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Abstract

We derive global analytic representations of fundamental solutions for a
class of linear parabolic systems with full coupling of first order derivative
terms where coefficients may depend on space and time. Pointwise conver-
gence of the global analytic expansion is proved. This leads to analytic repre-
sentations of solutions of initial-boundary problems of first and second type in
terms of convolution integrals or convolution integrals and linear integral equa-
tions. The results have both analytical and numerical impact. Analytically,
our representations of fundamental solutions of coupled parabolic systems may
be used to define generalized stochastic processes. Moreover, some classical
analytical results based on a priori estimates of elliptic equations are a sim-
ple corollary of our main result. Numerically, accurate, stable and efficient
schemes for computation and error estimates in strong norms can be obtained
for a considerable class of Cauchy- and initial-boundary problems of parabolic
type. Furthermore, there are obvious and less obvious applications to finance
and physics.

1 Introduction

We consider linear equations of the form

0
8—‘;:v2u+B-vu (1)
on a domain D = (0,7] x  with Q C R™ a bounded domain, and where
u=(ug, -, u,)" (2)
is a vector-valued function and B = (B?',---, B") is an n-tuple of matrix-valued
functions B' = (b;k) where each entry b;k possibly depends on space and time.

More precisely, we understand B - Vu as a vector the ith component of which is
given by

B v, = 3 5,24 (3)

such that general linear coupling of first order terms can be expressed. This means
that in coordinates equation (1) is given by

ou; "L 5%, L Ou,
ot p Ox? + Z

- . (4)



for 1 <1 < n. We are looking for an analytic representation of the solution
(t,x,s,y) — p(t,x;s,y) for (1), (4) with Dirac distributions §,(z) = é(x — y) as
initial conditions, i.e. for a representation of the fundamental solution. In the time-
homogenous case dependence of time is only dependence of ¢ — s, so that in this
case we also write the fundamental solution in the form (¢, z,y) — p(t,z;y). For
our representations of the fundamental solution for equations with time-dependent
coefficients we also fix the parameter s = 0 and write the fundamental solution in
the form (¢,z,0,y) — p(t, z;0,y) for simplicity of notation.

Remark 1.1. In the following we denote the fundamental solution of a system by
bold face letters and use usual type of letters for the fundamental solution of a scalar
equation.

Remark 1.2. In general for parabolic systems of order 2p of form

Ou; a ij o
LSS A )

J=1 la|<2p

(with some natural number N ) the fundamental solution (or fundamental matriz)
(t,z,s,y) — p(t,x,s,y) is a N x N-matriz of functions on (0,T] x  x (0,7] x Q
which satisfies (5), and such that

lin | F(@)p(t.e,s.0)dy = 1(2) (6
tls Jq

for all continuous functions y — f(y) in Q. The latter condition is equivalent to the
rule that p(0,2;0,y) = 0,(z) = 6(x — y). Here in the general case with coupling of
the higher order derivatives 2p, p > 1, a vectorial representation of the fundamental
solution is not known. It is one of the observations of this paper that a vectorial
representation is possible in the case p = 1, if the only coupling occurring is that via
first order terms. Note that N # n is possible. Our restriction to the case N =n is
not essential but only related to an economy in the use of symbols.

It turns out that results in the case of time-homogenous coefficients can be extended
to the case of time-inhomogeneous coefficients but it is worth to consider the time-
homogeneous case separately, because less assumptions have to be made. For this
reason we shall state our main theorem in the time-homogenous case separately, i.e.
where coefficient functions are of the form & — b%, (x). We shall assume that the
functions r — b;k(x) and their derivatives are uniformly bounded by powers of a
generic constant ¢ such that

0505 < (7)

for all multiindices « = (o, -+, ay,). Here 9% = % denotes the partial
1 n

derivative operator of order o with respect to z = (xy,---,x,). If the coefficients

are time-dependent functions of form (t,z) — b, (t,z), then we shall assume in
addition that '
107"b}),| < Cm! for all integers m > 0, (8)
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all 1 <i,5,k <n, O" = gt—n; is the derivative of order m with respect to time.

Note that assumption 7 holds for arbitrary finite Fourier series. Clearly it holds also
on a bounded domain for polynomial coefficients, and on such domains multivariate
polynomials can approximate all continuous functions in the supremum norm. This
means that we are flexible enough for numerical applications. Indeed the treatment
for higher dimensional scalar parabolic problems based on analytic expansions of
the type considered here (simplified to the scalar case) showed accurate and fast
computations as well as error estimates in strong norms (cf. [3]). The main reasons,
however, to introduce assumption 7 are analytical. First assumption 7 implies that

i

b;k are globally analytic, i.e. for all y € R" b%, equals its Taylor expansion, i.e. we

have " )
) j (&3 Y a
o) = 30 2D, @

o] 20

where « is a multiindex and Az = (x — y), and 0%, (y) = 9205, (y). This makes it
possible to write down explicit solutions of parabolic systems of type 1 in terms of
power series of type 9. Second, the proof indicates that the assumptions made here

cannot be weakened in general.

