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Abstract

A Timoshenko type elastoplastic beam equation is derived by dimensional reduc-
tion from a general 3D system with von Mises plasticity law. It consists of two second-
order hyperbolic equations with an anisotropic vectorial Prandtl Ishlinskii hysteresis
operator. Existence and uniqueness of a strong solution for an initial-boundary value

problem is proven via standard energy and monotonicity methods.

1 Introduction

We continue in this paper the study of dimensional reduction in oscillating thin elastoplastic
structures that we have begun in [4,7,8]. In these papers, elastoplastic counterparts of the
Euler—Bernoulli beam equation and the Kirchhoff plate equation have been derived using
the scaling technique of |1,3|, where the thickness plays the role of the smallness parameter,
provided that only terms up to second order are kept and terms of order three and higher are
neglected. We show here that the same idea leads to the Timoshenko model if additionally

third-order terms are taken into account.

As in the above cases, we consider the standard von Mises single-yield plasticity model,
and show that after reduction of the space dimension, the constitutive relation between
the projected strain and projected stress can be written in terms of a multi-yield Prandtl-
Ishlinskii operator. It is no longer isotropic as in the former cases, but its properties still
enable us to prove the existence and uniqueness of solutions to the resulting system with
appropriate boundary and initial conditions, using a space discretization and a monotonicity

argument.

2 Derivation of the Model

We restrict ourselves to rectangular beams, that is, to sets Q C R3 of the foom Q =
(0,L) x w, where L > 0 is the length of the beam, and where, with some h > 0 and
b> 0, the set w = (=b,b) x (—h, h) represents its (rectangular) cross section. We denote
by = € (0, L) the longitudinal coordinate, by (y,z) € w the transversal coordinates, and
by t € [0,7] the time, where 7" > 0 is given.



In order to compare the resulting equations, we start with the linear elastic isotropic
case (Subsection 2.1), and then pass to the elastoplastic model under further simplifying
assumptions (Subsection 2.2). We follow the scaling technique of [1, Part A| and [3, Sec-
tion 5.4| in terms of a small parameter « > 0 with the intention to keep only the necessary

lowest-order terms in « in the resulting equations. In particular, we assume that
h,b =0(a), L=0(1).

Let us consider smooth displacements u: Q x (0,7) — R3, decomposed into

Uy ul ul?

L H

u= | u [=]w | +] & [=u"+u”,
us uf ull

where the superscripts L and H stand for low-order (second order at most) and high-order
components with respect to «, respectively. We neglect longitudinal displacements, and

make the following assumptions.

(A1) The low-order displacement of the midsurface C = {(z,y) € R? (z,y,0) € Q} is
independent of y, that is,

0
UL(x7y70’t): 0 Y v($7y) EC’ Vte (O7T)7
w(z,t)
with w: (0,L) x (0,7) — R.
(A2) The low-order deformation
x
Fi(z,y.2t) = | y | +ut(z,y,20),

leaves the cross sections {x} X w perpendicular to the midsurface, and their defor-

mation is proportional to their distance to it. Namely,
Fl(z,y,2,t) =F(z,y,0,t) + 2zn(z,y,t) Y (z,y,2,1t) € Q x(0,7),

where n(z,y,t) is the unit “upward” normal to the deformed midsurface C(t) =
C+FL(C,0,t) at time t.

(A3) wy = O(a).



Under the hypothesis (A3), we can linearize the problem by replacing

_wx(x>t)
t) = L 0
n(zr,y,t) = m

with its approximation
—wg(z,1)

n(x,y,t) := 0 . (2.1)
1

This is justified, since an elementary computation yields that (cf. [4,7])

- 1
82, y,1) — (e, 0] < 5 e,

This enables us to write for every (z,y,z,t) € Q x (0,7) the low-order displacement
ul(z,y,2,t) as
—zwg(z,t)
ul(z,y,2,t) = 0 : (2.2)
w(z,t)
The smallness assumptions ensure in particular that the deformation
x

F(x,y,z,t) = | y | +u(x,y,z1)

z
is a local homeomorphism. We further compute

—2Wep(z,t) 0 —wy(x,t)
vul(z,y, 2,t) = 0 0 0 ;
we(z,t) 0 0

and the low-order strain tensor el = (Vu® + (Vul)T)/2 becomes

—Z Wee(z,t) 0 0
el(x,y, 2,t) = 0 00 |- (2.3)
0 0 0



2.1 Small elastic deformations

We denote by “: 7 the canonical scalar product in the space T2x? of symmetric (3 x 3)-

tensors, i.e.,

3
Eim=> &y, VE=(&), m=(ny), i,i=12.3.

ij=1

Moreover, we define for any given & € T3X3 its (trace-free) deviator d(€) by

sym

1
aE) =€ — 5 (€:0)9, (2.4
where § = (6;;) denotes the Kronecker tensor.

To motivate the elastoplastic case treated below, we first study the case of linear isotropic
elasticity, in which the strain tensor € and the stress tensor o are related to each other
through the formula

o = 2ue+A(e:9)9, (2.5)

where g, A are the Lamé constants.

