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Abstract 

The numerical transition of a kinetic boundary layer into a steady :fluid field 
via particle simulation is studied. Several modelling aspects are treated. Criteria 
"measuring" the transition are proposed and studied. 
Keywords: Kinetic boundary layer, particle simulation, numerical transition. 

Introduction 
Kinetic equations on one hand and fluid-dynamic equations on the other hand represent 
two different levels for the description of large particle systems. The first level - the 
mesoscopic one - combines detailed features of particle motion, which are free flow and 
particle collisions; 'the latter - the macroscopic one - provides some asymptotic limit in 
which details of the collisions are hidden behind socalled transport coeffiCients. Kinetic 
equations are integro-differential equations which describe the evolution of density func-
tions in six-dimensional phase space while the :fluid-dynamic description yields moment 
equations which are a system of partial differential equations in three-dimensional phys-
ical space. As a consequence, the numerical solution of gas kinetics requires an amount 
of computational work which exceeds by far that for :fluid-dynamics - if comparable 
accuracy is desired. Therefore for an efficient numerical code there is a need to com-
bine both descriptions, using fluid-dynamic equations where the macroscopic approach 
is sufficient and kinetic equations where they are needed. 

This problem of coupling different types of equations may be approached at differ-
ent levels of complexity. In many cases, kinetic effects appear only in thin boundary 
layers and it may be sufficient to handle these by modelling appropriate slip boundary 
conditions for :fluid-dynamic equations (see, e.g. [17]). In other cases, one has to couple 
solutions to different types of equations. Such an approach is much more ambiguous, 
from methodological as well as theoretical points of view. Two central aspects are: 

• A full understanding is required of which is the fluid-dynamic counterpart of a 
given Boltzmann equation and in which sense N avier-Stokes equations reflect the 
asymptotic behaviour of gas kinetics. 

• When coupling Boltzmann solutions with N avier-Stokes solutions, one has to cope 
with the fact that both types of solutions contain different degrees of information: 
kinetic solutions provide full information about the distribution in phase space, 
fluid-dynamic solutions only some moments of this distribution. 

Research both on the theoretical side and on the side of numerical experiments is re-
quired to end up with a satisfactory numerical scheme for the coupling. Interest in 
these problems is quite vivid today, due to an increased interest for kinetic equations in 
applied sciences (for a survey, see [11]). As examples, let us mention on the theoretical 
side the functional analytic approach in [7, 8] and the stochastic approach in [12]. Focus 
on numerical aspects is taken in a couple of studies; for a direct numerical coupling of 
Boltzmann and compressible Navier-Stokes equations see [9, 16]; criteria for a domain 
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decomposition have been developed in [14]; various aspects - mainly for the coupling of 
linearized equations - have been studied in [15]. 

The present paper is a first one in a planned series on numerical experiments con-
cerning the coupling of kinetic and :fluid-dynamic equations. A common approach to this 
field is to develop tools to identify and separate regions which are governed by different 
types of equations, and to couple solutions by appropriate choice of boundary conditions. 
An example might be regions in which mean free paths differ by an order of magnitude, 
so that in one domain the Boltzmann equation has to be solved, while the other one 
may be safely approximated by the Euler equations. Our view point is slightly different. 
It relies on the assumption that in certain situations N abier-Stokes equations and the 
Boltzmann equation provide equivalent first-order corrections to the Euler equations 
(see [13]). For a coupling of Boltzmann and (compressible) N avier-Stokes solutions, 
domains have . to be identified for which the numerical code for the kinetic equation 
yields good approximations - not only to solutions of the N avier-Stokes equations but 
also to the closure relations which are used to derive the fluid-dynamic equations from 
the Boltzmann equation. So the focus lies in observing particle simulation solutions 
and in comparing how situations may generated where these solutions come (in certain 
domains) as close as possible to the features described by the N avier-Stokes equations. 
While our intention in the long run is to study more complicated cases, this paper starts 
with the simplest possible nonlinear situation: the transition of a stationary spatially 
one-dimensional kinetic boundary layer into a fluid field which is characterized by con-
stant gradients. The numerical kinetic solutions are obtained by Monte Carlo particle 
simulations as described in [1, 5]. The basic question is: under which circumstances do 
such schemes (which are not completely well justified as codes for stationary solutions, 
see [2, 3, 4]) provide the same asymptotic behaviour which are expected for kinetic equa-
tions, and what are the corresponding "N avier-Stokes equations". In detail, numerical 
experiments aim at the following problems: 

