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Abstract

The paper offers a novel unified approach to studying the accuracy of parame-

ter estimation for a time series. Important features of the approach are: (1) The

underlying model is not assumed to be parametric. (2) The imposed conditions

on the model are very mild and can be easily checked in specific applications. (3)

The considered time series need not to be ergodic or stationary. The approach is

equally applicable to ergodic, unit root and explosive cases. (4) The parameter set

can be unbounded and non-compact. (5) No conditions on parameter identifiability

are required. (6) The established risk bounds are nonasymptotic and valid for large,

moderate and small samples. (7) The results describe confidence and concentra-

tion sets rather than the accuracy of point estimation. The whole approach can be

viewed as complementary to the classical one based on the asymptotic expansion of

the log-likelihood. In particular, it claims a consistency of the considered estimate

in a rather general sense, which usually is assumed to be fulfilled in the asymptotic

analysis. In standard situations under ergodicity conditions, the usual rate results

can be easily obtained as corollaries from the established risk bounds. The approach

and the results are illustrated on a number of popular time series models includ-

ing autoregressive, Generalized Linear time series, ARCH and GARCH models and

meadian/quantile regression.

1 Introduction

Estimation of parameters of a time series is one of the most popular statistical problems

which is included as an important building block in almost any econometric analysis.

It is well known that statistical inference for time series is much more involved than

the similar problem in the i.i.d. or regression set-up. The established results require

quite strong conditions which are rather difficult to check in particular applications;

see e.g. Brockwell and Davis (1991), Fan and Yao (2003). The aim of this paper is

to offer a rather general and unified approach to measuring the quality in statistical

estimation problem for time series which delivers meaningful and informative results

under mild assumptions. We focus on the parametric modeling. It is however worth

noting that any parametric assumption is only an approximation of reality and it is

not precisely fulfilled in many particular situations. One can say that, in long run, any
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fixed parametric specification is not flexible enough to describe the real structure of the

data. The presented approach continues to apply in the cases when the underlying model

does not follow the parametric specification. In some sense this approach refocuses the

statistical paradigm: in many situations it might be useful and reasonable to apply a

misspecified model with nice geometric properties rather than trying to precisely mimic

the underlying model specifications. Typical examples of this pragmatic procedure are

given by least squares, least absolute deviation or quintile regression: all of them can be

viewed as quasi maximum likelihood estimates with a specific parametric structure.

One more nice feature of the presented approach is that the model assumptions are very

general and non-restrictive and can be easily checked in specific applications. In partic-

ular, there is no any identifiability requirements, the results apply even if the parameter

of the model is not identifiable. The parameter set can be unbounded and non-compact.

Also no conditions like mixing, ergodicity, stationarity etc. are required: the observed

time series can be non-stationary, non-ergodic, non-mixing, etc. The approach equally

applies to ergodic, unit root and explosive time series. This enables, for instance, to an-

alyze the quality of estimation and testing procedures for the unit root or cointegration

analysis in a unified way; cf. Brockwell and Davis (1991), Johansen (1995), Johansen

(2002). The required conditions are very mild and can be easily checked in particular

applications.

The established risk bounds are nonasymptotic can be used for large, moderate and small

samples. The results describe nonasymptotic confidence and concentration sets rather

than the accuracy of point estimation. In the most of examples, the usual consistency

and rate results can be easily obtained as corollaries from the established risk bounds.

The obtained exponential bound have been already used in various econometric studies.

Spokoiny (2007) offered a local change point volatility estimation method, Č́ıžek et al.

(2007) discussed the estimation problem for varying coefficient ARCH and GARCH mod-

els, while Giacomini et al. (2007) focused on time varying copulae, Chen and Spokoiny

(2007) considered the problem of robust risk management for non-normal and non-

stationary market using stagewise aggregation procedure. All these and many other

procedures are based on the multiple model check. The crucial issue in practical appli-

cations of such methods is the choice of the related parameters like thresholds or critical

values in a data-driven way. This choice as well as the related theoretical analysis require

to bound from above the probability of a wrong choice which can be done by the results

presented below.

The paper is organized as follows. The next section describes the considered time series

framework. Particularly, possible violations of the parametric assumption are discussed.
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Section 3 presents the main results in form of penalized exponential bounds on the (quasi)

maximum likelihood. Section 3.2 demonstrates some implications of the obtained results.

We especially focus on the concentration properties of the estimates and on the likelihood

based confidence sets. Section 4 illustrates how the general results can be specified for a

number of popular time series models like Generalized Linear time series regression, linear

autoregression, median and quantile regression. The main result given in Theorem 3.3 is

obtained as a specification of general penalized exponential bound for the maximum of

a random field from Section 5.

2 Modeling approach

This section describes the considered model and the modeling approach. Let the ob-

served process Yt, t = 1, . . . , n be progressively measurable w.r.t. a filtration F = (Ft) .

Typically Ft stands for the information available at the moment t . One way of describ-

ing the joint distribution of the sample Y is by specifying the conditional distribution

Qt = L(Yt

∣∣Ft−1) of every observation of Yt given the “past” Ft−1 . The parametric

approach discussed below allows to reduce the whole description of the model to a few

parameters which have to be estimated from the data.

2.1 A parametric model

The parametric time series modeling usually includes two important components, see e.g.

Anderson (1994), Brockwell and Davis (1991), Kedem and Fokianos (2002), Fan and Yao

(2003). One of them describes the type of conditional distribution Qt of Yt given the

“past” Ft−1 and the other one explains the dynamics of the corresponding parameter.

The standard approach assumes that the conditional distribution Qt belongs to some

given parametric family P = (Pυ, υ ∈ U) , but the corresponding parameter υ may

change in time and even be a random predictable process ft ∼ Ft−1 . We write this

relation in the form

Qt
def= L

(
Yt

∣∣Ft−1

)
= Pft ∈ P. (2.1)

The second structural component of the parametric modeling concerns the driving (dy-

namic) process ft . Namely, it is assumed that this process is uniquely described by a

finite dimensional parameter θ0 ∈ Θ ⊆ IRp , that is, ft = ft(θ0) for some θ0 ∈ Θ .

These two assumptions lead to the parametric model in the form

Qt = Pft(θ0). (2.2)
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Some typical examples of such parametric specifications are given in Section 2.3 and

continued in Section 4.

For estimating θ0 , we apply the quasi maximum likelihood (quasi-MLE) approach. Let

the family P be dominated by a measure P0 . Denote by `(y, υ) the corresponding

log-density

`(y, υ) = log
dPυ

dP0
(y) .

The quasi log-likelihood L(Y ,θ) for the model (2.1)–(2.2) can be represented in the

form

L(Y , θ) =
∑

t

`
(
Yt, ft(θ)

)
.

Here in in what follows,
∑

t means summation over the whole time interval t = 1, . . . , n .

We define the quasi-MLE estimate θ̃ of the parameter θ by maximizing the log-

likelihood L(θ) :

θ̃ = argmax
θ∈Θ

L(Y , θ) = argmax
θ∈Θ

∑
t

`
(
Yt, ft(θ)

)
, (2.3)

and denote by L(Y , θ̃) the corresponding maximum.

It is important to stress that the parametric assumption (2.2) is only an approximation

of the underlying data distribution P which justifies the estimation procedure (2.3). In

reality, the modeling assumption (2.2) can be violated in one or even both parts. One

of the aims of our study is to address the questions of what is estimated and with which

accuracy if the parametric assumption Qt = Pft(θ0) is not precisely fulfilled.

2.2 Violation of the parametric assumption

The parametric model (2.2) can be violated by two different reasons. One is due to mis-

specified conditional distribution and the other one due to a wrong parametric dynamics

ft = ft(θ) .

2.2.1 Misspecified conditional distribution

The model (2.2) assumes that the conditional distribution Qt of Yt given Ft−1 be-

longs to the given family P . This assumption can be well justified for many exam-

ples from categorical data analysis, for instance, for binary or discrete observations; see

Fokianos and Kedem (2003). However, this assumption could be too restrictive for many

other applications. We present here a couple of examples of this sort. First consider a
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stochastic dynamic system described by the equation Yt = ft + εt whose drift ft is a

predictable process and innovations εt are martingale differences. In the case of condi-

tionally standard normal innovations εt , the distribution Qt is normal with the mean

ft leading to the log-density function `(y, υ) = −(y − υ)2/2 (up to an unimportant

constant term −1
2 log(2π) ). Parametric dynamics ft = ft(θ) leads to the log-likelihood

L(θ) = −∑
t |Yt − ft(θ)|2/2 . In the case of non-normal innovations, this expression is a

quasi log-likelihood leading to the least squares solution.

Another typical example is given by the volatility modeling. The log-returns rt are

described by the conditional heteroscedasticity model: rt = σtεt . The case of standard

Gaussian innovations εt and the parametric dynamics ft = ft(θ) for the volatility

ft = σ2
t leads to the log-likelihood L(θ) = −1

2

∑
t

{
r2
t /ft(θ) + log(2πft(θ))

}
. In the

case of, say, heavy tailed innovations, one can still try to maximize this expression which

becomes a quasi log-likelihood.

2.2.2 Misspecified parametric dynamics and the best parametric fit

Suppose for a moment that the conditional distribution Qt belongs to the given family P

almost surely for all t . Then the data Y can be described by the model L
(
Yt

∣∣Ft−1

)
=

Pft ∈ P for some predictable process ft . The parametric assumption means that the

process ft belongs to a parametric family of processes
(
ft(θ), θ ∈ Θ ⊂ IRp

)
. This

assumption is very useful for the analysis but it is usually only an idealization of reality.

An interesting question in this respect is what is estimated in the situation when the

process ft does not follow the parametric dynamics ft = ft(θ) whatever θ is. Below

we show that in such cases the quasi log-likelihood approach leads to an estimate of the

projection of the given model on the parametric subspace of models. One also speaks

about the best parametric fit ft(θ) to the model ft which can be defined as a solution

of the optimization problem

θ0
def= argmax

θ∈Θ
EL(θ) = argmin

θ∈Θ
K(P ,P θ),

where P =
∏

t Qt =
∏

t Pft is the true measure, P θ =
∏

t Pft(θ) is its parametric coun-

terpart, and K(P ,P ′) def= E log(dP /dP ′) is the Kullback-Leibler divergence between

two measures P and P ′ .

The interpretation of θ0 as the “best parametric fit” continues to apply even in the case

when also the assumption Qt ∈ P a.s. is violated. However, θ0 cannot be defined as a

minimizer of the Kullback-Leibler divergence anymore.
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2.3 Examples

This section presents some popular time series models. Later in Section 4 we illustrate

the obtained results on these examples.

2.3.1 Linear autoregression

Let the family P be a Gaussian shift. This case corresponds to the model Yt = ft + εt

in which the innovations εt are assumed to be i.i.d Gaussian: εt ∼ N(0, σ2) . The corre-

sponding (quasi) maximum likelihood approach leads back to the least square estimate

θ̃ : with L(θ) = −(2σ2)−1
∑

t

{
Yt − ft(θ)

}2

θ̃ = argmax
θ

L(θ) = argmin
θ

∑
t

{
Yt − ft(θ)

}2
.