The main issue is to choose a proper scaling of o. The component o, is of the lowest
order, which is O(a?) due to (2.3) and (2.5). Assuming that the motion is “sufficiently slow”
and no volume forces act on the body, we may for scaling purposes refer to the elastostatic
equilibrium conditions

dive = 0,

which according to the natural scaling of the variables y, z = O(«), x = O(1), and due to
the symmetry of o, justify the scaling hypothesis

(A4) 012,013 = O(O./g), 092,033,023 = O((l/4).

From (2.5) we obtain
0:0 = (2u+3X\)(e:9), (2.6)

hence
1 A

207 202 1 3N)

Let &, € denote the stress and strain components of the order O(a?) at most. We assume

g =

(0:6)9. (2.7)

in addition to (A4) that the shear stresses in the xy-plane are negligible in terms of the
a-scaling, that is,

(A5) 5’12 = O



Then we have

og:0=o01.
Thus, (2.7) yields
€11 = %011 ;
€9 = &33 = —F011, (2.8)

- 1
€13 = 3,013

where E = u(2pu+3)\) /(1 + A) is the Young modulus and v = A\/(2(u+ A)) is the Poisson
ratio. Namely,

1 1
%011 0 3,013
€= 0 —%0'11 0
1 v
3,013 0 —5011

Comparing (2.8) with (2.3), we see that the O(a?) components of &y,&33 necessarily
originate from the high-order component of the displacement u” . Taking into account the

relations £15 = 93 = 0, we have
(ﬂ{{)y + (ﬂg)x =0, (ﬂ?)y + (ﬂg)z =0.

As a consequence of Hypotheses (A4), (A5), we conclude that there exists a function W
such that

=1 v, |, e= 0 ,, 0 : (2.9)

We have by (2.8) that &y = &33, hence U, + ¥, = 0. The scaling uf,uf = O(a?)
suggests to consider in the Taylor expansion of ¥ with respect to y and z only the terms

up to order three. Besides, assuming the symmetry condition
(A6) V(z,—y,z,t)=V(r,y,2,t) = —V(x,y,—2,1)
also for higher-order displacements, we finally consider ¥ in the form
U(z,y,2,t) = (329" — 2°) &z, ) + 2n(w, 1), (2.10)

with functions £, n that are to be identified. From (2.8), it follows for the terms up to the
order three that

6¢(x,t) = v w(z, t) +nlz,t) + (3y* — 2°)(x, 1)), (2.11)



which can only be consistent if multiples of & by powers in y and z are negligible with
respect to the other terms independent of y and z, since the left-hand side of (2.11) is

independent of y, z. This leads to the following representation formula:

—z(w 4+ 1), —z(W+N)g 0 —np Ez;; 0 2ué3
u= 0 , €= 0 626 0 , O = 0 0 0 ,
w—n — N 0 62¢ 2ugi3 00
(2.12)
where, by (2.8),
{= %(w + 1)ea-

We now introduce the new variables

v=w-n, = (wW+n),.

Then (2.12) can be rewritten as

—Rp —Z Py 0 %(Uw - (P) —Ez P 0 :U’(Um - (P)
ua= 0 , €= 0 2V P, 0 , O = 0 0 0
v %(Um - 90) 0 RV Py M(Uw - (P) 0 0

(2.13)

On the upper boundary, we prescribe the boundary condition
o(z,y,h,t) vy ="f(x,t), tel0,T],

where v5 = (0,0,1)7 is the upward normal vector, and f = (f1,0, f3)7 is a given external
surface load. In component form, this boundary condition reads a3 = f1, o3 = 0,
033 = f3. In agreement with the scaling hypothesis (A4), we require that f; = O(a?), f3 =
O(a?). On the left boundary {0} x w, we assume the clamped boundary condition

v(0,t) = p(0,t) =0, te[0,T].

On the right boundary {L}xw, we assume the vanishing normal stress boundary conditions
o-v, =0, where v; = (1,0,0)7 is the unit rightward normal vector. This means, in
particular, that

L) =0, (v, =)L) =0 te[0,T].

Finally, we suppose that the initial conditions

Qo(xvo) = 900(%) ) Sot(xv()) = wl(x)v U(SL’,O) = UO(I)v Ut(l’,O) = Ul(x)v

are given.



As in [9], we write the momentum balance equation in the variational form

/pﬁtt-ﬁdxdydz+/&:édzdydz = / (-v)-uds, (2.14)
Q 09

Q
with the unknown vector u and tensor &, for all admissible displacements 1 and strains

¢ of the form (2.13), i.e., we have

a=| o | e= 0 zve. 0| (2.15)

(S5
N |—
—~
4
8

|
S
~—
o
N
S
Sy
]

where (¢, 0) varies over the space
V ={(¢,9) € H'(0,L) x H'(0,L); $(0) =5(0) =0}
It follows from the choice of the boundary conditions that
L
/ (&-v)-ﬁds:Qb/ (=hfip+ f30) do
o0 0
The left-hand side of (2.14) reads
Q

The test functions ¢, v are independent of each other, and a straightforward calculation
shows that (2.14) decouples into the system

/0 pvtt(x,t)@(x)dx+/0 wv, —@)(x,t) 0y(z)de = % i fa(z, t)v(x)de,  (2.17)
[ (Grecte—uto =) o) o + 25 [oute) eulo)aa
-3 [ Attt ds. (2.18)

The variational system (2.17)-(2.18) leads formally to the partial differential equations
1

pow = (e = @) = 5 fs, (2.19)
h? Eh? 1
%@tt - T@m - M(Uz - 90) = —§f17 (2-20)
subject to the boundary conditions
2(0,1) = v(0,£) = 0, (2.21)
@e(L,t) = (ve — ) (L, 1) = 0. (2.22)

System (2.19) (2.22) represents the classical Timoshenko beam equation; see, for instance,
[11].



