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Abstract

In this paper three locally adaptive estimation methods are applied to

the problems of variance forecasting, value-at-risk analysis and volatility es-

timation within the context of nonstationary financial time series. A general

procedure for the computation of critical values is given. Numerical results

exhibit a very reasonable performance of the methods.

Mstislav Elagin and Vladimir Spokoiny

1 Introduction

Modelling particular features (“stylized facts”) of financial time series such as volatil-
ity clustering, heavy tails, asymmetry, etc. is an important task arising in financial
engineering. For instance, attempts to model volatility clustering, i.e. the tendency
of volatility jumps to appear in groups followed by periods of stability, led to the
development of conditional heteroskedastic (CH) models including ARCH by Engle
(1982) and GARCH by Bollerslev (1986) as well as their derivatives. The main
idea underlying the mentioned methods is that volatility clustering can be modelled
globally by a stationary process.

However, the assumption of stationarity is often compromised by the shape of the
autocorrelation function (ACF) of squared log returns that for a typical financial
time series decays slower than exponentially. Furthermore, Mikosch & Stărică (2004)
showed that long range memory effects in financial time series may be caused by
structural breaks rather than constitute an essential feature of stationary processes
to be modeled by global methods. Diebold & Inoue (2001) and Hillebrand (2005)
argue that one can easily overlook structural breaks with negative impact on the
quality of modelling, estimation and forecasting. This circumstance motivates the
development of methods involving processes that are stationary only locally. Local
methods consider just the most recent data and imply subsetting of data using some
localization scheme that can itself be either global or local and adaptive. Methods of
this kind have been presented e.g. in Fan & Gu (2003) for adaptive selection of the de-
cay factor used to weight components of the pseudo-likelihood function, in Dahlhaus
& Subba Rao (2006) for the formulation of the locally stationary ARCH(∞) pro-
cesses, in Cheng, Fan & Spokoiny (2003) for locally choosing parameters of a filter.
In a recent paper by Giacomini, Härdle & Spokoiny (2008) a local adaptive method
has been applied to the problem of copulae estimation.
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Below we compare three methods for estimation of parameters in the context of uni-
variate time series: the local change point (LCP) procedure by Mercurio & Spokoiny
(2004), the local model selection (LMS), also known as the intersection of confidence
intervals (ICI) by Katkovnik & Spokoiny (2008), and the stagewise aggregation (SA)
by Belomestny & Spokoiny (2007). A universal procedure for the choice of parame-
ters (critical values) is given. The performance of the procedures is compared using
genuine financial data. It is shown that adaptive methods often outperform the
standard GARCH(1,1) method.

The chapter is organized as follows. Section 2 is devoted to the formulation of
the problem and theoretical introduction. Section 3 describes the methods under
comparison. In the Section 4 the procedure for obtaining critical values, essential
parameters of the procedures, is given. Section 5 shows the application of the
adaptive methods to the computation of the value-at-risk.

2 Model and setup

2.1 Conditional heteroskedastic model

Let Ut be a one-dimensional stochastic asset price process in discrete time t ∈ N

and Rt = log Ut

Ut−1

be the corresponding log returns process. The latter is typically
described using the conditional heteroskedastic model

Rt = σtεt, (1)

where εt are independent and identically (standard Gaussian) distributed innova-
tions, and σt is the volatility process progressively measurable w.r.t. the filtration
(Ft−1) = F(R1, . . . , Rt−1) generated by past returns. Equivalently,

Yt = θtε
2
t (2)

where Yt = R2
t are the squared log returns and θt = σ2

t . We aim to estimate θt

from the past observations Y1, . . . , Yt−1. This problem commonly arises in financial
applications such as value-at-risk determination and portfolio optimisation.

