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THE SPECTRUM OF DELAY DIFFERENTIAL EQUATIONS
WITH LARGE DELAY

M. LICHTNER, M. WOLFRUM, S. YANCHUK

ABsTrRACT. We show that the spectrum of linear delay differential equations
with large delay splits into two different parts. One part, called the strong
spectrum, converges to isolated points when the delay parameter tends to in-
finity. The other part, called the pseudocontinuous spectrum, accumulates
near criticality and converges after rescaling to a set of spectral curves, called
the asymptotic continuous spectrum. We show that the spectral curves and
strong spectral points provide a complete description of the spectrum for suffi-
ciently large delay and can be comparatively easily calculated by approximat-
ing expressions.

1. INTRODUCTION

Delay differential equations with large delay play an important role for modeling
of many real world systems, e.g. for optoelectronic systems with optical feedback
or coupling [8], neural systems [10], and others [1, 11]. One of the basic questions
in such systems concerns the stability of steady states and, in particular, spectral
properties of the corresponding linearized systems. In this paper we investigate the
spectrum of linear delay differential equations (DDEs) of the form

du
dt
where u € RN, A, B € RV*N | B = 0 in the limit of large delay Note that the limit
of large delay can be represented in the form of a singularly perturbation

(1.1) (t) = Au(t) + Bu(t — 1),

(1.2) S(0) = Au(f) + Bu(f-1)

after the change of variables t = t7, @(¢) = u(¢r), where e = 1/7.

The limit of large delay has been studied previously by many authors. In partic-
ular, Hale, Huang, Mallet-Paret, Nussbaum, and others have studied in detail the
appearance of periodic solutions for certain types of scalar equations. In the work
of Ivanov and Sharkovsky [5], the closeness of the DDE (1.2) to the corresponding
difference equation, formally obtained by putting £ = 0, has been exploited. Using
formal asymptotics, Kashchenko et al. [6, 7] provided a derivation of the Ginzburg-
Landau equation as a local normal form. Some aspects of the spectrum have been
previously investigated in [2, 3, 4, 14, 15, 16, 17] by Politi and Giacomelli and the
authors of this paper.

In our paper, we provide a complete description of the spectrum for a general sys-
tem of DDEs (1.1) with a single large delay. We show that the spectrum splits into
two parts with different scaling behavior: the strong spectrum, which converges to a
finite number of isolated points when the delay parameter tends to infinity, and the
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pseudocontinuous spectrum, which accumulates near criticality and converges after a
suitable rescaling to a set of spectral curves, called the asymptotic continuous spec-
trum. The results allow for a detailed description of the location of the spectrum
and possible instability mechanisms. Moreover, they provide comparatively simple
approximating asymptotic expressions for the location of the spectrum. The main
results are formulated in Sec. 2, the corresponding proofs in Sec. 4, and illustrative
examples are given in Sec. 3.

2. MAIN RESULTS
Our main goal is to investigate the set of solutions of the characteristic function
(2.1) Y\, €) = det (—)\I +A+ Be’%)
of equation (1.1) and to describe the spectrum
Y={A e C| x(Ae) =0}
1

as ¢ = - — 0. We will pay special attention to the case when the matrix B is
noninvertible, which can be found in many practical examples [1, 9, 12]. However,
in order to avoid technical difficulties, we assume that Ker B = Ker B2, such that
we have after a suitable change of coordinates

(2.2) B— (8 g) ,

where B € R4 s invertible with 1 < d < N. Correspondingly we decompose

_ (A1 A
o3 am (b )
where A4 € R4 and A; € RW-dx(N-d)  Baged on this, we can define the
following spectral sets for (1.1):