2.2

Elastoplastic oscillations

In this subsection we turn our interest to elastoplasticity. We still consider u as in (2.13).

We make the following hypotheses.

(B1)

(B2)

(B3)

(B4)

(B5)

The strain tensor

g = 0 E99 0 (2.23)
%(Um —¢) 0 €33
is decomposed into elastic and plastic components € = ¢ + &P.
The stress tensor
o1 0 013
o = 0 0 0 (2.24)

oz 0 0

is decomposed into elastoplastic and kinematic hardening components & = o? +o"".

The elastic constitutive law is as in (2.5), i.e.,

oP = 2ue’+ \(e°: ). (2.25)

The hardening law is assumed in the form

ot 0 ol —zHip, 0 22(v,— )
"= 0 0 0 |= 0 0 0 (2.26)
ot 0 0 L, — ) 0 0

with positive constants Hy, H,.
The plastic deformations are volume preserving in the sense that
e’ d=0.
The von Mises plastic yield condition is stated in terms of the stress deviator

d(o*?) = o — %(aep:a)(s,

d(o??) : d(o?) < 2R?, or equivalently

(017)* +3(01%)* < R, (2.27)

where R > 0 is a given yield limit.



(B6) For the plastic strain, we prescribe the normality flow rule

el:(o?—0)>0, VOcT3: dO:df< §R2,

sym
where the subscript ; denotes the time derivative.

Remark 2.1. Introducing the set

sym’

K = {9 e T3%3. d9:d6 < ng}

of admissible stresses, and using the convex analysis formalism, we can write the assump-
tions (B5)+(B6) in subdifferential form as

e} € Ik (o?), (2.28)
where [y is the indicator function of K and 0 its subdifferential.

Similar to the statements in [4,7], we recall other equivalent formulations of the von Mises
criterion (cf. |10]):

Proposition 2.2. Fach of the following two conditions is equivalent to (B5)+(B6).
(i) (Multiplier formulation) Condition (B5) holds, and there exists a multiplier 1, > 0
such that [, = 0 if d(o?):d(c?) < 2R?, and
el = 1,d(oP).

(ii) (Dissipation formulation) Let

\D<5>={ VEIRVEE ifg:6-0,
oo €840,

be the pseudopotential of dissipation. Then we have
o € 0¥ (&), (2.29)

that s,
o (ef —&) > W(e]) —W(E), VEeTin (2.30)

sym*

Remark 2.3. We may refer to [4, Section 2.2| for a sketch of the proof of Proposition 2.2.
Note that both (2.28) and (2.29) can be viewed as a maximal dissipation principle. On
the one hand, in (2.28), for a given stress o’ the strain rate €} is required to maximize
the dissipation rate o?:ef among all stress values @ € K. On the other hand, in (2.30)
(or (2.29)), for a given strain rate €}, the stress o is chosen to maximize the reduced

dissipation rate o®:el — W(el) over the set of all possible values € of the strain rate

(cf. [4]).



Now we have

€11 0 €13 Eeiy 0 2pety
e’ = 0 —vegy 0 , oP = 0 0 0 . (2.31)
€% 0 —vef; 2uefs 0 0

Assume that )y = &b, = 0 at time ¢ = 0. It follows from (B4) and Proposition 2.2 that

el 0 els
= 0 =3 0 : (2.32)
els 0 _%51171

We notice that there are two scalar parameters in each of the tensors o®?, " &° and
e?. It would be convenient to consider them as vectors with two components (cf. [4]). For

this purpose, we introduce the following notations:

ep hr e P
ep 011 b 11 . €11 » €11 _ —ZPq
O'* = 9 O'* = ) E* = ) E* - Y E>l< - .
ep hr e P 1
013 013 €13 €13 5(% — )
(2.33)

Hypothesis (B1) implies that

é* = Ei _'_E;f:v

and £99,833 in € can be determined by &,. Moreover, let C be the following positive

E 0
C= .
(0 2#)

o = Cet. (2.34)

definite matrix

Then we have (cf., e.g., (2.12))

Next, we restate the assumptions (B5) and (B6). Let
10 10
D= ., J= :
0 3 0 2
Then, in view of (2.27), (B5) can be written as
o Do < R,

while condition (B6) reads

J(), (6P —0,) >0, VO.cK,

10



where the set K, is defined as

K. ={0. € R*0, D0, < R*}.

We can also write the variational inequality in terms of €. Namely, we have ¢ €
CY(K.), and

Jc(é* - Ei)t ’ (Ei - 77*) > 0, Vn* € C_l(K*) (235)

Since JC = CJ is a symmetric positive definite matrix, we can choose in R? the scalar

product
(&.,n.) =JICE, .. (2.36)

Then we can prescribe the canonical initial condition
e2(0) = Pe-1(x. (€(0)), (2.37)

where Pc-1(k,) is the orthogonal projection onto the set C Y(K,) with respect to the

scalar product defined above.