Essential parts of our considerations can be generalized to parabolic systems with
space-time dependent second-order terms, i.e. equations of the form

u; "L 0P, "L Ouy
Gt = 2 g T 2 B (10)
1 k=1

where the scalar functions a;k may depend on space and time. It turns out that
the convergent analytical solutions (in case (4)) are building blocks for the repre-
sentations of solutions of parabolic systems with potential and source terms. As
examples, let us consider a Cauchy problem and a standard initial-boundary prob-
lem which occur in the vector-valued as well as in the scalar case. The finite horizon
Cauchy problem for parabolic systems of type (4) is

Ou, s P S SN — f i R x (0, 7]

ot j=1 8m§ jk Uik dxy
u;(0,2) = ¢;(x) on R™,
where 7" > 0 and for 1 < i <n.

Remark 1.3. The proof of the pointwise valid representation of the fundamental
solution given is valid for bounded domains € and cannot be directly generalized to
unbounded domains. This is no essential restriction for numerical treatment, how-
ever. Analytically, a generalization is possible, if one considers a slightly different
representation (cf. section 4.2.). However, the recursive relations of the expan-
ston coefficients are more complicated and the convergence proof is more involved.
Therefore we restrict ourselves to the case of bounded domains € in this paper.



Another example is the initial-boundary problem of second type. We consider it in
the scalar case here. Consider a domain 2 C R™ and denote the three constituents
of boundary of the cylinder by Qy := {(t,z)[t =0 & x € Q} Q x (0,T) by Qr =
{t, )|t =T & x € Q} and B ={(t,z)|t € (0,T) & = € 00}, where 02 denotes the
boundary of €2. The initial-boundary problem is of the form

4 n u u ]
%_ijl%_zkbk%: in Q x (0,7]
u(0,.) = ¢(.) on (12)
\ % +au =1 on B,

where a, ¢, and 1 may depend on space and time. With an explicit representa-
tion of the fundamental solution we can represent the solution of (11) in terms of
convolutions of the initial data and the source data with the fundamental solution,
and the solution of (12) in terms of convolutions of initial data, source data, and
a function which is solution of a linear integral equation. It is clear that such rep-
resentations lead to accurate schemes which have obvious advantages compared to
finite difference schemes and other standard schemes.

Remark 1.4. In (4) we may add potential terms of form c;u with a coefficient
functions ¢; which may depend on space and time. Theorem 1 below can be trivially
extended to this case. Hence, in equations (11) and (12) we may also add potential
terms of form c;u and representations of solutions in terms of convolutions and linear
integral equations (in case of the initial-boundary problem (12) can be obtained.

Remark 1.5. More general cylinder domains D = Up<;<7$2 with varying ; may
be considered, of course.

This is the first paper on globally pointwise valid analytic expansions of parabolic
systems. In the case of scalar equations there are some investigations and applica-
tions to problems of computation recently (|3| and references). Our result has direct
applications to case of the scalar equations, of course. Further comments on the
relation to results in the scalar case can be found in Section 7.

The outline of this paper is as follows. In the next section we state the main
results concerning the representation of the fundamental solution. In Section 3 we
formally compute the analytic expansion of the solution and in Section 4 we prove the
pointwise convergence of the analytic representation in the time-homogenous case for
a certain limited time horizon 0 < ¢t < Tj. In Section 5 we extend the results of the
preceding Sections to the case where the coefficients may depend on space and time
and we show the global convergence for any time horizon 0 < T" < oo. In Section
6 we consider the implications for representations of solutions Cauchy problems
and second initial-value boundary problem and briefly discuss the advantages for
building efficient numerical schemes. In Section 7 we state some generalizations with
general (but uncoupled) diffusion coefficients and show that a result by Varadhan



is a rather immediate consequence of our main theorem. We also discuss possible
other applications (for example the definition of generalized processes) and give some
further comments and an outlook.