Definition 1. The set
Ay ={ e C|det(\]—A)=0, ReA>0}
is called the asymptotic strong unstable spectrum,
A ={AeC|det(A\]—A1)=0, Rel <0}
is called the asymptotic strong stable spectrum and
As = AL UA_
is called the asymptotic strong spectrum.
We call
A, = {’y—l—iw eCl3peR: py, (e_'ye_w) :0},
the asymptotic continuous spectrum, where
pu(Y) :=det (—iwl + A+ BY)
and we assume that p,,(Y) # 0 for all w € R.!
These asymptotic spectral sets will turn out to determine the asymptotic location

of the full spectrum €. We define now subsets of 3¢ corresponding to A, A, A;,
and A, respectively:

Lthe assumption is made here only to avoid technifical difficulties, it will be removed later.
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Definition 2. The set
Yo i=XLUXe,
where
Y =3NB(Ay), B¢ =X NB(A)

and 7 := % min {ro,dist (As,iR)}, ro := min{|X — p| | A\, x € Ag, X # p} is called
the strong spectrum. The set

3=\ X
is called the pseudo-continuous spectrum. Finally
I¢ = Se(30),
where S, : C — C is the rescaling
Se(a+ib) := a% +ib for a,b€R,
is called the rescaled pseudo-continuous spectrum.

Here B, (M) := Uzem{z € C | |z — z| < r} denotes the set of balls around a set
M cC.

The following main theorem establishes that for € | 0 the strong spectrum X
converges to Ajg, the pseudo-continuous spectrum ¢ converges to the imaginary
axis ‘R and the rescaled pseudo-continuous spectrum II$ converges to the set of
curves given by the asymptotic continuous spectrum A.. The stability of (1.1) for
sufficiently long delay is given by the set of curves A, (see Corollaries 5 and 6).
Note that for det B # 0 there is no strong stable spectrum, i.e the strong spectrum
contains only eigenvalues with positive real part.

Theorem 3. (i) Let A € Ay. Then for 0 < ¢ <r there exists eg > 0 such that for
0 < € < €y the number of eigenvalues of (1.1) in Bs(\) equals the multiplicity of A
as an eigenvalue of A.

(ii) Let X € A_. Then for 0 < § < r there exists g > 0 such that for 0 < e < €
the number of eigenvalues of (1.1) in Bs(X\) (counting multiplicities) equals the
multiplicity of A as an eigenvalue of Ay.

(iii) For u € A, and § > 0 there exists eo > 0 such that for 0 < € < €g there exists
A€ X€ with |Sc(N) — pf < 4.

(iv) Let R > 0. For 0 < § < r there exists eg > 0 such that for 0 < € < €
and A € ¢ with |[JmA| < R we have |ReA| < & and there exists pn € A, with
5.0 — ul < 4.

In the next theorem, we state some properties of the asymptotic continuous
spectrum A.. We claim that it consists of d = rankB curves that may have a finite
number of singularities. The singularities mediate the transition of eigenvalues from
the strong spectrum to the pseudo-continous spectrum. The regular parts of the
curve, relevant for bifurcation analysis, are straightforward to compute numerically
and in many cases analytically.

Theorem 4. (i) There exist d = rankB continuous functions v1,- - ,7q : R —
RU{—o00,00} such that A, = U;izl{'yl(w) +iw |w € R, y(w) ¢ {—o0,00}}, which
are called the spectral curves of A..
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(i) Let iw ¢ 0(A1). Then there existl € {1,...,d} such that vy (w) = oo if and
only if iw € a(A).

(iii) Let iw ¢ o(A) and d < N. Then there exist | € {1,...,d} such that
M(w) = —o0 if and only if iw € o(A1).

Based on these results, the conditions for the asymptotic stability of the DDE
(1.1) can be formulated in terms of the spectral curves as follows.

Corollary 5. (i) If the spectral curves are in the negative half-plane, i.e. y(w) < 0
forallw € R, 1 <1 <d, and Ay = 0, then there exists ¢g > 0 such that for
0 < € < e the delay differential equation (1.1) is exponentially asymptotically
stable.

(i) If some spectral curve admits positive values, i.e. vy (w) > 0 for some w € R
andl € {1,...,d}, or Ay # 0, then there exists eg > 0 such that for 0 < e < € the
delay differential equation (1.1) is exponentially asymptotically unstable.