• to find transition criteria allowing to decide whether a proper transition from 
kinetics to fluid-dynamics is achieved, and to model such transitions for specific 
situations, 

• to determine the effect of systematic errors of particle simulations for stationary 
kinetic equations, 

• to exploit ways to use simulation schemes for modelling closure relations rather 
than kinetic solutions, and to use these relations to construct (on a phenomeno-
ligical level) modified Navier-Stokes equations for the boundary layer. 

The paper is organized as follows. In section 2 we discuss the transition from gas 
kinetics to fluid-dynamics in terms of closure relations and with a result from linearized 
theory. In section 3 we develop a numerical scheme for the coupling of a one-dimensional 
boundary layer to a fluid field. Section 4 presents numerical examples and discussions. 
In three test cases we pick up some of the relevant questions. First, we study a simple 
rela.Xation of a boundary layer to a constant fluid field. Second, a thermal layer problem 
is considered; here, the influence of systematic errors on the heat conduction coefficient 
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is investigated. Finally, we discuss the modelling of the boundary condition on the fluid 
dynamics side in an example with a velocity gradient field. Section 5 closes with some 
conclusions. 

2 · Gas kinetics and fluid dynamics 

2.1 Boltzmann versus Navier Stokes 
The Boltzmann equation is an equation for the density function f = f ( t, g;_, 'J1.) for 
particles in six-dimensional phase space. (In the following we use the conventions 
g;_ = ( x, y, z f and 'J1. = ( V1, V2, V3 )T.) Its stationary, spatially one-dimensional version 
reads 

(2.1) 

where J(f, J) is the Boltzmann collision integral 

The pair ( v', w') of "pre-collision velocities" is given by a smooth transformation of the 
"post-c~llision velocities" ('Jl., w) and an "impact parameter" .T/ which is a unit vector in 
lR 3 • Here we do not need many details about the collision operator and therefore refer 
the reader to standard literature, e.g. [10]. The only property required is that for any 
of the five functions cp('J1.) = 1, Vi, l'Jl.1 2 

(2.3) 

Given a density function f('J1.), define mass and bulk velocities by 

(2.4) 

pu; := JJR. v;f ('!l)d3'!l for i = 1, 2, 3 (2.5) 

internal energy and heat flux vector by 

(2.6) 

(2.7) 

and the components of the stress tensor P = (Pii )i~i,;9 by 

p·· ·- f (v· - u·)(v· - u·)f(v)d3v i3 • - Jm.3 i i 3 3 - - (2.8) 
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Multiplying the Boltzmann equation with the five abovementioned functions ef> and 
integrating yields the five moment equations 

(2.9) 

(2.10) 

(2.11) 

where p(i) = (p11 ,p12 ,p13 f. Obviously, one further equation holds: 

3 

pe = L:Pii =: 3p (2.12) 
i=i 

So we have an unclosed system of six equations for the twelve unknowns p, ui, Pii, qi, e. 
This system may be closed by introducing some phenomenological relations expressing 
Pii and qi in terms of the other quantities. For a N avier-Stokes-Fourier fluid these 
relations are (see [ 10, Sections II. 8, IV. 7]): 

(2.13) 

Pii = -µ8xui for i = 2, 3, and P2a = 0 (2.14) 

(2.15) 

(2.16) 

with viscosity and heat conduction coefficients µ and K,. Inserting these yields the 
following N avier-Stokes equations. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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2.2 Linearized kinetic boundary layers 
There are only few mathematically rigorous results about the transition from a kinetic 
state to a fluid dynamical state. One of these results concerns linearized equations and 
is due to Bardos et al. [6]. We shortly comment this situation because it may give some 
insight for the numeric~l coupling. For vanishing normal velocity component u 1 , the 
N avier-Stokes equations reduce to 

8x(pe) = 0, (2.21) 

a;ui = 0, i f:. 1 (2.22) 

and 

a; ( ite + ~M + u~)) = O. (2.23) 

Linearization around some constant state (p, u2 , e), ( u3 - 0 for simplicity) replaces 
(2.21) and (2.23) with 

Bx(~+ i) = O (2.24) 

and 

a;e = 0. 

