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Abstra
tWe derive global analyti
 representations of fundamental solutions for a
lass of linear paraboli
 systems with full 
oupling of �rst order derivativeterms where 
oe�
ients may depend on spa
e and time. Pointwise 
onver-gen
e of the global analyti
 expansion is proved. This leads to analyti
 repre-sentations of solutions of initial-boundary problems of �rst and se
ond type interms of 
onvolution integrals or 
onvolution integrals and linear integral equa-tions. The results have both analyti
al and numeri
al impa
t. Analyti
ally,our representations of fundamental solutions of 
oupled paraboli
 systems maybe used to de�ne generalized sto
hasti
 pro
esses. Moreover, some 
lassi
alanalyti
al results based on a priori estimates of ellipti
 equations are a sim-ple 
orollary of our main result. Numeri
ally, a

urate, stable and e�
ients
hemes for 
omputation and error estimates in strong norms 
an be obtainedfor a 
onsiderable 
lass of Cau
hy- and initial-boundary problems of paraboli
type. Furthermore, there are obvious and less obvious appli
ations to �nan
eand physi
s.1 Introdu
tionWe 
onsider linear equations of the form
∂u

∂t
= ∇2u + B · ∇u (1)on a domain D = (0, T ] × Ω with Ω ⊆ R

n a bounded domain, and where
u = (u1, · · · , un)

T (2)is a ve
tor-valued fun
tion and B = (B1, · · · , Bn) is an n-tuple of matrix-valuedfun
tions Bi = (bijk) where ea
h entry bijk possibly depends on spa
e and time.More pre
isely, we understand B · ∇u as a ve
tor the ith 
omponent of whi
h isgiven by
(B · ∇u)i :=

n
∑

j,k=1

bijk
∂uj

∂xk

, (3)su
h that general linear 
oupling of �rst order terms 
an be expressed. This meansthat in 
oordinates equation (1) is given by
∂ui

∂t
=

n
∑

j=1

∂2ui

∂x2
j

+

n
∑

j,k=1

bijk
∂uj

∂xk

(4)1



for 1 ≤ i ≤ n. We are looking for an analyti
 representation of the solution
(t, x, s, y) → p(t, x; s, y) for (1), (4) with Dira
 distributions δy(x) = δ(x − y) asinitial 
onditions, i.e. for a representation of the fundamental solution. In the time-homogenous 
ase dependen
e of time is only dependen
e of t − s, so that in this
ase we also write the fundamental solution in the form (t, x, y) → p(t, x; y). Forour representations of the fundamental solution for equations with time-dependent
oe�
ients we also �x the parameter s = 0 and write the fundamental solution inthe form (t, x, 0, y) → p(t, x; 0, y) for simpli
ity of notation.Remark 1.1. In the following we denote the fundamental solution of a system bybold fa
e letters and use usual type of letters for the fundamental solution of a s
alarequation.Remark 1.2. In general for paraboli
 systems of order 2p of form

∂ui

∂t
=

N
∑

j=1

∑

|α|≤2p

Aij
α (t, x)∂α

xuj (5)(with some natural number N) the fundamental solution (or fundamental matrix)
(t, x, s, y) → p(t, x, s, y) is a N × N-matrix of fun
tions on (0, T ] × Ω × (0, T ] × Ωwhi
h satis�es (5), and su
h that

lim
t↓s

∫

Ω

f(y)p(t, x, s, y)dy = f(x) (6)for all 
ontinuous fun
tions y → f(y) in Ω. The latter 
ondition is equivalent to therule that p(0, x; 0, y) = δy(x) = δ(x − y). Here in the general 
ase with 
oupling ofthe higher order derivatives 2p, p ≥ 1, a ve
torial representation of the fundamentalsolution is not known. It is one of the observations of this paper that a ve
torialrepresentation is possible in the 
ase p = 1, if the only 
oupling o

urring is that via�rst order terms. Note that N 6= n is possible. Our restri
tion to the 
ase N = n isnot essential but only related to an e
onomy in the use of symbols.It turns out that results in the 
ase of time-homogenous 
oe�
ients 
an be extendedto the 
ase of time-inhomogeneous 
oe�
ients but it is worth to 
onsider the time-homogeneous 
ase separately, be
ause less assumptions have to be made. For thisreason we shall state our main theorem in the time-homogenous 
ase separately, i.e.where 
oe�
ient fun
tions are of the form x → bijk(x). We shall assume that thefun
tions x → bijk(x) and their derivatives are uniformly bounded by powers of ageneri
 
onstant c su
h that
|∂α

x b
i
jk| ≤ c|α| (7)for all multiindi
es α = (α1, · · · , αn). Here ∂α

x = ∂|α|

∂x
α1
1 ···∂x

αn
n

denotes the partialderivative operator of order α with respe
t to x = (x1, · · · , xn). If the 
oe�
ientsare time-dependent fun
tions of form (t, x) → bijk(t, x), then we shall assume inaddition that
|∂m

t b
i
jk| ≤ Cm! for all integers m ≥ 0, (8)2



all 1 ≤ i, j, k ≤ n, ∂m
t = ∂m

∂tm
is the derivative of order m with respe
t to time.Note that assumption 7 holds for arbitrary �nite Fourier series. Clearly it holds alsoon a bounded domain for polynomial 
oe�
ients, and on su
h domains multivariatepolynomials 
an approximate all 
ontinuous fun
tions in the supremum norm. Thismeans that we are �exible enough for numeri
al appli
ations. Indeed the treatmentfor higher dimensional s
alar paraboli
 problems based on analyti
 expansions ofthe type 
onsidered here (simpli�ed to the s
alar 
ase) showed a

urate and fast
omputations as well as error estimates in strong norms (
f. [3℄). The main reasons,however, to introdu
e assumption 7 are analyti
al. First assumption 7 implies that

bijk are globally analyti
, i.e. for all y ∈ R
n bijk equals its Taylor expansion, i.e. wehave

bijk(x) =
∑

|α|≥0

bijkα(y)

α!
∆xα, (9)where α is a multiindex and ∆x = (x − y), and bijkα(y) = ∂α

x b
i
jk(y). This makes itpossible to write down expli
it solutions of paraboli
 systems of type 1 in terms ofpower series of type 9. Se
ond, the proof indi
ates that the assumptions made here
annot be weakened in general.Essential parts of our 
onsiderations 
an be generalized to paraboli
 systems withspa
e-time dependent se
ond-order terms, i.e. equations of the form