As in [4], for every &, € WH(0,T;R?), problem (2.35) (2.37) admits a unique solution

® in the metric space

*

€
WHH0, T3 CTH(KL)) = {€. € WH(0,T5R?); &,(1) € CTH(K,), vt € [0,T]}.
The solution mapping
Scik,y : WH(0,T;R?) — WH(0,T;C7(KL)); &, €, (2.38)

is called the stop with characteristic C™'(K,) (cf. [6]), whose properties are listed in Section

3. For the sake of simplicity, we denote in the following

K= C_I(K*).
Then we can write
Ei = SK[E*],
and, by (2.34),
o = CSkle.]. (2.39)

Remark 2.4. Obviously, K C R? is the ellipsoid {n, € R?; n,-CDCn, < R*}, which is a
uniformly strictly convex bounded closed set with nonempty interior and smooth boundary.
As a consequence, all the properties listed in Proposition 3.1 and Proposition 3.3 below are

valid.

11



For c € R, we put

sgnc 0O c
I = 5 B. =
0 1 0

where “sgn ” denotes the standard sign function

= O
~_

1 : x>0,
sgnr = 0 : =0,
-1 : x2<0.

By definition of Sx and the symmetry of I, we easily verify that the operator Sx commutes
with I, for ¢ #£ 0, i.e.,

Sk([L£,] = 1.5¢c[€,] forall € € WHH0,T;R?*) and c#0.

Eele)

we deduce from (B3), (2.33), (2.39) (2.40), that
By ( o )] (2.41)
Uy —

%(U:c - QO)
or=m " J=miB,| ). (2.42)
5z — @) Vg — @

for all admissible arguments, and
where H, is a constant positive definite diagonal matrix.

Using the simple fact that

o = CSy — CL_.S¢

Next, we proceed to derive an elastoplastic counterpart of the system (2.19) (2.20) from
the momentum balance equation (2.14). We take the same test functions as in (2.15), which

means, in the 2D representation, that

_ZAZ- Ax
é*:<1 A )ZI_ZBM(ASO ) (2.43)
§(Ux_§0) Ve — @

For the sake of simplicity, we put

a=( 7 ), a=( " ). (2.44)
Ug — Uy — @



Now we take a look at the second term in (2.14). From (2.40)-(2.44), we obtain that
/ o:édxdydz = /J(aip+0'i"") -&,drdydz
Q Q
hopL
= 2()/ / J(CI_S¢ [B.u]+ H, (I_1B,u)) - (I_;B.u)dzdz
o Jo
0 L
+2b / / J (CSk [Byju] + H, (Bju)) - (B.j0)dzdz
~nJo

= 4b /0 : [ /0 ' (JCB,Sk [B,u] + Hyu) dq} ~adz, (2.45)

where H, = JB,H.B, is a diagonal matrix, which is positive definite for ¢ > 0. We now

set
h h
F [u] ::/ B,Sk [B,u] dg, H* ::/ H,dq. (2.46)
0 0

Then H* is a positive definite diagonal matrix, and F is an anisotropic version of the

vectorial Prandtl Ishlinskii operator; see Section 3.

Finally, we can write the whole equation for the elastoplastic Timoshenko beam in the

following variational form

Lor2
/ 1% (ghgﬁptt@+2hvtt 'lAJ) dz
0
L
—l—2/ JCF
0

L

3 Prandtl-Ishlinskii Operators

We consider a real separable Hilbert space X endowed with a scalar product (-,-) and
norm || = +/(-,-). In our present case, we consider X = R? with inner product (2.36).

Assume that a convex closed set Z C X containing the origin is given. For any u €
W0, T;X), we define x € W11(0,7; X) as the unique solution to the variational in-
equality

x(t)eZ, Vtelo,T], (3.1)
X(0) = Py(v(0)), (3.2)
(v(t) — xe(t), x(t) —y(t)) >0, ae.in (0,T), VyeTZ, (3.3)

13



where Pz : X — Z is the orthogonal projection onto Z. The solution mapping
Sz WHH0,T;X) — WH(0,T:X); vy,

is called the stop with characteristic Z. We recall some analytic properties of Sz (cf. |2,
Chapter 2|).

Proposition 3.1. The mapping Sz defined by (3.1)—(3.3) has the following properties.

(1) Sz is continuous in the strong topology of WHH(0,T; X)), and depends continuously

on Z in the sense of Hausdorff distance;

(2) If the boundary of 7 is of class W% (that is, if the outward normal mapping is
Lipschitz continuous), then Sz is locally Lipschitz continuous in W1(0,T;X) ;

(3) If Z has a nonempty interior, then Sy can be extended to a continuous mapping
([0, T];X) = C([0,T]; X) ;
(4) If Z is uniformly strictly convex, then Sz : C([0,T];X) — C([0,T];X) is Hélder

continuous with exponent %;

(5) The mapping is monotone in the sense that

1d

(Sa[w](t) = Szlua] (1), wne(t) = un(t)) = 5—ASa[w](8) = Salwa] (D) a-e. in (0,7),

for every uy,ug € WH(0,T;X);
(6) The mapping Sy is locally monotone, i.e.,

2

<%Sz[u](t),ut(t)> - %Sz[u](t) < |w@®))? ae. in (0,T),

for every uw € Wh(0,T;X);

(7) The “second-order energy inequality”
d 1d/d
(S®ett)) = 54 (G0, u(0)
holds in the sense of distributions for every u € Wh1(0,T;X).