The solution is given by the linear profiles 

and 

u2 = uo + u<00)x 

p 
p =po - -::;-x 

e 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

As Bardos et al. showed, there is a smooth transition of kinetic boundary layers 
(based on the linearized Boltzmann equation) to such linear profiles. More precisely, 
they prove the following. Given any number m1 E 1R (the mass flux through the plane 
x = const), any integrable inflow distribution </> at x = 0, and numbers u 00 , e00 there 
exists a unique solution (in a certain weighted L2 space) of the linearized Boltzmann 
equation 

(2.29) 

with inflow condition at x - 0 

f ( X, V) = </>( V) for Vt > Q (2.30) 
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with mass flux 

and with the asymptotic behaviour 

Here L is the collision operator linearized around the Maxwellian 
M(v) = (27rt312 exp(-v2/2): 

(2.31) 

(2.32) 

(2.33) 

Lf(v) = L L k(., .)(M(v')f(w') + M(w')f(v') - M(v)f(w) - M(w)f(v)) d71dw(2.34) 

Moreover, from these results follows that f can be decomposed into three parts: f = 
F + G + H, where 

• Fis the socalled hydrodynamic part: 

(2.35) 

• G is x-independent and the unique solution orthogonal (with a suitable scalar 
product) to the null space of L of 

(2.36) 

(This solution does not contribute to the macroscopic variables and is also called 
the fluctuation part) 

• His the boundary layer solution (solution to Milne problem): 

v1H = LH, H(O,v) = <P(v)- G(v) fo~ v1 > 0 

which for x --> oo converges exponentially fast to a function 

Hoo= (aoo + m1v1 + boov2 + c00v2) M 

(2.37) 

(2.38) 

Remarks: Consider Hnearized boundary layers for given gradients Uoo, eoo E lR, for 
m1 = 0 and for given inflow condition </J. 

1. Slip conditions: The slip conditions necessary to match the linear profiles to the 
kinetic boundary layers are obtained from a00 , b00 and c00 (which in general are 
not known in advance). 
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2. Scaling: G = u00 G1 +eooG2 where G1 and G2 are the unique solutions of v1v2 M = 
LG1 and ~v1(v2 - 5)M = LG2; furthermore, H =Ho - uooH1 -· e00 H2 where Hi 
are solutions of v1H = LH with inflow conditions given by cp, G1 and G2. 

3. Fluid dynamic limit: Consider the boundary layer described by v18xf = e-1 J(f), 
with prescribed gradients u00 and e00 for the fluid :field close to the boundary. 
A change of variables e := e-1x changes the kinetic equation into V18ef = J(f) 
and the gradients into eu00 and ee00 • Thus the corresponding linearized correction 
terms are G = e( uooG1 + eooG2) and H = Ho+ e( u00 H1 + e00 H2). In the limit 
E ~ 0, the remaining slip condition is that belonging to the solution H0 of the 
Milne problem. Ho vanishes for thermalized inflow conditions, i.e. for cp = M. 

3 Numerical coupling 

3.1 Design of an algorithm 
Our aim is to design an algorithm which allows for the numerical transition from the 
kinetic boundary layer to the fluid-dynamic regime. At first sight, the most natural idea 
seems to run a simulation scheme on an interval with kinetic boundary conditions on 
one side and with fluid-dynamic boundary conditions on the other side. We are facing 
the following difficulties. . 

• While it is natural to assume the kinetic inflow condition to be known, the fluid-
dynamic one is not. Look at the linearized case of section 2.2. There the asymp-
totic behaviour of the layer is known only up to a few constants. We should not 
expect more in the nonlinear case. Moreover, the solutions of the Jinearized case 
are partially "unphysicaP' in the sense that they may assume negative values. 
Therefore we are far from knowing the details of the velocity distribution in the 
fluid-dynamic regime. 