∂ui

∂t
=

n
∑

j,k=1

ai
jk

∂2ui

∂xj∂xk

+

n
∑

j,k=1

bijk
∂uj

∂xk

, (10)where the s
alar fun
tions ai
jk may depend on spa
e and time. It turns out thatthe 
onvergent analyti
al solutions (in 
ase (4)) are building blo
ks for the repre-sentations of solutions of paraboli
 systems with potential and sour
e terms. Asexamples, let us 
onsider a Cau
hy problem and a standard initial-boundary prob-lem whi
h o

ur in the ve
tor-valued as well as in the s
alar 
ase. The �nite horizonCau
hy problem for paraboli
 systems of type (4) is











∂ui

∂t
−
∑n

j=1
∂2ui

∂x2
j

−
∑

jk b
i
jk

∂uj

∂xk
= fi in R

n × (0, T ]

ui(0, x) = φi(x) on R
n,

, (11)where T > 0 and for 1 ≤ i ≤ n.Remark 1.3. The proof of the pointwise valid representation of the fundamentalsolution given is valid for bounded domains Ω and 
annot be dire
tly generalized tounbounded domains. This is no essential restri
tion for numeri
al treatment, how-ever. Analyti
ally, a generalization is possible, if one 
onsiders a slightly di�erentrepresentation (
f. se
tion 4.2.). However, the re
ursive relations of the expan-sion 
oe�
ients are more 
ompli
ated and the 
onvergen
e proof is more involved.Therefore we restri
t ourselves to the 
ase of bounded domains Ω in this paper.3



Another example is the initial-boundary problem of se
ond type. We 
onsider it inthe s
alar 
ase here. Consider a domain Ω ⊂ R
n and denote the three 
onstituentsof boundary of the 
ylinder by Ω0 := {(t, x)|t = 0 & x ∈ Ω} Ω × (0, T ) by ΩT =

{(t, x)|t = T & x ∈ Ω} and B = {(t, x)|t ∈ (0, T ) & x ∈ ∂Ω}, where ∂Ω denotes theboundary of Ω. The initial-boundary problem is of the form


























∂u
∂t

−∑n
j=1

∂2u
∂x2

j

−∑k bk
∂u
∂xk

= f in Ω × (0, T ]

u(0, .) = φ(.) on Ω

∂u
∂t

+ αu = ψ on B, (12)where α, φ, and ψ may depend on spa
e and time. With an expli
it representa-tion of the fundamental solution we 
an represent the solution of (11) in terms of
onvolutions of the initial data and the sour
e data with the fundamental solution,and the solution of (12) in terms of 
onvolutions of initial data, sour
e data, anda fun
tion whi
h is solution of a linear integral equation. It is 
lear that su
h rep-resentations lead to a

urate s
hemes whi
h have obvious advantages 
ompared to�nite di�eren
e s
hemes and other standard s
hemes.Remark 1.4. In (4) we may add potential terms of form ciu with a 
oe�
ientfun
tions ci whi
h may depend on spa
e and time. Theorem 1 below 
an be triviallyextended to this 
ase. Hen
e, in equations (11) and (12) we may also add potentialterms of form ciu and representations of solutions in terms of 
onvolutions and linearintegral equations (in 
ase of the initial-boundary problem (12) 
an be obtained.Remark 1.5. More general 
ylinder domains D = ∪0≤t≤T Ωt with varying Ωt maybe 
onsidered, of 
ourse.This is the �rst paper on globally pointwise valid analyti
 expansions of paraboli
systems. In the 
ase of s
alar equations there are some investigations and appli
a-tions to problems of 
omputation re
ently ([3℄ and referen
es). Our result has dire
tappli
ations to 
ase of the s
alar equations, of 
ourse. Further 
omments on therelation to results in the s
alar 
ase 
an be found in Se
tion 7.The outline of this paper is as follows. In the next se
tion we state the mainresults 
on
erning the representation of the fundamental solution. In Se
tion 3 weformally 
ompute the analyti
 expansion of the solution and in Se
tion 4 we prove thepointwise 
onvergen
e of the analyti
 representation in the time-homogenous 
ase fora 
ertain limited time horizon 0 ≤ t ≤ T0. In Se
tion 5 we extend the results of thepre
eding Se
tions to the 
ase where the 
oe�
ients may depend on spa
e and timeand we show the global 
onvergen
e for any time horizon 0 < T < ∞. In Se
tion6 we 
onsider the impli
ations for representations of solutions Cau
hy problemsand se
ond initial-value boundary problem and brie�y dis
uss the advantages forbuilding e�
ient numeri
al s
hemes. In Se
tion 7 we state some generalizations withgeneral (but un
oupled) di�usion 
oe�
ients and show that a result by Varadhan4



is a rather immediate 
onsequen
e of our main theorem. We also dis
uss possibleother appli
ations (for example the de�nition of generalized pro
esses) and give somefurther 
omments and an outlook.2 Main results on linear paraboli
 systemsSin
e the se
ond order derivative terms in (4) are un
oupled, we may expe
t thata ve
torial representation of the fundamental solution p = (p1, · · · , pn) (insteadof an n × n fundamental matrix) is possible. The natural 
andidate for su
h arepresentation (in the time-homogeneous 
ase) is
pj(t, x, y) =

1√
4πt

n exp

(

−
∑n

i=1 ∆x2
i

4t
+

∞
∑

k=0

c
j
k(x, y)t

k

)

, (13)for j = 1, · · · , n, and in (0, T )×Ω, where Ω ⊆ R
n. Here the cjk are 
oupled 
oe�
ientfun
tions whi
h are de�ned expli
itly via re
ursion. For ea
h j the 
oe�
ients

c
j
k will be de�ned re
ursively in terms of fun
tion crl and their derivatives, where

0 ≤ l, r ≤ k−1. They are solutions of �rst order partial di�erential equations whi
h
an be solved expli
itly and 
an be represented in terms of re
ursively de�ned powerseries under the assumption (9). We shall show that (13) is valid on some domain
Ω × (0, T0]. Sin
e it is desirable to have a representation whi
h holds on the wholea domain Ω × (0, T ] with arbitrary time T ∈ (0,∞), in our main theorem we shall
onsider global representations of an equivalent problem, where the equivalen
e isvia the time transformation τ(t) : [0,∞) → [0, 1) with