2.2 Parametric and local parametric estimation and infer-

ence

If θt = θ one can apply the method of maximum likelihood to obtain the estimate
θ̂. The model (2) leads to the log-likelihood function

L(θ) =
∑

t

ℓ(Yt, θ)
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where ℓ(y, θ) = −1
2
log(2πθ) − y/(2θ) is the log density of the normal distribution

with zero mean. The estimate θ̂ is then obtained by maximizing the log-likelihood
function w.r.t. to θ:

θ̂ = arg max
θ

L(θ) =

∑
t Yt

N
,

where N is the sample size. When the volatility does depend on time, θt =
θ(t) 6= const., the method of maximum likelihood is not directly applicable, since
the joint distribution of the observations and therefore the log likelihood function
are not available. Hence, we take the local parametric approach by supposing that
for the time point of estimation T there exists some interval I = [T − NI , T ] of
length NI , to be estimated from the data, within which the model (2) describes the
process adequately. If the interval I has been found, then the log likelihood function
assumes the form

LI(θ) =
∑

t∈I

ℓ(Yt, θ)

and the maximum likelihood estimate corresponding to the interval I is

θ̃I = arg max
θ

LI(θ) =
∑

t∈I

Yt/NI .

For the purpose of describing the quality of estimation we use the fitted likelihood
L(θ̃, θ) defined as the difference between the likelihood corresponding to the ML

estimate θ̃ and the likelihood corresponding to a different parameter value:

L(θ̃, θ) = L(θ̃) − L(θ).

For the model considered here the fitted likelihood can be represented in the form

L(θ̃I , θ) = NIK(θ̃I , θ), (3)

where

K(θ1, θ2) =
1

2
(θ1/θ2 − 1) −

1

2
log(θ1/θ2)

denotes the Kullback – Leibler divergence that measures the “distance” between
distributions indexed by θ1 and θ2.

2.3 Nearly parametric case

In practice the parametric assumption may be overly stringent and not hold even
within an arbitrarily small interval. We describe the deviation from the parametric
situation within an interval I by a random magnitude

∆I(θ) =
∑

t∈I

K(θt, θ),

that we shall call divergence. The following small modelling bias condition imposes
a limit on the deviation from the parametric case providing for the applicability of
the local parametric approach.
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Figure 1: Nested intervals.

Condition 1 There exists some parameter value θ ∈ Θ and some interval I such
that the expectation under the true measure of the divergence ∆I(θ) over the interval
I is bounded by some ∆ ≥ 0:

E ∆I(θ) ≤ ∆.

If the small modelling bias condition holds, then for any r > 0 the risk of the local
maximum likelihood estimate in the nearly parametric case satisfies

E log



1 +

∣∣∣NIK(θ̃I , θ)
∣∣∣
r

Rr,θ



 ≤ ∆ + 1,

where
Rr,θ = E

θ

∣∣∣NIK(θ̃I , θ)
∣∣∣
r

(4)

is the risk of the local maximum likelihood estimate in the parametric case. Here
the logarithm under the expectation comes from the Cramér – Rao inequality, and
the additional term ∆ on the right-hand side can be interpreted as payment for the
violation of the parametric assumption.

The last result leads to the notion of the oracle estimate as the “largest” one under
the small modelling bias condition. In the next section we present three meth-
ods suitable for construction of estimates performing almost as well as the oracle
estimate.

3 Methods for the estimation of parameters

3.1 Sequence of intervals

Local methods imply subsetting of data. A localization scheme that we use is a
growing sequence of intervals.

Let T denote the time point at which the value of interest is to be estimated. We
define an ordered sequence of intervals {Ik}

K
k=1 of length Nk with the common right

edge at T (Figure 1), so Ik = [T − Nk, T [. We associate with each interval Ik from

this sequence the corresponding maximum likelihood estimate θ̃k ≡ θ̃Ik
, which we
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Figure 2: Intervals involved in the change point detection procedure.

shall call weak estimate. We aim to select or construct the “largest” one still satisfying
the small modelling bias condition. The LCP and LMS procedures obtain the best
estimate by choosing one from the sequence, whereas SSA builds the estimate by
taking convex combinations of previously found estimates. Below we describe each
of the methods.

