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Abstract

We present a thermodynamically consistent model to describe the austen-
ite-ferrite phase transition in steel. We consider the influence of the mechan-
ical displacement field due to eigenstrains caused by volumetric expansions.
The model equations are derived in a systematical framework. They are based
on the conservation laws for mass and momentum and the second law of ther-
modynamics. By means of numerical computations for a simplified interface-
controlled model, we examine the influence of the mechanical contributions
to the transformation kinetics and the equilibrium states.

1 Introduction

Steel is one of the most widely used materials. By alloying, heat- and thermomech-
anical treatment a broad spectrum of properties can be obtained. The microstruc-
ture and the distribution of different phases such as ferrite, austenite, martensite
or pearlite are of great importance, due to the fact that they each possess different
hardnesses and other mechanical properties, see e. g. [12].

In this study, we examine the phase transition from austenite (γ-iron) to ferrite
(α-iron) as a preliminary stage to the modelling of the formation of pearlite, which
is a lamellar mixture of ferrite and cementite – a metastable compound Fe3C.

The phases austenite and ferrite are characterised by different crystal structures.
Important for their constitution is the so called sublattice model. The iron atoms
form a host lattice, which has a body centred cubic (bcc) structure in the α-phase
and a face centred cubic (fcc) unit cell in the γ-phase. The carbon atoms are
interstitially dissolved on a sublattice, which is formed by the octahedral sites. The
number of sublattice sites is different in ferrite and austenite. In α-iron, there are
three times as many sublattice sites as iron atoms, whereas in γ-iron both lattices
have an equal number of lattice sites. Empty sublattice sites are a carrier of energy
and entropy and have to be considered. These vacancies are introduced in the model
as a massless constituent.

Two processes that determine the γ/α-phase transition are the diffusion of carbon
through the austenite and the lattice transformation of the iron. If one of these
processes dominates the other, special cases can be considered. The transformation
behaviour is called diffusion-controlled, if the carbon diffusion is dominating. If
the second process determines the growth rate of the new phase, then one refers
to the interface-controlled mode and a homogeneous carbon distribution can be
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assumed. Furthermore, mechanical stresses and strains affect the phase transition.
Because of the different crystal structure, ferrite has a larger molar volume than
austenite. In addition, the carbon atoms have a larger diameter than the sublattice
sites offer in space. Therefore, dissolved carbon causes an expansion of the iron
lattice. The changes of the volume during the γ/α-phase transition due to these
effects cause eigenstrains, which accelerate or decelerate the growth of the ferrite
phase. The model presented here accounts for the local mechanical fields caused by
the volumetric expansions.

Probably one of the earliest studies considering the diffusion-controlled case has
been done by Zener [13] as early as 1949. In a work by Wits et al. [11] the influence
of the overall carbon concentration to the mode of the phase transition is investig-
ated. Simulations are done for a mixed-mode model, i. e. the lattice transformation
and the carbon diffusion are included in the calculations. The character of the
transformation is identified by evaluating the carbon concentration at the interface.
The influence of mechanical effects, especially eigenstrains caused by the different
densities of the two phases, is not considered there.

Dreyer and Duderstadt [3] present a model for phase transitions in gallium arsenide
wafers, where effects due to mechanical stresses and strains are included. A similar
approach is adopted in this work. The model presented here is not restricted to steel.
In fact, the basic ideas are applicable to a wide range of problems, for example the
modelling of charging and discharging processes in lithium batteries [4]. Similar to
the case of steel, a sublattice model is used there to describe the constitution of
the phases. In a work by Böhme et al. [1], a thermodynamical model for a general
mixture of multiple components is given, where the mechanical displacement field
is included. The model is derived in a systematical framework, taking into account
the conservation laws for mass, momentum and energy as well as the second law of
thermodynamics.

We describe the derivation of a sharp interface model, based on the afore mentioned
physical principles. We concentrate on the modelling of one austenite grain as a
typical part of the microstructure and neglect effects like grain coarsening or grain
boundary diffusion. We restrict ourselves to the isothermal case, since on the scale
of one iron grain heat conductivity is supposed to be fast compared to the diffusion
of carbon and the migration of the interface. By means of numerical simulations for
the interface-controlled case the influence of the misfit strains on the kinetics of the
phase transformation is investigated.

The paper is organised as follows: in Section 2, the thermodynamical model based
on the conservation laws for mass and momentum is described. We derive con-
stitutive functions that are in accordance with the second law of thermodynamics.
The mechanical displacement field is investigated in Section 3. Since the free energy
is important for the description of phase transitions, Section 4 is devoted to the de-
termination of this quantity. The underlying idea is a decomposition into a chemical
part and a mechanical part, which accounts for the effects of the misfit strains. In
Section 5, a special case is treated, i. e. we consider a spherical-symmetric iron grain

2



and assume an interface-controlled transformation behaviour. In doing so, a sys-
tem of equations is derived to compute the temporal evolution of the homogeneous
carbon concentrations in austenite and ferrite. The section is concluded with the
presentation of numerical results.

2 Thermodynamic description of the Fe-C system

In this section, we derive the thermodynamical model that describes the phase
transition from austenite to ferrite in steel. Throughout this paper an upper index
is used for denoting vectors. Furthermore, we make use of the sum convention, i. e.
one has to sum if superscripts occur twice.