τ = (1 − e
− t

β ), or t = t(τ) = β ln(1 − τ). (14)This introdu
es a time-dependen
e in the related 
oe�
ients cjk,β,τ , even in the 
aseof time-homogeneous 
oe�
ient fun
tions x → bijk(x) in (4). The main result forparaboli
 systems of type (1) is formulated in the time-homogenous 
ase, i.e. whenthe 
oe�
ients bjlm depend only on the spatial 
oordinates. The extension to thetime-dependent 
ase is then the 
ontent of the subsequent 
orollary.Theorem 2.1. Given assumption (7) and some domain Ω × (0, T ] for any �nite
T > 0 and any domain Ω ⊆ R

n there exist β, τ > 0 su
h that the fundamentalsolution of
∂ui

∂τ
=

β

1 − τ

n
∑

j=1

∂2ui

∂x2
j

+
β

1 − τ

n
∑

j,k=1

bijk
∂uj

∂xk

(15)equivalent to (1) (or (4)) via (14) has the pointwise valid representation
p

β,τ
j (τ, x, 0, y) =

1
√

4πt(τ)
n exp

(

−
∑n

i=1 ∆x2
i

4t(τ)

)

exp

(

∞
∑

k=0

c
j
k,β,τ(τ, x, y)τ

k

)

, (16)5



for j = 1, · · · , n, and for (t(τ), x) ∈ (0, T ) × Ω, i.e. τ ∈ (0, 1 − e
T
β ), where Ω ⊆ R

n.For the 
oe�
ient fun
tions cjk the following holds: for k = 0 we have
c
j
0,β,τ(τ, x, y) = c

j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(y + s(x− y))ds, (17)and for all k ≥ 1 we have

c
j
k,β,τ(τ, x, y) =

∫ 1

0

R
j
k−1,β,τ(t, y + s(x− y), y)sk 1−τ

β
−1
ds (18)with

R
j
k−1,β,τ(t, x, y) = ∂

∂τ
c
j
k−1,β,τ + ∆cjk−1,β,τ +

∑n
l=1

∑k−1
r=0

(

∂
∂xl
c
j
r,β,τ

∂
∂xl
c
j
k−1−r,β,τ

)

+
∑

lm b
j
lm(x) ∂

∂xm
clk−1 (19)More expli
itly, we have

c
j
0,β,τ (τ, x, y) = c

j
0(x, y) = −

∑

l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

≡∑γ c
j
0γ∆x

γ

(20)and, given the power series representation
c
j
k−1,β,τ(τ, x, y) =

∑

γ,l

c
j

(k−1)γl
(y)∆xγτ l (21)we have

c
j
k,β,τ(τ, x, y) =

∑

γ,l lc
j

(k−1)γl
(y)∆xγtl+

∑

γ {
∑

i

∑

ρ+α=γ(ρi + 1)(αi + 1)cj
r(β+1i)

c
j

(k−1−r)(α+1i)

+
∑

i(γi + 2)(γi + 1)ck(γ+2i) +
∑

ρ+α=γ(
∑

1
β!
b
j
lm,ρ(y)×

(αi + 1)c(k−1)(α+1i)}
(
∑γ

δ=0 p
yγ
kδ∆x

δ
)

,

(22)
where with δΣ :=

n
∑

i=1

δi, and
γ
∑

δ=0

p
yγ
kδ,β,τ∆x

δ =

γ
∑

δ=0

β

(1 − τ)δΣ + k (23)
×

[

n
∏

i=1

(

γi!

δi!(γi − δi)!

)

y(γ−δ)

]

∆xδ.6



Remark 2.2. In (21) the notation
c
j
k,β,τ(x, y) =

∑

γl

c
j

(k−1)γl,β,τ
(y)∆xγτ l (24)may be expe
ted, but we dropped the β, τ indi
es in order to keep some notationalsimpli
ity in (22).Remark 2.3. Note that cj0,β,τ does not depend on τ (and β). This means that in(19) ∂

∂τ
ck−1 di�ers from 0 only for k ≥ 2.Corollary 2.4. Consider the same situation as in the pre
eding theorem, ex
ept thatthere are time dependent 
oe�
ient fun
tions (t, x) → bijk(t, x) and in addition (8)holds. Then a analogous statement as in the pre
eding theorem holds with re
ursive.3 Formal 
omputation of solution of paraboli
 sys-tems of type (1)First we 
onsider the equation (1) (or, equivalently, (4)) without the time trans-formation (14), and with time-homogenous 
oe�
ients, i.e. where the 
oe�
ientfun
tions x→ bijk(x) depend only on the spatial variable x. We 
onsider the ansatz

pj(t, x, y) =
1√
4πt

n exp

(

∑n
i=1 ∆x2

i

4t
+

∞
∑

k=0

c
j
k(x, y)t

k

)

. (25)We derive re
ursive relations for the 
oe�
ients ck. In a se
ond step, assuming (7),and therefore global analyti
ity of the bijk, we derive the expli
it solution in termsof Taylor power series of bijk. For the time derivative we get
∂pj

∂t
(t, x) =

(

− n

2t
+

∑

i ∆x
2
i

4t2
+
∑

k

kc
j
k(x, y)t

k−1

)

pj(t, x, y). (26)For the �rst and se
ond spatial derivatives we get
∂pj

∂xl

=

(

−∆xl

2t
+
∑

k

∂

∂xl

c
j
k(x, y)t

k

)

pj(t, x, y), (27)and
∂2pj

∂x2
l

=

(

− 1
2t

+
∑

k
∂2

∂x2
l

c
j
k(x, y)t

k

+
(

−∆xl

2t
+
∑

k
∂

∂xl
c
j
k(x, y)t

k
)2
)

pj(t, x, y).

(28)7



Plugging into (4) and ordering with respe
t to the terms t−2, t−1 et
. we get thefollowing re
ursive relations for the cjk, where 1 ≤ j ≤ n:
t−2 :

∑

i ∆x
2
i

4t2
=
∑

l

∆x2
l

4t2
(29)

t−1 : − n

2t
= −

∑

l

1

2t
− 1

2t

(

∑

l

∆xl

∂c
j
0

∂xl

−
∑

lm

b
j
lm(x)∆xm

)

, (30)and for all k − 1 ≥ 0.
tk−1 : kc

j
k +

∑

l ∆xl
∂c

j
k

∂xl
= ∆cjk−1 +

∑n
l=1

∑k−1
r=0

(

∂
∂xl
cjr

∂
∂xl
c
j
k−1−r

)

+
∑

lm b
j
lm(x) ∂

∂xm
clk−1 ≡ R

j
k−1(x, y).