Linear autoregression means the structural equation ft(θ) = α1Yt−1 + . . . + αpYt−p for

θ = (α1, . . . , αp)> leading to maximization of the quadratic functional
∑

t

(
Yt − Ψ>t θ

)2

with Ψt = (Yt−1, . . . , Yt−p)> which admits a closed form solution:

θ̃ =
(∑

t

ΨtΨ
>
t

)−1 ∑
t

YtΨt = B−1
∑

t

YtΨt

L(θ̃, θ0) =
1

2σ2
(θ̃ − θ0)>B(θ̃ − θ0),

with B
def=

∑
t ΨtΨ

>
t . Note, however, that through the closed form solution for θ̃ is

available, the analysis in time series context remains a difficult task, especially in the

non-ergodic case, cf. Dickey and Fuller (1981), Basawa and Brockwell (1984), Chan and

Wei (1988), Fountis and Dickey (1989), Cox and Llatas (1991), Koul and Saleh (1993),

Phillips and Xu (2006). All the mentioned papers studied the asymptotic properties of the

estimates. There are very few papers concerning nonasymptotic results, see Chan and

Wei (1988). Fixed accuracy sequential procedures are discussed in Lai and Siegmund

(1983), Sriram (1987), Shiryaev and Spokoiny (1997), Konev and Pergamenshchikov

(1997). More robust estimates like minimum distance, M- or quantile estimates have

been considered in Wang (1986), Chan and Wei (1988).

Our approach based on the exponential bounds for the (quasi) likelihood continues to

apply. Moreover, it does not assume that the innovations are independent or conditionally

Gaussian. Neither we require that the underlying process ft follows the linear structural

equation ft = Ψ>t θ .

6



2.3.2 GARCH(1,1) estimation

GARCH-modeling introduced in Bollerslev (1986) is very popular in analysis of financial

time series. A number of GARCH extensions is proposed to make the model even more

flexible; for example, EGARCH Nelson (1991), QGARCH Sentana (1995), among many

others. We focus on the classical GARCH(1,1) model although most of conclusions can

be extended to more general specifications. The underlying modeling assumption is that

the observed squared log-returns Rt follows the conditional heteroscedasticity equation:

Rt = Xtε
2
t ,

where εt are standardized innovations satisfying E
(
εt

∣∣Ft−1

)
= 0 , E

(
ε2
t

∣∣Ft−1

)
= 1 , and

Xt is a predictable volatility process. The parametric GARCH(1,1) assumption means

that the volatility process Xt follows the equation

Xt = ω + αRt−1 + βXt−1. (2.4)

For simplicity we assume that the initial value X0 is fixed, e.g. X0 = R0 . Then for

every θ = (ω, α, β)> we can recursively apply the structural equation (2.4) yielding the

process Xt(θ) with

Xt(θ) = ω + αRt−1 + βXt−1(θ), t ≥ 1, X0(θ) = X0.

With this process we associate a (quasi) log likelihood

L(θ) = −1
2

n∑

t=1

{
log(2πXt(θ)) + Rt/Xt(θ)

}
.

This expression becomes the log-likelihood if the innovations εt are conditionally on

Ft−1 standard normal and the structural equation (2.4) is fulfilled for some combination

of parameters. Asymptotic properties of such estimates are well studied, see e.g. Lee

and Hansen (1994), Fan and Yao (2003), Sun and Stengos (2006), Francq and Zakoian

(2007), and references therein.

2.3.3 Median and quantile time series estimation

Median or more generally quantile estimation is known to be more robust and stable

against outliers and it is frequently used in econometric studies; see Koenker (2005),

Koenker and Xiao (2006). The corresponding approach explains the observations Yt by

the regression equation Yt = ft + εt where the individual errors εt are not assumed

to fulfill E(εt

∣∣Ft−1) = 0 . Instead, one imposes the constraint P (εt > 0
∣∣Ft−1) = α

for a given α . The median regression corresponds to α = 1/2 . Under the parametric
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assumption ft = ft(θ0) for a given parametric class of predictable processes ft(θ) , the

corresponding estimate can be defined by maximizing the quasi log-likelihood

L(θ) =
∑

t

`α

(
Yt − ft(θ)

)

with `α(x) = (1− α)x− − αx+ .

In this case, P is the family with the log-density `(y, υ) = `α(y − υ) . In particular, the

median regression for α = 1/2 corresponds to the Laplacian shift family.

2.3.4 Categorical time series

Let P be an exponential family with the canonical parametrization (EFC) which means

that the corresponding log-likelihood function can be written in the form

`(y, υ) = yυ − d(υ) + `(y)

where d(·) is a given convex function; see e.g. McCullagh and Nelder (1989), Green

and Silverman (1994). The term `(y) is unimportant and it cancels in the log-likelihood

ratio. Such families are often used in the categorical time series analysis for describing

the conditional distribution Qt of the observed data; see Fokianos and Kedem (2003).

The corresponding model can be written as

L
(
Yt

∣∣Ft−1

)
= Pft ∈ P. (2.5)

Parametric modeling assumes a specific structure of the driving process ft leading to

the parametric log-likelihood function L(θ) =
∑

t `(Yt, ft(θ)) :

L(θ) =
∑

t

`(Yt, ft(θ)) =
∑

t

{
Ytft(θ)− d

(
ft(θ)

)}
. (2.6)

Usually ft(θ) can be represented in the form ft(θ) = m(Xt, θ) for some regression

function m(·, ·) , an explanatory process Xt and a parameter vector θ ∈ Θ ⊂ IRp . One

popular example of linear regression is discussed in the next section.

Our approach allows to account for the both kinds of model misspecification: Qt 6∈ P

and/or ft 6= ft(θ) . However, to be more specific, we consider below the case when

Qt ∈ P . Then the focus of analysis is the best parametric approximation of the true

regression function ft by a parametric model ft(θ) .
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2.3.5 Generalized Linear time series

Let P be again an EFC. A parametric generalized linear specification for the model (2.5)

is given by the following set of structural equations:

L
(
Yt

∣∣Ft−1

)
= Pft ∈ P, ft = g(Ψt), Ψt = A(θ)Ψt−1 (2.7)

where Ψt is a predictable Rd -dimensional explanatory process, g(·) is a given mapping

from IRd to IR , A(θ) is a given d × d -matrix linearly depending on the parameter

vector θ ∈ Θ ⊂ IRp . Such models are widely used in statistical modeling. A popular

example is given by the equations ft = g(Xt) and

Xt = ω + α1Yt−1 + . . . αpYt−p + β1Xt−1 + . . . βqXt−q. (2.8)

Here Ψt = (Xt, . . . , Xt−q+1, Yt, . . . , Yt−p+1, 1)> , θ = (β1, . . . , βq, α1, . . . , αp, ω)> , and the

first row of A(θ) is just θ . For β1 = . . . = βq = 0 the value Xt is a linear combination

of the past observations and (2.7) becomes an autoregressive type model. If there is at

least one coefficient βj 6= 0 , then Xt is an unobservable (hidden/latent/exogeneous)

component and (2.7) is of ARMA type; see e.g. Fokianos and Kedem (2003).

Let θ be the parameter vector. Then, given θ , the observations Y1, . . . , Yt , and the pre-

history Ψ0, Y 0 , one can uniquely reconstruct the process Ψt = Ψt(θ) and then ft(θ) =

g(Ψt(θ)) for t ≥ 1 by recurrently applying the relation Ψt = A(θ)Ψt−1 . The process

ft(θ) leads to the (quasi) log-likelihood L(θ) =
∑

t

{
Ytft(θ) − d

(
ft(θ)

)}
. Inference

for GLM’s has been discussed in many papers and books. We only mention Green and

Silverman (1994), Chen (1995), Chen et al. (1999), Sun et al. (2000), Fokianos and

Kedem (2003), Kedem and Fokianos (2002), Fan and Yao (2003), among many others.

Our analysis further in Section 4 essentially differs from all the mentioned studies. In

particular, it does not assume that any of imposed parametric specifications from (2.7)

is really fulfilled. The methods and results are non-asymptotic.

In all the examples, the true model is still given by (2.1). By θ0 we denote the parameter

corresponding to the best parametric fit: θ0 = argmaxθ EL(θ) . The parameter θ0 is

estimated by maximizing the objective function L(θ) .

3 Exponential risk bounds

In this section we first introduce the basic notions and conditions on the model and then

state the main results in form of general exponential bounds for the supremum of the

quasi log-likelihood function L(θ) . The quality of estimation of θ is measured in terms
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of the maximum L(θ̃) = maxθ∈Θ L(θ) rather than the point of maximum θ̃ , where

L(θ) from (2.5). More precisely, we define the point

θ0
def= argmax

θ
EL(θ)

which is the true value in the parametric situation and can be viewed as the parameter

of the best parametric fit in the general case. Now the aim of our study is to establish

some exponential bounds on the supremum in θ of the random field

L(θ,θ0)
def= L(θ)− L(θ0) =

∑
t

{
`(Yt, ft(θ))− `(Yt, ft(θ0))

}
.

Later in Section 3.2 we comment how the accuracy of estimation of θ0 by θ̃ relates to

the value L(θ̃, θ0) . We will also see that the bound for L(θ̃, θ0) yields the confidence

sets for the parameter θ0 and concentration sets for the estimate θ̃ .

Define for θ ∈ Θ

M(µ,θ,θ0)
def=

∑
t

mt

(
µ, ft(θ), ft(θ0)

)
. (3.1)

where for υ, υ′ ∈ U

mt(µ, υ, υ′) def= − log E
[
exp

{
µ`(Yt, υ)− µ`(Yt, υ

′)
}∣∣Ft−1

]
.

This definition assumes the following condition:

(E) There exists some µ > 0 such that for all θ ∈ Θ and all t the value mt

(
µ, ft(θ), ft(θ0)

)

is finite.

Note that this condition is automatically fulfilled with µ ≤ 1 if P = P θ0 and L(θ) is

indeed a log-likelihood function.

The main observation behind the definition (3.1) is that

E exp
{
µL(θ, θ0) + M(µ,θ,θ0)

}
= 1.

Our main goal is to get an exponential bound for the maximum of the random field

µL(θ, θ0)+M(µ,θ, θ0) over θ ∈ Θ . Unfortunately, this maximum may explode and we

consider the penalized expression µL(θ, θ0) + M(µ,θ, θ0) − pen(θ) where the penalty

function pen(θ) should provide some bounded exponential moments for

sup
θ∈Θ

[
µL(θ, θ0) + M(µ,θ, θ0)− pen(θ)

]
.
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More precisely, we present a penalty function pen(θ) that ensures under rather general

conditions for every % < 1 that the value

Q(%) def= E sup
θ∈Θ

exp
{
%
[
µL(θ, θ0) + M(µ,θ,θ0)− pen(θ)

]}

is bounded by a fixed constant.