We consider a domain Ω := Ωα ∪ Ωγ ⊂ R3, which is occupied by the two phases
ferrite and austenite, denoted by the open domains Ωα and Ωγ , respectively, with
Ωα ∩ Ωγ = ∅. The phases are separated by an interface I := Ωα ∩ Ωγ . The state of
the system at a given absolute temperature T is described by the following variables

na(t, x
j), a ∈ {Fe,C,V}, the mole densities of iron, carbon

and vacancies,

ui(t, xj) the displacement field,

(1)

which can depend on time t and position x = (x1, x2, x3) ∈ Ω.

2.1 The balances of the partial mole densities

The model is based on the following conservation laws of the partial mole densities

∂nFe

∂t
+
∂nFev

k
Fe

∂xk
= 0,

∂nC

∂t
+
∂nCv

k
C

∂xk
= 0 and

∂nV

∂t
+
∂nVv

k
V

∂xk
= 0, (2)

where vk
a , a ∈ {Fe,C,V}, are the partial velocities of iron, carbon and vacancies.

Due to the sublattice model there is a restriction on the three mole densities. In
austenite the number of host and sublattice sites is equal, that is nFe = nC + nV,
whereas in ferrite the number of sublattice sites is three times the number of host
lattice sites: 3nFe = nC + nV. This side condition can be written as

η nFe = nC + nV with η =

{
3 in Ωα

1 in Ωγ ,
(3)

where η is called the site ratio. The three mole densities are not independent and
therefore one of the balance laws (2) must be the consequence of the two others. To
guarantee this we define

η nFev
k
Fe = nCv

k
C + nVv

k
V (4)
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and in the following we can restrict ourselves to the balances (2)1 and (2)2. To
describe the state of the system, the mass density ρ and the barycentric velocity vk

of the mixture need to be defined. These quantities are given by

ρ = ρFe + ρC and ρvk = ρFev
k
Fe + ρCv

k
C, (5)

where ρFe := mFenFe and ρC := mCnC are the partial mass densities of iron and car-
bon, mFe and mC denote the corresponding molecular weights. Since vacancies have
no mass, they do not contribute to the mass density and the barycentric velocity.

Next, the diffusion fluxes with respect to vk are defined for each constituent

jk
Fe := nFe(v

k
Fe − vk), jk

C := nC(vk
C − vk) and jk

V := nV(vk
V − vk). (6)

Expressions (4) and (5) lead to the identities

ηjk
Fe = jk

C + jk
V and mFej

k
Fe +mCj

k
C = 0. (7)

These relations can be used to eliminate jk
Fe and jk

V, such that only the diffusion flux
of carbon has to be considered. In the following this flux is denoted by jk := jk

C.
Introducing the diffusion fluxes into the balance equations (2) one obtains together
with (7)2 the following partial differential equations

∂nFe

∂t
+
∂nFev

k

∂xk
− mC

mFe

∂jk

∂xk
= 0

∂nC

∂t
+
∂nCv

k

∂xk
+
∂jk

∂xk
= 0


 in Ω. (8)

This is a system of diffusion equations for the mole densities of iron and carbon.
The diffusion flux jk is related to the variables introduced in (1) by a general version
of Fick’s law

jk = −MB ∂

∂xk

(
µ− ηmC

mFe
µV

)
(9)

with µ := µC − µV and MB > 0 denoting the mobility of the carbon atoms. The
quantities µC and µV represent the chemical potentials of carbon and vacancies,
which can be expressed in dependence on the mole densities and the mechanical
displacement. For a detailed derivation of the relation (9), by evaluating the second
law of thermodynamics, we refer to Appendix A.1. The chemical potentials will be
introduced in Section 4.

On the outer boundary ∂Ω with the outward unit normal vector νk, Neumann
boundary conditions are imposed on the diffusion flux

jkνk = 0 on ∂Ω.

On the interface I the mole densities are discontinuous. These discontinuities can
be expressed by jump conditions. Similar to the conservation laws (2) in the bulk,
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one can define conservation laws on I. The material mole flux across the interface
is conserved, which can be written as

[[nFev
ν
Fe]] − [[nFe]]w

ν = 0 and [[nCv
ν
C]] − [[nC]]wν = 0 on I, (10)

where νk and wν := wiνi denote the unit normal vector pointing from Ωγ to Ωα and
the normal interfacial velocity. The double bracket indicates the jump of a quantity
across the interface: [[ψ]] = ψα − ψγ. As an abbreviation the interfacial mole fluxes
are defined as

ṄFe := nFe(v
ν
Fe − wν) and ṄC := nC(vν

C − wν). (11)

We conclude by (10) that they are continuous across the interface

Ṅ α
Fe = Ṅ γ

Fe and Ṅ α
C = Ṅ γ

C on I. (12)

In analogy to the constitutive function (9) for the diffusion flux jk one can derive
the following relations for the interfacial mole fluxes defined in (11)

ṄFe = −M I
Fe[[ηµV − mFe

ρ
σ〈ij〉νiνj ]] and ṄC = −M I

C[[µ− mC

ρ
σ〈ij〉νiνj ]]. (13)

The quantities M I
Fe > 0 and M I

C > 0 are the interface mobilities of iron and carbon.
The newly introduced expression σ〈ij〉 denotes the trace-free or deviatoric part of the
Cauchy stress tensor σij, see Section 2.2, which is obtained by the decomposition
σij = 1

3
σkkδij + σ〈ij〉. The kinematic conditions (13) specify the interface migration

in terms of the interface velocity wν. They can be derived by evaluating the second
law of thermodynamics on the interface, see Appendix A.2.