In particular, it is evident that the onset of instability is always given by a
spectral curve touching the imaginary axis.

Corollary 6. There exists e > 0 such that for 0 < € < €y the following assertion
is true: Assume that iw is the eigenvalue in S with largest real part, and that the
polynomial p,(Y) is not identically zero. Then the eigenvalue iw belongs to the
pseudo-continous spectrum.

Here, we need the nondegeneracy condition p,,(Y) # 0, which is always satisfied
if det B # 0. This condition is here necessary to avoid trivial situations, for example
where equation (1.1) can be decomposed into a skew-product of a DDE with an
ODE, where pure ODE spectrum independent on the delay appears.

The theorems above still hold true when the polynomial p,,(Y) becomes trivial
for some w € R. In this case, we have to adapt our definitions slightly and include
the additional set of of strong critical spectrum

(24) Ag:={iweCliweco(A), p,(Y)=0forallY € C} C ¢ for all e>0.

into the strong spectrum A,. Note that these eigenvalues are independent on ¢, i.e
they are present for all values of the delay 7. If Ag # () then the pseudocontinuous
spectrum has to be defined as

(2.5) =3\ (B U A).
The definition of the asymptotic continuous spectrum has to be replaced by
(2.6) A =Cl{y+iweC|iw¢ Ay and 3p € R : p, (e77e™"¥) =0},

where Cl denotes the topological closure.

Using these definitions the results in Theorems 3 and 4 as well as Corollaries
6 and 5(ii) literally hold true. In Corollary 5(i), a nonempty Ag clearly prevents
asymptotic exponential stability. Before we prove the above results in Sec. 4, we
will illustrate them by some examples.

3. EXAMPLES

3.1. Example 1: pseudo-continuous and strong unstable spectrum. With
the first example, we illustrate the case det B # 0 , where only pseudo-continuous
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and strong unstable spectrum is present. We insert into system (1.1) the matrices

a pf 1 0
() oe-( )

where «, (3 are real parameters. The strong spectrum X consists only of the strong
unstable part X¢ , which is approximated by the strong spectrum A (see Theorem
3). For the asymptotic strong spectrum we obtain from o(A)={a £ i} that

o(4), ifa>0,
3.1 -
(8:1) A+ {(z), ifa < 0.

This means that for sufficiently large delay and a > 0, there exist two unstable
eigenvalues approaching a £ i3 as 7 — oo.

When 7 — o0, the rescaled pseudo-continuous spectrum II¢ approaches the as-
ymptotic continuous spectrum A.. It is determined by the condition p,, (6_76_"‘/’) =
0 that reads here as

(3.2) (a—iw+ 67’7672@)2 + 3% =0.

This equation can be solved with respect to v and ¢. As a result, we obtain two
curves of asymptotic continuous spectrum

Ya(w) = —%lﬂ (02 + (ﬁiw)2) ., weR.
Using Theorem 4(i) we have
Ac= {1 (W) tiwjw eR,# —wVaz 0} U{y (v) +ivweR,fF#wVa#0}.

It is easy to see that the asymptotic continuous spectrum is stable if |a| > 1
and unstable if |a] < 1. Similarly, for sufficiently large 7, the pseudo-continuous
spectrum Y€ is stable if || > 1 and unstable for |a] < 1. At a = 0, the spectral
curves have singularities v4 (F03) = 0o (cf. Theorem 4(ii)).

According to Theorem 3, for large delay the two above mentioned spectra II¢
and X¢ completely describe the structure of the whole spectrum. Figure 3.1 shows
the spectrum for different values of the parameter «. In particular,

— for @ < —1, the pseudocontinuous spectrum is stable and there is no strong
unstable spectrum (Fig. 3.1(a));

—at a = —1, a critical situation occurs when the asymptotic continuous spectrum
touches the imaginary axis;

—for —1 < a < 0, the pseudocontinuous spectrum is unstable (Fig. 3.1(b));

—for 0 < a < 1, two strong unstable spectral points are present (Fig. 3.1(d))
appearing via the two singularities vy (F8) = oo of the spectral curve at a = 0
(Fig. 3.1(c));

— for a > 1, the pseudocontinuous spectrum becomes stable again, but the strong
unstable spectrum is still present (Fig. 3.1(e)).