We consider the following decomposition of the log-likelihood process L(θ) into the

martingale-difference and predictable parts:

L(θ) def= M(θ) + ζ(θ)

where

M(θ) def=
∑

t

mt

(
ft(θ)

)
,

ζ(θ) def=
∑

t

ζt

(
Yt, ft(θ)

)

with mt(υ) def= E
[
`(Yt, υ)

∣∣Ft−1

]
, ζt(Yt, υ) def= `(Yt, υ) − mt(υ) for υ ∈ U . Below we

assume that the (random) functions mt(υ) and ζt(υ) are differentiable w.r.t. υ and

denote ṁt(υ) = dmt(υ)/dυ and ζ̇t(y, υ) = dζt(y, υ)/dυ .

Suppose also that the random function ft(θ) is differentiable in θ and denote ∇ft(θ) =

∂ft(θ)/∂θ ∈ IRp . Define

∇M(θ) def=
∑

t

ṁt

(
ft(θ)

)∇ft(θ)

∇ζ(θ) def=
∑

t

ζ̇t

(
Yt, ft(θ)

)∇ft(θ).

Condition (E) assumes that the quasi log-likelihood has bounded exponential moments.

We also assume a similar property for its gradient.

(ED) There exist some deterministic symmetric matrix V (θ) and a constant λ∗ > 0

such that for all λ ≤ λ∗

sup
γ∈Sp

sup
θ∈Θ

log E exp
{

2λ
γ>∇ζ(θ)√
γ>V (θ)γ

}
≤ 2λ2, (3.2)

and

sup
γ∈Sp

sup
θ∈Θ

E exp
{

2λ
γ>[∇M(θ)−E∇M(θ)]√

γ>V (θ)γ

}
≤ 2λ2. (3.3)

This condition is usually simple to check. Below we present some simple sufficient con-

ditions for (3.2) and (3.3).
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Lemma 3.1. Suppose that there exist a constant λ∗1 > 0 and a random function nt(υ) ∼
Ft−1 such that for all t and λ ≤ λ∗1

log E

[
exp

{
2λ

ζ̇t(Yt, υ)
nt(υ)

} ∣∣∣Ft−1

]
≤ 2λ2, υ ∈ U. (3.4)

Let also there exist a deterministic matrix function V (θ) ≥ I and the value λ∗ ≥ λ∗1
such that it holds almost surely for any θ ∈ Θ and γ ∈ Sp

B(θ) def=
∑

t

n2
t (ft(θ))∇ft(θ)∇ft(θ)> ≤ V (θ),

nt(ft(θ))
∣∣γ>∇ft(θ)

∣∣ ≤ λ∗1
λ∗

√
γ>V (θ)γ. (3.5)

Then (3.2) is fulfilled with this V (θ) for λ ≤ λ∗ .

Proof. By definition

2λ
γ>∇ζ(θ)√
γ>V (θ)γ

− 2λ2 γ>B(θ)γ
γ>V (θ)γ

=
∑

t

{
2λct

ζ̇t(Yt, ft(θ))
nt(ft(θ))

− 2λ2c2
t

}

where ct = nt(ft(θ))γ>∇ft(θ)
[
γ>V (θ)γ

]−1/2 so that λ ≤ λ∗ implies λct ≤ λ∗1 in view

of (3.5). Now by (3.4)

E

[
exp

{
2λct

ζ̇t(Yt, ft(θ))
nt(ft(θ))

− 2λ2c2
t

} ∣∣∣∣Ft−1

]
≤ 1

and the result follows by induction arguments starting from t = n .

Lemma 3.2. Let for some λ > 0 , the function

E exp
{
2λγ>[∇M(θ)−E∇M(θ)]

}

be uniformly continuous in (θ,γ) ∈ Θ × Sp . Let also a matrix V0(θ) be uniformly

continuous θ ∈ Θ and satisfy V0(θ) ≥ I and

Var
[∇M(θ)

] ≤ V0(θ), θ ∈ Θ.

Then for every λ∗ < λ there exists a constant C1 = C1(λ∗, λ) such that (3.3) is fulfilled

with V (θ) = C1V0(θ) .

The result is an easy corollary of Lemma 5.8 from Golubev and Spokoiny (2009).

Define for every θ, θ′ ∈ Θ , u = ‖θ − θ′‖ and γ = (θ′ − θ)/u

S2(θ, θ′) def= u2

∫ 1

0
γ>V (θ + tuγ)γdt.

Next, introduce for every θ◦ ∈ Θ the local vicinity B(ε,θ◦) such that S(θ, θ◦) ≤ ε for

all θ ∈ B(ε,θ◦) .

Let also the matrix function V (·) satisfy the following regularity condition:

12



(V ) There exist constants ε > 0 and ν1 < 1 such that

sup
θ,θ◦∈Θ: S(θ,θ◦)≤ε

sup
γ∈Sp

γ>V (θ)γ
γ>V (θ◦)γ

≤ ν1 .

The next result presents the claimed exponential bound. It is a specification of a more

general result from Theorem 5.5 in Section 5.

Theorem 3.3. Assume (E) , (ED) with some λ∗ > 0 and (V ) with some ν1 and ε .

Let % < 1 be such that %ε/(1− %) ≤ λ∗ . If the function pen(θ) fulfills

Hε(%) def= log
{

ω−1
p ε−p

∫

Θ

√
det(V (θ)) exp

{−% penε(θ)
}
dθ

}
< ∞ (3.6)

with penε(θ
◦) = infθ∈B(ε,θ◦) pen(θ) and ωp being the volume of the unit ball in IRp ,

then

E exp
{

sup
θ∈Θ

%
[
µL(θ,θ0) + M(µ,θ, θ0)− pen(θ)

]} ≤ Q(%), (3.7)

with

log Q(%) =
2ε2%2

1− %
+ (1− %)Qp + Hε(%) + p log(ν1)

where Qp is the usual entropy number for the Euclidean ball in IRp .

3.1 Penalty via the norm ‖√V ∗(θ − θ0)‖

The choice of the penalty function pen(θ) can be made more precise if the condition

(ED) can be checked with a constant matrix V (θ) ≡ V ∗ for a fixed matrix V ∗ and all

θ . This section describes how the penalty function can be defined in terms of the norm

‖√V ∗(θ − θ0)‖ .

Theorem 3.4. Let the conditions (E) and (ED) be fulfilled with V (θ) ≡ V ∗ for some

matrix V ∗ for all θ ∈ Θ . Let % ∈ (0, 1) and ε > 0 be fixed to ensure %ε/(1− %) ≤ λ∗ .

Suppose that κ(r) is a monotonously decreasing positive function on [0, +∞) satisfying

P∗ def= ω−1
p

∫

IRp

κ(‖θ‖)dθ = p

∫ ∞

0
κ(t)tp−1dt < ∞. (3.8)

Define

pen(θ) = −%−1 logκ
(
ε−1

∥∥√V ∗(θ − θ0)
∥∥ + 1

)
. (3.9)

Then the assertion (3.7) holds with

log Q(%) =
2ε2%2

1− %
+ (1− %)Qp + log(P∗).

13



Proof. This result is a straightforward corollary of Theorem 3.3 applied with V (θ) ≡ V ∗

and thus, condition (V ) is fulfilled with ν1 = 1 .

Here two natural ways of defining the penalty function pen(θ) : quadratic or logarithmic

in
∥∥√V ∗(θ − θ0)

∥∥ . The functions κ(·) and the corresponding P∗ -values are:

κ1(u) = e−δ1(t−1)2+ , P∗
1 = 1 + ω−1

p (π/δ1)p/2,

κ2(t) = (t + 1)−p−δ2 , P∗
2 = p/δ2 ,

(3.10)

where δ1, δ2 > 0 are some constant and [a]+ means max{a, 0} . The corresponding

penalties read as:

pen1(θ) = %−1δ1 ε−2
∥∥√V ∗(θ − θ0)

∥∥2
.

pen2(θ) = −%−1(p + δ2) log
(
ε−1

∥∥√V ∗(θ − θ0)
∥∥ + 2

)
.

3.2 Some corollaries

The result of Theorem 3.3 means that the value µL(θ, θ0) + M(µ,θ, θ0) − pen(θ) is

uniformly in θ ∈ Θ stochastically bounded. In particular, one can plug the estimate θ̃

in place of θ : with some % < 1

E exp
{

%
[
µL(θ̃, θ0) + M(µ, θ̃, θ0)− pen(θ̃)

]} ≤ Q(%). (3.11)

Below we present some corollaries of this result.

To simplify the presentation, we consider the case when there is a deterministic function

M(µ,θ,θ0) such that the following bound holds almost sure:

M(µ,θ, θ0) ≥ M(µ,θ, θ0), θ ∈ Θ (3.12)

3.2.1 Concentration properties of the estimator θ̃

Define for every subset A of the parameter set Θ the value

z(A) def= inf
θ 6∈A

{M(µ,θ, θ0)− pen(θ)}. (3.13)

The next result shows that the estimator θ̃ deviates out of the set A with an exponen-

tially small probability of order exp{−%z(A)} .

Corollary 3.5. Suppose (3.11). Then for any set A ⊂ Θ

P
(
θ̃ 6∈ A

) ≤ Q(%)e−%z(A).

14



Proof. If θ̃ 6∈ A , then M(µ, θ̃, θ0)− pen(θ̃) ≥ z(A) . As L(θ̃, θ0) ≥ 0 , it follows

Q(%) ≥ E exp
{

%
[
µL(θ̃,θ0) + M(µ, θ̃, θ0)− pen(θ̃)

]}

≥ E exp
{

%
[
M(µ, θ̃,θ0)− pen(θ̃)

]} ≥ ez(A)P
(
θ̃ 6∈ A

)

as required.

Two particular choices of the set A can be mentioned:

A = A(r, θ0) = {θ : M(µ,θ, θ0) ≤ r},
A = A′(r, θ0) = {θ : M(µ,θ, θ0)− pen(θ) ≤ r},

For the set A′(r,θ0) , Corollary 3.5 yields

P
(
θ̃ 6∈ A′(r, θ0)

)
= P

(
M(µ, θ̃,θ0)− pen(θ̃) ≥ r

) ≤ Q(%)e−%r.

For the set A(r, θ0) , define additionally the value b(r) by the relation

M(µ,θ, θ0)− pen(θ) ≥ r− b(r), θ ∈ A(r, θ0),

or, equivalently,

b(r) = sup
θ∈A(r,θ0)

{
r + pen(θ)−M(µ,θ,θ0)

}
.

Corollary 3.6. Suppose (3.11). Then for any r > 0

P
(
θ̃ 6∈ A(r,θ0)

)
= P

(
M(µ, θ̃, θ0) ≥ r

) ≤ Q(%)e−%[r−b(r)].

In typical situations the value M(µ,θ, θ0) and thus, M(µ,θ, θ0) is nearly proportional

to the sample size n and is nearly quadratic in θ − θ0 so that and each set A(r,θ0)

corresponds to a root-n neighborhood of the point θ0 , and the concentration property

becomes a non-asymptotic analog of root-n consistency. See below Section 3.4 for a

precise formulation.