(31)Note that the �rst order 
oupling of the system is essentially re�e
ted in the re
ursive�rst order partial di�erential equations starting from (31). This would be di�erent ifwe had 
oupling via the se
ond order terms and it makes the solution of the systemmu
h easier. Note that equation (29) is satis�ed. Equation (30) is equivalent to
∑

l

∆xl

∂c
j
0

∂xl

= −
∑

l,m

b
j
lm(x)∆xm, (32)with the solution

c
j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(y + s(x− y))ds (33)and for all k ≥ 1 we have

c
j
k(x, y) =

∫ 1

0

Rk−1(y + s(x− y), y)skds (34)with Rk−1 as in equation (56). Next we 
ompute the solution expli
itly doing theintegral for c0 �rst. We abbreviate ∆x = (x − y) with 
omponents ∆xi = (x − y)iand for a multiindex α = (α1, · · · , αn) we write ∆xα := Πn
i=1∆x

αi

i . Furthermore, wede�ne |α| =
∑

i αi If
b
j
lm(x) =

∑

γ

1

γ!
b
j
lm,γ(y)(∆x)

γ, (35)
8



along with some multiindex γ, then
c
j
0(x, y) = −∑m ∆xm

∫ 1

0

∑

l b
j
lm(y + s∆x)ds

= −
∑

l,m ∆xm

∫ 1

0

∑

γ b
j
lmγ(y)(s∆x)

γds

= −
∑

l,m ∆xm

∑

γ b
j
lmγ(y)∆x

γ
∫ 1

0
s|γ|ds

= −∑l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

s|γ|+1
∣

∣

∣

1

0

= −
∑

l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

≡
∑

γ c
j
0γ∆x

γ .

(36)
Next we 
ompute cjk for k ≥ 1. We have

c
j
k(x, y) =

∫ 1

0
{
∑

i

∑k−1
r=0

∂c
j
r

∂xi

∂c
j
k−1−r

∂xi

+∆ck−1 +
∑

i b
j
lm

∂ck−1

∂xi
}(y + s(x− y))sk−1ds.

(37)Assuming that cjk−1 equals its Taylor series for every y ∈ R
n, i.e.

c
j
k−1(x) =

∑

γ

c
j

(k−1)γ(y)∆x
γ, (38)then we may evaluate the derivatives o

urring in Rk−1 as follows:

∂c
j
k−1

∂xi

=
∑

γ

(γi + 1)c(k−1)(γ+1i)(y)∆x
γ, (39)and

∂2c
j
k−1

∂x2
i

=
∑

γ

(γi + 2)(γi + 1)ck(γ+2i)(y)∆x
γ, (40)and

∂cjr
∂xi

∂c
j
k−1−r

∂xi

=
∑

γ

{

∑

β+α=γ

(βi + 1)(αi + 1)cj
r(β+1i)

c
j

(k−1−r)(α+1i)

}

∆xγ . (41)For the multiindex γ, we have
P

γ
k (x, y) :=

∫ 1

0

(y + s(x− y))γsk−1ds (42)
=

∫ 1

0

n
∏

i=1

(

γi
∑

δi=0

γi!

δi!(γi − δi)!
y

(αi−δi)
i ∆xδisδi

)

sk−1ds9



=

∫ 1

0

γ
∑

δ=0

(

n
∏

i=1

γi!

δi!(αi − δi)!
y

(γi−δi)
i ∆xδi

)

sδsk−1ds

=

γ
∑

δ=0

1

δΣ + k

[

n
∏

i=1

(

γi!

δi!(γi − δi)!

)

y(γ−δ)

]

∆xδ

=:

γ
∑

δ=0

p
yγ
kδ∆x

δwhere δΣ :=

n
∑

i=1

δi and sδ = Πn
i=1s

δi = sδΣ . Hen
e
c
j
k(x, y) =

∑

γ {
∑

i

∑

β+α=γ(βi + 1)(αi + 1)cj
r(β+1i)

c
j

(k−1−r)(α+1i)

+
∑

i(γi + 2)(γi + 1)ck(γ+2i) +
∑

β+α=γ(
∑

1
β!
b
j
lm,β(y)×

(αi + 1)c(k−1)(α+1i)}
(
∑γ

δ=0 p
yγ
kδ∆x

δ
)

.

(43)
4 Proof of 
onvergen
e of the formal solution (25)for some time 0 ≤ t ≤ T0In this se
tion we shall show that the representation (25) of the solution of (4)holds for some time 0 ≤ t ≤ T0 for some T0 > 0. In the next se
tion then we willshow how the time transformation t → τ(t) is used to get a representation of thefundamental solution for any domain with any �nite time horizon. We shall provethat the representation (25) holds for the equation

∂ui

∂τ
= β

n
∑

j=1

∂2ui

∂x2
j

+ β

n
∑

j,k=1

bijk
∂uj

∂xk

(44)with some β su
h that t = τβ. Essentially this step means that we have proved thevalidity of the representation for smaller time. Considering the solution of (4) attime t is equivalent to 
onsidering the solution of (44) at time τ with t = τβ. If wewant 
oe�
ients to be small then we 
hoose β small. Hen
e if
p

β
j (τ, x, y) =

1√
4πτ

n exp

(

∑n
i=1 ∆x2

i

4τ
+

∞
∑

k=0

c
j
k,β(x, y)τk

) (45)is a representation of the fundamental solution of (44) on some domain Ω×(0, T ] forsome τ < 1 (whi
h may be shown by proving that for ea
h x, y ∈ Ω c
j
k,β(x, y) 
on-verges to zero), then this is a proof that the representation (25) of the fundamentalsolution of (4) 
onverges for t = βτ . 10



4.1 Proof of 
onvergen
e on bounded domainsSin
e Ω ⊂ R
n is bounded, there is a ball BR(0) around 0 with radius R su
h that

Ω ⊂ BR(0). Re
all that
c
j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(y + s(x− y))ds, (46)and for all k ≥ 1 we have

c
j
k(x, y) =

∫ 1

0

Rk−1(y + s(x− y), y)sk−1ds (47)with
R

j
k−1(t, x, y) = ∆cjk−1 +

∑n

l=1

∑k−1
r=0

(

∂
∂xl
cjr

∂
∂xl
c
j
k−1−r

)

+
∑

lm b
j
lm(x) ∂

∂xm
clk−1.