2 Main results on linear parabolic systems

Since the second order derivative terms in (4) are uncoupled, we may expect that
a vectorial representation of the fundamental solution p = (p1,---,p,) (instead
of an n x n fundamental matrix) is possible. The natural candidate for such a
representation (in the time-homogeneous case) is

1 Ar? &
pj(t,:v,y)z\/mneXp< Z’l & +Zcziévy ) (13)
=0

forj=1,---,n,and in (0,7) x 2, where 2 C R"™. Here the c7 are coupled coefficient
functions which are defined explicitly via recursion. For each J the coefficients
c,’; will be defined recursively in terms of function ¢; and their derivatives, where
0 <l,r < k—1. They are solutions of first order partial differential equations which
can be solved explicitly and can be represented in terms of recursively defined power
series under the assumption (9). We shall show that (13) is valid on some domain
Q2 x (0,Tp]. Since it is desirable to have a representation which holds on the whole
a domain €2 x (0, 7] with arbitrary time 7" € (0, 00), in our main theorem we shall
consider global representations of an equivalent problem, where the equivalence is
via the time transformation 7(¢) : [0,00) — [0, 1) with

7—:(1—6_%), or t=t(r)=FIn(l—r71). (14)

This introduces a time-dependence in the related coefficients c’ 15,0+ €ven in the case
of time-homogeneous coefficient functions 2 — bl (z) in (4). The main result for
parabolic systems of type (1) is formulated in the time-homogenous case, i.e. when
the coefficients b{m depend only on the spatial coordinates. The extension to the
time-dependent case is then the content of the subsequent corollary.

Theorem 2.1. Given assumption (7) and some domain Q x (0,T] for any finite
T > 0 and any domain Q0 C R" there exist 3,7 > 0 such that the fundamental

solution of
Ou; 92 uZ 8uj
or 1—7‘2 1—7‘2 I* Oy, (15)

equivalent to (1) (or (4)) via (14) has the pointwise valid representation

_¥ex —M ex — )k
 /ant(r)" p( 44(7) ) P(ZCL@T(, y) ) (16)

k=0

Pl (1, 2,0,y)



for g =1,--- n, and for (t(7),x) € (0,T) x Q, i.e. 7€ (0,1~ e%), where Q C R™.
For the coefficient functions cj, the following holds: for k =0 we have

Cho () = ) = Xom — ) [ Sl sl —uds, (17
and for all k > 1 we have
Gpr(Ti2,y) = /01 R . (ty+s(x—y),y)st7 ds (18)
with
Ré—l,ﬁ;r(tvxvgﬁ = %Cli—l,ﬁ + Ad PSP 1Zk 1(3214;573210% - r57>

+ Zlm me ($) %Cﬁc—l

(19)
More explicitly, we have
cé,,@,T(Ta z, y) = CJ( ) - Zl ,m ny lm’y( )A"Eﬁ/—i—liﬁ
(20)
=), a,Ar
and, given the power series representation
g (T2, y) = chk (Y y)Ax7! (21)
we have , n
Cljc,ﬁ,r(7—7 T,y) = Z’y,l ZCZk 1 «,l( JAZTE -
Z'y { Zz Zp-i—a:'y(pi + ]‘)(a'l _I_ 1)677‘ ﬁ—i—l Cyk 1— T‘)(Oz-i—li)
(22)
+ Z (71 _I_ 2)(71 + ]‘)Ck 'Y+2 _I_ Zp—i—a »Y(Z I@I lm p(y)x
(i + 1)ck—1)(at1, }(Za oPZgAZE )
where with oy, 1= Z 0;, and
i=1
.
(23)




Remark 2.2. In (21) the notation

,37' I y Z (k— 1’yl6'r AI’YT (24)

may be expected, but we dropped the (3,7 indices in order to keep some notational
simplicity in (22).

Remark 2.3. Note that CJBT does not depend on T (and (3). This means that in
(19) mck—l differs from 0 only for k > 2.

Corollary 2.4. Consider the same situation as in the preceding theorem, except that
there are time dependent coefficient functions (t,x) — ;k(t,x) and in addition (8)
holds. Then a analogous statement as in the preceding theorem holds with recursive

3 Formal computation of solution of parabolic sys-
tems of type (1)
First we consider the equation (1) (or, equivalently, (4)) without the time trans-

formation (14), and with time-homogenous coefficients, i.e. where the coefficient
functions z — b;k(at) depend only on the spatial variable . We consider the ansatz

p](ta x, y) =

1 S 1 Ar? &

~ exp = +> d(x, )t 25

e (BT S 2
We derive recursive relations for the coefficients ¢;. In a second step, assuming (7),
and therefore global analyticity of the b;'-k, we derive the explicit solution in terms

of Taylor power series of b;k For the time derivative we get

%(t,x) = < o+ 242 +Z’f¢" (z, y)t"~ 1) pi(t, z,y). (26)

For the first and second spatial derivatives we get

8])]' . ALL’l

and

92p.;
85123 - ( 2t + Zk am (1' y)t*
(28)

+< ER Y ACH )2)2%(@%@/)-
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Plugging into (4) and ordering with respect to the terms ¢72,¢" etc. we get the
following recursive relations for the ¢}, where 1 < j < n:

T 42

(29)

l

n
7t —— = — — — A
21 ;% (Z xlax
and for all k — 1 > 0.

tk—l : ]{;CJ —+ Zl Axl 8Ck = ACJ + Zl 1 Z <(;?Bl Ci%%—l—?“)

Zb A:z:m) , (30)

(31)
+ i b, (2 )az oy =Ri_(x,y).