Instead of the mole density nC, the carbon content is often expressed in terms of the
site fraction of carbon, y, defined as the ratio of sublattice sites occupied by carbon
and overall density of sublattice sites, i. e.

y :=
nC

nC + nV
=

nC

ηnFe
. (14)

2.2 The quasistatic balance of momentum

In order to determine the deformation of the iron lattice in terms of the displacement
field ui, the balance of momentum is examined. Since mechanical equilibrium is
attained much faster than chemical equilibrium, one can consider the quasistatic
case, which reads

∂σij

∂xj
= 0 in Ω. (15)

The quantity σij denotes the Cauchy stress tensor, which is related to the displace-
ment field ui by a constitutive law. A detailed description of the stress, strain and
the displacement, including the constitutive relation, is given in the next section.
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As boundary conditions we impose

σijνj = −p0ν
i on ∂Ω, (16)

where p0 is a constant outer pressure. This boundary condition refers to the pressure-
controlled case. Due to the fact that the pressure is fixed, the volume of the body
can change. Another possibility is the volume-controlled case, where a prescribed
volume V0 of the body is considered, i. e. one would impose Dirichlet boundary
conditions on the displacement ui.

The interfacial condition for σij is the following

[[σij]]νj = −2γkMν
i on I. (17)

The quantities γ > 0 and kM denote the isotropic surface tension and the mean
curvature of the interface. For the derivation of this jump condition see e. g. [2].

3 Description of the motion, stress and strain

In this section we describe the deformation of a body and we relate the displacement
field to the stresses and strains. For that purpose, a reference state is introduced,
where the body occupies the domain ΩR. The position of a material point in the
reference state is given by the coordinates X = (X1, X2, X3) ∈ ΩR. At time t
the body is deformed and covers the domain Ω(t). The position of a point in this
configuration is given by the coordinates x ∈ Ω(t). There exists a bijective mapping

xi = χi(t, Xj), (18)

which maps ΩR onto Ω(t). This mapping is called motion or deformation. With the
help of this function, the displacement field ûi and the barycentric velocity v̂i are
defined as

ûi(t, Xj) := χi(t, Xj) −X i and v̂i(t, Xj) :=
∂χi(t, Xj)

∂t
=
∂ûi(t, Xj)

∂t
. (19)

Furthermore, we introduce the displacement gradient and the deformation gradient

H ij :=
∂ûi

∂Xj
and F ij :=

∂χi

∂Xj
with J := detF ij > 0. (20)

The quantities above are expressed with respect to the reference configuration. This
description is called the Lagrangian or material description. The positivity of J
guarantees invertibility of χi(t, Xj) and one can write

X i = (χ−1)i(t, xj). (21)

The inverse of the motion is used to give a representation of the displacement and
the barycentric velocity with respect to the configuration at time t, which is known
as the Eulerian or spatial description,

ui(t, xj) := ûi(t, χ−1(t, xj)) and vi(t, xj) := v̂i(t, χ−1(t, xj)). (22)
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Analogously to (20) one defines the displacement- and deformation gradient in Eu-
lerian coordinates as

hij :=
∂ui

∂xj
and (F−1)ij :=

∂(χ−1)i

∂xj
. (23)

Measures for the strains caused by the deformation are e. g. the right Cauchy-Green
tensor Cij and its unimodular part cij, defined as

Cij := F kiF kj and cij := J− 2
3Cij. (24)

Note that there holds det(cij) = 1, thus, Cij is split into a part J−2/3, which describes
pure changes of the volume, whereas cij indicates changes of the shape of a body.

To describe the stress-strain relation, we take into consideration that deformations
of the iron lattice result from two independent effects. The first one are inelastic
deformations, which are caused by changes of the volume due to variations of the
carbon fraction y and the lower density of the developing ferrite phase. The second
effect are elastic deformations caused for example by external loadings.

One can account for these effects by introducing three states that are characterised
by y and F ij, compare also to Böhme et al. [1]. The first one is an undeformed
reference state S at reference pressure p with the coordinates (X1, X2, X3). It
consists of a single phase and is characterised by the carbon fraction y = 0 and the

deformation gradient F
ij

= δij.

The second state, denoted by S∗ with the coordinates (X1
∗ , X

2
∗ , X

3
∗ ), is reached from

the reference state at constant reference pressure p by raising the carbon fraction
to y∗ = y. Furthermore, we allow for a massive phase transition in this state. The
corresponding deformation gradient is given by F ij

∗ . The transition from S to S∗

describes the inelastic deformation.

The third state S is the actual state with the coordinates (x1, x2, x3) and the de-
formation gradient F ij (with respect to the reference configuration). It is reached
from the state S∗ by a purely elastic deformation F ij

e with no further change in y.