3.2 Local change point selection

The method of local change point (LCP) selection introduced in (Mercurio & Spokoiny
2004) is a procedure that detects the largest interval of homogeneity and provides
an adaptive estimate as the one associated with the interval found. The idea of the
method consists in the testing of the null hypothesis of an interval containing no
change points against the alternative hypothesis of a change point being present,
whereas the interval under testing is taken from the growing sequence.

Consider a tested interval I that possibly contains a change point, and an enclosing
testing interval I (Figure 2). The statistic to test the hypothesis about the param-
eter change in some internal point τ of the candidate interval can be expressed as
the difference between the sum of log likelihoods corresponding to the intervals I ′,
I ′′ into which the change point splits the testing interval, and the log likelihood
corresponding to the testing interval containing no change points:

TI,τ = max
θ′,θ′′

{LI′′(θ
′′) + LI′(θ

′)} − max
θ

LI(θ) = LI′(θ̃I′) + LI′′(θ̃I′′) − LI(θ̃I),

where L(·) denotes the log likelihood function. For the volatility distribution the
test statistic can be represented in the form

TI,τ = min
θ

(
NI′′K(θ̃I′′ , θ) + NI′K(θ̃I′, θ)

)
= NI′′K(θ̃I′′ , θ̃I) + NI′K(θ̃I′ , θ̃I) (5)

due to (3). The test statistic for the whole candidate interval is the maximum of
the pointwise statistics over all internal points:

TI = max
τ∈I

TI,τ

The hypothesis is rejected if the test statistic exceeds some critical value z, which is
a parameter of the procedure specific to the problem design.
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Figure 3: Principle of the local model selection. θ̂ = θ̃3.

We let I = Ik\Ik−1 and I = Ik+1 and take the adaptive estimate θ̂ to be equal to

the k̂-th weak estimate, where k̂ is the largest interval number such that all test
statistics corresponding to the intervals I1, . . . , Ibk do not exceed their critical values

with the opposite holding for k̂ + 1:

θ̂ = θ̃bk, where k̂ = max k such that Tl ≤ zl for all l ≤ k̂.

The initial condition is that the smallest interval is always considered to be homoge-
neous. Since it is not feasible to test the largest interval, the greatest possible value
of k̂ is K − 1.

3.3 Local model selection

The idea of the local model selection procedure introduced in (Katkovnik & Spokoiny

2008) consists in the choice of the “largest” weak estimate among θ̃1 . . . θ̃K as the

adaptive estimate θ̂ in such a way that the adaptive estimate belongs to the con-
fidence interval E of each of the previous weak estimates (cf. Figure 3). Formally,

θ̂ = θ̃bk, where

k̂ is such that

{
θ̃bk ∈ El for all l < k̂

θ̃bk+1 6∈ El for some l < k̂ + 1

Confidence interval of level α for a weak estimate θ̃ is provided by

E(zα) =
{

θ : L(θ̃, θ) ≤ zα

}
.

As with the LCP procedure, the first weak estimate is always accepted. However,
the LMS procedure checks all estimates including the one corresponding to the last
interval.
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3.4 Stagewise aggregation

The stagewise aggregation (SA) procedure introduced in (Belomestny & Spokoiny
2007) differs from the two methods described above in that it does not choose the

adaptive estimate θ̂ from the weak estimates θ̃1 . . . θ̃K . Instead, based on the weak
estimates, it sequentially constructs aggregated estimates θ̂1 . . . θ̂K possessing the
property that any aggregated estimate θ̂k has smaller variance than the correspond-
ing weak estimate θ̃k, while keeping “close” to it in terms of the statistical difference,
the latter being measured through the likelihood ratio L(θ̃k, θ̂k−1) = L(θ̃k)−L(θ̂k−1).

The adaptive estimate is finally taken equal to the last aggregated estimate: θ̂ = θ̂K

(unless the early stopping occurs, see below).