3.2. Example 2: pseudo-continuous and strong stable spectrum. With the
following example, we illustrate the strong stable spectrum and its interaction with
the pseudo-continuous spectrum as some parameter is varied. We consider the
linear system with

(3.3) A(§1f>, B<8?)
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[$)]

(a) (b)
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FI1GURE 3.1. Spectra of example 1 for large delay. Asymptotic
continuous spectrum (solid lines) is shown together with numeri-
cally computed eigenvalues for fixed 7 = 30. Parameter values: (a)
a=-2;(b) a=-05;(c)a=0; (d) a=0.5: (e) a =1.5. For
all figures 3 = 1.

For this system A; = a and we get asymptotic strong stable spectrum A_ =
{a} if @ < 0. Moreover, there is asymptotic strong unstable spectrum A4, =

{‘; +4/1+ ‘142} for all a. Since rank(B) = 1, the asymptotic continuous spectrum
consists here only of one spectral curve

1

Y(w) = 3 In

(@7 +7)

(1 + w2)2 + a%ﬂ]

As it follows from Theorem 4, the corresponding spectral curve develops a singu-
larity v(0) = —oc if @ = 0. Figure 3.2 illustrates the strongly stable spectrum and
the singularity of the asymptotic continuous spectrum.

3.3. Example 3: strong stable spectrum in the Lang-Kobayashi model.
The following example is the Lang-Kobayashi model, which describes the dynamics
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(@ ®)

-8 ) -4 -2 0 —é —é -4‘1 -é 0

w™R(L) TR(L)

FIGURE 3.2. Spectrum of system (3.3) with large delay. Asymp-
totic continuous spectrum (solid lines) is shown together with nu-
merically computed eigenvalues for fixed 7 = 20. Parameter values:
(a) a = —0.3, (b) @ = 0. Strong unstable spectrum is not shown.

of a semiconductor laser with optical feedback [9]

E'(t) = (1 +ia)n(t)E(t) + ne"“E(t — 1),

n'(t) = v[J —n(t) — (2n(t) + 1|E()?].

Here the variables ' € C and n € R denote the electrical field and carrier density
respectively. Additionally, there are real parameters o > 0,v > 0,J > 0,7 > 0,
and . The system has rotating wave solutions (external cavity modes) of the form

E(t) = ae™ n(t) = N. Their stability is determined by a linear system of the
form (1.1) in three real variables with

(3.4)

B R .
A= -0 N aa , B=}p3 =N 0},
[—2au(2N +1) 0 —v(1+ 2a2)J [ 0 0 OJ

where § = Q — aN. Note that det B =0 and

Ap = —v(1 +2d?)
is a negative scalar value. Hence, the strong stable spectrum always exists A_ =
{71/(1 + 2a2)} . Figure 3.3 illustrates the spectrum of some external cavity mode,
which contains two spectral curves and one strong stable eigenvalue. A detailed

study of the stability properties of all external cavity modes, using the results
presented here can be found in [13].

4. PROOFS OF THE MAIN RESULTS

In this section we prove the main results, which are formulated in Sec. 2. First
we prove Theorem 4. We start with the following lemma.

Lemma 7. The degree of p,, equals d = rankB if and only if iw ¢ o(Ay).