It is important to stress that for applying the result of Corollary 3.6, it is not required

to compute the rate function M(µ, θ̃, θ0) and the penalty function pen(θ) . It only

suffices to obtain some rough upper bound for the penalty function and deterministic

lower bound for the rate function. The result claims that the estimate well localizes on

a vicinity A(r, θ0) of the point θ0 .

Another remark concerns the identifiability issue. It was already mentioned in the in-

troduction that the results do not require any identifiability condition. However, if the

model parameter is not well identifiable this leads to the situation that the rate function
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M(µ,θ,θ0) is very flat and its level sets are quite big. Therefore, a poor parametrization

leads to a less informative concentration property. In particular, the set A(r, θ0) can be

unbounded or disconnected.

The concentration property is very useful in combination with a more fine analysis based

on the Taylor expansion of the (quasi) log-likelihood. Indeed, it ensures that the estimate

belongs with a high probability to a small vicinity of θ0 and in this vicinity the classical

asymptotic technique based on the second order approximation of the process L(θ) can

be used to address the issues of asymptotic distribution and asymptotic efficiency.

3.2.2 Confidence sets based on L(θ̃,θ)

Next we discuss how the exponential bound can be used for establishing some risk bounds

and for constructing the confidence sets for the target θ0 based on the maximized value

L(θ̃,θ) . The inequality (3.11) claims that L(θ̃,θ0) is stochastically bounded with finite

exponential moments.

Define

b
def= b(0) = sup

θ
[pen(θ)−M(µ,θ, θ0)]+ . (3.14)

Corollary 3.7. Suppose (3.11) and let b from (3.14) be finite. Then

E exp
{
%µL(θ̃, θ0

)} ≤ e%bQ(%).

Proof. Observe that

E exp
{
%µL(θ̃, θ0

)} ≤ e%bE exp
{

%
[
µL

(
θ̃,θ0

)
+ M(µ, θ̃, θ0)− pen(θ̃)

]} ≤ e%bQ(%).

This obviously yields the assertion.

By the same reasons, one can construct confidence sets based on the (quasi) likelihood

process. Define

E(z) =
{
θ ∈ Θ : L(θ̃, θ) ≤ z

}
.

The bound for L(θ̃, θ0) ensures that θ0 belongs to this set with a high probability

provided that z is large enough. The next result claims that E(z) does not cover the

true value θ0 with a probability which decreases exponentially with z .

Corollary 3.8. Suppose (3.11). For any z > 0

P
(
θ0 /∈ E(z)

) ≤ Q(%) exp
{−%µz + %b

}
.
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Proof. The bound (3.11) implies for the event {θ0 /∈ E(z)} = {L(θ̃, θ0) > z}

P
{
θ0 /∈ E(z)

} ≤ P
{
%
[
µL(θ̃, θ0) + M(µ, θ̃, θ0)− pen(θ̃)

]
> %µz− %b

}

≤ exp
{−%µz + %b

}
E exp

{
%µL(θ̃,θ0) + M(µ, θ̃, θ0)− pen(θ̃)

}

≤ Q(%) exp
{−%µz + %b

}

as required.

The result of Corollary 3.8 only presents an upper bound for the coverage probability

of the value θ0 by the set E(z) . The given exponential bound contains some implicit

constant and is rather rough, and therefore, it can hardly be used for computing the

coverage probability and for fixing the constant zα which ensures the coverage level

1 − α . It would be unrealistic to obtain a universal non-asymptotic sharp bound for

the coverage level which applies in such a general situation. However, the result is

meaningful because it suggests the form of the confidence set and guarantees that the

choice a sufficiently big but fixed threshold z ensures the prescribed coverage probability.

A precise value can be found by the Monte-Carlo simulations, see e.g. Spokoiny (2007)

for some examples.

3.3 Identifiability condition

Until this point no any identifiability condition on the model has been used, that is,

the presented results apply even for a very poor parametrization. Actually, a particular

parametrization of the parameter set plays no role as long as the value of maximum is

considered. If we want to derive any quantitative result on the point of maximum θ̃ ,

then the parametrization matters and an identifiability condition is really necessary. Here

we follow the usual path by applying the quadratic lower bound for the rate function

M(µ,θ,θ0) in a vicinity of the point θ0 .

Finally we discuss a risk bound in terms of the classical loss θ̃ − θ0 . The idea is to

apply the quadratic lower bound for the rate function M(µ,θ, θ0) in a vicinity of the

point θ0 and to use the concentration property of the estimator θ̃ . To explain the con-

ditions imposed below suppose that the log-likelihood function is two times continuously

differentiable in θ . This implies the differentiability in θ of the moment generating

function M(µ,θ, θ0) = −∑
t mt{µ, ft(θ), ft(θ0)

}
. Obviously M(µ,θ0, θ0) = 0 and a

simple algebra yields for the gradient ∇M(µ,θ,θ0) = dM(µ,θ, θ0)/dθ :

E∇M(µ,θ, θ0)|θ=θ0 = −µE∇L(θ)|θ=θ0 = −µ∇EL(θ0) = 0
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because θ0 is the point of maximum of EL(θ) . The same holds automatically for the

lower bound M(µ,θ, θ0) . The Taylor expansion of the second order in a vicinity of θ0

yields for all θ close to θ0 the following approximation:

M(µ,θ, θ0) ≈ 1
2
(θ − θ0)>I(µ,θ0)(θ − θ0)

with the matrix I(µ,θ0) = E∇2M(µ,θ, θ0)|θ=θ0 . This and the concentration property

from Corollary 3.6 lead to the following bound on θ̃ − θ0 :

Corollary 3.9. Let (3.11) hold. Suppose that for some positive symmetric matrix D

and some r > 0 , the function M(µ,θ,θ0) fulfills almost surely

M(µ,θ, θ0) ≥ M(µ,θ,θ0) ≥ (θ − θ0)>D2(θ − θ0), θ ∈ A(r, θ0), (3.15)

Then for any z ≤ r

P
(‖D(θ̃ − θ0)‖2 > z

) ≤ Q(%)e−%[z−b(z)].

Proof. It is obvious that

{‖D(θ̃ − θ0)‖2 > z
} ⊆ {‖D(θ̃ − θ0)‖2 > z, θ̃ ∈ A(r,θ0)

} ∪ {
θ̃ 6∈ A(r,θ0)

}

⊆ {
M(µ, θ̃, θ0) > z, θ̃ ∈ A(r, θ0)

} ∪ {
M(µ, θ̃,θ0) > z

}

=
{
M(µ, θ̃, θ0) > z

}

and the result follows from Corollary 3.6.

In the next theorem we assume the lower bound (3.15) to be fulfilled on the whole

parameter set Θ . The general case can be reduced to this one by using once again the

concentration property of Corollary 3.6.

Theorem 3.10. Suppose (E) , (ED) with V (θ) ≤ V ∗ for a matrix V ∗ . Let also for

some a > 0 and a deterministic function M(µ,θ, θ0) hold

M(µ,θ, θ0) ≥ M(µ,θ,θ0) ≥ a2(θ − θ0)>V ∗(θ − θ0), θ ∈ Θ. (3.16)

Fix some a1 ≤ a and define pen(θ) by

pen(θ) = a2
1(θ − θ0)>V ∗(θ − θ0). (3.17)

Then with s = 1− a2
1/a2 it holds

Q(%, s) def= log E exp
{
% sup

θ

[
µL(θ,θ0) + M(µ,θ, θ0)− pen(θ)

]}

≤ 2% + (1− %)Qp + log
(

1 +
ω−1

p πp/2

(1− %)p/2a
p
1

)

≤ pC(%) + p log
(|a2(1− s)(1− %)|−1/2

)
(3.18)
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for some fixed constant C(%) . In addition, b(r) = 0 for all r ≥ 0 yielding for any z > 0

the concentration property and confidence bound:

P
(
θ̃ 6∈ A(z, θ0)

) ≤ Q(%, s)e−%sz, A(z,θ0) = {θ : M(µ,θ, θ0) ≤ z},
P

(
θ0 6∈ E(z)

) ≤ Q(%, 0)e−%z, E(z) = {θ : L(θ̃, θ) ≤ z}.

Proof. We apply Theorem 3.4 with

κ(t) = exp
{−(1− %)a2

1(t− 1)2+
}

leading for ε2 = (1− %)/% and t = ε−1
∥∥√V ∗(θ−θ0)

∥∥ to the formula (3.17) for pen(θ) .

By simple algebra

P∗ = ω−1
p

∫

IRp

κ(‖θ‖)dθ = 1 + ω−1
p

πp/2

(1− %)p/2a
p
1

;

cf. the bound (3.10) for P∗ with δ1 = (1− %)a2
1 . This implies the bound (3.18) for the

Q(%) because p−1Qp and p−1 log ω−1
p are bounded by some fixed constants.

The inequality (3.16) ensures for r = M(µ,θ,θ0) that pen(θ) ≤ a2
1/a2r , i.e. b(r) ≤

a2
1/a2r and b = b(0) = 0 . Finally, the concentration and coverage bounds follow from

Corollaries 3.6 and 3.8.

3.4 Sub-ergodocity and root-n consistency

Consider for every θ ∈ Θ a p× p random matrix B(θ) =
∑

t n2
t (ft(θ))∇ft(θ)∇ft(θ)> ;

see (3.5). Condition (3.4) implies that for any γ ∈ Sp and |λ| ≤ λ∗

E exp
{
2λγ>∇ζ(θ)− 2λ2γ>B(θ)γ

} ≤ 1.

The usual ergodicity condition for the sum B(θ) means that n−1B(θ) converges to some

deterministic matrix b(θ) for every θ as n grows. Sub-ergodicity can be understood

in the sense that n−1B(θ) is bounded by some deterministic matrix v(θ) with a high

probability. We define V (θ) = nv(θ) and suppose that conditions (ED) and (V ) are

fulfilled for such defined V (θ) .

Similarly the sub-ergodicity applied to the random quantity M(µ,θ,θ0) means that there

is a deterministic positive function m(µ,θ, θ0) such that n−1M(µ,θ,θ0) ≥ m(µ,θ,θ0)

with a high probability. In this situation one can rewrite the main corollaries from Sec-

tion 3.2 in terms of the functions v(θ) and m(µ,θ,θ0) . In particular, the concentration

set A(r, θ0) can be replaced by

A(r,θ0)
def= {θ : nm(µ,θ, θ0) ≤ r}.
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In addition we assume similarly to (3.15) that for some fixed symmetric positive matrix

D1 and some r > 0 , it holds in the vicinity A(r,θ0) of the point θ0 :

m(µ,θ,θ0) ≥ (θ − θ0)>D2
1(θ − θ0), v(θ) ≤ a2D2

1 θ ∈ A(r, θ0). (3.19)

Corollary 3.11. Assume (3.11) and (3.19) for some r > 0 . Then for any z ≤ r

P
(‖D1(θ̃ − θ0)‖2 > z/n

) ≤ Q(%) exp{−%(z− b)}.