Formally, the first aggregated estimate is equal to the first weak estimate and ev-
ery next aggregated estimate is a convex combination of the previous aggregated
estimate and the current weak estimate:

θ̂k =

{
θ̃1, k = 1

γkθ̃k + (1 − γk)θ̂k−1, k = 2, . . . , K

Here γk is the mixing coefficient that reflects the statistical difference between the
previous aggregated estimate θ̂k−1 and the current weak estimate θ̃k, and is obtained
by applying an aggregation kernel Kag to the likelihood ratio L(θ̃k, θ̂k−1) scaled by
the critical value zk :

γk = Kag

(
L(θ̃k, θ̂k−1)

zk

)
.

The aggregation kernel acts as a link between the likelihood ratio and the mixing
coefficient. The principle behind its selection is that a smaller statistical difference
between θ̃k and θ̂k−1 should lead to the mixing coefficient close to 1 and thus to the
aggregated estimate θ̂k close to θ̃k, whereas a larger difference should provide the
mixing coefficient close to zero and thus keep θ̂k close to θ̂k−1. Whenever the differ-
ence is very large, the mixing coefficient is zero, and the procedure stops prematurely
by setting θ̂ = θ̂k−1. We call this situation early stopping.

To satisfy the stated requirements, the kernel must be supported on the closed
interval [0, 1] and monotonously decrease from 1 on the left edge to 0 on the right
edge. It is also recommended that the kernels have a plateau of size b starting with
zero. Thus, the aggregation kernel assumes the form:

Kag(u) =

{
1, 0 ≤ u < b
1 − K̄ag(u), b ≤ u ≤ 1

Examples of K̄ag(u) include u−b
1−b

(triangular kernel),
(

u−b
1−b

)2
(Epanechnikov kernel)

etc.
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4 Critical values and other parameters

All procedures described above depend on the set of parameters z1 . . . zK known as
critical values. The critical values reflect the problem design (interval length, model,
method etc.). They are selected based on the following propagation condition:

Condition 2 (Propagation condition) For any θ∗ ∈ Θ

Eθ∗ |L(θ̃k, θ̂k)|
r

Rr,θ∗
≤ α

k

K
for k = 1, . . . , K, (6)

where θ̂k is the adaptive estimate obtained on the k-th step and Rr,θ∗ is the risk
delivered by the local maximum likelihood estimate in the parametric case (see (4)).

This condition means that in the homogeneous case the risk associated with the k-th
adaptive estimate must not exceed a certain fraction of the risk in the parametric
case.

Critical values constructed this way provide with high probability the prescribed
performance of the procedures in the parametric situation (under the null hypothe-
sis). Namely, under the parametric hypothesis on every step k the adaptive estimate

θ̂k should be close enough to the oracle estimate θ̃k. However, the propagation con-
dition is not explicit. For the computation of critical values we use the following
sequential method based on Monte-Carlo simulations. Denote as θ̂l(zk) for l ≥ k the
adaptive estimate obtained after the l-th step of the procedure run with he critical
values z1, . . . , zk−1 known and zk+1, . . . , zK set to infinity:

θ̂l(zk) = θ̂l(z1, . . . , zk, zk+1 = ∞, . . . , zK = ∞).

The first critical value can be selected to satisfy the conditions

Eθ∗

∣∣∣L(θ̃l, θ̂l(z1))
∣∣∣
r

Rr,θ∗
≤

α

K
, l = 2, . . . , K.

Such a value exists, since for z1 taken sufficiently large the weak and adaptive es-
timates coincide for any l and all Monte-Carlo paths, thus leading to the zero risk.
With the first k− 1 critical values fixed the procedure is carried out sequentially for
the remaining critical values. The k-th critical value is selected using the condition

Eθ∗

∣∣∣L(θ̃l, θ̂l(zk))
∣∣∣
r

Rr,θ∗
≤ k

α

K
, l = k + 1, . . . , K.

Obviously, the critical values depend on the specific form of the likelihood function
and hence of the Kullback-Leibler distance. Further, the critical values depend on
the global parameters α and r.
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Figure 4: Exchange rate of the British pound to the US dollar and corresponding
log returns.

Figure 5: Volatility estimates for the British pound obtained by LCP, LMS and SA.