Proof. Use Leibniz formula
det (—iwl + A+ BY) = Y sgn(o) [[ (—iwl + A+ BY); ;-
ogESN 7

where Sy denotes the set of all permutations on {1,..., N} and the subindex
(4, 0(j)) denotes the element in the j-th row and o(j)-th column. Assume without
loss of generality that B is in Jordan canonical form containing the eigenvalues on
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1.5 — ]

1,
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FIGURE 3.3. Spectrum of the external cavity mode with N =
-0.3, @ = —0.6, a = 1 for the Lang-Kobayashi system (3.4).
Asymptotic continuous spectrum(solid lines) and circles numeri-
cally computed eigenvalues (circles) for 7 = 100 and parameters:
n=03¢=0,a=2v=0.07 J=0.1.

its diagonal. The leading order coefficient for Y is then calculated by summing
over all permutations ¢ which satisfy o(k) = k for N —d < k < N. Hence the
coefficient for the monomial Y'? is det(—iw + A;) H?zl Aj, which is not zero, since

the eigenvalues :\j of B are not zero by assumption. O

Using Lemma 7 we can conclude there exist d continuous functions ¥; : R\ {w €
R | iw ¢ 0(A1)} — C such that p,(Yi(w)) =0 for 1 < < d and iw ¢ o(A;).
Define 7;(w) := —log|Y;(w)| and extend =; continuously onto R with values in
R U {—00,00}. This proves assertion (i) of the theorem.

To prove assertion (ii), we have to study the case where, for a specific choice of
w, zero is a root of p,(Y). Indeed, we have for all iw ¢ o(A4;) that

~i(w) = oo for some 1 <1 < d < p,,(0) = 0.

But p,,(0) = 0 is equivalent to iw € o(A), finishing the proof of statement (ii).
To prove assertion (iii), we have to study the case where, for varying w, a root of
P, (Y) tends to infinity. To this end it will be useful to define also the polynomial

(4.1) 4o (Z) = det (Z (—iwI + A) + B) .

Note that for Z # 0 we have q,(Z) = 0 exactly if p,,(£) = 0. Hence, the spectral
curves v (w), 1 <1 < d, satisfy p, (e77(“)e~¥) = 0 as well as g, (€7(“)e¥) =0
for v (w) ¢ {—o0, 00} with some ¢ € R. We study now roots of g, (Z) that tend to
zero. Recalling that rankB = d < N it is obvious from (4.1) that Z = 0 is already
a root of g, with multiplicity N — d. By this reason, we need the following lemma
that separates a nontrivial component §,,(Z) of q,(Z) for Z close to zero.

Lemma 8. For all w € R there exists 6 > 0 such that for |Z| < § we have
(4.2) 0.(Z2) = ZN"4det C(Z) 4. (2),
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where
(4.3) G (Z) = det (—iwl + Ay — ZA>C(Z) ™" As)
and C(Z) = B + Z(—iwl + Ay).

Proof. We use the block structure (2.2) and (2.3) of A and B. For |Z]| sufficiently
small, invertibility of the block —iwI + A4 + BZ ! follows from invertibility of B
and we can apply the formula for the determinant of block matices:

- —iwl + A1 A2
Qu(Z) = det <Z< As iwI+A4+BZ1>)

— 7N det (—iwI A+ Bz—l) x
% det (—iwI YA As(—iwl + Ag+ Ez—l)—lAg) .
The representation (4.2) then follows immediately. O

Using this lemma, we can argue now for ¢, in the same way as we did above for
p: First, we observe that for §,(Z) #Z 0 we have

Yi(w) = —oo for some 1 < | < d <= §,(0) = 0.

Then, recalling (4.3), we note that §¢,(0) = 0 is equivalent to iw € o(A;). This
finishes the proof, under the assumption that iw ¢ o(A) implies ¢, (Z) # 0. But g,
and ¢, are identically zero exactly for the same values of w where p,,is identically
zero. For these values, we have by definition that iw € Ag. Hence we are finished
when we show the statement Ay C o(A).This follows from that fact that if p,, is
identically zero, then in particular p,(0) = det(—iwI + A) has to be zero. We have
proved Theorem 4 and remark that Lemma 8 implies

Ao Co(A)Nao(4y).