(48)If the modulus of the 
oe�
ients bjl,m are bounded by the generi
 C > 0 for all j, l,m,then we have
|cj0(x, y)| ≤ n2RC. (49)Next the time transformation

t = βτ (50)transforms the equation
∂ui

∂t
=

n
∑

j=1

∂2ui

∂x2
j

+
∑

jk

bijk
∂uj

∂xk

(51)into the equation
∂vi

∂τ
= β

n
∑

j=1

∂2vi

∂x2
j

+ β
∑

jk

bijk
∂vj

∂xk

, (52)where ui(t, x) = vi(τ, x), where ∂ui

∂t
= ∂vi

∂τ
∂τ
∂t

= ∂vi

∂τ
1
β
. The analogous representationof the solution is of the form

p
β
j (t, x, y) =

1√
4πτ

n exp

(∑n
i=1 ∆x2

i

4βτ

)

(

1 +
∑

k

c
j
k,β(x, y)τ

k

)

, (53)for j = 1, · · · , n. Plugging (53) into (52) and 
olle
ting the terms with τ−2, τ−1 et
.we get (we feel free to write t instead of βτ if 
onvenient)
τ−2 :

∑

i ∆x
2
i

4βτ 2
= β

∑

l

∆x2
l

4β2τ 2
(54)

τ−1 : − n

2t
= −β

∑

l

1

2βt
− β

2βτ

(

∑

l

∆xl

∂c
j
0,β

∂xl

−
∑

lm

b
j
lm(x)∆xm

)

, (55)11



and for all k − 1 ≥ 0

τk−1 : kc
j
k,β + β

∑

l ∆xl

∂c
j
k,β

∂xl
= β∆cjk−1,β + β

∑n
l=1

∑k−1
r=0

(

∂
∂xl
c
j
r,β

∂
∂xl
c
j
k−1−r,β

)

+β
∑

lm b
j
lm(x) ∂

∂xm
clk−1,β ≡ βR

j
k−1(x, y). (56)We divide equation (56) by β and get the solutions (the solution for cj0,β equalsexa
tly that for cj0 in (46))

c
j
k,β(x, y) =

∫ 1

0

R
j
k−1(y + s(x− y), y)s

k
β
−1ds. (57)Next we proveTheorem 4.1. There exists β > 0 su
h thatfor ea
h x, y ∈ Ω, 1 ≤ j ≤ n c

j
k,β(x, y) ↓ 0 as k ↑ ∞. (58)Proof. First we remark that

∂|α|

∂xα
c0(x, y) ≤ c|α|c

up
0 , (59)for some generi
 C, where

c
up
0 := sup

x,y∈Ω
c0(x, y). (60)Indeed, if we de�ne

bup := sup
x∈Ω,1≤l,m≤n

b
j
lm(x), (61)then writing the multivariate derivative of order α with α = (α1, · · · , αn), and |α| :=

∑n
i=1 αi we get |α|n terms bounded by C |α|−1bup and n2 terms bounded by RC |α|bup.Next, a majorant of cjk,β(x, y) is obtained as follows: we 
onsider three types ofoperators O1,n

k , O
2,n
k , O

3,n
k with positive integers k, and a
ting on a single fun
tion

f : Ω × Ω → R or on a families of fun
tions (fl)1≤l≤k : Ω × Ω → R, namely
O

1,n
k [f ] (x, y) := β

k
∆f(x, y)

O
2,n
k [fk, · · · , f1] (x, y) := β

k

∑n

l=1

∑k

r=0
∂fr

∂xl

∂fk−r

∂xl

O
3,n
k [f ] (x, y) := β

k

∑

lm b
j
lm(x) ∂

∂xm
f(x, y).

(62)Let
Mk := {(αk, · · · , α1)|αj ∈ {1, 2, 3}} (63)For
c
up
k,β := sup

x,y∈Ω,j∈{1,···,n}

c
j
k,β(x, y) (64)12



we have
c
up
k,β ≤

∑

α∈Mk

O
α,n
k c0(x, y) =

∑

α∈Mk

O
α,n
k c0(x, y), (65)where

O
α,n
k [f ] (x, y) := O

αk,n
k O

αk−1,n

k−1 ◦ · · · ◦Oα1,n
1 [f ] (x, y). (66)First let 1k (resp. 2k, 3k) the multiindex α ∈ Mk su
h that for ea
h 1 ≤ m ≤ k

αm = 1 (resp. αm = 2, αm = 3). Hen
e
O1

k [f ] (x, y) = (O1)
k
[f ] (x, y) = ∆k [f ] (x, y) (67)et
.. Then for all x, y ∈ Ω

|O1,n
k [c0] (x, y)| ≤

βknkC2kc
up
0

k!
, (68)and for b bounded by a generi
 C on the domain we also have

|O3,n
k [c0] (x, y)| ≤

βkn2kC2kc
up
0

k!
. (69)The operators of quadrati
 type applied to c0(x, y) O2,n

k c0 de
rease to zero as k ↑ ∞if β is small. We estimate (a rough estimate is su�
ient here) that surely we have
|O2,n

k [f ] (x, y)| ≤ βkk22k−1nkCkk!(cup
0 )k+1

k!
. (70)For large k this is essentially the largest term of all the 3k 
ontributions in the sum(65) for large k (k �xed). We mean the following: if we 
hoose

β <
1

3 · 4n2C2(cup
0 )2

, (71)then surely we have for k ≥ k0 (some k0 > 0

|3kO2

k [c0] (x, y)| ≤
3kβkk22k−1nkCkk!(cup

0 )k+1

k!
↓ 0. (72)as k ↑ ∞, and this is also the estimate whi
h holds for ck for large k. Here we
hoose β su
h that in a summand in O

α,n
k c0(x, y) in (65) ea
h o

urren
e of anoperator of form O

3,n
k 
an be repla
ed by an operator of form O

2,n
k in order to geta majorant estimation. So in the sum in (65) it su�
es to 
on
entrate on thesummands 
onsisting of 
on
atenations of operators of form O
2,n
k and O

1,n
k . Fornatural numbers l let us de�ne an in
reasing sequen
e of numbers k1 < k2 < · · · <

kl < kl+1 · · ·, and operators
O

1,n
kl+1kl

:= O
1,n
kl+1

◦ · · · ◦O1,n
kl

O
2,n
kl+1kl

:= O
2,n
kl+1

◦ · · · ◦O2,n
kl

(73)13



Then in the summands o (65) we have to 
onsider the asymptoti
 behavior of valuesof family of operators of form
O