For the states S, S∗ and S we introduce the iron mole densities nFe, n
∗
Fe and nFe, the

mass densities

ρ = mFenFe, ρ∗ = m(y)n∗
Fe and ρ = m(y)nFe, (25)

where m(y) = mFe+mCηy denotes the mean molecular weight, and the determinants

J∗ = det(F ij
∗ ) =

ρ

ρ∗
, J = det(F ij) =

ρ

ρ
and Je = det(F ij

e ) =
ρ∗

ρ
. (26)

For the deformation gradients holds F ij = F ik
e F

kj
∗ . This is a consequence of the

chain rule applied to
xi = χi(t, Xj) = χi

e(t, χ
k
∗(t, X

j)). (27)
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The deformation gradient F ij
∗ for the state S∗ is established as follows. The reference

state S is known. The deformation from the state S to S∗ is a pure change of the
volume. Therefore, it holds

nFe

n∗
Fe

=
V∗(y)

V
, (28)

where V is the volume of the reference state and V∗(y) is the volume of the body
at the state S∗. This volume is obtained by measurements of the lattice constant
in dependence on the carbon fraction y, see for example [9]. With (25), (26) and a
linear interpolation of the data given in [9] there results

F ij
∗ = J∗(y)

1
3 δij with J∗(y) =

mFe

m(y)

V �
m

V
(1 + δ�y) in Ω�, � = α, γ, (29)

where V �
m and δ�, � = α, γ, denote the molar volume and the linear expansion coef-

ficient for the respective phase.

The constitutive equation relating the stress to the strain is given in terms of the
St. Venant-Kirchhoff law, which is formulated for the second Piola-Kirchhoff stress
tensor. We denote this tensor with respect to the state S by tij and with respect to
the state S∗ by zij . The Cauchy stress tensor σij is the same for both descriptions
and it holds

σij = J−1F ikF jltkl and σij = J−1
e F ik

e F
jl
e z

kl. (30)

Elimination of σij together with F ij = F ik
e F

kj
∗ leads to

tij = J∗F−ik
∗ F−jl

∗ zkl. (31)

Now, the constitutive relation is formulated in terms of the St. Venant-Kirchhoff
law for zij as a purely elastic deformation

zij = −pJeC
−ij
e +

1

2
K̃ijkl(Ckl

e − δkl). (32)

The tensor K̃ijkl denotes the stiffness tensor. The data for α- and γ-iron are given
e. g. by Inal et al. [8]. There is only a small difference in the elastic coefficients given
in literature for different kinds of steel (with different carbon content) and pure iron.
Therefore, we assume that K̃ijkl is independent of the carbon fraction y.

To calculate the chemical potentials, as it is described in Section 4, a formulation
for tij is necessary. Applying the transformation rule (31), we obtain the following
constitutive law for the 2nd Piola-Kirchhoff tensor

tij = −pJC−ij +
1

2
Kijkl(y)(Ckl − Ckl

∗ (y)), (33)

where
Kijkl(y) := J∗F−im

∗ F−jn
∗ F−ko

∗ F−lp
∗ K̃mnop = J∗(y)−

1
3 K̃ijkl (34)

is a modified stiffness tensor and Ckl
∗ = Fmk

∗ Fml
∗ describes the misfit strain.
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4 Determination of the free energy

In order to study the γ/α-phase transition in steel, knowledge of the free energy
density ρψ is necessary to obtain explicit expressions for the chemical potentials.
The determination of these quantities is the subject of this section. For that purpose,
we assume that the function ψ has the following representations

ψ = ψ(T, nC, nV, c
ij) = ψ̂(T, y, ρ, cij) = ψ̃(T, y, Cij). (35)

The different functions represent the dependence of the free energy on different sets
of variables, which can be converted by the relations (5), (14), (24) and (26). The
strategy to determine ψ is the following. Starting from the equation

tij = 2ρ
∂ψ̃

∂Cij
, (36)

which is a consequence of the second law of thermodynamics, see Appendix A.1 or
[1], we determine the function ψ̃(T, y, Cij) by integration of (33). This yields

ψ̃(T, y, Cij) = −p
ρ
J +

1

8ρ

(
Cij − Cij

∗ (y)
)
Kijkl

(
Ckl − Ckl

∗ (y)
)

+ K(T, y), (37)

where K(T, y) is an integration constant. This constant is obtained by a decompo-
sition of the free energy into a mechanical part ψ̃mech(T, y, Cij) and a chemical part
ψ̃chem(T, y), which does not depend on the deformation of the body, see also [3],

ψ̃(T, y, Cij) = ψ̃chem(T, y) + ψ̃mech(T, y, Cij). (38)

Such a decomposition is motivated by the fact that the chemical and the mechanical
part of the free energy are determined in different ways. The computation of the
mechanical part is based on a constitutive relation, whereas the chemical part is
obtained by thermodynamical measurements.

We define that at the state S∗ the mechanical part of the free energy ψ̃mech(T, y, Cij
∗ )

vanishes, so that ψ̃(T, y, Cij
∗ ) = ψ̃chem(T, y). Hence, the integration constant is given

by K(T, y) = ψ̃chem(T, y) + J∗(y)p/ρ and one obtains

ρψ̃mech(T, y, Cij) = p

(
J∗
J

− 1

)
+

1

8J

(
Cij − Cij

∗ (y)
)
Kijkl(y)

(
Ckl − Ckl

∗ (y)
)

(39)

with J = det(F ij) = det(Cij)1/2.

