the new phase 
should be 'small' during the incubation time, which is a contradiction to (2.llb ). Thus, 
Proposition 2.1 gives the mathematical reason, why the additivity rule does not work well 
for the early stages of the transformation. As said before, this fact has also been observed 
experimentally. 
To overcome this difficulty, we adopt the following philosophy: We define an incubation 
time tr, which we keep fixed. Giving up the aim of predicting the exact evolution kinetics 
during this incubation time, we just gauge the process by demanding that the additivity 
rule shall hold, when the end of the incubation time is reached. This leads to the following 
model: 

• Let T : [O, tE] -+ IR be a given temperature evolution, 

• tr E (0, tE) the fixed incubation time, then, depending on T, 

• Po is defined by 

la
t1 1 
---de== i. 

o T(T(e),po) 
(2.12) 

• The fraction of pearlite is determined by the following initial value problem (IVP): 

p(O) 

p(t) 

The heaviside function 

Po, 

{ J(t,p(t), T)H(A, -T(t)) 

H(x) == { l, 
0, 

x>O 
x :S 0 

, 0 < t :S tr 
, tr < t < tE. 

prevents the formation of pearlite above the critical temperature As. 
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2.5 The austenite-martensite phase change 

While the additivity rule is a well investigated decent tool for describing the growth of 
pearlite, there seems to be no satisfactory model at hand for the martensitic transforma-
tion in steel. 
Usually, exponential growth laws like the Koistinen and Marburger formula 

m( t) = 1 - e-c(M,,-T(t)) . (2.14) 

are used ( cf. [14], [16], [17]). 
These equations have all in common that they do not model the irreversibility of the 
austenite - martensite phase transition. Thus, in numerical simulations based on these 
models, owing to the release of latent heat, usually a decrease in the martensite fraction 
is observed ( cf. [14] and Section 4). 
The formation of martensite starts below the critical temperature Ms, and the volume 
fraction of martensite only grows during non-isothermal stages of a cooling process. 
Hence we propose the following rate law for the growth of martensite: 

m(O) = 0, 

m(t) (1 - m(t))G(T(t))H(-Tt(t)). 
(2.15a) 

(2.15b) 

Here, again H is the heaviside function. G shall be bounded, positive and (Lipschitz-) 
continuous, satisfying G( x) == 0 for all x ~ Ms. 
If during some stage of a heat treatment cycle either T ~ Ms or T is increasing, i.e. 
Tt ~ 0, according to (2.15b) we have m(t) = 0, whence no martensite is produced during 
this stage. 
Moreover, since m ~ 0, the irreversibility of the martensite transformation is now incor-
porated in the model. 
Putting m(O) == 0, we tacitly assume that we start with a temperature T(O) > M6 • 

2.6 The complete model 

In (2.13b) and (2.15b ), actually, not the fractions p and m occur but the volume fraction 
of austenite which is 1 - p or 1 - m, respectively. Therefore, to combine both models one 
only has to replace these terms by the volume fraction of aust~nite in the case when both 
pearlite and martensite are present, i.e. 1 - p - m. 
So we end up with the following initial value problem for the phase transitions in eutectoid 
carbon steel: 
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p(O) Po~ (2.16a) 
m(O) 0, (2.16b) 

p(t) (1 - p(t) - m(t)) f(t,p(t), m(t), T) H(A!I - T(t)), (2.16c) 

m(t) (1 - p(t) - m(t)) G(T(t))H(-Tt(t)), (2.16d) 

where we define 

( rt de )-1ln(l - p - m) 
f(t,p,m, T)) := - Jo a(T(e))r(T(e),p,m) r(T(t),p,m) )H(t - tr). (2.17) 

Here, r(T, p, m) is defined by 

1 
(T ) =(-ln(l-p-m))~ T ,p,m . b(T) . (2.18) 

The following Proposition summarizes the properties of the preceding model. 

Proposition 2.2 Let T : [O, tE] --+ IR be an integrable and (weakly) differentiable tem-
perature evolution with 8(0) = A!I, and t1 E (0, T) the fixed incubation time. Then the 
fallowing are valid: 

{ 1) Po is uniquely defined by 

(2) The !VP {2.16a-d) has a unique {absolutely) continuous solution (p,m). 

{3) Po ::; p(t) + m(t) ::; Ct1 ,t8 < 1 for all t E [O, iE]· 

See [15] for the proof and the precise formulation of the necessary assumptions. 