4 Applications and examples

This section illustrates how the general results can be applied to some popular examples

of parametric time series models which we already mentioned in Section 2.3. For all

examples we assume that the two components of the parametric modeling are fixed: a

parametric family P = (Pυ, υ ∈ U) and a family of parameter processes {f(θ), θ ∈
Θ} . Moreover, we assume that both families are sufficiently regular, in particular, the

functions ft(θ) are differentiable w.r.t. θ . The corresponding gradient is denoted by

∇ft(θ) = ∂ft(θ)/∂θ ∈ IRp .

In all the examples, the real model dynamics is described by some predictable process ft

accepting that the parametric assumption ft = ft(θ) is not precisely fulfilled whatever

θ ∈ Θ is. By θ0 we denote the parameter corresponding to the best parametric fit:

θ0 = argmaxθ EL(θ) . Such defined vector parameter θ0 is estimated by maximizing

the objective function L(θ) .

4.1 Linear autoregression

Assume the model Yt = ft + εt in which the innovations εt are martingale differ-

ences: E
[
εt|Ft−1

]
= 0 possible heterogeneous with bounded exponential moments:

log E exp
{
λεt

∣∣Ft−1

} ≤ κ1λ
2 for λ ≤ λ∗ and some fixed κ1 .

With L(θ) = −(2σ2)−1
∑

t

{
Yt − ft(θ)

}2 , the least square estimate θ̃ reads as

θ̃ = argmax
θ

L(θ) = argmin
θ

∑
t

{
Yt − ft(θ)

}2
.

Linear autoregression means the structural equation ft(θ) = α1Yt−1 + . . . + αpYt−p for

θ = (α1, . . . , αp)> leading to maximization of the quadratic functional
∑

t

(
Yt − Ψ>t θ

)2

with Ψt = (Yt−1, . . . , Yt−p)> which admits a closed form solution:

θ̃ =
(∑

t

ΨtΨ
>
t

)−1 ∑
t

YtΨt = B−1
∑

t

YtΨt

L(θ̃, θ0) =
1

2σ2
(θ̃ − θ0)>B(θ̃ − θ0),
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with B
def=

∑
t ΨtΨ

>
t .

The matrix B(θ) from (3.5) does not depend on θ : B(θ) ≡ B . Next, the formulae for

∇ζ(θ) and ∇M(θ) simplifies to

∇ζ(θ) = σ−2
∑

t

{Yt − ft}Ψt = σ−2
∑

t

εtΨt ,

∇M(θ) = σ−2
∑

t

{
ft − Ψ>t θ

}
Ψt .

A natural choice for the matrix V (θ) is

V (θ) = C1σ
−2EB + C2 Var∇M(θ)

for some C1, C2 ≥ 1 . Such defined matrix V (θ) is a quadratic function of θ and condi-

tion (V ) is straightforward. Condition (ED) is also easy to check in typical situations.

The value θ0 which maximizes EL(θ) can be found by the following optimization

problem:

θ0 = argmax
θ

EL(θ)

= argmin
θ

E
∑

t

(
Yt − Ψtθ

)2

= argmin
θ

E
∑

t

(
ft − Ψtθ

)2 =
(
E

∑
t

ΨtΨ
>
t

)−1
E

∑
t

ftΨt . (4.1)

Theorem 3.3 and Corollary 3.7 claim that L(θ̃,θ0) = (2σ2)−1(θ̃ − θ0)>B(θ̃ − θ0) is

stochastically bounded with finite polynomial and exponential moments:

E
∣∣(2σ2)−1(θ̃ − θ0)>B(θ̃ − θ0)

∣∣r ≤ R(r).

This also justifies the use of confidence sets in the form

E(z) def=
{
θ : (2σ2)−1(θ̃ − θ)>B(θ̃ − θ) ≤ z

}
.

By Corollary 3.8, this set does not contain the target θ0 with a probability exponentially

decreasing in z . The result is valid simultaneously for stationary, stable (unit root) and

explosive cases, also mixed structure is allowed. The only essential assumption is about

exponential moments of the errors.

Finally we briefly discuss the concentration property of the estimate θ̃ . For applying

Corollary 3.6 one has to compute or evaluate the rate function M(µ,θ,θ0) . Suppose for

simplicity that the errors εt are conditionally normal with zero mean and the conditional

variance σ2
t , that is, Qt = N(0, σ2

t ) . Then for any υ, υ′

mt(µ, υ, υ′) def= − log E
[
exp

{
µ`(Yt, υ)− µ`(Yt, υ

′)
}∣∣Ft−1

]

=
µ

2σ2

{
(ft − υ)2 − (ft − υ′)2

}− µ2σ2
t

2σ4
(υ′ − υ)2.
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Therefore,

M(µ,θ, θ0) =
µ

2σ2

∑
t

{
(ft − Ψtθ)2 − (ft − Ψtθ0)2 − µσ2

t

σ2
(Ψtθ − Ψtθ0)2

}
.

In particular, under the parametric assumption ft = Ψ>t θ0

M(µ,θ, θ0) =
µ

2σ2
(θ − θ0)>

∑
t

(
1− µσ2

t /σ2
)
ΨtΨ

T
t (θ − θ0).

If, in addition, the variance σt is homogeneous, σt ≡ σ0 , then

M(µ,θ, θ0) = (θ − θ0)>
µ

2σ2

(
1− µσ2

0/σ2
)
B(θ − θ0).

Optimizing w.r.t. µ yields µ = σ2/(2σ2
0) and M(µ,θ, θ0) = (θ−θ0)>B(θ−θ0)/(4σ2

0) .

In the ergodic case, when the matrix n−1B is close to the stationary limit b , the result

of Corollary 3.6 claims that θ̃ concentrates in the root-n neighborhood A(z,θ0) = {θ :

‖b1/2(θ − θ0)‖2 ≤ 4σ2
0z/n} of θ0 .

If the parametric assumption ft = Ψ>t θ is not fulfilled whatever θ is, then the calcula-

tions become only slightly more complicated. Namely,

M(µ,θ, θ0) =
µ

2σ2
(θ − θ0)>

∑
t

(
1− µσ2

t /σ2
)
ΨtΨ

T
t (θ − θ0)

+
µ

σ2

∑
t

(
ftΨt − ΨtΨ

T
t θ0

)
(θ − θ0).

Due to (4.1), the expectation of the second sum is zero and this term is typically smaller

in order than the first one. So, A(z, θ0) remains to be a concentration set for θ̃ .

4.2 Categorical time series

Let P = (Pυ, υ ∈ U) be a given exponential family with the canonical parameter. The

conditional distribution Qt = L
(
Yt

∣∣Ft−1

)
of every observation Yt given the past Ft−1

is assumed to be in P and described by the varying stochastic parameter ft : Qt =

Pft ∈ P . The parametric assumption Qt = Pft(θ) leads to the log-likelihood L(θ) =
∑

t `(Yt, ft(θ)) where `(y, υ) = yυ − d(υ) is the log-likelihood function for P :

L(θ) =
∑

t

`(Yt, ft(θ)) =
∑

t

{
Ytft(θ)− d

(
ft(θ)

)}
. (4.2)

We use the well known properties of the canonical exponential families: EυY = ḋ(υ)

and log Eυ exp
{
µY

}
= d(υ + µ)− d(υ) . This yields for every υ, υ′ ∈ U and all t

mt(υ) def= E
[
`(Yt, υ)

∣∣Ft−1

]
= ḋ(ft)υ − d(υ),

ζt(Yt, υ) def= E
[
`(Yt, υ)−mt(υ)

∣∣Ft−1

]
=

{
Yt − ḋ(ft)

}
υ,

mt(µ, υ, υ′) def= − log E
[
exp{µ`(Yt, υ, υ′)}∣∣Ft−1

]

= d(ft)− d(ft + µ(υ − υ′)) + µd(υ)− µd(υ′).
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It is easy to see that condition (E) is fulfilled if ft + µ
{
ft(θ) − ft(θ0)

} ∈ U for all t

and all θ ∈ Θ .

Next, ζ̇t(Yt, υ) def= ∂ζt(Yt, υ)/∂υ = Yt − ḋ(ft) . In particular, this expression does not

depend on υ . Let n(υ) be a function of υ which ensures for some fixed λ∗1 > 0 that

log Eυ exp
{

2λ
Y − ḋ(υ)

n(υ)

}
≤ 2λ2, λ ≤ λ∗1

Define

M(θ) def=
∑

t

mt

(
ft(θ)

)
=

∑
t

{
ḋ(ft)ft(θ)− d(ft(θ))

}
,

ζ(θ) def=
∑

t

ζt

(
Yt, ft(θ)

)
=

∑
t

{
Yt − ḋ(ft)

}
ft(θ),

B(θ) def=
∑

t

n2(ft)∇ft(θ)
{∇ft(θ)

}>
.

Then under simple conditions on the parameter process ft(θ) , the derivatives

∇M(θ) def=
∑

t

{
ḋ(ft)− ḋ(ft(θ))

}∇ft(θ),

∇ζ(θ) def=
∑

t

{
Yt − ḋ(ft)

}∇ft(θ),

fulfill the conditions (ED) and (V ) with V (θ) = C1EB(θ) + C2 Var∇M(θ) for some

C1, C2 ≥ 1 .

Sub-ergodic properties are strictly related to the behavior of the parameter process ft(θ)

and its derivative ∇ft(θ) . Usually it suffices to assume that the both processes remains

bounded, at least with a dominating probability. Root-n consistency can be shown under

the identifiability condition that

n−1M(µ,θ,θ0) = n−1
∑

t

mt

(
µ, ft(θ), ft(θ0)

) ≥ m(θ, θ0)

where m(θ,θ0) is two times continuously differentiable and satisfies m(θ, θ0) > 0 for

θ 6= θ0 . Then Corollary 3.9 ensures root-n consistency of the estimate θ̃ .

4.3 Estimation for Generalized Linear time series

Here we consider the case when P is again an exponential family with the canonical

parameter and the parametric function ft(θ) is a transformation of another function

which linearly depends on the parameter θ . However, in the contrary to the previous

example, we admit that the true conditional data distribution is not in P .
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A generalized linear specification for this model is given by the following set of structural

equations:

L
(
Yt

∣∣Ft−1

)
= Pft ∈ P, ft = g(Ψt), Ψt = A(θ)Ψt−1 (4.3)

where Ψt is a predictable Rd -dimensional explanatory process, g(·) is a given mapping

from IRd to IR , A(θ) is a given d × d -matrix linearly depending on the parameter

vector θ ∈ Θ ⊂ IRp .

Let θ be the parameter vector. Then, given θ , the observations Y1, . . . , Yt , and the pre-

history Ψ0, Y 0 , one can uniquely reconstruct the process Ψt = Ψt(θ) and then ft(θ) =

g(Ψt(θ)) for t ≥ 1 by recurrently applying the relation (4.3). This function ft(θ) leads

to the (quasi) log-likelihood L(θ) =
∑

t

{
Ytft(θ)− d

(
ft(θ)

)}
.

A useful feature of models of type (4.3) is that the gradient ∇ft(θ) also follows the linear

structural equation:

∇ft = ∇Ψt(θ)g′(Ψt(θ)),

∇Ψt(θ) = ∇A ·Xt−1(θ) + A(θ)∇Xt−1(θ)

where g′(·) means the gradient of g(·) , and ∇A is the gradient of of A(θ) which does

not depend on θ because A(θ) is linear in θ .