The determination of the chemical part of the free energy is based on thermody-
namical measurements. The evaluation of the iron-carbon system can be found for
example in [6] or [10]. There, ρψchem is given as

ρψchem(T, nC, nV) = nFe

[
GFeC(T )y +GFeV(T )(1 − y) − L(T )y(1 − y)

+ ηRT (y ln y + (1 − y) ln(1 − y)) +Gα
m(T )

]
=: nFef(y) (40)
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with R denoting the universal gas constant. The quantities nFe and y are related
to nC and nV by (3) and (14). The coefficients GFeC, GFeV and L are temperature
dependent functions. The part Gα

m is a magnetic contribution which only occurs in
the α-phase. These parameters are taken from [6]. The function f is introduced
as an abbreviation for the term in brackets, which only depends on y when the
temperature T is fixed.

Now, we can calculate the chemical potentials, defined as

µC :=
∂ρψ(T, nC, nV, c

ij)

∂nC
and µV :=

∂ρψ(T, nC, nV, c
ij)

∂nV
. (41)

Carrying (38), (39) and (40) into (41) one finally obtains

µC =
1

η
(f(y) + (1 − y)f ′(y))

+
1

ηρ

[
(ηmC +mFe)

(
pJ∗(y) − 1

8
(
1

3
Cij + Cij

∗ (y))Kijkl(y)(Ckl − Ckl
∗ (y))

)

+ (1 − y)m(y)

(
pJ ′

∗(y) +
1

8
(Cij − Cij

∗ (y))(K ′)ijkl(y)(Ckl − Ckl
∗ (y))

− 1

4
(C ′

∗)
ij(y)Kijkl(y)(Ckl − Ckl

∗ (y))

)]
(42)

and for the chemical potential of the vacancies

µV =
1

η
(f(y) − yf ′(y))

+
1

ηρ

[
mFe

(
pJ∗(y) − 1

8
(
1

3
Cij + Cij

∗ (y))Kijkl(y)(Ckl − Ckl
∗ (y))

)

− y m(y)

(
pJ ′

∗(y) +
1

8
(Cij − Cij

∗ (y))(K ′)ijkl(y)(Ckl − Ckl
∗ (y))

− 1

4
(C ′

∗)
ij(y)Kijkl(y)(Ckl − Ckl

∗ (y))

)]
, (43)

where the prime denotes differentiation with respect to the site fraction y.

5 A simplified model with spherical symmetry

Performing numerical simulations for the presented free boundary problem is quite
complex. It involves suitable algorithms to calculate the position of the free bound-
ary. In order to obtain numerical results for the simulation of the austenite-ferrite
phase transition, we make some assumptions to get a simplified model. First of all,
we consider a spherical-symmetric geometry. The iron grain is modelled as a sphere
with radius r0. The γ-phase forms the inner core with time dependent radius rI
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and the α-phase is an outer shell, i. e. Ωγ = (0, rI) and Ωα = (rI , r0). This is mo-
tivated by the fact that ferrite usually nucleates at grain boundaries and grows into
the austenite matrix. The radius r0 is time dependent, too. The two phases have
different densities and due to the fixed outer pressure the overall volume changes.

Furthermore, we restrict ourselves to the interface-controlled case, i. e. the bulk mo-
bility of carbon MB is infinitely large compared to the interface mobilities M I

Fe and
M I

C. Since the diffusion flux must be finite, we get from equation (9) that the gradi-
ent of the chemical potentials must be equal to zero and therefore the mole densities
nFe and nC are homogeneous in regular points. For a low mean carbon concentration
this is a well accepted assumption. If the overall carbon concentration is higher, a
diffusion-controlled transformation behaviour, where the diffusion of carbon in the
bulk becomes the rate determining process, is a more realistic description, see e. g.
[11]. Nevertheless, we consider the interface-controlled case in this study.

Concerning the mechanical equations we make the following simplifications. To be
in accordance with the spherical symmetry, we neglect the cubical anisotropy of the
iron lattice and consider an isotropic stiffness tensor with Lamé constants λ and µ,
which are obtained from the coefficients given in [8] by taking an average. Moreover,
we assume that the deformations are small so that we can replace the constitutive
law (33), relating the stress tensor to the displacement, by its linearisation in the
displacement gradient hij .

The variables for this simplified interface-controlled model are the homogeneous
carbon fractions and iron mole densities yα, yγ, nα

Fe and nγ
Fe, which do not depend

on the space variable r, but differ in the two phases, and the radii rI and r0. In the
following a set of equations to compute the temporal evolution of these variables is
derived and numerical results are presented.

5.1 The balances of the mole densities

The balance laws for the mole densities in the spherical-symmetric case are the
following

∂nFe

∂t
+

1

r2

∂r2nFevFe

∂r
= 0 and

∂nC

∂t
+

1

r2

∂r2nCvC

∂r
= 0. (44)

On the interface I, which is given by the radius rI , we have by (10)

nα
Fe(v

α
Fe − ṙI) = nγ

Fe(v
γ
Fe − ṙI) and nα

C(vα
C − ṙI) = nγ

C(vγ
C − ṙI). (45)

Derivatives with respect to time t are denoted by a dot. The boundary conditions
for the partial velocities of iron and carbon are

lim
r→0

r2va = 0 and va = ṙ0 at r = r0, a ∈ {Fe,C}. (46)