2. 7 Three-dimensional case 

Let n c IR3 be bounded with smooth boundary an=: r and Q := n x (0, tE)· 
As mechanical effects are neglected in this paper, using Fourier's law of heat conduction, 
we get the following balance of energy: 

ae 
pat - \7 · (k\7T) = 0, (2.19) 

where p is the mass density, e the specific internal energy and k the heat conductivity of 
the material under consideration. 
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In a spatial model the propagation of latent heat released during the phase changes has 
to be considered. Following (30], it is assumed that there exists a differentiable material 
function e such that the internal energy takes the form 

with the partial derivatives 

e(x,t) = e(T,p,m), 

ae 
-= -Lm. 8m 

(2.20) 

(2.21) 

Here c denotes the specific heat at constant pressure and Lp, Lm denote the latent heats 
of the austenite-pearlite and the austenite-martensite phase change, respectively. 
p, c, Lp, Lm shall not depend on the phase fractions p, m. Thus we obtain the following 
balance of energy: 

p(T)c(T) 8
8
T - \1 · (k(T)\!T) = p(T)Lp(T) 8

8
P + p(T)Lm(T) 8

8
m, t . t t 

together with boundary and initial conditions 

-k(T) BT 
8v 

T(., 0) 
1(T)(T - Tr ), 
A,,, inn. 

in r X (0, tE), 

Here, Tr is the outside temperature and I the heat exchange coefficient. 

in Q, (2.22) 

(2.23a) 

(2.23b) 

For further mathematical analysis, we assume that p, c, k, I are positive constants and 
that the latent heats Lp, Lm are positive, bounded (Lipschitz-) continuous functions. 
The assumptions on p, c and k can be weakened, but, of course, help to simplify the 
analysis. 
In addition, we replace the heaviside function with the following regularized version ( cf. 
fig. 5): 

! 0, x < 0, 
HJ(x) = tx, 0 ~ x< 8, 

1, x ~ 8, 
(2.24) 

where 8 > 0 is a 'small' parameter. Introducing the further notation AJ(.) := -HJ(-.), 
and using (2.16a-d) we end up with the following nonlinear parabolic problem (P8) for 
phase transitions in eutectoid carbon steel: 

pcTt + pLm(T)(l - p - m)G(T)AJ(Tt) - kf:l.T = pLp(T)pt, 

-k8T _ 
8v 

T(., 0) 
1(T-Tr), 
A,,, inn. 
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in Q, (2.25a) 

(2.25b) 

(2.25c) 



Figure 5: The functions H0 and A0 . 

Here, for almost all x E n, (P( x,. ), m( x,.)) is the solution to the following (IVP): 

p(x,O) 
m(x, 0) 
Pt( x, t) 

mt( x, t) 

Po ( T ( x; . ) ) , ( cf. (2.12) ) (2.25d) 

0, (2.25e) 
(1 - p(x, t) - m(x, t))f(t,p(x, t),m(x, t)T(x, .))H0(A 6 - T(x, t)), (2.25f) 

( 1 - p(.x, t) - m(x, t) )G(T(x, t))H(-Tt(x, t)). (2.25g) 

The following theorem shows that problem ( P0 ) is well-posed: 

Theorem 2.1 Assume that the incubation time tr has been chosen small enough, then 
(P0) has a unique solution (T,p, m), where the phase fractions (p, m) satisfy the properties 
of proposition 2.2. 

For a precise formulation of the assumptions on the data and for the proof we again refer 
to [15]. 
Instead of assuming the incubation time tr to be chosen 'small enough' one could also 
demand ~7 = 0 a.e. in (0, tr) or Po E (0, 1) constant, independent of T. 
The first case refers to a heat treatment with a moderate cooling rate, producing pearlite 
and subsequently possibly some martensite. 
The second condition applies to quench cooling, i.e. ve~y fast cooling to achieve a nearly 
pure martensitic structure. In this case it is reasonable to assume p0 to be constant, 
because no more pearlite will be formed during the cooling ~rocess. 
From a mathematical point of view it is interesting to see what happens if the regulariza-
tion parameter ~ tends to zero. This question has been investigated in [15], we only want 
to remark here that one still gets a solution in this case. 
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3 Numerical method 

3.1 The algorithm 

In this section we will apply our model to simulate the Jominy end-quench test. Owing 
to the symmetries of the problem ( cf. Fig. 1), we make use of cylindrical coordinates. 
Thus, we obtain the following energy balance: 