• The method of time-averaging to obtain stationary solutions is affected with a 
systematic error [2, 3]. So we have to investigate carefully whether such an error 
comes into play in our case. 

For the numerical procedure, we apply the simulation scheme described in [1, 5] to 
a large ensemble of particles: alternatingly the particles are exposed to a shift phase 
(where the positions are changed due to particle velocities: x( i) ~ x( i) + ~tvx( i) ), and 
to a collision step (where particles are collected into pairs ( i, n( i)) which perform random 
velocity changes (v(i),v(n(i))) ~ (v'(i),v'(n(i))) ). We use the version for which energy 
and momenta are strictly conserved (see [1, section 7]). For the collision step, physical 
(one-dimensional) space is divided into cells; only particles occupying the same cell may 
form a pair. These steps are applied many times; the macroscopic variables of interest 
are obtained during the run via time-averaging. 
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Fig.1: The computation~ domains 

'T T 

Phys. wall kinetic "' Artif. wall I 
Inflow p~t. fluid-dynamic I arlif. ,/ 

boundary I ' Reflect. law 
ensemble, regime : b. I. /' R 4' layer .I.. 

Three domains are intended to be generated by running the algorithm. A physical 
boundary layer domain at one side of the physical domain, an artificial boundary layer 
on the other side, and a fluid-dynamic regime in between. This situation is demonstrated 
in Fig. 1. In the region behind the physical wall, a reservoir of particles is generated with 
a velocity distribution according to the inflow condition for the kinetic layer. During 
the shift phase, a part of these particles enters the physical domain thus generating 
the correct boundary condition. At the artificial layer, a reflection boundary condition 
is applied. 'l'he reflection law - depending if necessary on a few parameters to be 
matched - is intended to generate an inflow as close as possible to the correct fluid-
dynamic flow in order to make the artificial boundary layer as narrow as possible. Let 
us have a short look again to the linearized case. The results of section 2.2 may be 
interpreted as follows. Given constants fiJ, u 00 , e00 , there exists a unique mapping 
from the infinite-dimensional function space of inflow conditions to the parameters a 00 , 

b00 , c00 • Necessary for the matching of two kinetic layers "from the left" and "from 
the right" with a fluid-dynamic zone in between seems to be that the corresponding 
parameters are compatible. Whenever necessary, we try to achieve this by matching a 
few parameters in the reflection law for the artificial layer. (We leave uncommented the 
possible role of the fluctuation part in this context.) 

3.2 Coupling conditions, transition criteria 
The difference between the moment equations for the Boltzmann equation and the 
Navier-Stokes equations lies in the phenomenological relations (2.13) to (2.16). There-
fore, we use these as the key for the transition from the kinetic regime to the fluid 
dynamic regime. They allow to formulate (although only necessary) conditions whether 
in a distance to the wall the fluid-dynamic description is appropriate or such a state is 
not reached (maybe through an unappropriate choice of the reflection law at the artifi-
cial boundary). Aspects concerning the correct handling are illustrated in the following 
two examples. 
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• In the absence of velocity gradients, the closure relations for the pressure coeffi-
cients read 

Pn = P22 = p33 = P (3.1) 

Pi; = 0 for i =f:. j (3.2) 

Under these conditions, the equations 8:r:p(l) = 0 (from the Boltzmann equation) 
and Bx(pe) = 0 (N avier-Stokes) are equivalent. Therefore reasonable necessary 
criteria are 3pii/(P11 + P22 +Paa)= 1 for i = 2, 3, and Pii = 0 for i =f:. j. 

• One of the closure relations claims that the heat flow depends linearly (through 
the heat coefficient) on the temperature gradient. It is important to controll this 
quantity in order to obtain a coupling to the correct N avier-Stokes equations. 
Viscosity coefficients depend sensitively on the collision rate in a gas. As was 
shown in [3], a necessary criterion to construct a reliable simulation scheme for 
stationary solutions is to efficiently controll the collision frequency. In the next 
subsection we describe one method applicable in our simple case. In the section 
about numerical experiments we test its effect. 