Since the mole densities are homogeneous in Ωα and Ωγ, the partial velocities can be
explicitly determined using the conservation laws (44). One obtains for the domain
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Ωγ by applying the boundary condition (46)1 for both constituents

vγ
a = − ṅγ

a

3nγ
a
r, a ∈ {Fe,C}, (47)

whereas in Ωα we have with (46)2

vα
a = − ṅα

a

3nα
a

r3 − r3
0

r2
+ ṙ0

r2
0

r2
, a ∈ {Fe,C}. (48)

In the homogeneous case the jump conditions (45) together with the equations for
the partial velocities can be integrated with respect to time. One obtains global
conservation laws for the mole densities of iron and carbon

nγ
Fer

3
I + nα

Fe(r
3
0 − r3

I ) = c1 and yγnγ
Fer

3
I + 3yαnα

Fe(r
3
0 − r3

I) = c2, (49)

where the site fractions y, defined in (14), are used instead of nC. The constants
c1 and c2 can be determined by the initial data at time t0. Under consideration of
(49)1, equation (49)2 can be simplified as follows

(yγ − 3yα)nγ
Fer

3
I + 3yαc1 = c2. (50)

Regarding the kinematic conditions (13), a further simplification is introduced. We
assume that the motion of the interface is only determined by the transformation
of the iron lattice from the fcc to the bcc structure. The rearrangement of carbon
atoms at the interface is supposed to occur instantaneously, i. e. M I

C �M I
Fe. Thus,

we set M I
C = ∞. Since the flux of carbon atoms through the interface ṄC is finite,

the second factor in (13)2 must be zero. The kinematic conditions reduce to

1

3
ṅγ

FerI + nγ
FeṙI = M I

Fe[[ηµV − mFe

ρ
σ〈rr〉]] and [[µ− mC

ρ
σ〈rr〉]] = 0, (51)

i. e. the chemical potential µ is always in equilibrium and the interface migration is
solely determined by (51)1.

Since there is no diffusion of iron atoms, the mole density nFe is directly related
to the mechanical displacement field. The computation of the displacement for the
simplified model is considered in the next section.

5.2 The linearised mechanical subproblem in spherical co-
ordinates

Before we analyse the balance of momentum in spherical coordinates, the stress-
strain relation is linearised with respect to the displacement gradient hij. It is
assumed that the deformations are small such that higher order terms in the dis-
placement gradient can be neglected. By equations (19), (22) and (23) there holds

(F−1)ij = δij − hij and (C−1)ij = δij − hij − hji + hkihkj . (52)

12



The inverse matrices up to linear order are given by

F ij = δij + hij + O(
∥∥hij

∥∥2
) and Cij = δij + hij + hji + O(

∥∥hij
∥∥2

). (53)

For the Jacobian we have J−1 = 1 − hkk + O(‖hij‖2
). Furthermore, for the inter-

mediate state S∗ a function h∗(y), which is supposed to be of the same order as the
deformation gradient, is introduced such that

(F−1
∗ )ij = (1 − h∗)δij and J−1

∗ = (1 − h∗)3. (54)

Now we obtain from

σij = J−1F imF jntmn and tij = −pJ(C−1)ij +
1

2
Kijkl(Ckl − Ckl

∗ ) (55)

the following representation for the stress tensor within the linear order of approx-
imation

σij = −p+
1

2
K̃ijkl(hkl + hlk − 2h∗δkl). (56)

This can be interpreted in the sense of the classical Hooke law with a misfit strain,
represented by h∗(y). Neglecting the cubical anisotropy of the iron lattice, the
stiffness tensor K̃ijkl is given by

K̃ijkl = λδijδkl + µ(δikδjl + δilδjk), (57)

where λ and µ are the Lamé constants. Then, the stress tensor can be written as

σij = −p+ λhkkδij + µ(hij + hji) − (3λ+ 2µ)h∗δij. (58)

Now we rewrite the balance of momentum in spherical coordinates (r, φ, θ). Due
to the assumed spherical symmetry, the displacement field can be simplified to
(ur, uφ, uθ) = (u(r), 0, 0) and for the displacement gradient we have

hrr =
∂u

∂r
, hφφ = hθθ =

u

r
and hij = 0 otherwise. (59)

From (58) one obtains that σφφ = σθθ and σrφ = σrθ = σφθ = 0. The nonzero
components of the stress tensor are

σrr = −p+ λ(hrr + 2hφφ) + 2µhrr − (3λ+ 2µ)h∗,

σφφ = −p+ λ(hrr + 2hφφ) + 2µhφφ − (3λ+ 2µ)h∗.
(60)

The balance of momentum (15) reduces to the following equation, see e. g. [5],

∂σrr

∂r
+ 2

σrr − σφφ

r
= 0 for r ∈ Ω (61)

with the jump and boundary conditions

[[σrr(rI)]] = −2γ

rI
and σrr(r0) = −p0. (62)
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Furthermore, we impose the following conditions on the displacement u(r) (regular-
ity at r = 0 and continuity at the interface)

lim
r→0

u(r) = 0 and [[u(rI)]] = 0. (63)

Inserting the representation for the stress tensor (60) into equation (61), one ob-
tains with hrr = u′(r) and hθθ = u(r)/r an ordinary differential equation for the
displacement u(r) that is given by

u′′ +
2

r

(
u′ − u

r

)
= 0. (64)

Note that due to the assumed homogeneity of the carbon fractions yα and yγ the
function h∗ does not depend on r. With the conditions (63) on u(r), the solution to
this ODE is the following

u(r) =

{
(a+ b)r for r ∈ [0, rI)

ar + b
r3
I

r2 for r ∈ [rI , r0].
(65)

The constants a and b, which can depend on rI , r0 as well as on the homogeneous
carbon fractions yα and yγ, are defined via the boundary conditions (62). One
obtains explicitly

a =
p− p0

3Kα
+ h∗α(yα) +

4µα

3Kα

r3
I

r3
0

b,

b = c−1
0

(
2γ

rI

− 3Kγ(h
∗
α(yα) − h∗γ(y

γ)) + κ(p− p0)

)
.