A(T)T, - k(Trr + ~Tr + T,z) = B(T), inn x (0, T), 

with n = (0, R) x (0, H), where R is the radius and H the height of the steel bar. 
Moreover we have used the ah breviations 

A(T) 

B(T) 

p(T)c(T) 

p(T)Lp(T)f1(p, m, T) + p(T)Lm(T)f2(p, m, T), 

where / 1 anf h are the right-hand sides in (2.25f,g). 
According to Figure 6, we consider the following boundary conditions: 

K,(T - Tw), in f 1 X (0, tE), 

-k8T = O"(T4 - Ti), in f2 X (0, tE), 
8v 0, . in r3 X (0, tE), 

0, in f 4 X (0, iE)· 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Here, Tw and TL denote the temperatures of water and the surrounding air, respectively. 
We will approximate the solution to (3.1), (3.4) by using a semi-implicit Crank-Nicholson 
scheme. Defining 

t· 1 j. 8t, j = 0, ... , Nt, (3.5) 

Tµ µ · 8r, µ = 0, ... ,Nr, (3.6) 

Zv v · 8z ' v=O, ... ,Nz, (3.7) 

we obtain a lattice on f2 X (0, tE) with the mesh sizes 

tE R H 
8t = Nt' 8r = Nr' 8z = Nz. (3.8) 

Let Tµ,v,j be an approximation of T(rµ, zv, t;), then, for 0 < j < Nt, 0 < µ < Nr, 0 < v < 
Nz we consider the following Crank-Nicholson scheme: 

T ·+1 - T · k . k . A(T ·) µ,v,1 µ,v,1 = -e1+i + -81 + B(T ·) µ,v,3 8 t 2 2 µ,v,3 ' (3.9) 

with 
· T 1 · - 2T · + T · e1 = µ+ ,v,3 µ,v,3 µ- l ,v,3 

(8r) 2 

1 T · - T 1 · T 1 · - 2T · + T 1 · +- µ+l,v,3 µ- ,v,3 + µ,v+ 13 µ,v,3 µ,v- ,] . 
µ8r 28r ( 8z )2 

(3.10) 
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Figure 6: Half the cross section of a cylindrical steel bar with height H and radius R. 

Linearizing the radiation condition on r2 , we incorporate the boundary conditions in the 
usual way. Owing to the linearization 

T(r, z, t) = T(O, z, t) + rTr(O, z, t) 

for r < < 1 and arbitrary z and t, using the boundary condition on r 4 , we get 

18T 
--

8 
~o, forr<<L 

r r 

Next, we introduce the transformation 

i = µ( Nr + 1) + LI + 1, 0 :::; µ :::; Nr, 0 :::; LI :::; Nz 

and the vector Ti E lR.N, N = (Nr + l)(Nz + 1), defined by 

T/ = Tµ,v,ii 1 :::; i :::; N. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Then, in order to find a solution to the semi implicit scheme (3.9), in each time step j we 
have to solve the linear system 

(3.15) 

Defining j I by 
ir · 8t = tr, (3.16) 

and assuming that no martensite will be formed during the first ir steps we end up with 
the following algorithm: 
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Initialize 
To A_, 
A<? 

1 p(TP)c(T?) 
po 0 
mo 0 
Bo 0 

For j = 0 to j I - 2 do 
solve Ai Ti+l = Bi 
mi+l 0 
pi+l 0 
Bi+l 0 
A{+i p(T/+i )c(T/+i) 

For j = j I - 1 do 
solve Ai Ti+l =Bi 

calculate initial value Po,i by applying Newton's method to 

ir-l 1 5t 1 5t 1 
H(p) = 5t 2:: k + o + ir - 1 

k=l r(Ti ,p) 2 r(Ti ,p) 2 r(Ti ,p) 

pi+i =Po 
mi+l = 0 
calculate Bi+l Ai+1 , 

For j = j 1 to Nt - 1 do 
solve Ai Ti+l = Bi 
calculate mi+l, pi+i 
calculate Ai+1 , Bi+l. 

The most time-consuming part of the algorithm is the numerical approximation of (2.17). 
In each time step a new value for p occurs in the integrand. Hence the integrand has to 
be evaluated completely in each time step, whereby the computing effort to approximate 
the integral increases quadratically in time. 
To avoid a further increase in computing time, for the calculation of (pi+l, mi+l) an 
explicit single-step method was used. 