Let Lin(X) denote the space of all bounded linear mappings X — X. Given a parameter
set () endowed with a measure v, a mapping A : Q) — Lin(X), and a family {Z,;q € Q}
of nonempty convex closed subsets of X, we define the Prandtl-Ishlinskii operator F :
W0, T;X) — Wh(0,T;X) by the formula

FM@zéﬁ@%M@M®@@, (3.4)

14



where A*(q) is the dual mapping to A(q). In the case of (2.46), we have
Q:[Ovh]u Zq:ICCX:R27 A(q>:A*(q):Bq

Now we consider the operator F defined in (2.46),

h
Plul() = [ B,Sc Bl (1)dg. (3.5)
0
Remark 3.2. One can see that our Prandt] Ishlinskii operator (3.5) has a different form
from those introduced in [4,7,8]. It is no longer isotropic (cf. the definition of B, ).
As a direct consequence of Proposition 3.1, we can easily deduce the following result.

Proposition 3.3. The mapping ¥ defined by (3.5) has the following properties.

(i) The mapping F : WL1(0,T;R?) — W0, T;R?) is locally Lipschitz continuous,
and F : C([0,T];R?*) — C([0,T];R?) is bounded and continuous in the respective strong
topologies.

(ii) The mapping F is monotone in the sense that

(Flw](t) — Flug](t), uie(t) — ux(t 25 dt/ |Skc [Boui] (t) — S [Byua] (£)]* dg,

a.e. in (0,T), for every uy,uy € Wh1(0,T; R?).

(111) The mapping ¥ is locally monotone in the sense that

(gFhl.wo) - /oh

win { 4 S| < (ro.u ) <m0 o,

a.e. in (0,T), for every u € WH(0,T;R?).

2

4 seBul(t)] dg.

dt

Flu](t)

(iv) The “second-order energy inequality”

d 1d/d
— > — (= .
(Pl ueto)) = 54 (Gl (3.
holds in the sense of distributions for every for every u € W10, T;R?).

Remark 3.4. As in [4, Section 3|, we can evaluate F[u](t) at ¢t = 0:

h
Flul(0) = [ B,PclB,u0)ds. (3.7)

The initial value mapping

h
Ar(6) R’ R £ / B, Pe[B,g]dg.
0

is Lipschitz continuous in R?, and Ag(0) =0.

15



4 Existence and Uniqueness of Solutions
For the sake of simplicity, we study our problem in Q7 := (0,1) x (0,7") and set all positive

constants that have no influence on the existence and uniqueness result to unity. We also

put JC = H* = I; (the identity matrix). We now restate the equation of the elastoplastic

Timoshenko beam (2.47) as
o e % ! P Pz Pz
/ : dor + / F + . dz
0 Vet 0 0 Vy — @ Uy — @ ﬁm_@

= /Olg-<@>dx, (4.1)

where g = (g%, g>)7 is a given vector. Equation (4.1) is subject to the boundary conditions

( o ) +< o ))(u):o, tef0,T], (4.2)
Vg — Vp —
and to the initial conditions

p(2,0) = ¢"(2), @u(2,0) =9 (2), v(z,0)=2"(x), wv(w,0)=v(z).  (4.3)

In order to prove the existence and uniqueness of a solution to problem (4.1) (4.3), we

>

0(0,1) = v(0,t) = 0, (F

transform the vector equation (4.1) into a first-order system by introducing the new vari-

(0)-() ()= () C)-+[C)) () e

As a consequence, equation (4.1) can then be rewritten in the form

Pt = Tx+8+gla

_ 2
Q@ = Sz _'_g ) (45)
Wt = Pux,
gt = 4z — D,
with the boundary conditions
p(0,t) = ¢q(0,t) =r(1,t) = s(1,t) =0, te]0,T], (4.6)

and the initial conditions

(p(x,m) _ (p%x)) _ <<P1(fv)> (w(x,m) _ <w°<x>) _ < () )
q(z,0) () ) vi(x) )’ z(z,0) D) ) v2(z) — ()
for x € [0, 1].

We make the following assumptions:
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(H1) g, g € L*(Qr; R?).
(H2) 0%, 0% € H%(0,1), v, ¢! € HY(0,1) satisfy the compatibility conditions

v'(0) = ¢'(0) =0, ¢ (1)=0, ¢'(1)=wv,(1), =01, (4.8)
(H3) F has the form as in (3.5) (cf. also (2.44) and (2.46)).