Note that the first order coupling of the system is essentially reflected in the recursive
first order partial differential equations starting from (31). This would be different if
we had coupling via the second order terms and it makes the solution of the system
much easier. Note that equation (29) is satisfied. Equation (30) is equivalent to

Z Axl 837l Z ) Ay, (32)

with the solution

. y) = Y (v /Zb (v -+ sl — ))ds (33)

m

and for all £ > 1 we have

Ao9) = [ Fuaos sto—).)sds (34)

with Ry_; as in equation (56). Next we compute the solution explicitly doing the
integral for ¢ first. We abbreviate Az = (z — y) with components Az; = (z — y);
and for a multiindex a = (aq, - - -, ) we write Az® =1 ; Az}, Furthermore, we

define |a| =, o; If
Z ’7' lm'y )ﬁfv (35)



along with some multiindex ~, then
alz,y) =— > o ATy, fol > bl (y+ sAz)ds
Zl ,m Allfm fO Z lm*y )(SAI)PYdS

ZlmAajm Z,Y lm'y y) Az folsw\ds

. (36)
= St o Vb () A1
Zl ,m Z blmfy( )Ax’y—i_ll 14_1‘7‘
=>, c(’],yAx
Next we compute c,i for k£ > 1. We have
1 k=1 9¢l 9c)_1_,
fO {Zz ZTZO gxl k@:ct
(37)
+Ack 1+ 20, b Ly + s — y)s"ds.
Assuming that c,’;_l equals its Taylor series for every y € R", i.e
(2) = chk—l)-y(y)AlfY’ (38)
2l
then we may evaluate the derivatives occurring in R;_; as follows:
acl_
al;l = Z(% + Dew-1)¢+10) (y) Az, (39)
’ 2!
and '
820]1—1 o
L = 37 (4 2) (0 + ey (9) A7, (10)
! ¥
and

dcl dcl_, ., . _
01’ 8:171 - Z { Z (B + 1)(e + l)ci(ﬁ'l'li)cgk—l—ﬂ(a-l—li)} Az’ (41)

0 B+a=v

For the multiindex ~, we have

Pl(z,y) = / (y + s(x —y))"s" 1ds (42)

/H<Z5, .Qauyzal JAas >8k_1d8
i=1

9



¥ n
1 V! ) (v—95) )
= Y Ax
y
= ) kAl
6=0

where 0y, 1= g §; and 0 = H"zls‘si = 5%, Hence
i=1

(z,y) =

Zv { Zz Zﬁmzv(ﬁi + 1)(ai + ]')c?{(ﬁ-i-li)cZk—l—r)(a-l—li) (4 )
3

+ 2%+ 2) (v + Deriyr2) + g 1amy (0 ébgm,g(y) X

(i + ey} (5—0 PigAz’) .

4 Proof of convergence of the formal solution (25)
for some time 0 <t < 7Tj

In this section we shall show that the representation (25) of the solution of (4)
holds for some time 0 < ¢t < Tj for some Ty > 0. In the next section then we will
show how the time transformation ¢ — 7(¢) is used to get a representation of the
fundamental solution for any domain with any finite time horizon. We shall prove
that the representation (25) holds for the equation

8”’—ﬁzau’+ﬁzw.aii (44)
1

with some 3 such that t = 7. Essentially this step means that we have proved the
validity of the representation for smaller time. Considering the solution of (4) at
time ¢ is equivalent to considering the solution of (44) at time 7 with t = 75. If we
want coefficients to be small then we choose ( small. Hence if

(1, x,y) = \/;Fn exp <Z’ 1A +Z ) (45)

is a representation of the fundamental solution of (44) on some domain 2 x (0,7 for
some 7 < 1 (which may be shown by proving that for each z,y € ) CLB(L y) con-
verges to zero), then this is a proof that the representation (25) of the fundamental
solution of (4) converges for t = [37.