Define

bt
def= E

[
Yt

∣∣Ft−1

]
,

mt(υ) def= E
[
`(Yt, υ)

∣∣Ft−1

]
= btυ − d(υ),

ζt(Yt, υ) def= E
[
`(Yt, υ)−mt(υ)

∣∣Ft−1

]
= (Yt − bt)υ,

mt(µ, υ, υ′) def= log E
[
exp{µ`(Yt, υ, υ′)}

∣∣Ft−1

]
. (4.4)

All these quantities are computed for the underlying data distribution P for which both

the assumption on the conditional distribution Qt ∈ P and the parametric dynamics

ft = ft(θ0) can be violated.

We suppose the following condition to be satisfied:

(Yt) There exist a constant λ∗1 > 0 and a predictable process nt such that for all t

and λ ≤ λ∗1

log E exp
{
2λn−1

t (Yt − bt)
∣∣Ft−1

} ≤ 2λ2.

This condition ensures that for all υ, υ′ ∈ U and µ > 0 with µ(υ − υ′) ≤ 2λ∗1/nt the

quantity mt(µ, υ, υ′) from (4.4) is well defined.
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The description of the process ∇Ψt(θ) also yields the representation for ∇ζ(θ) , ∇M(θ) ,

B(θ) ; see (3.5):

∇ζ(θ) =
∑

t

(Yt − bt)∇ft(θ) =
∑

t

{Yt − bt}∇Ψt(θ)g′(Ψt(θ)),

∇M(θ) =
∑

t

{
bt − ḋ(ft(θ))

}∇Ψt(θ)g′(Ψt(θ)).

B(θ) =
∑

t

n2
t ∇Ψt(θ)g′(Ψt(θ))

{∇Ψt(θ)g′(Ψt(θ))
}>

.

This suggests to take the matrix V (θ) in the form

V (θ) = C1EB(θ) + C2 Var∇M(θ) (4.5)

with some C1, C2 ≥ 1 . Checking the condition (ED) is quite straightforward in the

most of situations and all the results of Sections 3, 3.2 apply.

We now specify the above expressions for the important special case of d = 1 when

the model is given by the equations ft = g(Xt) for a univariate link function g and a

univariate process Xt following the linear dynamic equation

Xt = ω + α1Yt−1 + . . . αpYt−p + β1Xt−1 + . . . βqXt−q.

Here θ = (β1, . . . , βq, α1, . . . , αp, ω)> . One easily computes

∇Xt(θ) = (1, Yt−1, . . . Yt−p, Xt−1(θ), . . . , Xt−q(θ))

+
(

0, . . . , 0, β1
∂Xt−1(θ)

∂β1
, . . . , βq

∂Xt−q(θ)
∂βq

)
.

So, given the initial values X1−q, . . . , X0 , ∇X1−q, . . . ,∇X0 and the observations Y1, . . . , Yn ,

one can recurrently construct for every θ the hidden process Xt(θ) and its gradient

∇Xt(θ) . This yields the representation ft(θ) = g
(
Xt(θ)

)
and ∇ft(θ) = g′(Xt(θ))∇Xt(θ)

for the parameter process ft(θ) . The formulae for ∇ζ(θ) , ∇M(θ) , B(θ) can also be

specified:

∇ζ(θ) =
∑

t

(Yt − bt)∇ft(θ) =
∑

t

{Yt − bt}g′(Xt(θ))∇Xt(θ),

∇M(θ) =
∑

t

{
bt − ḋ(ft(θ))

}
g′(Xt(θ))∇Xt(θ).

B(θ) =
∑

t

n2
t

∣∣g′(Xt(θ))
∣∣2∇Xt(θ)

{∇Xt(θ)
}>

.

Further one can proceed as in the general case with d > 1 .
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4.4 GARCH(1,1) estimation

GARCH-model with the parameter θ = (ω, α, β)> can be described by structural equa-

tion:

Xt(θ) = ω + αRt−1 + βXt−1(θ), t ≥ 1, X0(θ) = X0, (4.6)

yielding the (quasi) log likelihood

L(θ) = −1
2

∑
t

{
log(2πXt(θ)) + Rt/Xt(θ)

}

=
1
2

∑
t

{
log(2πft(θ))−Rtft(θ)

}

with ft(θ) = 1/Xt(θ) .

Below we assume that the innovations ε2
t ’s have bounded conditional exponential mo-

ments: with some λ∗ > 0 and n , it holds almost surely

log E exp
{−λ

n
(ε2

t − 1)
∣∣Ft−1

} ≤ 2λ2, |λ| ≤ λ∗.

If every εt is conditionally standard normal then log E exp
{−λ(ε2

t − 1)
∣∣Ft−1

}
= λ −

1
2 log(1 + 2λ) ≤ 2λ2 for |λ| ≤ 1/3 .

As before, θ0 = argmaxθ∈Θ EL(θ) denotes the “true” parameter vector. By some

technical reason we assume that the constant term ω of the parameter vector θ is not

smaller than given value δ > 0. Then the equation (4.6) ensures for every θ and every

t ≥ 1 the lower bound Xt(θ) ≥ δ .

The gradient ∇Xt(θ) of the process Xt(θ) satisfies the equation

∇Xt(θ) = (1, Rt−1, Xt−1(θ))> + β∇Xt−1(θ).

For the canonical parameter ft(θ) = 1/Xt(θ) this yields

∇ft(θ) = X−2
t (θ)∇Xt(θ) = f2

t (θ)∇Xt(θ).

Next, one easily computes

∇ζ(θ) = −1
2

∑
t

(Rt −Xt)∇ft(θ),

∇M(θ) =
1
2

∑
t

{
Xt −Xt(θ)

}∇ft(θ).

With nt ≡ n and Yt = −Rt/2 , one has for λ ≤ λ∗

log E
[
exp

{
2λn−1

t (Yt − bt)
}∣∣Ft−1

]
= log E

[
exp(−λε2

t + λ)
∣∣Ft−1

] ≤ 2λ2
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for |λ| ≤ λ∗1 , and condition (Y t) is verified. Next, condition (ED) can be checked

with V (θ) from (4.5), (3.5). The results of Section 3 and 3.2 describe the accuracy of

estimation in terms of the function

M(µ,θ, θ0) =
∑

t

mt

{
µ, ft(θ), ft(θ0)

}
,

where for υ, υ′ with |µX−1
t (υ − υ′)|n ≤ λ∗/2 that

mt

{
µ, υ, υ′

} def= − log E
[
exp

{
µ`(Rt, υ, υ′)

}∣∣Ft−1

]

=
µ

2
log(υ′/υ) +

µ(υ − υ′)
2Xt

+
1
2

log E exp
{
µX−1

t (υ − υ′)(ε2
t − 1)

}

≥ µ

2
log(υ′/υ) +

µ(υ − υ′)
2Xt

− µ2(υ − υ′)2n2

4X2
t

yielding

M(µ,θ,θ0) ≥
∑

t

{µ

2
log

(ft(θ0)
ft(θ)

)
+

µ
{
ft(θ)− ft(θ0)

}

2Xt
− µ2|ft(θ)− ft(θ0)|2n2

4X2
t

}

In the parametric situation Xt = 1/ft(θ0) and with δt(θ) = ft(θ)/ft(θ0)− 1

M(µ,θ, θ0) ≥
∑

t

{µ

2
log(1 + δt(θ)) +

µδt(θ)
2

− µ2δt(θ)2n2

4

}

So, M(µ,θ,θ0) can be viewed as a kind of distance between two functions ft(θ) and

ft(θ0) . In the stationary case α + β < 1 for any θ = (ω, α, β)> ∈ Θ , the process

Xt(θ) is ergodic and the normalized sum n−1M(µ,θ,θ0) converges to the integral of

every summand w.r.t. the stationary measure. One can easily seen that this integral is

nearly quadratic in θ − θ0 in a neighborhood of θ0 yielding the root-n consistency of

estimation by Corollary 3.9.

4.5 Median and quantile time series estimation

The median or more generally quantile estimation can be defined by maximizing the

quasi log-likelihood

L(θ) =
∑

t

`α

(
Yt − ft(θ)

)

with `α(x) = (1− α)x− − αx+ . Define

mt(θ) def= E
{
`α

(
Yt − ft(θ)

)∣∣Ft−1

}
,

qt(θ) def= P
(
Yt − ft(θ) ≤ 0

∣∣Ft−1

)
,

M(θ) def=
∑

t

mt(θ) =
∑

t

E
{
`α

(
Yt − ft(θ)

)∣∣Ft−1},

ζ(θ) def=
∑

t

{
`α

(
Yt − ft(θ)

)−mt(θ)
}
.
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Simple derivations yield

∇ζ(θ) =
∑

t

{
1(Yt − ft(θ) ≤ 0)− qt(θ)

}∇ft(θ),

∇M(θ) =
∑

t

qt(θ)∇ft(θ).

Here it is natural to set nt(υ) ≡ 1 leading to

B(θ) =
∑

t

∇ft(θ)∇ft(θ)>.

As previously, the condition of Theorem 3.3 are easy to verify with V (θ) = C1EB(θ) +

C2 Var∇M(θ) for some C1, C2 ≥ 1 . The function M(µ,θ, θ0) from (3.1) describing the

quality of estimation can be represented as

M(µ,θ, θ0) =
∑

t

mt(µ, ft(θ), ft(θ0))

with

mt(µ, υ, υ′) = − log E
[
exp

{
µ`α(Yt − υ)− µ`α(Yt − υ′)

}∣∣Ft−1

]

4.6 Risk bounds. Summary

In this section we summarize what we obtained in all the previous examples and what

can be stated in each particular case.

One can see that in every application there is a straightforward expression for the quasi

likelihood function L(θ) and its components ζ(θ) and M(θ) and for their gradient

in θ in terms of ft(θ) and ∇ft(θ) . Moreover, all the conditions required for the

main results of Sections 3 and 3.2 can be easily verified with the matrix V (θ) given

in (4.5). Therefore, all these theorems and corollaries are applicable. In particular, the

concentration property and the structure of confidence sets is given.

To understand what the results exactly imply in particular cases, one has to bound the

penalty function pen(θ) from above and the rate function M(µ,θ,θ0) from below. The

penalty function can be defined in the most of cases via the linear ranking ‖
√

V (θ)(θ−
θ)‖ . The rate admits typically a quadratic in θ − θ lower bound which immediately

yields the classical root-n accuracy by Corollary 3.11. The general case of Sections 3 and

3.2 apply in each of considered example without any significant change of formulation.
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5 A penalized exponential bound for a random field

Let (Y(υ),υ ∈ Υ ) be a random field on a probability space (Ω, F,P ) , where Υ is a

separable locally compact space. For any υ ∈ Υ we assume the following exponential

moment condition to be fulfilled:

(E) For every υ ∈ Υ

E exp{Y(υ)} = 1.