5 Applications

We illustrate the performance of the methods introduced in the section 3 by ana-
lyzing daily exchange rates of six currencies (GBP, AUD, NZD, JPY, CAD, DKR)
to the US dollar available from the site of the US Federal Reserve. We use the data
for the period from Januar 1, 1990 till December 31, 1999. Unless indicated oth-
erwise, we use the GBP/USD exchange rate. Observed GBP/USD exchange rates
along with the log returns are shown on the Figure 4, while Figure 5 presents the
volatility estimates obtained by three adaptive methods.

A well known feature of financial time series is the uncorrelatedness of the log re-
turns. However, in spite of the uncorrelatedness, the log returns are not independent,
as one can see by plotting the autocorrelation of a non-linear transformation. For in-
stance, absolute log returns show significant autocorrelation (Figure 6, upper plot).
We obtain standardized absolute log returns by dividing the absolute log returns
by the volatility estimated using the LCP method. The ACF plot (Figure 6, lower
plot) shows that nearly all autocorrelation has been removed by standardizing. This
result indicates the reasonable quality of volatility estimation.
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Figure 6: Autocorrelation functions of the absolute log returns (above) and of the
absolute standardized log returns (below).

5.1 Variance forecasting

In order to assess the performance of the adaptive procedures we evaluate their
ability to forecast the h-step ahead conditional variance of the aggregated returns
originating at time t. We denote this magnitude as

Vt,h = Var (St,h| Ft) , where St,h =

h∑

k=1

Rt+k.

By definition of the conditional variance, employing that E (Rt+k| Ft) = 0 and in
view of the conditional uncorrelatedness of the log returns as well as the linearity of
the expectation, one can represent the conditional variance of the aggregated returns
as the sum of conditional variances of log returns:

Vt,h = E
(
[St,h − E (St,h| Ft)]

2
∣∣Ft

)

= E



[
St,h −

h∑

k=1

E (Rt+k| Ft)

]2
∣∣∣∣∣∣
Ft


 = E

(
S2

t,h

∣∣Ft

)

= E

(
h∑

k=1

R2
t+k

∣∣∣∣∣Ft

)
=

h∑

k=1

E
(
R2

t+k

∣∣Ft

)
=

h∑

k=1

θt,k (7)

By definition of the local constant approach the conditional variance of the log
returns is constant for a certain horizon h:

θ
(A)
t,k = θ

(A)
t , k = 1, . . . , h. (8)

Therefore the forecasted conditional variance of the aggregated returns St,h obtained
by an adaptive method is simply

V̂
(A)
t,h = hθ̂

(A)
t . (9)
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We compare the forecasts obtained by adaptive procedures with that of the GARCH(1,1)
model, one of the most popular parameterizations of the volatility process of finan-
cial time series. The GARCH(1,1) model describes the volatility dynamics by the
relation

θt = ω + αR2
t−1 + βθt−1,

where the requirement of the stationarity implies the following conditions on the
coefficients:

α > 0, β > 0, α + β < 1.

The h-step ahead conditional variance forecast for the log returns is given by:

θ
(G)
t,h = E

(
R2

t+h

∣∣Ft

)
= σ̄2 + (α + β)h(θt − σ̄2),

where σ̄2 = ω/(1−α−β) is the unconditional variance. Finally, the realized variance
of the aggregated returns is

V̂
(G)
t,h =

h∑

k=1

θ̂
(G)
t,k . (10)

As a criterion we use the mean square root error (MSqE) defined as

MSqEI,h =
∑

t∈I

|V̂t,h − Vt,h|
1/2, (11)

where

Vt,h =
h∑

k=1

R2
t+k

is the realized variance of h aggregated returns starting at time t, and V̂t,h is the
conditional variance forecast of the aggregated returns. Substituting (9) or (10) for

V̂t,h into (11), one obtains the performance data shown in the Figure 7. The results
are presented for various years and forecasting horizons. As seen from the figure,
adaptive methods outperform the GARCH(1,1) in many cases.