10



4.1 Proof of convergence on bounded domains

Since © C R™ is bounded, there is a ball Bg(0) around 0 with radius R such that
Q2 C Bg(0). Recall that

Az, y) = / Sty ol = ) (46)
and for all £ > 1 we have

c,i(a:, y) = /0 Ri_1(y+ s(x —y),y)s"ds (47)

with
; ; n E—1 ; ;
R (t2y)= Ag_,+32 2 <aimciaimcljc—1—r>
(48)
+D im lm( ) Cgc 1

If the modulus of the coefficients b{m are bounded by the generic C' > 0 for all 7,1, m,
then we have

|ch(x, )| < n*RC. (49)
Next the time transformation
t =01 (50)
transforms the equation
au, 0? uZ ; O0u;
Z o+ Zbgk o (51)
into the equation
ov; "L 9%y, . Ov;
- = — by~ 52
or /62 0:L'§+/62 % Oy, (52)
Jj= Jk
ou; __ Ov; Or ov,

where u;(t,x) = v;(7, x), where
of the solution is of the form

3 1 o Ax? :
pj (ta Z, y) - \/ﬁn exXp <4;f7_) (1 + Zk: C;,ﬁ(zv y)Tk) ’ (53)

for j =1,---,n. Plugging (53) into (52) and collecting the terms with 772, 771 etc.

we get (we feel free to write ¢ instead of 7 if convenient)

Ly ZASL’ Az?
2 S5 6245272 (54)

. 1 .
Al = X
ot = or ot — or B The analogous representation

L. ﬁz 2—/& - 2’?7_ (Z 0:)31 Z by A:)sm> ’ (55)

11



and forall k—1>0

. acj
k-1 . i
TN ke s+ B0 A 8;

= 5ACIZ—1,5 +8> - Zf;é <aimcz,ﬁaimcli—1—r,ﬁ)

+8 im b{m(‘r)%cgc—l,ﬁ = 5Ri_1($7 Y)-
' (56)
We divide equation (56) by  and get the solutions (the solution for ¢ 5 equals
exactly that for ¢ in (46))

& J(z.y) = / Ri(y+ s(z — y),y)siUds. (57)

Next we prove

Theorem 4.1. There exists 3 > 0 such that

for each z,y € Q1 <j<n ¢ 4(x,y) | 0ask] occ. (58)

Proof. First we remark that

olel ol u
%CO(xay) <d |Copa (59)
for some generic C, where
co? = sup co(x,y). (60)
z,yef)
Indeed, if we define ’
b= sup b (x), (61)

z€Q,1<I,;m<n

then writing the multivariate derivative of order o with & = (o, - -+, o), and || :=
S a; we get |a|n terms bounded by Cl®=1p% and n? terms bounded by RCI*pvP.

Next, a majorant of c,iﬁ(x,y) is obtained as follows: we consider three types of
operators O™, O™, O™ with positive integers k, and acting on a single function
f:92xQ— Roron a families of functions (f;)1<;<x : © x @ — R, namely

O, 1f] (z,y) = 2Af(z,y)

n n k ™ a —T
Ol? [.fka Ty fl] (Ia y) = % Zl:l ZT’ZO ngcl gjﬂ; (62)

O [f1 (2, y) = § o0 V() 52 f (2, y).
Let
My = {(ag, -, a1)|a; € {1,2,3}} (63)
For

by = sup . 5(7,y) (64)
z,yeQ,je{l,,n}

12



we have

ah < Y Optalry) = Y Opc(.y), (65)
a€EMy, a€My
where
O [f] (z,y) = OO " 0 -0 O™ [f] (2, ). (66)

First let 15 (resp. 2, 3)) the multiindex o € M}, such that for each 1 < m < k
am =1 (resp. oy, = 2, a5, = 3). Hence

OF [f] (2, y) = (OY* [] (w,9) = A*[f] (z,y) (67)
etc.. Then for all z,y € Q

n ﬁknkc%cup
and for b bounded by a generic C' on the domain we also have
. o 2k (12k P
087 o] ()| < ZC (69)

k!

The operators of quadratic type applied to co(x,y) Oi’"co decrease to zero as k T oo
if § is small. We estimate (a rough estimate is sufficient here) that surely we have
ﬁkk22k—1nkckk!(cgp)k+l

k! '

02" 1] (,y)| < (70)

For large k this is essentially the largest term of all the 3* contributions in the sum
(65) for large k (k fixed). We mean the following: if we choose

1
< 71
g 3 - 4n2C?(cg?)?’ (71)
then surely we have for k > kg (some kg > 0
3k kk22k‘1nk0kk! cUPYk+1
307 [e] ()| < A (72)

k!

as k T oo, and this is also the estimate which holds for ¢, for large k. Here we
choose ( such that in a summand in O;"¢o(z,y) in (65) each occurrence of an
operator of form 02’" can be replaced by an operator of form Oi’" in order to get
a majorant estimation. So in the sum in (65) it suffices to concentrate on the
summands consisting of concatenations of operators of form Oi’" and O,i’". For
natural numbers [ let us define an increasing sequence of numbers by < ky < --- <
k; < kyy1---, and operators
Ot = Ogly 00 O,
(73)
Oiﬁﬂw e Oi;zl 0---0 Oi;"

13



Then in the summands o (65) we have to consider the asymptotic behavior of values
of family of operators of form