2,n
kl+1kl

◦O1,n
klkl−1

◦ · · · ◦O2,n
k3k2

◦O1,n
k2k1

(74)or of form
O

2,n
kl+1kl

◦O1,n
klkl−1

◦ · · · ◦O1,n
k3k2

◦O2,n
k2k1

(75)applied to c0(x, y) as k ↑ ∞. If there is only a �nite o

urren
e of operators of form
O

1,n
k in su
h a family ((74) of (75), then the asymptoti
 behavior is 
learly the sameas for O2

kc0(x, y). If on the other hand there are in�nite o

urren
es of operatorsof form O
1,n
k in ((74) of (75)), then for large k O2

kc0(x, y) be
omes a majorant ofsu
h a summand. Hen
e, the estimate (72) is a majorant for large k and proves the
onvergen
e of the series in (65).4.2 Remark on unbounded domainsIt is not possible to extend the proof in the pre
eding se
tion immediately to un-bounded domains Ω ⊆ R
n. However, a similar proof with a di�erent but equivalentansatz

pd
j (t, x, y) =

1√
4πt

n exp

(

−
∑n

i=1 ∆x2
i

4t

)

(

1 +
∞
∑

k=0

d
j
k(x, y)t

k

)

, (76)leads to su
h an extension. The re
ursion equation for d0 and c0 are equivalent,but the re
ursion equations for the dk, k ≥ 1 are more involved. However, it 
an beshown that given t, y the supremum in x of ea
h
1√
4πt

n exp

(−∆x2

4t

)

d
j
k(x, y) (77)is in some ball whi
h 
an be 
hosen a priori. However, this is beyond the s
ope ofthe present paper, and we shall 
onsider a similar situation in [7℄.5 Extension to the time-inhomogenous 
ase (solu-tion and global 
onvergen
e)In a se
ond step we use a 
ertain nonlinear time transformation in order to liftthe result to 
onvergen
e for any �nite time t. This requires the extension of theanalysis to the 
ase with time-dependent 
oe�
ients. Note that in the extensionof the re
ursion of the ck to the time-inhomogeneous 
ase only �rst order timederivatives o

ur. This is the reason for the weaker 
onstraints for (8). We startthis Se
tion with the 
omputation of the re
ursive 
oe�
ients ck in the 
ase of time-and spa
e-dependent drift 
oe�
ients bjkl. Then we shall 
omplete the proof for
onvergen
e on bounded domains for any �nite time in the time-homogenous 
ase,and �nally in the time-inhomogeneous 
ase in the following subse
tions.14



5.1 Formal 
omputation of re
ursive 
oe�
ients in the time-inhomogeneous 
aseWe 
onsider paraboli
 equations with time-dependent 
oe�
ients of the form
∂ui

∂t
+ ∆ui +

∑

jk

bijk(t, x)
∂uj

∂xk

= 0 (78)We 
onsider the ansatz
pj(t, x, 0, y) =

1√
4πt

n exp

(

−∆x2

4t
+

∞
∑

k=0

c
j
k(t, x, y)t

k

)

. (79)Compared to the time-homogenous 
ase the time derivative 
ontains an additionalterm. We have
∂pj

∂t
(t, x, y) =

(

− n
2t

+
P

i ∆x2
i

4t2
+
∑∞

k=0
∂ck

∂t
(t, x, y)tk

+
∑

k kc
j
k(t, x, y)t

k−1

)

pj(t, x, 0, y)

(80)The spatial derivatives are essentially the same as in the time-homogenous 
ase. We
ompute
∂pj

∂xl

(t, x, y) =

(

−∆xl

2t
+
∑

k

∂

∂xl

c
j
k(t, x, y)t

k

)

pj(t, x, 0, y), (81)and
∂2pj

∂x2
l

(t, x, y) =

(

− 1
2t

+
∑

k
∂2

∂x2
l

c
j
k(t, x, y)t

k

+
(

−∆xl

2t
+
∑

k
∂

∂xl
c
j
k(t, x, y)t

k
)2
)

pj(t, x, 0, y).

(82)Plugging into 1 and ordering with respe
t to the terms t−2, t−1 et
. we get thefollowing re
ursive relations for the cjk, where 1 ≤ j ≤ n. First, the highest orderterms are the same as before:
t−2 :

∑

i ∆x
2
i

4t2
=
∑

l

∆x2
l

4t2
(83)The terms of order t−1 are essentially as before (we just have to add the t-argumentin the 
oe�
ient fun
tions bijk):

t−1 : − n

2t
= −

∑

l

1

2t
− 1

2t

(

∑

l

∆xl

∂c
j
0

∂xl

−
∑

lm

b
j
lm(t, x)∆xm

)

. (84)15



For k − 1 ≥ 0 we get an additional t-derivative on the right side:
tk−1 : kc

j
k +

∑

l ∆xl
∂c

j
k

∂xl
=

∂c
j
k−1

∂t
+ ∆cjk−1 +

∑n
l=1

∑k−1
r=0

(

∂
∂xl
cjr

∂
∂xl
c
j
k−1−r

)

+
∑

lm b
j
lm(t, x) ∂

∂xm
clk−1 ≡ R

j
k−1(x, y)

(85)Hen
e,
∑

l

∆xl

∂c
j
0

∂xl

= −
∑

l,m

b
j
lm(t, x)∆xm, (86)whi
h has the solution

c
j
0(x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

b
j
l,m(t, y + s(x− y))ds, (87)and for all k ≥ 1 we have

c
j
k(x, y) =

∫ 1

0

Rk−1(t, y + s(x− y), y)skds (88)with Rk−1 as in equation (85). The expli
it 
al
ulation of the solution is know
ompletely analogous, so it su�
es to write down the results. We write
b
j
lm(t, x) =

∑

γ

1

γ!
b
j
lm,γ(t, y)(∆x)

γ (89)along with some multiindex γ. Then
c
j
0(t, x, y) = −

∑

l,m

∑

γ b
j
lmγ(y)∆x

γ+1i 1
1+|γ|

≡
∑

γ c
j
0γ(t, y)∆x

γ

(90)Given that cjk−1 equals its Taylor series for every y ∈ R
n, i.e.

c
j
k−1(t, x) =

∑

γ

c
j

(k−1)γ(t, y)∆x
γ =

∑

γ,l

c
j

(k−1)γl
(y)∆xγtl, (91)we have

c
j
k(t, x, y) =

∑

γ,l lc
j

(k−1)γl
(y)∆xγtl

+
∑

γ {
∑

i

∑

β+α=γ(βi + 1)(αi + 1)cj
r(β+1i)

(t, y)cj(k−1−r)(α+1i)
(t, y)