We continue now with Theorem3. At first, we prove statement (i), that for 0 < § <
r there exists ¢y > 0 such that for 0 < € < ¢g and A € A, the sum of the eigenvalues
in Bs(\) counting multiplicities equals the multiplicity of A as an eigenvalue of A:
Let A € A;. For z € Bas(A) and € | 0 the holomorphic function x(z,€) converges
uniformly to —zI + A. Hence, Hurwitz theorem implies that there exists ¢y > 0
such that for 0 < e < g the functions —zI + A and x(z, €) have the same number of
zeros in Bs(\). Since the set A4 is finite, this proves statement (i) of Theorem 3.

For statement (ii), we have to show that for 0 < § < r there exists €y > 0 such
that for 0 < € < ¢p and A € A_ we have that the number of the eigenvalues in
Bs(A\) counting multiplicities equals the multiplicity of A as an eigenvalue of Aj.
Let A € A_. We define f(z,¢€) := x(z+ A, €) and use again the block structure (2.2)
and (2.3) to obtain

—(Z-l—)\)Il +A1 A2
= d t ~ z
fz9) = de K As —(z+ N+ Ay + B2 ) |7
where I; and I, denote identity matrices in RV ~¢ and R?, respectively. Then

242

F(z €)= (e— : )ddet (M) det (N,
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where

242

=+ NL+As), Ni=—(z+ ML+ A —e o A M~ 4.

M:=B+e

Note that M is invertible, because

24

det M = det(B) 4+ O(le"=

).
Since M—' = B~' + O(|e#

) we have

EEDN
3

det(N) =det(—(z + A\)I1 + A1) + O(le

).

Hence

z2+A

NN ~ +
F(z€) (67) — det(B) det(—(z + A\)I; + Ay) + O(le™

).

Because Re A < 0 it follows that for given 0 < § < r there exists ¢y > 0 such that
for 0 < € < eg f(z,€) has the same number of zeros as det(—(z + X\)I1 + A1) in
Bs()). This proves statement (ii) of Theorem 3.

Now we come to statement (iii). We must show that for u € A, and § > 0 there
exists €g > 0 such that for 0 < € < ¢y there exists A € ¢ with |Sc(A) — pu| < 4. To
this end, we take u = vy + iwp € A.. Without loss of generality we assume that
iwo ¢ Ap. For € >0 let

fe(z) == det (—ez — ie2mk(e) + A+ Be ?),

where k(e) := [6“5—37} is the largest integer smaller than -. TFor € | 0 we have
fe(2) = fo(z) := det (—iwgl + A+ Be™ %) locally uniformly on C. Because iwg ¢
Ag, the function fy is nontrivial. By assumption there exists ¢g € R such that
fo(vo +ipe) = 0. Hence for n > 0, chosen such that fy has only 9 + ipg as a zero
on the closed n disk around g + i¢g, there exists ¢y > 0 such that for 0 < € < ¢
fo and f. have the same number of zeros in the open 7 disk of v + ipg. If z is
such a zero, then Ac = ez, + ie2mwk(e) € . Given § > 0 we choose n > 0 and
€0 > 0 sufficiently small such that |Sc(Ac) — p| < 6. This proves statement (iii) of
Theorem 3.

To prove the remaining statement (iv) of Theorem 3 we formulate the following

Lemmas 9 and 12.

Lemma 9. Let (\,)nen be a sequence of complex numbers converging to iwg € C,
where wo € R, and let (ey),, ey, €n > 0, be a sequence of positive numbers converging
to 0 such that x(An,€n) = 0. Then there exists a subsequence (An, )ken such that
one of the following holds:

(’L) limyg o0 Senk ()\nk) c A,

(i) limg o0 Se,, (An,) = 00 and there exists a spectral curve v, l € {1,...,d}, with
M(wo) = oo.

(141) limg— oo Se,, (Any) = —00 and there exists a spectral curve v, 1 € {1,...,d},

with v (wg) = —00.
(iv) Any = Anyyy = iwo € Ag for all k € N,

To prove Lemma 9 in the general case including nonempty Ag we need the
following
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Lemma 10. Let iwg € Ag. There existl > 0, | € N, and a polynomial p(Y, X)
i X and Y, which is nontrivial in'Y for all X belonging to an open neighborhood
U C C of iwg, such that

det(—XI+ A+ BY) = (X —iwo)'p(Y; X).
In particular

Po(Y) = (w — wo)'i'p(Y, iw),

where p(Y,iw) is a nontrivial polynomial in'Y for w in some open neighborhood
of wo.