A numerical experiment for a model Boltzmann equation with two-dimensional ve-
locity space (for details see section 4.1) demonstrates the importance of an appropriate 
choice of the reflection law at the artificial boundary. Let us consider the relaxation of 
a boundary layer into a constant fluid field with zero velocities. The inflow condition 
is chosen different from a Maxwellian thus generating a boundary layer. Linear theory 
(which we consult because of the lack of comparable results in nonlinear theory) pre-
scribes at the right hand side a function of the form (1 + a00 + c00v 2 )M. Reflection laws 
compatible with such functions are for example specular reflection or (because of spher-
ical symmetry) the reflection law changing 1l into 1~1 (-·cos a, sin a f, a E [-7r /2, 7r /2], 
with an angular distribution proportional to I cos o:j (BCl). Not compatible is an an-
gular equidistribution in an interval [-7r /2 + e, 7r /2 - e] with e > 0 small (BC2). Fig.2 
compares Pcorr := 2piif (pn + P22) (solid line for i = 1) indicating a fluid-dynamic region 
on the right part of the interval for (BCl) but no such region for (BC2). 

3.3 Control of collision frequencies 
In [2] we investigated time averaged simulations as numerical schemes to construct 
steady solutions of the Boltzmann equation. As expected, it turned out that this ap-
proach is affected with a systematic error which is due to the nonlinearity of the collision 
operator. An explicit formula shows the connection of this error with covariances of the 
occupation numbers of the generated particle ensemble. In [3] we formulated sufficient 
conditions for an abstract scheme in order to get rid of this deficiency. Three conditions 
appeared to be crucial. Besides the existence of a stationary measure for the generated 
Markov process these were ergodicity and a certain factorization property of the local 
particle distribution. One of the implications of these investigations was that simulation 
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schemes as that described above lead to collision frequencies which are larger than those 
required from theory. (For a quick argument on this, see [4].) 

Fig.2a: Correction factors for pressure matrix, BC! 
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Fig.2b: Correction factors for pressure matrix; BC2 
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Wrong collision frequencies may result in particular in wrong viscosity and heat 
conduction coefficients. Therefore a means to measure such artificial effects may be to 
measure the deviation of these coefficients from the correct ones. Therefore we build 
up an alternative scheme for which the mean number of collisions is better controlled. 
For this scheme, the steady Boltzmann equation is modified into an equivalent version. 
Start with the Boltzmann equation of section 2.1. Introducing a transformatiqn e( x) of 
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the spatial variable transforms the Boltzmann equation into 

(3.3) 

If the collision kernel k( ., . ) is independent of the velocitie_s (in particular if it is constant) 
then the choice of axe:= cp(x) leads to a loss term for J(f, f) which is equal to J(e,'Jl..) 
and thus represents constant collision probabilities. These can obviously be reproduced 
correctly in a simulation. A short inspection of the convergence proofs in [1, 5] shows that 
a modified simulation scheme with constant collision probabilities produces convergent 
approximations of the evolution problem 

(3.4) 

The steady solutions of this problem may be readily transformed back into solutions of 
the original problem. 

We would like to stress that results generated with this alternative do not appear 
to be as stable as with the code described before. Therefore it is not as useful for 
production runs. Our main aim was to find some means to estimate artificial effects 
resulting from perturbed collision numbers. As is demonstrated in the next section, 
there is a clear trend when passing from one code to another. Therefore for us these 
results seem to be of relevance. 

4 Numerical results 

4.1 The setting 
This is a study on fundamental questions about numerical simulations rather than on 
particular physical results. Therefore we search for a situation where perturbations 
caused by random effects are small - even for modest particle numbers. This is the 
reason why we consider here exclusively the case of a two-dimensional velocity domain. 
However, there is no reason for any doubts about the immediate relevance of the results 
for the three-dimensional case. 