The aim of this section is to establish a similar exponential bound for a supremum of

Y(υ) over υ ∈ Υ . A trivial corollary of the condition (E) is that if the set Υ is finite

with N = #Υ , then

E exp
{

sup
υ∈Υ

Y(υ)
}
≤ N.

Unfortunately, in the general case the supremum of Y(υ) over υ does not necessarily

fulfill the condition of bounded exponential moments. We therefore, consider a penalized

version of the process Y(υ) , that is, we try to bound the exponential moment of Y(υ)−
pen(υ) for some penalty function pen(υ) . The goal is to find a possibly minimal such

function pen(υ) which provides

E exp
{

sup
υ∈Υ

[
Y(υ)− pen(υ)

]} ≤ 1.

In the case of a finite set Υ , a natural candidate is pen(υ) = log(#Υ ) . Below we show

how this simple choice can be extended to the case of a general set Υ . There exists a

number of results about a supremum of a centered random field which are heavily based

on the theory of empirical processes. See e.g. the monographes van der Vaart and Wellner

(1996), Van de Geer (2000), Massart (2007), and references therein. Our approach is a

bit different. First the process Y(υ) does not need to be centered, instead we use the

normalization E exp{Y(υ)} = 1 . Secondly we do not assume any particular structure of

this process like independence of observations, so the methods of the empirical processes

do not apply here. Finally, our analysis is focuses on the penalty function pen(·) rather

then on the deviation probability of maxυ Y(υ) .

5.1 A local bound

Define M(υ) = EY(υ) , ζ(υ) = Y(υ)−EY(υ) , and denote ζ(υ, υ′) = ζ(υ)− ζ(υ′) for

υ,υ′ ∈ Υ . We assume a nonnegative symmetric function D(υ, υ′) is given such that the

following condition is fulfilled:
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(Eε) There exist numbers ε > 0 and λ∗ > 0 , such that for any λ ≤ λ∗

sup
υ,υ′∈Υ : D(υ,υ′)≤ε

log E exp
{

2λ
ζ(υ,υ′)
D(υ, υ′)

}
≤ 2λ2.

Let ε > 0 be shown in condition (Eε) . Define for any point υ◦ ∈ Υ the “ball”

B(ε,υ◦) =
{
υ : D(υ, υ◦) ≤ ε

}
.

To state the result, we have to introduce the notion of local entropy. We say that a

discrete set D(ε,C) is an ε -net in C ⊆ Υ , if

C ⊂
⋃

υ◦∈D(ε,C)

B(ε, υ◦). (5.1)

By N(ε0, ε, υ◦) for ε0 ≤ ε we denote the local covering number defined as the mini-

mal number of sets B(ε0, ·) required to cover B(ε,υ◦) . With this covering number we

associate the local entropy

Q(ε, υ◦) def=
∞∑

k=1

2−k logN(2−kε, ε,υ◦).

Assume that υ◦ ∈ Υ is fixed. The following result controls the supremum in υ of the

penalized process Y(υ)− pen(υ) over the ball B(ε, υ◦) .

Theorem 5.1. Assume (E) and (Eε) . For any % ∈ (0, 1) with %ε/(1 − %) ≤ λ∗ , any

υ◦ ∈ Υ

log E exp
{

sup
υ∈B(ε,υ◦)

%
[
Y(υ)− pen(υ)

]} ≤ 2ε2%2

1− %
+ (1− %)Q(ε,υ◦)− % penε(υ

◦)

with

penε(υ
◦) = inf

υ∈B(ε,υ◦)
pen(υ).

Proof. We begin with some result which bounds the stochastic component of the process

Y(υ) within the local ball B(ε,υ◦) .

Lemma 5.2. Assume that ζ(υ) is a separable process satisfying condition (Eε) . Then

for any given υ◦ ∈ Υ , υ] ∈ B(ε,υ◦) , and λ ≤ λ∗

log E exp
{

λ

ε
sup

υ∈B(ε,υ◦)
ζ(υ, υ])

}
≤ Q(ε,υ◦) + 2λ2.
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Proof. The proof is based on the standard chaining argument; see e.g. van der Vaart

and Wellner (1996). Without loss of generality, we assume that Q(ε,υ◦) < ∞ . Then for

any integer k ≥ 0 , there exists a 2−kε -net Dk(ε,υ◦) in the local ball B(ε, υ◦) having

the cardinality N(2−kε, ε, υ◦) . Using the nets Dk(ε, υ◦) with k = 1, . . . , K − 1 , one can

construct a chain connecting an arbitrary point υ in DK(ε, υ◦) and υ] . It means that

one can find points υk ∈ Dk(ε,υ◦), k = 1, . . . ,K − 1 , such that D(υk, υk−1) ≤ 2−k+1ε

for k = 1, . . . ,K . Here υK means υ and υ0 means υ] . Notice that υk can be

constructed recurrently: υk−1 = τk−1(υk), k = K, . . . , 1 , where

τk−1(υ) = argmin
υ′∈Dk−1(ε,υ◦)

D(υ, υ′).

It obviously holds

ζ(υ, υ]) =
K∑

k=1

ζ(υk, υk−1).

It holds for ξ(υk, υk−1) = ζ(υk,υk−1)/D(υk, υk−1) that

ζ(υk, υk−1) = D(υk, υk−1)ξ(υk, υk−1) = 2ε ck ξ(υk, υk−1)

with ck = D(υk,υk−1)/(2ε) ≤ 2−k . By condition (Eε) log E exp
{
2λξ(υk,υk−1)

} ≤ 2λ2 .

Next,

sup
υ∈Dk(ε,υ◦)

ζ(υ, υ]) ≤
K∑

k=1

sup
υ′∈Dk(ε,υ◦)

ζ(υ′, τk−1(υ′))

≤ 2ε
K∑

k=1

sup
υ′∈Dk(ε,υ◦)

ckξ(υ′, τk−1(υ′)). (5.2)

Since ck ≤ 2−k , the Hölder inequality and condition (Eε) imply

log E exp
{

λ

ε
sup

υ∈DK(ε,υ◦)
ζ(υ, υ])

}
≤ log E exp

{
2λ

K∑

k=1

sup
υ′∈Dk(ε,υ◦)

ckξ(υ′, τk−1(υ′))
}

≤
K∑

k=1

2−k log
[
E exp

{
sup

υ′∈Dk(ε,υ◦)
2kck × 2λξ(υ′, τk−1(υ′))

}]

≤
K∑

k=1

2−k log
[ ∑

υ′∈Dk(ε,υ◦)

E exp
{
2kck × 2λξ(υ′, τk−1(υ′))

}]

≤
K∑

k=1

2−k
{
logN(2−kε, ε, υ◦) + 2λ2

}
.

These inequalities and the separability of ζ(υ, υ]) yield

log E exp
{

λ

ε
sup

υ∈B(ε,υ◦)
ζ(υ, υ])

}
= lim

K→∞
log E exp

{
λ

ε
sup

υ∈DK(ε,υ◦)
ζ(υ, υ])

}

≤
∞∑

k=1

2−k
{
2λ2 + logN(2−kε, ε, υ◦)

} ≤ 2λ2 +Q(ε, υ◦)
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which completes the proof of the lemma.

Now define for a fixed a point υ◦

υ] = argmin
υ∈B(ε,υ◦)

{M(υ) + pen(υ)},

where M(υ) = −EY(υ) . If there are many such points, then take any of them as υ] .

Obviously

sup
υ∈B(ε,υ◦)

{
Y(υ)− pen(υ)

} ≤ Y(υ])− pen(υ]) + sup
υ∈B(ε,υ◦)

ζ(υ, υ]).

Therefore, by the Hölder inequality and Lemma 5.2 with λ = ε%/(1− %)

log E exp
{

sup
υ∈B(ε,υ◦)

%
[
Y(υ)− pen(υ)

]}

≤ % log E exp
{
Y(υ])− pen(υ])

}
+ (1− %) log E exp

{ %

1− %
sup

υ∈B(ε,υ◦)
ζ(υ, υ])

}

≤ 2ε2%2/(1− %) + (1− %)Q(ε,υ◦)− % pen(υ])

≤ 2ε2%2/(1− %) + (1− %)Q(ε,υ◦)− % penε(υ
◦).

which is the assertion of the theorem.

5.2 A global exponential bound for the penalized process

This section presents some sufficient conditions on the penalty function pen(υ) which

ensure the general exponential bound for the penalized process Y(υ) − pen(υ) . For

simplicity we assume that the local entropy numbers Q(ε,υ) are uniformly bounded by

a constant Q∗(Υ ) . Let also π be a σ -finite measure on the space Υ and π(A) stand

for the π -measure of a set A ⊂ Υ . The standard proposal for π is the usual Lebesgue

measure.

Theorem 5.3. Assume (E) and (Eε) with some fixed ε and λ∗ . Let % < 1 be such

that %ε/(1− %) ≤ λ∗ . Let also Q(ε, υ) ≤ Q∗(Υ ) for all υ ∈ Υ . Let a σ -finite measure

π on Υ be such that for some ν ≥ 1

sup
υ,υ′: D(υ,υ′)≤ε

π(B(ε,υ))
π(B(ε, υ′))

≤ ν. (5.3)

Finally, let a function pen(υ) satisfy

Hε(%) def= log
∫

Υ

1
π(B(ε, υ◦))

exp
{−% penε(υ

◦)
}
dπ(υ◦) < ∞
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with penε(υ◦) = infυ∈B(ε,υ◦) pen(υ) . Then

E exp
{

sup
υ∈Υ

%
[
Y(υ)− pen(υ)

]} ≤ Q(%, ε), (5.4)

where

log Q(%, ε) =
2ε2%2

1− %
+ (1− %)Q∗(Υ ) + log ν + Hε(%). (5.5)

Proof. We begin with a simple technical result which bounds the maximum of a given

function via the weighted integral of the local maxima.

Lemma 5.4. Let f(υ) be a nonnegative function on Υ ⊂ IRp and let for every point

υ ∈ Υ a vicinity A(υ) be fixed such that υ′ ∈ A(υ) implies υ ∈ A(υ′) . Let also the

measure π
(
A(υ)

)
of the set A(υ) fulfill for every υ◦ ∈ Υ

sup
υ∈A(υ◦)

π
(
A(υ)

)

π
(
A(υ◦)

) ≤ ν. (5.6)

Then

sup
υ∈Υ

f(υ) ≤ ν

∫

Υ
f∗(υ)

1
π
(
A(υ)

)dπ(υ)

with

f∗(υ) def= sup
υ′∈A(υ)

f(υ′).

Proof. For every υ◦ ∈ Υ

∫

Υ
f∗(υ)

1
π
(
A(υ)

)dπ(υ) ≥
∫

A(υ◦)
f∗(υ)

1
π
(
A(υ)

)dπ(υ)

≥ f(υ◦)
∫

A(υ◦)

1
π
(
A(υ)

)dπ(υ)

because υ ∈ A(υ◦) implies υ◦ ∈ A(υ) and hence, f(υ◦) ≤ f∗(υ) . Now by (5.6)
∫

Υ
f∗(υ)

1
π
(
A(υ)

)dπ(υ) ≥ f(υ◦)
ν

∫

A(υ◦)

1
π
(
A(υ◦)

)dπ(υ) = f(υ◦)/ν

as required.