(66)

As an abbreviation we introduced the bulk moduli K� = λ� + 2/3µ�, � = α, γ, for
the respective phases, κ = 1 −Kγ/Kα and c0 = 3Kγ + 4µα(1 − κ(rI/r0)

3).

Finally, we have an explicit representation for the displacement in dependence on
yα, yγ, rI and r0. To relate the displacement to the mole density of iron, recall
relation (26)2. Within the linear order of approximation holds

J−1 = 1 − hkk, where J−1 =
ρ

ρ
=
m(y)nFe

mFenFe
, (67)

such that we obtain
nFe

nFe

=
mFe

m(y)
(1 − hkk). (68)

The chemical potentials (41) and (42) can be written within the same order of
approximation as

µC =
1

η
(f + (1 − y)f ′) +

1

ηρ

[
(ηmC +mFe)

(
pJ∗ −K(hkk − 3h∗)

)
+ (1 − y)m(y)J ′

∗
(
p−K(hkk − 3h∗)

) ]
(69)
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and

µV =
1

η
(f − yf ′) +

1

ηρ

[
mFe

(
pJ∗ −K(hkk − 3h∗)

)
− ym(y)J ′

∗
(
p−K(hkk − 3h∗)

) ]
. (70)

For the spherical symmetric problem presented here, we obtain for the trace of the
displacement gradient hkk and for the component σ〈rr〉 of the deviatoric stress, which
is needed in (51),

hkk =

{
3(a+ b) in Ωγ

3a in Ωα

and σ〈rr〉 =

{
0 in Ωγ

−4µα b in Ωα

(71)

with the constants a, b defined in (66) and µα denoting the shear modulus of α-iron.
Thus, the mole densities of iron, nα

Fe and nγ
Fe, and the chemical potentials can be

expressed as functions depending on yα, yγ, rI and r0. Together with (49)1, (50) and
(51) we have derived a system of equations to determine the temporal evolution of
these variables.

5.3 A numerical example

In this section, simulation results for the simplified interface-controlled model are
presented. For the numerical treatment dimensionless quantities are introduced,
which are given by the following relations

t̂ :=
t

τ
, r̂ :=

r

r0

, n̂Fe :=
nFe

nFe

, p̂ :=
p− p

p
and µ̂ :=

nFe

p
µ. (72)

The time scale is chosen as τ = 35 s, for the length scale we use a typical austenite
grain size of r0 = 25µm. As reference state we choose a system consisting of pure
γ-iron, containing no carbon. Therefore, we set nFe = (V γ

m)−1, where V γ
m is the molar

volume of austenite. The values for the physical quantities used in the simulation
are given in Table 1.

Data for the interface mobility M I
Fe can be found e. g. in [7]. There, the authors

review different values for the mobility of α-γ interfaces in Fe-C alloys. We take the
following value, which, according to the authors, is used successfully in other studies

MHH = 0.058 exp

(
−140 kJ mol−1

RT

)
m mol

J s
. (73)

To match the interface mobility M I
Fe to the model used in [7], we choose M I

Fe =
nFeMHH. Introducing the scales (72), one obtains a nondimensional interface mobil-
ity given by

M̂ I =
τp

n2
Fer0

M I
Fe. (74)
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ferrite (α-iron) austenite (γ-iron) unit

bulk modulus K 168.9 148.8 109 Pa

shear modulus µ 83.9 75.3 109 Pa

molar volume Vm 7.31 7.24 10−6 m3mol−1

expansion coefficient δ 2.637 0.588

molar masses mFe 55.847 g mol−1

mC 12.011 g mol−1

surface tension γ 0.5 N m−1

pressures p0, p 105 Pa

gas constant R 8.3144 J mol−1K−1

Table 1: Physical parameters used for the simulations

The results presented in this section are obtained using the software package Math-
ematica. The simulations are done for a fixed temperature of T = 1050 K. The initial
conditions for the carbon fractions yα and yγ are chosen such that a mean carbon
concentration of 0.2 mass-% results. As the initial condition for the nondimensional
outer radius we use r0 = 1. Since nucleation of a new phase is not considered,
we have to start with a positive ferrite fraction and therefore the initial interfacial
radius is set to rI = 0.99.

Figure 1 shows the evolution of the site fractions of carbon scaled with the site ratio,
ηy, in the γ- and α-phase. The interfacial radius is depicted in Figure 2.

0 0.2 0.4 0.6 0.8 1
t

0.01

0.012

0.014

0.016

0.018
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0.022

Ηy

0 0.2 0.4 0.6 0.8 1
t

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

0.00022

Ηy

Figure 1: Site fraction ηy in austenite (left) and ferrite (right).