The Boltzmann equation under investigation is given by the collision integral 

( 4.1) 

where 'Jl..' = 'J1.. -T/ < 'Jl..- w,T/ >, '1f + w' = 1l +wand T/ = (cosa,sina)T. As inflow 
conditions we choose in all cases linear combinations of the form 

(4.2) 

where Mp,u,T denotes the Maxwellian (in 1R.2) with density p, bulk velocities u1 = 0, 
u 2 = u and temperature T, and Sci,o) is the delta function concentrated on the velocity 
y_ = (1, 0). The reflection laws on the right hand side are (except in section 4.4) given 
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by the angular distribution of (BCl) in section 3.2 and - if a temperature gradient is 
to be generated - by an increase of the modulus of the velocity 11l.I ~ c11l.I · The use of 
non-absorbing reflection laws guarantees zero mass flux in all cases. 

The spatial domain [O, 1] is divided into 100 intervals of equal length. In each cell, the 
homogeneous spatial density p = 1 is represented by 24 particles. The simulation starts 
with uniform distribution over all cells. As a preprocessing step, as many simulation 
time steps are performed as are needed to end up in a quasi-steady state. For· the 
evaluation, time averages over 1000 time steps are calculated. 

4.2 The boundary layer problem 
As a first test case we study the pure boundary layer problem with zero bulk velocities 
and zero gradients at x ~ oo. The moment equations for the Boltzmann equation 
reduce to 

( 4.3) 

( 4.4) 

Since we use symmetric inflow conditions on the left and an energy preserving symmet-
ric reflection law on the right hand side, the solution is given by p11 = const, P12 = 0 
and qi= 0. 

Fig.3: Pressure and temperature corrections 
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The corresponding N avier-Stokes equations are 

( 4.5) 

( 4.6) 

with the solution P11 = P22 = const, e = const. Notice that p11 = p22 has been assumed 
when deriving the Navier-Stokes equations. Under this assumption, the first Boltzmann 
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moment equation and the first N avier-Stokes equation coincide. Therefore this condition 
may well be used as a (necessary) criterion to distinguish between the kinetic and the 
fluid dynamic regime. 

For our test cases, we use the inflow conditions ( 4.2) For the associated Milne problem 
we obtain 

( 4.7) 

i.e. a perturbation of the Maxwellian depending linearly on Ain· As Fig. 2a demonstrates 
for a typical situation, Pcorr :== 2Pii/(p11 + P22) assumes values close to 1 only in a region 
sufficiently far away from the left boundary layer. (A kinetic layer close to the artificial 
boundary cannot be identified.) In the boundary region the closure relations have to 
be modified into P11 ==: p == P22 + 6.p22 with some correction function 6.p22 == 6.p22 [ Ain]. 
6.p22 which relaxes to 0 for large x is shown in Fig. 3 (solid line). It may reasonably 
well be approximated by an exponential. Similarly the equation relating heat flux and 
temperature gradient has to be modified. While the heat flux is identically zero, the 
temperature relaxes to a constant value T00 for x large: T(x) == T00 +6.T(x). 6.T (which 
again is a function of Ain) is shown in Fig. 3 (dotted line); both lines in Fig. 3 refer to 
Ain == 0.25. The modified closure relation reads qi == 0 == -K-8x(T - 6.T). 

Linearized theory claims a linear dependence of the temperature jump 1 - T 00 on 
the inflow parameter Ain· As Fig. 4 demonstrates, the simulation scheme reflects this 
relation reasonably well for Ain small enough. 

1-Too 
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0.1 

Fig.4: Temperature jump 
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4.3 The thermal layer problem 
We investigate the coupling of a boundary layer to a field with zero bulk velocities and 
constant non-zero temperature gradient. As inflow condition we choose the Maxwellian 
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with temperature 1. At least linear theory then predicts that no boundary layer appears 
here. The reflection law at the right hand side is that of the previous example, but the 
modulus of the velocity is increased by a fixed factor. 

The relevant Boltzmann moment equations and N avier-Stokes equations are the same 
as before. Fig. 5 shows a typical temperature profile which comes out of the simula-
tion run. As expected, no boundary layers appear, and the temperature is very well 
approximated by a linear profile. In this test example it is instructive to compare the 
results with the prediction from linearized theory, and to investigate the effective heat 
conduction coefficient. The latter depends sensitively on the collision rate. Therefore a 
comparison between the standard algorithm ("version 1") and the alternative described 
in section 3.3 ("version 2") might be of interest. 