Remark 4.1. It follows from (H2) and from the Proposition 3.3 (ii) with u; = 0 that the

boundary conditions (4.6) can be written equivalently as
p(0,t) = q(0,t) = w(1,t) = 2(1,t) = 0. (4.9)

In terms of the new unknowns p, ¢, w, z, Hypothesis (H2) then reads

(H2)’ p®,¢° w° 2% € H'(0,1) satisfy the compatibility conditions

p°(0) =¢°(0) =0, w’(1)=2"(1)=0. (4.10)

We now state the main result on existence and uniqueness.

Theorem 4.2. Suppose that the hypotheses (H1), (H2)’, and (H3) are satisfied. Then,
for any T > 0, problem (4.5)-(4.7) admits a unique solution (p,q,w,z) such that

p,q, 7,8 € WH(0,T; L*(0,1)) N L>(0,T; H*(0,1)), w,z¢€ WH®(0,T;L*(0,1)). (4.11)
Putting

o(x,t) = o°(z) +/0 p(z,7)dr, vz, t) =) —|—/0 q(z,7)d,

we easily obtain the following consequence:

Corollary 4.3. Suppose that the hypotheses (H1), (H2), and (H3) are satisfied. Then,
for any T > 0, problem (4.1)-(4.3) admits a unique solution (p,v) such that

@, v € W>>(0,T; L*(0,1)) n Wh>=(0,T; H'(0,1)). (4.12)

The rest of the paper is devoted to the proof of Theorem 4.2. It is divided into the
subsections 4.1 4.3.
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4.1 Space discretization
We fix some n € N. For a generic vector u = (uy, ..., u,)’ , we introduce the notation
dru = n(ur —uk—q), k=1,...n.

A space-discrete counterpart of (4.5) (4.7) is considered in the following form:

pe(t) = degar(t) + si(t) + gi(t), (4.13)
Ge(t) = dpaas(t) + gi(t), (4.14)
wg(t) = dip(?), (4.15)
4(t) = dra(t) — pr(t), (4.16)

for k=1,...,n—1, with the “boundary conditions” (cf. (4.9))
po(t) = qo(t) = ra(t) = su(t) =0, ¢ € (0,71, (4.17)

and the initial conditions

pr(0) = p(k/n), ¢:(0) = ¢°(k/n) ,w(0) = w(k/n), z(0) = 2°(k/n). (4.18)

It follows from (4.10) that relations (4.17) hold also for ¢ = 0. In (4.13) and (4.14), we let

' (k+1)/n
g,g(t):n/ Gl t)de,  i=12, k=01,....n—1, (419
k

/n
()= (2)

Remark 4.4. From (4.13) (4.20) and Remark 4.1, we compute the missing values on the

“discrete boundary” k=0 and k£ = n, that is,
wn@) = Zn(t) =0, n(Qn(t> - Qn—l(t)) = pn(t) = pn—l(t> ) }
n(ro(t) — ri(t)) = sot) + g5(t),  n(so(t) — s1(t)) = g5 (),

for all ¢ € [0,77.

(4.21)

Problem (4.13)-(4.20) is a system of 4(n—1) ODEs with a right-hand side that is locally
Lipschitz continuous in W10, T; R4("_1)). By the contraction mapping principle, it is
standard to prove that (4.13) (4.20) admits a unique local solution. Hence, we omit the
details here.

In what follows, we derive some uniform estimates that will enable us to fulfill two
purposes: (1) extend the local solution of problem (4.13)-(4.20) to [0,7] for arbitrary

18



T > 0; (2) pass to the limit as n — oo. In the subsequent proof, we shall denote by C' any
constant that possibly depends on the data and 7', but not on the discretization parameter
n. Below, we simply denote by || - || the norm in L?(0,1), and by H™(0,1) the Sobolev
spaces W™2(0,1) with norm || - |

First Estimate. Testing (4.13) by px(t), (4.14) by qx(t), (4.15) by ri(t), (4.16) by sk(t),
and using summation by parts together with (4.17), (4.20), we obtain, for a.e. ¢t € (0,7,

H'm, mGN

n—1 n—1 n—1
P
(PkPr + Qrqr + Wrwy + Zr21) Z F Z % ). (4.22)
k=1 k=1 1 gk K
It follows from Proposition 3.3(ii) (with uy = 0) that

dg. (4.23)

Wi | ’LUk N li n—1 /h
2 4, ) T 2dt e~ o

n—1 n=lrh
Vi(t) = % (pi(t)+qi(t)+wi(t)+zi(t>>+%2/o

t 1 n—1 1
o[ 2 Z 91;(7') ) pi(T) dr.
o i gi(7T) qr(T)
The function V; is absolutely continuous. We infer from (4.22) and (4.23) that it is de-

creasing in time. Hence,

Define

Vi(t) < V4(0) for t €[0,T]. (4.24)
From (4.18) and Remark 3.4, we have

Vi(0) < CUIP° e + a1z + N1’ l7ee + 1271 700)- (4.25)

Furthermore, (4.19) implies that
tqnt t
|+ Sl + @iy < ¢ [ feniiar (4.26)
k=1
From (4.24)-(4.26), (H1), (H2)’, and Gronwall’s inequality, we deduce the estimate
! Z )+ a0 +uit) + 0) <. Vie Tl (4.27)

Besides, we infer from Proposition 3.3, (4.20), and (4.27), that

—

3

(ri(t) +si(t) < C, Vtelo,T). (4.28)

1

SRR
i
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Second Estimate. We differentiate (4.13)—(4.16) by ¢, and test by py, 4k, 7'k, Sk , respec-
tively. Using summation by parts, and (4.17), (4.20), we obtain that

£ ) o

It follows from Proposition 3.3(iv) (namely, the second-order energy inequality (3.6)) that

£ Qg Q) e

k=1
in the sense of distributions.