+
∑

i(γi + 2)(γi + 1)ck(γ+2i) +
∑

β+α=γ(
∑

1
β!
b
j
lm,β(t, y)×

(αi + 1)c(k−1)(α+1i)}
(
∑γ

δ=0 p
yγ
kδ∆x

δ
)

,

(92)
where the pyγ

kδ are de�ned exa
tly as before.16



5.2 Completion of 
onvergen
e proof for �nite time in thegeneral 
ase on bounded domainsWe apply a nonlinear time transformation. Consider for β > 0 the transformation
τ(t) : [0,∞) → [0, 1)

τ = (1 − e
− t

β ), or t = t(τ) = β ln(1 − τ) (93)with
∂t

∂τ
=

β

1 − τ
. (94)The transformation of the equation

∂ui

∂t
= ∆ui +

∑

jk

bijk(t, x)
∂uj

∂xk

(95)then is
∂vi

∂τ
=

β

1 − τ
∆vi +

β

1 − τ

∑

jk

bijk(t(τ), x)
∂vj

∂xk

. (96)Let us 
all the asso
iated 
oe�
ients of the global expansion of the fundamentalsolution by cjk,β,τ . If we 
an show that for ea
h given x, y (in Ω and then in R
n ingeneral) cjk,β,τ(τ, x, y) 
onverges to zero as k ↑ ∞, then we have 
onvergen
e for τ < 1whi
h implies 
onvergen
e of the analyti
 representation for the original equationfor t ∈ (0,∞). First we derive the re
ursive relations for (96). Sin
e

φ
β,τ
i (τ, x, y) :=

1
√

4π (−β ln(1 − τ))
n exp

(

− ∆x2

4 (−β ln(1 − τ))

) (97)is the fundamental solution of the equation
∂u

∂τ
=

β

1 − τ
∆u, (98)we 
onsider the ansatz

p
β,τ
i (τ, x, y) = φ

β,τ
i (τ, x, y) exp

(

∞
∑

k=0

cik,β,τ(τ, x, y)τ
k

)

. (99)Using t = −β ln(1 − τ) we have
∂pi

∂τ
(t, x, y) =

(

− n
2t

∂t
∂τ

+
P

i ∆x2
i

4t2
∂t
∂τ

+
∑∞

k=0
∂
∂τ
cik,β,τ(τ, x, y)τ

k

+
∑

k kc
i
k,β,τ(τ, x, y)τ

k−1

)

p
β,τ
i (τ, x, y),

(100)
∂pi

∂xl

(τ, x, y) =

(

−∆xl

2t
+
∑

k

∂

∂xl

c
j
k,β,τ)(τ, x, y)τ

k

)

p
β,τ
i (τ, x, y), (101)17



and
∂2pi

∂x2
l

(τ, x, y) =

(

− 1
2t

+
∑

k
∂2

∂x2
l

c
j
k,β,τ(τ, x, y)τ

k

+
(

−∆xl

2t
+
∑

k
∂

∂xl
c
j
k,β,τ(τ, x, y)τ

k
)2
)

p
β,τ
i (τ, x, y).

(102)Plugging into (96) and ordering with respe
t to the terms τ−2, τ−1 et
. leads to
τ−2 :

∑

i ∆x
2
i

4t2
∂t

∂τ
=

β

1 − τ

∑

l

∆x2
l

4t2
, (103)whi
h is satis�ed be
ause the se
ond order di�usion term in (96) is β

1−τ
. For theterms of order τ−1 we get:

τ−1 : − n
2t

∂t
∂τ

= − β

1−τ

∑

l
1
2t

− 1
2t

(

β

1−τ

∑

l ∆xl
∂c

j
0

∂xl
− β

1−τ

∑

lm b
j
lm(t, x)∆xm

)

.

(104)For k − 1 ≥ 0 we get an additional τ -derivative on the right side:
τk−1 : kcik + β

1−τ

∑

l ∆xl
∂ci

k

∂xl
=

∂ci
k−1

∂τ
+ β

1−τ
∆cik−1

+ β

1−τ

∑n

l=1

∑k−1
r=0

(

∂
∂xl
cir

∂
∂xl
cik−1−r

)

+ β

1−τ

∑

lm b
j
lm(t, x) ∂

∂xm
clk−1 ≡ β

1−τ
Ri

k−1(τ, x, y)

(105)We have
ci0,β,τ(τ, x, y) =

∑

m

(ym − xm)

∫ 1

0

∑

l

bil,m(t(τ), y + s(x− y))ds, (106)and for all k ≥ 1 we have
cik,β,τ(x, y) =

∫ 1

0

R
i,τ
k−1(t(τ), y + s(x− y), y)s

(1−τ)k
β

−1ds, (107)where
R

i,τ
k−1(τ, x, y) =

1 − τ

β

∂

∂τ
cik−1,β,τ +R

i,τ
k−1,β,τ(τ, x, y) (108)with Ri

k−1 is as in equation (105). From this and the pre
eding se
tions it is 
learhow we get the power series representation (22)in theorem 2.1. above. We see fromthis representation that the proof for small t 
an be used, only that the substitution
β → β

1 − τ
(109)has to be made. Sin
e there are only �rst order time derivatives in the re
ursion (
f.(85) and (105), the proof of se
tion 5.1. 
an be extended trivially. Hen
e, global
onvergen
e (for any positive t of our analyti
 expansion follows from the following18



Proposition 5.1. For ea
h 
onstant c > 0 the range of the fun
tion
(β, τ) → t = −β ln(1 − τ) (110)is unbounded on the domain
{

(β, τ)| β

1 − τ
= c

}

. (111)Proof. c = β

1−τ
= ǫβ

ǫ(1−τ)
→ −ǫβ ln(ǫ(1 − τ)) ↑ ∞ as ǫ ↓ 0.This means that it su�
es to prove that the re
ursion (104, (105) 
onverges to zerofor some β