The dashed lines refer to the case where mechanical effects are neglected. One
can see a difference in the equilibrium states, which results from the additional
mechanical contributions to the chemical potentials µC and µV. Furthermore, one
recognises an influence on the temporal evolution.

In the case where mechanical effects are neglected, the equilibrium concentrations
are independent of the geometry of the grain and the overall carbon content. In
contrast to that, the attained equilibria depicted in Figure 1 and 2 depend on the
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Figure 2: Interfacial radius rI .

mean carbon concentration and the geometric assumptions for the iron grain made
in this section. These properties strongly influence the displacement field, that the
chemical potentials depend on and therefore affect the equilibrium states.

The evolution of the outer radius r0 and of the mass densities ρα and ργ is shown
in Figure 3. The evolution of these variables results from the eigenstrains caused by
the volumetric expansions. In the model neglecting mechanical effects the volume
and therefore the radius r0 is constant.
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0.992
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0.995

0.996

Ρ

ργ
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Figure 3: Radius of the grain r0 and mass densities in ferrite ρα and austenite ργ .

A Evaluation of the 2nd law of thermodynamics

A.1 The entropy principle in the bulk

The second law of thermodynamics is a basic physical principle. In this work it is
used to derive constitutive functions. It states the existence of a pair of quantities:
the entropy density ρs and the entropy flux φk. They have to satisfy the following
balance equation

∂ρs

∂t
+

∂

∂xk
(ρsvk + φk) = ξ and ξ ≥ 0, (75)

where ξ is called the entropy production. The non-negativity of ξ represents the
second law of thermodynamics and must hold for every thermodynamic process
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described by the governing PDE system. The equilibrium is defined by ξ = 0. A
detailed description of the entropy principle can be found e. g. in [1] or [2]. From [1]
we take the following representation for the entropy production

ξ =
∂

∂xk

(
φk − qk

T
+

1

T
(jk

CµC + jk
VµV)

)
−

(
jk
C

∂µC/T

∂xk
+ jk

V

∂µV/T

∂xk

)

+qk∂1/T

∂xk
+
∂vm

∂xk

1

T

[
σkm − J−2/3(FmiF kj + F kiFmj)

∂ρψ

∂cij

+δmk

(
−ρψ + nCµC + nVµV +

2

3
J−2/3Cij ∂ρψ

∂cij

) ]
≥ 0,

(76)

where qk denotes the heat flux. The remaining quantities are as introduced in the
previous sections. The constitutive functions, relating e. g. the diffusion flux to the
variables, need to be constructed in such a way that the 2nd law of thermodynamics
in terms of the inequality (76) holds for any solution of the PDE system.

The entropy flux in the case of a multi component mixture is defined as

φk :=
qk

T
− 1

T
(jk

CµC + jk
VµV) (77)

and therefore the first term vanishes. The whole bracket in the last term of (76)
must vanish, too. Otherwise it is possible to violate the inequality. This gives the
relations

ρψ + p = nCµC + nVµV, p := −1

3
σkk = ρ2∂ψ̂

∂ρ
and tij = 2ρ

∂ψ̃

∂Cij
. (78)

Equation (78)1 is known as the Gibbs-Duhem equation. Again, we refer to [1] for a
derivation of (78). The remaining terms in (76) have the form flux × driving force.
To ensure that the entropy production is nonnegative one can use the following
ansatz for the diffusion flux

jk
C = −MB ∂

∂xk

(
µC − ηmC +mFe

mFe

µV

)
, (79)

where the identities (7) are used. The constant MB > 0 denotes the bulk mobility of
carbon. Since we restrict ourselves to the isothermal case, the temperature gradients
in (76) vanish and the inequality ξ ≥ 0 holds for every thermodynamic process.

A.2 The entropy principle on the interface

The entropy inequality must be satisfied on the interface I, too. The interfacial
entropy production ξS is given for example in [2] as

TξS = −ρ(vν −wν)[[ψ+
1

2
(v−w)2]] + [[σij(vi −wi)]]νj − [[µCj

ν
C +µVj

ν
V]] ≥ 0. (80)
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The term (v−w)2/2 refers to the kinetic energy of the interface, which is supposed to
be small and can be neglected. We use the inequality (80) to formulate constitutive
relations for the material mole fluxes ṄFe and ṄC similar to (79) for the diffusion flux.
To this end, we apply the Gibbs-Duhem equation (78)1, introduce the decomposition
σij = σ〈ij〉 − pδij , the definition of the diffusion fluxes (6) and of the material mole
fluxes (11), the side condition (3) and the relation mFeṄFe +mCṄC = ρ(vν − wν),
which is a consequence of (5) and (11), and obtain

− ṄFe[[ηµV − mFe

ρ
σ〈ij〉νiνj ]] − ṄC[[µC − µV − mC

ρ
σ〈ij〉νiνj ]] ≥ 0. (81)

Similar to the entropy principle in the bulk, this inequality has the form of a sum of
terms, which can be identified by flux×driving force. The inequality can be satisfied
if we set

ṄFe = −M I
Fe[[ηµV − mFe

ρ
σ〈ij〉νiνj ]] and ṄC = −M I

C[[µ− mC

ρ
σ〈ij〉νiνj ]] (82)

with positive interface mobilities M I
Fe,M

I
C for iron and carbon and the chemical

potential µ := µC − µV.
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