”Zl + + ww —I—zz Zli
1Pkpk Grqr EWE k2K 2 q

We now define

i
L

Vat) = 12( 2(0) + 2(0) + () + 2(0) +

3
S|
i

n—1 . .
T Pr(7)
+2 / N dr.
Z( (1) ) (%(7'))
We can infer from (4.29) and (4.30) that V5(¢) is decreasing in time, similarly to V().
V5(t) is no longer necessarily continuous. We thus introduce the continuous

However,
functions
Vy(t) = %:z:é(pz(t)+qz<t>+wz<t>+zz<t>>
-/ t%:[@;( D2+ G + ) + (Dl
Talt) = %:@z(t) (D) + Cu(e) + )
1 :_iug,i( D2+ G + i) + Bl

with a suitably chosen constant C' > 0. It follows from the local monotonicity of F (cf.
Proposition 3.3 (iii)) that for ¢t € [0, 7] and C sufficiently large we obtain the inequalities

V,y(t) < Va(t) < V().
Hence, for a.e. 0 < s <t <T, we have

Vo (t) < Va(t) < Va(s) < Va(s).
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In particular, it holds
Vo(t) < V2(0), t€[0,7). (4.31)

We estimate the initial value V,(0) using the equations (4.13) (4.16). Note that by
Remark 3.4, we can estimate |dg1r(0)|* + |dgr18(0)]* from above by C(|dpiw(0)* +

|di12(0)%).

For a generic function f € H'(0,1), we have

n—1 kE+1 k 2 n—1 (k+1)/n 2
0 f( )—f(—) - F@yde| < 171
Y (5) Gl =X

Applying this formula successively to f = p% ¢, w® 2°, and using (4.25), we eventually

obtain the estimate

V3(0) < Ol + 1l + 0 s + 120 + g, 0. (432
Since )
t 1 n— ' ‘ t
| Sl + iear < ¢ [ il (4.33)
k=1

it follows from (4.31), (4.32), (4.33), and from Gronwall’s inequality, that

3
—

(B2(t) + 62(t) + w2 (t) + (1) < C, Y te[o,T]. (4.34)

SEES
i

Owing to (4.15), (4.16), and (4.27), the above estimate implies

3
—

(dp)?(t) + (dr@)?(t)] < C, Vte[0,T). (4.35)

1

S|

=
Il

Besides, (4.20), (4.34) and Proposition 3.3 yield that

n—1

LS Gm R < Ve (4.36)

k=1

Moreover, (4.13), (4.14), (4.28), (4.34), and (H1) imply that

—_

3

[(des1r)?(t) + (dp1s)?(0)] < C, YV te€[0,T). (4.37)

S|=
0
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4.2 Passage to the limit as n — oo

First, we introduce the approximations of p,q,r, s,w,z. For k =1,...n, i = 1,2, t €
0,7], z € ((k—1)/n,k/n], we define

ﬁ(n)(yj,t) = pk(t)v B(”)(x’t) = pk—l(t>v q( )(x t) - Qk—l(t)v
W™ (1) = wi(t), 2 (x,t) = 2(t), g™, t) = gp (D),
f(")(x,t) = ri(t), E(")(x,t) = si(t), §(")(93,t) = s._1(t),

as well as the interpolates
P = )+ (o= 5 ) @), 0ot =l + (o= ) dial)
r™(z,t) = re(t) + (x — E) dpr(t), s (x,t) = s(t) + (:B — E) dgs(t),

and extend the above functions continuously to x = 0. We note that, in view of Remark

4.4, the definitions are meaningful.

For a.e. (z,t) € Qr, we have that

Z_Jin)(t) = @) + s (1) + g™M(t), (4.38)
a0 = s+ g (), (4.39)
o (1) = p), (4.40)
200 = ¢ —p™(), (4.41)

e w™ w™
(5(")> =F [(Z(n) )] T <Z(n) ) : (4.42)

Using the estimates (4.27)(4.28) and (4.34)—(4.37), we now derive bounds for p™, ¢™

n)

r st @™ 2™ independent of n, which will enable us to pass to the limit as n — co.