1−τ
(whi
h may be as small as we need).6 Representations of initial boundary value prob-lems of �rst and se
ond typeThe expli
it fundamental solution leads to representations of solutions for initial-boundary problems of paraboli
 systems and paraboli
 equations. We 
onsider twoexamples.6.1 Representation of the solution for initial-boundary prob-lems for paraboli
 systems of �rst typeFor the Cau
hy problem (11) we have the following representation of the solution u:

u(t, x) =
∫

Rn φ(y)p(t, x; 0, y)φ(y)dy

+
∫ t

0

∫

Rn f(s, y)p(t, x; s, y)φ(y)dyds

(112)Remark 6.1. Stri
tly speaking, the solution for p presented here is on boundeddomains Ω ⊂ R
n (whi
h is for large Ω a su�
ient approximation for numeri
al pur-poses, but not exa
t). However, su
h exa
t representations on unbounded domains
an be found using the re
ursion indi
ated in Se
tion 4.2.6.2 Representation of the solution for initial-boundary prob-lems for paraboli
 equations of se
ond typeIn the 
ase of the s
alar problem 12 for the solution u the ansatz for γ with

u(t, x) =
∫

Ω
φ(y)p(t, x, 0, y)dy −

∫ t

0

∫

Ω
f(s, y)p(t, x, 0, y)dyds

+
∫ t

0

∫

B
p(t, x; s, y)γ(s, y)dsdy

(113)19



leads to the integral equation
1
2
γ(t, x) =

∫ t

0

∫

B

{

∂p

∂ν
(t, x; s, y) + α(t, x)p(t, x; s, y)

}

γ(t, x)dBxds

+h(t, x)
(114)where

h(t, x) =
∫

Ω
∂p

∂ν(t,x)
(t, x; s, y)φ(y)dy

+
∫ t

0

∫

Ω
∂p

∂ν(t,x)
(t, x; s, y)f(s, y)dyds

+α(t, x)
∫

Ω
p(t, x; s, y)φ(y)dy

−α(t, x)
∫ t

0

∫

Ω
p(t, x; s, y)f(s, y)dyds

−ψ(t, x)

(115)
Hen
e with our expli
it solution for p we redu
e the initial-boundary value problemof se
ond type to the solution of a linear integral equation.7 Generalizations, appli
ations, and further 
om-mentsThe pre
eding results 
an be extended to more general di�usions. We haveTheorem 7.1. Consider equation (4) with spa
e-dependent di�usion 
oe�
ients
x→ ai

jk(x) whi
h satisfy
|∂α

xa
i
jk| ≤ c|α| (116)Assume that the 
onditions of theorem 1 are satis�ed. Then the fundamental solutionhas the representation

pi(t, x, y) =
1√
4πt

n exp

(

−d
2
i (x, y)

4t

)

exp

(

∑

k

cik,β(τ, x, y)τk

) (117)where for ea
h i (x, y) → d2
i (x, y) are fun
tionals whi
h assign to ea
h pair of points

x, y the length of a geodesi
 with respe
t to the line element
ds2

i =
∑

jk

gi
jkdxjdxk, (118)with (gi

jk) the inverse of (ai
jk), and the cik are smooth fun
tions given by re
ursiverelations similar to that in theorem 1 but involving d2

i and partial derivatives of d2
i .20



The proof is quite analogous ex
ept that additional existen
e and regularity resultsfor the Riemmanian metri
 fun
tional d2 are needed. These are given in [5℄. Generalanalyti
al formulas are not available for the fun
tional d2 but in [5℄ that solutions
an be approximated in arbitrarily strong Sobolev norms. This may be used toobtain approximations of (117) in arbitrarily strong Sobolev norms when 
ombinedwith the results in [6℄. Note, however, that an extension is far from obvious if these
ond order terms are 
oupled.An immediate appli
ation of theorem 7.1. is a result of Varadhan whi
h we stateand prove here in the 
ase of time-homogeneous 
oe�
ients and for s
alar equations,where the highest order 
oe�
ient fun
tion in the global expansion may be denotedby d2 without an index i.Corollary 7.2. (time-homogeneous and s
alar 
ase) Assume that for ea
h i we have
λξ2 ≤ ai

jk(x)ξiξj ≤ Λξ2 for x ∈ Ω ⊆ R
n and some 
onstants 0 < λ < Λ. Then forbounded Hölder-
ontinuous 
oe�
ient fun
tions x→ ai

jk(x), x→ bijk(x)

lim
t↓0

−4t ln p(t, x, y) = d2(x, y) (119)where d2 is the Riemannian metri
 indu
ed by the line element (118).Proof. The reason for the assumption of Hölder 
ontinuity is just for the existen
e ofthe fundamental solution, whi
h may then be ensured by the parametrix method).For the assumptions of theorem 7.1 this follows dire
tly from the representation(117). Given x, y one may de�ne in a bounded domain x, y ∈ Ω 
ontaining thegeodesi
 a series of 
oe�
ient fun
tions (ai,n
jk )n and (bi,njk )n satisfying the assumptionsof theorem 7.1. and su
h that ai,n

jk (x) → ai
jk(x) and (bi,njk )n → bijk. Here we 
anassume that the 
orresponding geodesi
s 
onne
ting x and y are in ΩThere is a deep di�eren
e between the representations 
onsidered here with leadingterms of the form

1√
4πt

n exp

(

−d
2
i (x, y)

4t

) (120)and dire
t Taylor expansions of the solution. Indeed, in [2℄ we saw that for the
hara
teristi
 fun
tion (the Fourier transform of the fundamental solution with re-spe
t to the parameter y), where a dire
t Taylor approa
h seems natural, it seemsthat 
onvergen
e results 
an be obtained only if 
oe�
ients are of linear spatialdependen
e. We note that results of myself for s
alar equations 
ited in [3℄ 
annotbe dire
tly generalized to the systems 
onsidered here. Our results may be usedto generalize the results in [1℄ and 
onstru
t e�
ient 
omputation s
hemes for re-lated rea
tion di�usion equations. A se
ond appli
ation may be the de�nition ofgeneralized Brownian motions (
f. [14℄). This was attempted in [12℄ in the 
ontextof elasti
ity and the Lamé equation, but not in a rigorous way. Note that Laméequation has 
oupling of se
ond order terms, so the generalized Brownian motionsasso
iated to (117) would not 
over these examples from elasti
ity (be
ause we have21



no se
ond order 
oupling in (117)). However, the fun
tional analyti
 pro
edure tointrodu
e pro
esses as measures on path spa
es using Riesz representation theo-rem leads to a new 
lass of pro
esses. In the spe
ial 
ase of higher dimensionals
alar equations expansions of the type 
onsidered here in a probabilisti
 settinghave been found to be very 
ompetitive (
f. [3℄). The results presented here arealso a �rst step to get into deeper analysis of quasilinear paraboli
 systems, andnumeri
al methods 
onsidered in ([6℄) and ([5℄) may be extended and used togetherwith analyti
al results in ([8℄) and ([9℄) to obtain e�
ient and a

urate s
hemes forquasilinear systems.Referen
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