2n 1n . 2.n 1,n
Okmkl © Oklkl,l o o Ok3k2 o Ok2k1 (74)

or of form
2.n 1n 1n 2,n
Omlkl °© Oklkl,l 00 Ok‘gkz o Ok2k1 (75)

applied to co(x,y) as k T oo. If there is only a finite occurrence of operators of form
O™ in such a family ((74) of (75), then the asymptotic behavior is clearly the same
as for O2¢o(x,y). If on the other hand there are infinite occurrences of operators
of form O™ in ((74) of (75)), then for large k O2¢y(x,y) becomes a majorant of
such a summand. Hence, the estimate (72) is a majorant for large & and proves the
convergence of the series in (65). O

4.2 Remark on unbounded domains

It is not possible to extend the proof in the preceding section immediately to un-
bounded domains €2 C R™. However, a similar proof with a different but equivalent

ansatz
1 AV ,
d =1 7 ¥ k
Yt = == 1+ E d t 76
pj( 7'r7y) /—47Ttn exp ( 4t ) ( — k($7y) ) ) ( )

leads to such an extension. The recursion equation for dy and ¢y are equivalent,
but the recursion equations for the dj, kK > 1 are more involved. However, it can be
shown that given ¢,y the supremum in x of each

1 —Ax?\
— d 7

is in some ball which can be chosen a priori. However, this is beyond the scope of
the present paper, and we shall consider a similar situation in |7].

5 Extension to the time-inhomogenous case (solu-
tion and global convergence)

In a second step we use a certain nonlinear time transformation in order to lift
the result to convergence for any finite time ¢. This requires the extension of the
analysis to the case with time-dependent coefficients. Note that in the extension
of the recursion of the ¢, to the time-inhomogeneous case only first order time
derivatives occur. This is the reason for the weaker constraints for (8). We start
this Section with the computation of the recursive coefficients ¢, in the case of time-
and space-dependent drift coefficients bil. Then we shall complete the proof for
convergence on bounded domains for any finite time in the time-homogenous case,
and finally in the time-inhomogeneous case in the following subsections.
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5.1 Formal computation of recursive coefficients in the time-
inhomogeneous case

We consider parabolic equations with time-dependent coefficients of the form

ou’ 8uj

BT k (t,z) . o =0 (78)
We consider the ansatz
(t,z,0,9) ! + io c(t,x, (79)
i\t, T, U, = —F—5 €X T
P = O il )t

Compared to the time-homogenous case the time derivative contains an additional
term. We have

Op; n Az? ) c
tt,n) = (- §+ B 4 D G0
(80)
+ Zk kclyg(tv x, y)tk_l)pj (tv €, 07 y)

The spatial derivatives are essentially the same as in the time-homogenous case. We
compute

Jp; —Aux
+ E ; 81
8:61 (t,.]}',y) ( 8 x t x y t )pj(tv'r707y>7 ( )

and

)
+ (-2 + Sl ®) Yott.0.0),

Plugging into 1 and ordering with respect to the terms t=2,t7! etc. we get the
following recursive relations for the c,’f, where 1 < j < n. First, the highest order
terms are the same as before:

2 2
2. 2By A (83)
l

4¢2 4¢2

The terms of order t~! are essentially as before (we just have to add the t-argument
in the coefficient functions b7 ):

-1, _n_ L
t 57 : (Z :Blaxl Xm: t:L"Axm>. (84)

15



For k —1 > 0 we get an additional ¢-derivative on the right side:

1 ke Y Axlack — ac" LA+ S (6%0] : Cli—l—r)

T Oz

(85)
+ 2 i Ui (£ )af Chy —Rk ()

Hence,

ZAJJ[ o Zb (t, 2) Az, (86)

i
which has the solution

A y) = S W — 1) / Sty + sz — y))ds, (87)

m l

and for all £k > 1 we have

C,i(:E, y) = /0 Ri_1(t,y + s(x —y),y)s"ds (88)

with Ri_; as in equation (85). The explicit calculation of the solution is know
completely analogous, so it suffices to write down the results. We write

bt ) = Z—b?m( y)(Az)T (89)

v

along with some multiindex v. Then

C(y)(t7 Z, y) Zl ,m Z blmfy( )Ax’y—'—li l+1|'y|

. (90)
=5 dy (t.y)Aa”
Given that c,i_l equals its Taylor series for every y € R", i.e
a_(t,z) = Zc{k 1y tyA:EV—Zc]k (Y (y) Azt (91)
¥,l
we have
Cli(t>$ay) = Z lczk 17l( )Azt!
+ Z«, {2 Zﬁ-m:y(ﬁi + 1) + 1)63» (B+15) (t >y)CZk—1—r)(a+1i)(t’ y)
(92)