Taking into account the identities (4.21), we have

n—1

> i

=1

S I

Ip™]2 = Z/ pi + (na — k) (pr, — pe—1)|* dz + Epi—l <

ol

k/n
R = / o0+ (1 = k) g = ) da

2
n—1
_'_/ dn—1 + ( - )pn—l
(n 1)/n n

dx
_ZQk 3pn 1>

IN
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k/n 1/n 1 2
n 2
[s™]2 = Z/ |si + (nx — k) (sg — sk—1)| dx+/0 S1 (a:— E)gg dx
< - Zsk ’
k/n )
o = Z/ re + (02 — ) (e — 1o 0)|? da
1 1 ?
+ / - (——x) (31+—g§+gé) dx
0 n n
n—1
4 3 3 3
s - > i+ 5(93)2 + $(98)2 + 55%-
k=1
Hence,
Max, (™ O1Z + g™ O + ™ @1 + s @)]*) < C. (4.43)
Besides, we easily deduce from (4.27) that
max (|[@™(#)]? + |2 (@®)|?) < C. (4.44)

0<t<T

In the same way, we can prove that

max (IO + g 012 + I @12 + IsP I + o @2 + 127 @))2) < ¢

(4.45)
We easily evaluate the norms
k/n 1 n—1
PP = Z/ |dyp[*dz = EZ|dkP|2,
k=1
2 Hn 2 1 2, 1o
) = Z Ly LTS
k=1
6] Z// sz = 15 layasl? + Ly
Sy = dgsl®de = — d+1s]” + —|g5]°
o1 (5=1)/n "4 "
k/n 2
e = Z [ st = —Z|dk+1r| AT
which, together with (4.35), (4.37) and Remark 4.4, yield that
max ([ (017 + 17 (&) + [V @)1 + 8 (D7) < C. (4.46)

0<t<T
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By definition, for = € ((k —1)/n,k/n), k=1, ...,n, we have

1
P, 0) = 0 1) < ()]

Hence, by the above argument,

Q

1 n
(n) (n) 2 2
sup [p"(2,t) —p™(z, )" < < ) |dwp(@)]F < —. (4.47)
(@D)eQr n? ; n
Therefore, p™ and ]3(") have the same limit as n — oo, provided that the limit exists. By
the same argument, we have similar results for ™ —p( | g(”) —q) 7)) 5n) ()
and s — s
Combining the above estimates, and selecting a suitable subsequence of n — oo, we see
that there exist functions p, q,w, z,r, s in appropriate Sobolev spaces (cf. (4.11), (4.12))
such that

R

—(n) z(n) 5™ A
w(m - Z(n) o wfn) o z&) T L weakly-star in L(0, T; (0, 1)).
e =T S 7S, Te =Ty Sz 7 Sa

P = pe 4" =, 7Y =, 5 sy,

(4.48)
Then, by compact embedding and (4.47), we have

p™ —p, ¢ —gq, p™ —p, P —p g™y,

()

} strongly in L>(Qr). (4.49)

—r, s s 7 e 5 s s g

The boundary conditions are preserved in the limit, and the convergence of the initial
conditions as n — oo easily follows from (4.49). From the definition of g™ and (H1), it
is easy to see that g(”) — g strongly in C([0,T]; L*(0,1;R?)). Hence, we may pass to the
limit in (4.38) (4.41) to obtain (4.5).

To finish the existence proof, it remains to verify that

()l ) ef)) o

The proof follows from Minty’s trick as, e.g., in [8], based on the monotonicity of the

Prandt] Ishlinskii operator F (cf. Proposition 3.3(ii)). To this end, we take an arbitrary
vector function &€ € C(Qr;R?) and define &(x,t) = [ &(w,7)dr. Forall § >0 and n € N,

TR A ) () s
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1ok ) w 1
Z —3 Si Bq< )] — Sk Bq< ) +5Bq€ (x,O)dqu
2 /o Jo z(n) P
L o w ’
-3 <) (x,0) — B (z,0)
o™ w ?
zZ VA

where we have used the fact that the initial value map (3.2) of Sk is Lipschitz continuous.
Passing to the limit as n — oo in (4.51), we infer from (4.48) and (4.49) that

JIAC) <)

Besides, owing to Proposition 3.3(i), the mapping G is continuous in C(Qr;RR?). Hence,

O[O

Since & € O(Qr;R?) in (4.52) is arbitrary, we obtain that (4.50) holds.

} Edrdt <0, V&€ OQr;R?). (4.52)

The proof for existence is complete.

4.3 Proof of uniqueness

The uniqueness of the solution to our problem is a consequence of the monotonicity of F (cf
Proposition 3.3(ii)) and of the energy estimate. Consider two solutions (p;, ¢;, w;, z)%, i =

1,2, to problem (4.5)—(4.7). Then p; — py and ¢ — go satisfy

(1

t

p2) ( )
(Q1 - Q2)t = (81 - S2)w7
(= w2 = (31— po)a 45
(Z1 - Z2)t = (ql - C_I2)x - (pl —p2)>
with the boundary conditions
(p1 = p2)(0,8) = (@1 — ¢2)(0,1) = (w1 —w2)(1, %) = (21 — 22)(1,¢) = 0. (4.55)

Testing the first equation by p; — po, and the second equation by ¢; — ¢o, integrating over
(0,1), and using (4.55), we obtain

1d

s = pell® + llar = @oll” + [lwr = wal® + |21 = 21°)
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_ —/IF w1 — Wy d w1 — Wo dr
21 — 29 dt 21 — 22
2
(o
2dt Z1 — 29

Sk |B dgdz.

If the initial data of (p;, q;, ws, 2,)T, @ = 1,2, are the same, then we are able to conclude

that (p;, g, w;, z;)T, i = 1,2, coincide for t € [0,T]. The uniqueness of solution to problem
(4.5)—(4.7) is proved.
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