This result applied to f(υ) = exp
{
%
[
Y(υ)− pen(υ)

]}
and A(υ) = B(ε,υ) implies

sup
υ∈Υ

exp
{

%
[
Y(υ)− pen(υ)

]} ≤ ν

∫

Υ
sup

υ∈B(ε,υ◦)
exp

{
%
[
Y(υ)− pen(υ)

]} dπ(υ◦)
π
(
B(ε,υ◦)

) .
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This implies by Theorem 5.1

log E sup
υ∈Υ

exp
{

%
[
Y(υ)− pen(υ)

]}

≤ 2ε2%2

1− %
+ (1− %)Q∗(Υ ) + log

{
ν

∫

Υ
exp

{−%penε(υ
◦)

} dπ(υ◦)
π
(
B(ε,υ◦)

)
}

≤ 2ε2%2

1− %
+ (1− %)Q∗(Υ ) + log(ν) + Hε(%)

and the assertion follows.

5.3 Smooth case

Here we discuss the special case when Υ ⊂ IRp , the process Y(υ) and its stochastic

component ζ(υ) are absolutely continuous and the gradient ∇ζ(υ) def= dζ(υ)/dυ has

bounded exponential moments. We also assume that π is the Lebesgue measure on Υ .

Suppose the following condition is fulfilled:

(ED) There exist λ∗ > 0 and for each υ ∈ Υ , a symmetric non-negative matrix H(υ)

such that for any λ ≤ λ∗

sup
υ∈Υ

sup
γ∈Sp

log E exp
{

2λ
γ>∇ζ(υ)
‖H(υ)γ‖

}
≤ 2λ2.

The matrix function H(υ) can be used for defining a natural topology in Υ . Namely,

for any υ, υ′ ∈ Υ define d = ‖υ − υ′‖ , γ = (υ − υ′)/d and

D2(υ, υ′) def= ‖υ − υ′‖2

∫ 1

0
γ>H2(υ + tdγ)γ dt.

Next, introduce for each υ◦ ∈ Υ and ε > 0 the set

B(ε, υ◦) def= {υ : D(υ, υ◦) ≤ ε}

To state the result, we need one more condition on the uniform continuity of the matrix

H(υ) in υ .

(H) There exist constants ε > 0 and ν1 ≥ 1 such that

sup
υ,υ′:D(υ,υ′)≤ε

sup
γ∈Sp

γ>H2(υ)γ
γ>H2(υ′)γ

≤ ν1 .

Theorem 5.5. Let (E) be satisfied. Suppose that (ED) holds with some λ∗ and a matrix

function H(υ) which fulfills (H) . If for some % ∈ (0, 1) and ε > 0 with %ε/(1−%) ≤ λ∗ ,

the penalty function pen(υ) fulfills

Hε(%) def= log
{

ω−1
p ε−p

∫

Υ
det(H(υ◦)) exp

{−% penε(υ
◦)

}
dυ◦

}
< ∞
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with penε(υ◦) = infυ∈B(ε,υ◦) pen(υ) , then

E exp
{

sup
υ∈Υ

%
[
Y(υ)− pen(υ)

]} ≤ Q(%, ε) (5.7)

where

log Q(%, ε) =
2ε2%2

1− %
+ (1− %)Qp + Hε(%) + p log(ν1)

with Qp being the usual entropy number for the Euclidean ball in IRp .

Proof. First we show that the differentiability condition (ED) implies the local moment

condition (Eε) .

Lemma 5.6. Assume that (ED) holds with some λ∗ . Then for any υ◦ ∈ Υ and any

λ with |λ| ≤ λ∗/ν
1/2
1 , it holds

sup
υ∈B(ε,υ◦)

log E exp
{

2λ
ζ(υ, υ◦)
D(υ, υ◦)

}
≤ 2λ2. (5.8)

Proof. For υ ∈ B(ε,υ◦) , denote d = ‖υ − υ◦‖ , γ = (υ − υ◦)/d . With this notation

ζ(υ, υ◦) = dγ>
∫ 1

0
∇ζ(υ◦ + tdγ)dt.

The condition (H) implies for every t ∈ [0, 1] that

λ
u‖H(υ◦ + tdγ)γ‖

D(υ,υ◦)
≤ λν

1/2
1 ≤ λ∗.

Now the Hölder inequality and (ED) yield

log E exp
{

2λ
ζ(υ,υ◦)
D(υ, υ◦)

− λ2

}

= log E exp
{∫ 1

0
γ>

[
2λd

D(υ, υ◦)
∇ζ(υ◦ + tdγ)− 2λ2d2

D2(υ, υ◦)
H2(υ◦ + tdγ)γ

]
dt

}

≤
∫ 1

0
log E exp

{
γ>

[
2λd

D(υ, υ◦)
∇ζ(υ◦ + tdγ)− 2λ2d2

D2(υ, υ◦)
H2(υ◦ + tdγ)γ

]}
dt

≤ 0

as required.

Next we show that condition (H) implies (5.3). Consider for every υ◦ ∈ Υ an elliptic

neighborhood B′(ε,υ◦) = {υ : ‖H(υ◦)(υ − υ◦)‖ ≤ ε} .

Lemma 5.7. Assume (H) . Then
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1. for any ε > 0 and any υ ∈ Υ

B′(ν−1/2
1 ε,υ) ⊂ B(ε,υ) ⊂ B′(ν1/2

1 ε,υ),

B(ν−1/2
1 ε,υ) ⊂ B′(ε, υ) ⊂ B(ν1/2

1 ε, υ).
(5.9)

2. For every υ ∈ Υ ,

ν
−p/2
1 ≤ ε−pπ(B(ε, υ))det(H(υ))/ωp ≤ ν

p/2
1 , (5.10)

where ωp is the Lebesgue measure of the unit ball in IRp .

3. condition (5.3) holds with ν = νp
1 .

Proof. Condition (H) implies that for any υ◦ ∈ Υ and υ ∈ B(ε,υ◦) that

ν−1
1 γ>H2(υ◦)γ ≤

∫ 1

0
γ>H2(υ◦ + tdγ)γ dt ≤ ν1γ

>H2(υ◦)γ

with d = ‖υ − υ◦‖ and γ = (υ − υ◦)/d , which yields the first assertion of the lemma.

The Lebesgue measure of the ellipsoid B′(ε, υ) is equal to ωpε
p
/
det(H(υ)) . This and

(5.9) imply the second assertion. This, in turns, implies (5.3) in view of (H) .

The next result claims that in the smooth case the local entropy number Q(ε,υ◦) is

similar to the usual Euclidean situation.

Lemma 5.8. Assume (H) . Then supυ∈ΘQ(ε, υ) ≤ Qp + p log(ν1) .

Proof. Fix any υ◦ ∈ Υ . Linear transformation with the matrix H−1(υ◦) reduces the

situation to the case when H(υ◦) ≡ I and B′(ε0, υ◦) is a usual Euclidean ball for

any ε0 ≤ ε . Moreover, by (H) , each elliptic set B′(ε0, υ) for υ ∈ B(ε,υ◦) is nearly

an Euclidean ball in the sense that the ratio of its largest and smallest axes (which is

the ratio of the largest and smallest eigenvalues of H−1(υ◦)H2(υ)H−1(υ◦) ) is bounded

by ν1 . Therefore, for any ε0 ≤ ε , a Euclidean net De(ε0/ν1) with the step ε0/ν1

ensures a covering of B(ε,υ◦) by the sets B(ε0, υ◦) , υ◦ ∈ De(ε0/ν1) . Therefore, the

corresponding covering number is bounded by (ν1ε/ε0)p yielding the claimed bound for

the local entropy.

Now the result of theorem 5.5 is reduced to the statement of Theorem 5.3.

Computing of the penalty simplifies a lot when the matrix H(υ) is uniformly bounded

by a matrix H∗ , or, equivalently, condition (H) is fulfilled for H(υ) ≡ H∗ . Then one

can define pen(υ) as a function of the norm ‖H∗(υ − υ0)‖ for a fixed υ0 .
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Theorem 5.9. Assume additionally to the conditions of Theorem 5.5 that H(υ) ≤ H∗

for a symmetric matrix H∗ . Suppose that κ(t) is a monotonously decreasing positive

function on [0,+∞) satisfying

P∗ def= ω−1
p

∫

IRp

κ(‖u‖)du = p

∫ ∞

0
κ(t)tp−1dt < ∞. (5.11)

Define

pen(υ) = −%−1 logκ
(
ε−1‖H∗(υ − υ0)‖+ 1

)

Then

E exp
{

sup
υ∈Υ

%
[
Y(υ)− pen(υ)

]} ≤ Q(%, ε) (5.12)

with

log Q(%, ε) =
2ε2%2

1− %
+ (1− %)Qp + log(P∗),

where ωp is the volume of the unit ball in IRp .

Proof. Let us fix υ◦ ∈ Υ . Definition of the semi-metric D and condition (H) imply for

every υ ∈ B(ε,υ◦) that

‖H∗(υ◦ − υ)‖ ≤ ε.

The triangle inequality and (H) now imply for this υ that

ε−1‖H∗(υ − υ0)‖+ 1 ≥ ε−1‖H∗(υ◦ − υ0)‖

and penε(υ◦) ≥ −%−1 logκ
(
ε−1‖H∗(υ◦ − υ0)‖

)
. Therefore, it follows by change of

variables u = εH∗(υ − υ0) that

ω−1
p ε−p

∫

Υ
det(H∗) exp

{−% penε(υ)
}
dυ ≤ ω−1

p

∫

IRp

κ(‖u‖)du

≤ p

∫ ∞

0
κ(t)tp−1dt = P∗,

and the result follows from Theorem 5.5.

Natural candidates for the function κ(·) and the corresponding P∗ -values are:

κ1(t) = e−δ1(t−1)2+ , P∗
1 = 1 + ω−1

p (π/δ1)p/2,

κ2(t) = ‖1 + t‖−p−δ2 , P∗
2 = p/δ2 ,

where δ1, δ2 > 0 are some constants. The result of Theorem 5.9 yields
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Corollary 5.10. Under conditions of Theorem 5.9, the bound (5.12) holds with

pen1(υ) = %−1δ1 ε−2‖H∗(υ − υ0)‖2,

log Q2(%, ε) =
2ε2%2

1− %
+ (1− %)Qp + log(1 + ω−1

p |π/δ1|p/2).

pen1(υ) = −%−1(p + δ2) log
(
ε−1‖H∗(υ − υ0)‖+ 2

)
,

log Q1(%, ε) =
2ε2%2

1− %
+ (1− %)Qp + log(p/δ2),

Sometimes it is useful to combine the functions κ1(·) and κ2(·) in the form

κ(t) = κ1(t)1(t ≥ r) + κ2(t)1(t ≤ r) (5.13)

for a properly selected r which still ensures (5.11) with

P∗ ≤ ω−1
p |π/δ1|p/2 + pr−δ2/δ2.
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