There exist m > 0, m € N, and a polynomial §(Z,X) in Z and X, which is
nontrivial in Z for X belonging to an open neighborhood V. C C of iwq, such that
det(Z(— X1+ A) + B) = (X — iwo)™4(Z, X).

In particular
4u(Z2) = (w — wo)™"™§(Z,iw),
where §(Z,iw) is a nontrivial polynomial in Z for w in some open neighborhood
of wo.
Proof. Write
det(—XI+ A+ BY) = det(—(X — iwo)I —iwogl + A+ BY)
and consider it as a polynomial in X — iwg and Y. Because iwg € Ay a factor
(X —iwg)!, I >0, 1 € N can be split off. By choosing / maximal the polynomial
det(—XI+ A+ BY)
(X — in)l
in X and Y becomes nontrivial in Y for all X sufficiently close to iwg.Similarly
write

pY, X) =

det(Z(—=XI+ A) 4+ B) = det(—Z(X —iwo)I + Z(—iwol + A) + B)
and consider it as a polynomial in X — iwg and Z. O

From Lemma 10 it is not difficult to see the following Remark for the definition
(2.6) of the asymptotic continuous spectrum in the case Ag # 0:

Remark 11. Let iwg € Ap. Then v + iwg € A, if and only if there exists ¢ € R
such that p(e e . iwy) = 0. Hence we have

A ={y+iweC|3IpeR:ple Ve ™, iw) =0},
which is compatible to Definition 1- in the case- Ay = 0.
Proof. [Proof of Lemma 9] Write
An = €nVn + 1€00n + 1€,2TMy,,

where @, € [0,27] and m, € Z. By assumption we have lim, (i€ 27my) =
iwo and limy,_.oo(enyn) = 0. By passing to a subsequence we can assume that
lim, o0 n = @o € R. Define

pn(y) := det (feny — i€ 2mmy, + A+ Be_y) , yeC.
The sequence py,(y) of holomorphic functions converges uniformly on bounded sets
of C to py, (e ¥) and we have

(4'4) X()‘n’ En) = pn(')/n + i‘Pn) =0.
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Suppose 7, is bounded. Then there exists a subsequence (7y, ), ¢y converging to
some Yo € R. From (4.4) by letting k — oo we get p,, (e 70~ %0) = 0. If iwy ¢ Ag
it follows by definition of A, that limj_.o Se,, (M) = 70 +iwg € A, so we have
(i). Suppose iwg € Ag. By applying Lemma 10 we get

(4.5) Ap, = iwog or pe” T Wne A, ) =0.

If the set {l € N | A, = iwo} is infinite, then we have shown (iv). Otherwise we
can assume that \,, # iwg for all k. From (4.5)

Be™07° i) = lim f(e™ 70 Ay, ) = 0.

Since p(Y,iw) is nontrivial for w near wq it follows that p(Y,iw) and hence p,(Y)
has a root y;(w) which converges to e=707%0¢ for w — wy. Hence the corresponding
spectral curve vy (w) = —log |y (w)| satisfies v;(wo) = 0. Hence vo + iwg € A
(compare with Remark 11).

Suppose v, is unbounded. We consider four different cases. First let limy_.oo Y, =
oo and iwg ¢ Ag. Letting k — oo and using (4.4) we get p,(0) = 0. Since iwg ¢ Ag
it follows that there exists [ € {1,...,d} such that v;(wg) = co. Hence we have
(ii). Now treat the case limg .o Vn, = 00 and iwg € Ag. Again using Lemma 10
we have (4.5). Hence either we have (iv) or we can assume that \,, # iwy and
Ple™ e =%ni N, ) = 0 for all k. In the latter case we have $(0,iwp) = 0 which
implies (ii).