+ 3200+ 2) (i + Dz + Lgramy (O 5ibhn,s(ty) %

(a; + 1)ck-1)(at1s }(Za o Dy A’ )

where the py) are defined exactly as before.
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5.2 Completion of convergence proof for finite time in the
general case on bounded domains

We apply a nonlinear time transformation. Consider for § > 0 the transformation

7(t) : [0,00) — [0, 1)

—(1—e7), or t=t(r)=p(l-1) (93)
with ot ) 3 o
or 1—-71
The transformation of the equation
%Tf = Au; + Jzk bt x)% (95)
then is . 5 5 i o0,
5 = oA T > bjk(t(T),I)a—xk. (96)

Let us call the associated coefficients of the global expansion of the fundamental
solution by ci,ﬁj. If we can show that for each given z,y (in Q and then in R" in
general) CIQBJ(T, x,y) converges to zero as k T 0o, then we have convergence for 7 < 1
which implies convergence of the analytic representation for the original equation
for t € (0,00). First we derive the recursive relations for (96). Since

1 Ax? )
/877- .
(T, y) - exp | — 97
W) = T »(rmmay) O
is the fundamental solution of the equation
ou 16}
o A
or 1-r (98)

we consider the ansatz

Pl (1,2, y) = 67 (1, 2,y) exp (Z Chpor(Ts T, y)T’“) : (99)

k=0

Using t = —(F1In(1 — 7) we have

Op; n Ax
o (t,z,y) = (—5%4—2%2 at+zkoaTckﬁT(Txy)
(100)

+ Zk kc?@,ﬁ,r(T? xz, y)Tk_l)p?ﬂ—(T? xz, y)>

8pi AZL’[ 8,7
Day T TY) = ( Z B Chsr) (T2 )T )pi (r.,y),  (101)
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and

2, 2
xl%l (Ta z, y) < 21t Zk (5:212 Cl]“vﬁ,T(T’ L y)']‘k
(102)

+< Awl +Zk dx; ,ﬁT(T x y) > )piﬁ77(77$7y)'

Plugging into (96) and ordering with respect to the terms 772, 77! etc. leads to

2 >, Ax? ot Z Az?

42 or 1—r1 427

(103)

which is satisfied because the second order diffusion term in (96) is {2-. For the

terms of order 77! we get: B
-1. ot _ B 1
T —gier T T 2w
(104)
ac! 3 j
T2t (1 T Zl Ll am(; = Zlm b{m(t’x)Axm> :
For k —1 > 0 we get an additional 7-derivative on the right side:

k-1 . i oy _ 06,
T kel + Zz Azt = = + 1 Ack 1

Zl 12 (82107;“8210/6 1- r) (105)

+£ Zlm b{m(t’ x)%ci—l = %RIZ—I(,R xz, y)

We have
& pr(r ) = S (W — 1) / S (), y + s — y))ds,  (106)

and for all £k > 1 we have

i ! 0,7 A-m)k _
Chyp.r(2:Y) :/0 R (t(r),y +s(x —y)y)s 7 ds, (107)
where . 5
@, T - T i
R (1,2,y) = 3 or A Ch—1,8,r + RyT 15T T, Y) (108)

with R} | is as in equation (105). From this and the preceding sections it is clear
how we get the power series representation (22)in theorem 2.1. above. We see from
this representation that the proof for small ¢ can be used, only that the substitution

g

1—71

8 — (109)

has to be made. Since there are only first order time derivatives in the recursion (cf.
(85) and (105), the proof of section 5.1. can be extended trivially. Hence, global
convergence (for any positive ¢ of our analytic expansion follows from the following

18



Proposition 5.1. For each constant ¢ > 0 the range of the function

(B,7) = t=—FIn(1—7) (110)
18 unbounded on the domain
= . 111
{oorl =} (111)
Proof. ¢ = % = e(fi) — —efIn(e(l1 —7)) T oo as e | 0. O

This means that it suffices to prove that the recursion (104, (105) converges to zero

for some 72~ (which may be as small as we need).

6 Representations of initial boundary value prob-
lems of first and second type

The explicit fundamental solution leads to representations of solutions for initial-
boundary problems of parabolic systems and parabolic equations. We consider two
examples.

6.1 Representation of the solution for initial-boundary prob-
lems for parabolic systems of first type

For the Cauchy problem (11) we have the following representation of the solution wu:

u(t, ) = [o. o(y)P(t, 2;0,y)0(y)dy
(112)

t

+ Jo Jan f(s,0)P(t, 255, ) d(y)dyds
Remark 6.1. Strictly speaking, the solution for p presented here is on bounded
domains @ C R™ (which is for large Q a sufficient approzimation for numerical pur-

poses, but not exact). However, such exact representations on unbounded domains
can be found using the recursion indicated in Section 4.2.