3.2 Physical parameters 

The data for specific heat c and density p have been taken from tables in [10]. The heat 
conductivity has been calculated according to Simidu's formula ( cf. [10]): 

k = 1.16 · ( 60.0 - 8.7C - l4.4Mn - 29.0Si) 
J 

msK' (3.17) 
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where C, Mn, Si are the volume fractions of carbon, manganese and silicon for the re-
spective steel. 
For the latent heats we take the values from [13]: 

J Lp = 77.0-, 
g 

J Lm = 84.0-. 
g 

(3.18) 

According to literature ( cf. [20]), the heat transfer coefficient 1 during spray water cooling 
lies in the range w w 

l000rn2 J( ~ 1~3000rn2 J(. (3.19) 

For our simulations we use values for 1 which are larger than the upper bound in (3.19). 
Finally, the temperature thresholds A.,, M., can be drawn from the respective IT-diagram. 

4 Numerical simulations 

4.1 Results for the steel C 1080 

Fir"st, we applied our numerical scheme to the eutectoid C?-rbon steel C 1080 from (2] (see 
Fig. 2). For the heat exchange coefficient 1 we used the value 1 = 8.0 · 103W/rn 2 J(, 

Figure 7 depicts the general course of the simulation. At the lower quenched end of the 
steel bar, martensite begins to grow while in the upper part pearlite starts to form. 
Figure 8 shows the corresponding COT-diagram. As expected, the curves are moved 
to later time and lower temperature. The bucklings of the cooling curves between the 
transformation lines indicate the release of latent heat during the formation of pearlite. In 
Fig. 8(a), we used the Koistinen-Marburger formula (cf. (2.14)) to describe the evolution 
of the martensite fraction. Instead of intersecting the dotted M.,-line only once, the 
cooling curves go up again. To prevent repeated oszillations we even had to cut the latent 
heat Lp in halves. 
To overcome this unphysical behaviour, we replaced the Koistinen-Marburger formula 
with a rate law, which takes care of the irreversibility of the phase change (cf. (2.15a,b)). 
The resulting COT-curve is depicted in Fig. 8(b). Using the original value for Lp, the 
cooling curves intersect the M.,-line only once without performing unreasonable heating-
up effects. 
Finally, Figure 9 shows the hardenability curve for C 1080 side by side with a diagram 
in which the martensite fraction is plotted against the distance from the quenched end. 
Obviously, pearlite also has a certain hardness, so one can only expect that both curves 
coincide for small distances from the quenched end, which is the case. 
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Figure 7: Numerical simulation of the Jominy test for the steel C 1080 after 25 s (top) 
and after 75 s (bottom). 
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Figure 8: Numerical simulation of a COT-diagram for the steel C 1080: (a) usmg the 
Koistinen-Marburger formula, (b) using a rate law to describe the martensite fraction. 
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Figure 10: IT-diagram for the steel C 100 W 1 (from [25]). 

4.2 Results for the steel C 100 W 1 

In a second simulation, we applied our scheme to the steel C 100 W 1 from [25]. Although 
this steel has a carbon content of 1.0%, during continous cooling it only performs the 
eutectoid transformation. Thus the application of our model is justified. 
Fig. 10 shows the IT-diagram for this steel. The pearlite transformation starts much 
earlier than in the case of the steel C 1080. 
For the heat exchange coefficient we used the value 1=4.0·104W/m2 K. 
Figure 11 depicts the numerically simulated CCT-diagram for C 100 W 1 using the rate 
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Figure 11: Numerical simulation of a COT-diagram for the steel C 100 W 1. 
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Figure 12: Hardenability curve for the steel C 100 W 1 (from [25]), left; numerically 
calculated martensite fraction plotted against the distance from the quenched end, right. 

law (2.15a, b ). Here, the influence of the latent heat of the pearlitic transformation is more 
destinct than in Fig. 8. 
Finally, Fig. 12 shows that also for C 100 W 1 the numerically calculated martensite 
fraction plotted against the distance from the quenched end is in good agreement with 
the respective hardenability curve from [25). 
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5 Conclusions 

The numerical results show that the algorithm is capable of reproducing the hardenability 
curve for a steel, provided that the heat exchange coefficient has been adequately chosen. 
In order to make our model utilizable for practical applications, it first has to be extended 
to a broader class of steels. 
Therefore, the formation of ferrite and bainite has to be incorporated. This phase tran-
sitions can be modelled similarly to the growth of pearlite. 
A further interesting line of research is to incorporate the reverse transformation to austen-
ite, including hysteresis effects. Then one would be able to simulate complete heat treat-
ment cycles, giving rise to a lot of practical applications. 
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