Next consider the case limg_,o V5, = —00 and iwg ¢ Ag. Define

on(y) = det (e¥ (—epy — i€npn — i€, 2mm,, + A) + B), ye€C.

The sequence o, (y) of holomorphic functions converges uniformly on bounded sets
of C to gy, (e¥) and we have

(46) Un(’)/n + “Pn) = (e’Yn-H'CPn)N X()\n, En) —0
Letting k — oo we get qu,(0) = 0. Since g, (Z) is nontrivial for w near wy we see
(i)

Finally let limg oo Vn, = —o0 and iwg € Ap. Applying the second part of
Lemma 10 we get

Ap, = iwg or Gler T X\, ) =0.
This implies that either (iv) or (iii) holds. O
Lemma 12. Let R > 0. Forn € N let ¢, > 0 be such that lim,_.., €, = 0.

Consider Ay, € ¥& with |[IJm A, | < R. Then A\, is bounded and for any convergent
subsequence (An, Jken we have Re (limg oo A, ) = 0.

Proof. Definition (2.1) implies that A, is bounded. Indeed, suppose A, was un-
bounded. Then there would exist a subsequence (A, )ren such that either

(4.7 kli_)rgo Re (A, Jken = 00
or
(4.8) lim e (A, Jkeny = —00
k—o00

In the case (4.7) we have a contradiction to the fact that the spectral radius of
A+ Bexp(—Am, /€m, ) is bounded. Let us consider the case (4.8). We apply Leibniz
formula for the determinant of —A.,, I + A + Bexp(—An, /€m,) (compare with
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Lemma 7) and note that the leading order summand corresponds to the identity
permutation which contains d factors of order exp(—An,, /€m, ) and n — d factors of
oder \,,,. This gives us a contradiction to the assumption A, € ¥¢*. Hence A, is
bounded.

Let (An, )ken be a subsequence converging to Ag. Suppose PRe Ag > 0. Then one
can pass to the limit in (2.1) and gets det (—Aol + A) = 0. This contradicts that
An, ¢ £%. Suppose Re Ao < 0. There exist converging subsequences (A, Jren and
v, € CV, ||lvg| = 1, such that

(4.9) (=An I+ A+ Bexp(—An, /€n,)) vi = 0.
Multiplying with exp(A,, /€n,) and passing to the limit we get Bvg = 0, where

vg := limg_ o vk. Next passing to the limit in the first N — d lines of (4.9) we get
that \g € A_. This contradicts \,, ¢ %*. O

Lemmas 9 and 12 prove statement (iv) of Theorem 3. Indeed, assume statement
(iv) was false. Then there would exist Ry >0 and dp > 0 and for n € N A,, € ¥¢,
|Im A, | < Ro, €, > 0, lime,, = 0, such that

(4.10) |ReA,| > do for all n € N
or
(4.11) [Se,, (A\n) — p| = 8o for all p € A, and n € N.

Case (4.10) would contradict Lemma 12. Case (4.11) together with our definition
(2.5) of the pseudocontinuous spectrum would contradict Lemma 9. Hence the
proof of Theorem 3 is complete.

Finally, we should comment that Corollary 5 follows directly from the main
Theorem 3 and the following

Remark 13. For all C' > 0 there exists R > 0 such that for all ¢ > 0 we have that
if A € 3¢-and |IJmA| > R then ReA < —Ce.

Proof. If the assertion was false then there would exist Cy > 0 and sequences
(M) nens (€n)pen a0d (Vn) pens An € C, €, > 0, v, € RY, o, || = 1, limy o0 vy, = v,
with the properties

—An
€n

)vnzo.

Deviding the last equation by A, and passing n — oo yields the contradiction
v = 0. ]

The authors acknowledge the support of DFG Research Center Matheon “Math-
ematics for key technologies”.

A
—ReZ" < Cp,  lim |A,| = oo, (—Anl + A+ Be
E'I'L n—oo
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