6.2 Representation of the solution for initial-boundary prob-
lems for parabolic equations of second type

In the case of the scalar problem 12 for the solution u the ansatz for v with

u(t,z) = [y d(y)p(t,z,0,y)dy — [i [, f(s,y)p(t, z,0,y)dyds
(113)

+ fot fB p(t,z;5,9)v(s,y)dsdy
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leads to the integral equation

fo fB E(t,x;8,y) + at,2)pt, x; s,y) } y(t, 2)dB,ds

(114)
+h(t,x)
where
h(t,r) = fQ 81/tx) (t,z;s,9)0(y)dy
—l—fo fQ 61}@@, (t,x;s,y)f(s,y)dyds
+a(t, ) [op(t, = 5,9)0(y)dy (115)

a(t,z) [y [, p(t, @ s,y) (s, y)dyds

_'lvb(ta ZL")

Hence with our explicit solution for p we reduce the initial-boundary value problem
of second type to the solution of a linear integral equation.

7 Generalizations, applications, and further com-
ments

The preceding results can be extended to more general diffusions. We have

Theorem 7.1. Consider equation (4) with space-dependent diffusion coefficients

x — aly.(x) which satisfy
| < o (116)

|:c]k

Assume that the conditions of theorem 1 are satisfied. Then the fundamental solution
has the representation

Pt ry) = VT (— (415 y)) exp <Z Cm(T,x,y)T'“) (117)
k

where for each i (x,y) — d?(z,y) are functionals which assign to each pair of points
x,y the length of a geodesic with respect to the line element

ds? = Zg;-kdxjdxk, (118)
ik

. Z . Z Z . . .
with (gjk) the inverse of (ajk), and the c;, are smooth functions given by recursive
relations similar to that in theorem 1 but involving d3 and partial derivatives of dz.
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The proof is quite analogous except that additional existence and regularity results
for the Riemmanian metric functional d* are needed. These are given in [5]. General
analytical formulas are not available for the functional d? but in [5] that solutions
can be approximated in arbitrarily strong Sobolev norms. This may be used to
obtain approximations of (117) in arbitrarily strong Sobolev norms when combined
with the results in |6]. Note, however, that an extension is far from obvious if the
second order terms are coupled.

An immediate application of theorem 7.1. is a result of Varadhan which we state
and prove here in the case of time-homogeneous coefficients and for scalar equations,
where the highest order coefficient function in the global expansion may be denoted
by d? without an index 1.

Corollary 7.2. (time-homogeneous and scalar case) Assume that for each i we have
A < aly ()€€ < AE for € Q CR™ and some constants 0 < X < A. Then for

.. . . . Z Z
bounded Hdolder-continuous coefficient functions x — ajk(x), T — bjk(:v)

lim —4tnp(t, z,y) = d*(z,y) (119)
where d? is the Riemannian metric induced by the line element (118).

Proof. The reason for the assumption of Hélder continuity is just for the existence of
the fundamental solution, which may then be ensured by the parametrix method).
For the assumptions of theorem 7.1 this follows directly from the representation
(117). Given z,y one may define in a bounded domain z,y € ) containing the

,n

geodesic a series of coefficient functions (aj.k )n and (b;,?)n satisfying the assumptions

of theorem 7.1. and such that a;,?(x) — aly(r) and (b;,?)n — b Here we can
assume that the corresponding geodesics connecting = and y are in 2 O

There is a deep difference between the representations considered here with leading

terms of the form ) d2( )
7 .Z’, y
— _exp | 120
e ( . ) (120)

and direct Taylor expansions of the solution. Indeed, in [2] we saw that for the
characteristic function (the Fourier transform of the fundamental solution with re-
spect to the parameter y), where a direct Taylor approach seems natural, it seems
that convergence results can be obtained only if coefficients are of linear spatial
dependence. We note that results of myself for scalar equations cited in [3| cannot
be directly generalized to the systems considered here. Our results may be used
to generalize the results in [1] and construct efficient computation schemes for re-
lated reaction diffusion equations. A second application may be the definition of
generalized Brownian motions (cf. [14]). This was attempted in [12] in the context
of elasticity and the Lamé equation, but not in a rigorous way. Note that Lamé
equation has coupling of second order terms, so the generalized Brownian motions
associated to (117) would not cover these examples from elasticity (because we have
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no second order coupling in (117)). However, the functional analytic procedure to
introduce processes as measures on path spaces using Riesz representation theo-
rem leads to a new class of processes. In the special case of higher dimensional
scalar equations expansions of the type considered here in a probabilistic setting
have been found to be very competitive (cf. |[3|). The results presented here are
also a first step to get into deeper analysis of quasilinear parabolic systems, and
numerical methods considered in ([6]) and ([5]) may be extended and used together
with analytical results in ([8]) and (]9]) to obtain efficient and accurate schemes for
quasilinear systems.
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