Fig.5: Temperature (solid), lin. approx. (dotted) 
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Linearized theory as exposed in section 2.2 predicts a temperature profile of the form 

T ( x) == 1 + a + bx ( 4.8) 

with a fixed ratio A== a/b == a/13.:r:T. We ran several test runs with different temperature 
gradients in order to test the hypothesis of a fixed .\. Fig. 6a (solid line) shows a == 
a( 8:i:T) for version 1 and indicates that linear dependence is indeed very well satisfied. 
However, there is a difference between version 1 and version 2 (Fig.6a; dotted lines 
represent the linear approximations). We find out that .A 2 is increased compared to A1 
by a factor of 1.26. 

Denote by Ta.v the average temperature in the slab. From the above it follows that 
Ta.v == 1+a+0.5 *band Tav - 1 == (0.5 +.Ai)* 8:z:T. In particular, Ta.v - 1 is a measure 
for the temperature gradient. In Fig. 6b the heat flux is plotted versus Ta.v· It turns 
out that the assumption of a linear dependence is well satisfied for small temperature 
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gradients. There the curves for version 1 and 2 coincide .. For larger values the heat flux 
grows faster than the linear profile. For the heat coefficient K = q1 / BxT we find a value 
for version 1 which is decreased by a factor (.:\1 +0.5)/(.:\2 + 0.5) ~ 0.87 as compared to 
version 2. 

Fig.6a: Temperature jump versus temperature gradient 
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Fig.6b: Heat flow versus temperature gradient 
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4.4 Velocity jump conditions 
As a last example, we consider the matching to a tangential velocity field u2 "# 0. Under 
the condition u 1 = 0, the Boltzmann moment equations become 

( 4.9) 

(4.10) 

and the N avier-Stokes equations are 

( 4.11) 

( 4.12) 

82 (Ke + !!:.u2
) = 0 x 2 2 

( 4.13) 

In this situation it is not clear in advance how to model the reflection law on the fluid 
side. We performed numerical experiments with the ansatz 

y_' := (1 - r )IY..I( cos a, s sin a+ J1 - s2f (4.14) 

(version 1) and with 

y_' := IY..1((1 - r1) cos a, (1 - r2) sin af + (0, r3f ( 4.15) 

(version 2), with an angular distribution as in (BCl). In version 1, we found that the 
closure relations can reasonably be achieved only in a small range for the ratio r / S. 
More stable results were obtained with version 2. (We used fixed ratios r2/r1 = 1.5 
and r3 /r1 = 1.75.) Figures 7 show the velocity gradient and the pressure coefficient P12 

for version 2 for different Aref = 5r1 . The dotted· line (version 2) and the dashed line 
(version 1) show the best linear approximations (for Aref small). They indicate that the 
viscosity coefficient depends (at least slightly) on the reflection model. 

5 Some concluding remarks 
The Boltzmann equation and the N avier-Stokes equations are expected to provide in 
some asymptotic sense equivalent descriptions of a fluid flow. The studies of this paper 
were motivated by the hope that the situation is similar for particle simulation schemes 
and that these may be used for a proper numerical coupling of gas kinetic and fluid-
dynamic solutions. 

It turned out that such a behaviour is really reflected in simulation runs. However, 
for a proper coupling of different regimes, a couple of modelling aspects have to be con-
sidered. First, stable, well-defined transport coefficients come out only in situations of 
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modest gradients. (That's what one might expect from theory.) Second, much depends 
on the modelling of the artificial boundary. Different choices of reflection laws give rise 
to different macroscopic behaviour and with this to different N avier-Stokes equations. 

As efficient criteria for the observation of the transition turned out the closure rela-
tions, in particular the pressure coefficients and the transport coefficients. These may 
be easily controlled during a simulation run, and if they are satisfied, gas kinetic and 
fluid-dynamic description are equivalent. 
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Fig. 7 a: Velocity gradient 
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Fig. 7b: Pressure coefficient P12 
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