5.2 Value-at-risk

In the present section we apply the adaptive procedures to the computation of value
at risk, an important problem in financial engineering. The value at risk (VaR) is
defined as “the maximum loss not exceeded with a given probability defined as the
confidence level, over a given period of time”. The problem of the VaR estimation
can be represented as the problem of quantile estimation for the distribution of
aggregated returns. We consider three distributions of innovations: standard Gaus-
sian distributions, Student’s scaled distribution with 5 degrees of freedom and the
empirical distribution:

Rt+h = σ̂tξt+h, with ξt+h ∼ N(0, 1), or
√

5/3ξt+h ∼ t5, or ξt+h ∼ F̂t .
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Figure 7: Peformance of adaptive methods and GARCH(1,1) in terms of MSqE.

We aim to describe the quality of VaR computation in terms of the frequency of
exceptions, where an “exception” is the event of the predicted value at risk exceeding
the aggregated returns. According to the prescribed assessment rule, we examine
the particular case of the value at risk predicted at 1% level for 10 steps ahead on 250
observations. Under the assumption that the exceptions follow the binomial distri-
bution, we conduct a test with the null hypothesis about the probability of exception
being equal to 0.01, and one-sided alternative hypothesis about the probability of
exception exceeding 0.01. A procedure predicting the value at risk belongs in one
of the three “zones”: “green” zone if the null hypothesis can not be rejected with
95% confidence (corresponding to not more than 5 exceptions on 250 observations,
or 2% frequency), “yellow” zone if the null should be rejected with 95% confidence
(from 6 to 10 exceptions, or not more than 4% frequency), and “red zone” if the null
should be rejected with 99.99% confidence (11 or more exceptions, or more than 4%
frequency).

Figure 8 shows the percentage of time points at which the loss within a certain
horizon overshoots the value at risk predicted with the corresponding confidence
level. The results were obtained for three distributions of innovations. One observes
that none of the adaptive methods falls in the red zone. Stagewise aggregation always
belongs to the green zone. LCP and LMS combined with the Gaussian innovations
sometimes fall into the yellow zone. Use of Student’s innovations slightly, and of the
empirically distributed innovations considerably improves the performance. Overall
performance of the adaptive methods is rather good.

5.3 A multiple time series example

The local parametric approach can be extended to multiple time series. In this case
one observes a vector of exchange rate processes Ut ∈ R

d, t = 1, 2, . . . and Rt,m is
the vector of the corresponding log returns:

Rt,m = log(Ut,m/Ut−1,m), m = 1, . . . , d.

12



Figure 8: Percentage of overshooting the value-at-risk estimated by three methods
for various distributions of innovations, number of forecasting steps and value-at-risk
levels. Currency: Australian dollar.

Figure 9: Adaptive estimation of the annualized volatility of four exchange rates.

The conditional heteroskedasticity model reads in this case as

Rt = Σ
1/2
t εt ,

where εt, t ≥ 1, is a sequence of independent standard Gaussian random innovations
and Σt is a symmetric d × d volatility matrix, which is to be estimated. As an
example, Figure 9 shows annualized volatility estimated for exchange rates of several

currencies to the US dollar. Annualized volatility is defined as

√
250Σ̂ii, where

Σ̂ii represent diagonal elements of the volatility matrix, Similar evolution of the
estimates indicates a possible common low-order component.

As in one-dimensional case, we observe significant correlation and autocorrelation
of the absolute log returns (Figure 10, left) as a non-linear transformation of the
log returns, indicating lack of independence in spite of the log returns being uncor-
related. We estimate the volatility matrix using the LCP method and obtain the

13



Figure 10: ACF for the NZD and AUD time series. Left: absolute log returns, right:
absolute standardized log returns.

standardized absolute log returns by solving the equation

Rt = Σ̂
1/2
t ξt

for ξt. The multivariate ACF plot of the standardized absolute log returns is shown
in the right part of Figure 10. Although some autocorrelation still remains in the
NZD series, the remaining three ACF plots show almost no significant correlation.
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