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Abstract 
The paper considers the hedging of contingent claims on assets 

with stochastic volatilities when the asset price is only observable at 
discrete time instants. Explicit formulae are given for risk-minimizing 
hedging strategies. 

1 Introduction 
In most practical cases a trader has to base the hedging of contingent cla-
ims on discrete observations of a risky asset whose price is characterized by 
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continuous-time dynamics. In this paper we consider the hedging of a con-
tingent claim on a continuous-time asset observable only at discrete times. 
Additionally, this asset may have a stochastic volatility. 

Discrete-time observations cannot be considered in the framework of [2]; 
in fact they induce an additional risk. By a modification of the methods 
of Follmer and his coauthors [2] [3], we shall prove a result that allows the 
determination of a risk-minimizing hedging strategy also under discrete-time 
observations. 

2 Model and Main Result 
Let the stochastic process S = {St, 0 ::::; t ::::; T} describe the price of a risky 
asset (e.g. a stock or a currency) as square integrable solution of the Ito 
stochastic differential equation 

0 ::::; t ::::; T, (1) 

with initial condition S0 and where W = {Wt, 0 ::::; t ::::; T} is a given Wiener 
process. For simplicity we assume zero interest rate. The volatility O' = 
{ O't, 0 ::::; t ::::; T} is supposed to form a positive, cadlag, square integrable 
semi-martingale independent of W. At this point we do not further specify 
the stochastic volatility, but one may think of O' as proposed e.g. in Hull 
and White [8] or Hofmann, Platen, Schweizer [7]. At the end of the paper 
we shall discuss an example, where O' represents a discrete-time, finite-state, 
inhomogeneous Markov chain. We remark that we interpret our asset price 
evolution in a risk-neutral world ( see [5], [6]) which could in particular be the 
one corresponding to the minimal equivalent martingale measure proposed 
in [2] (see also Hofmann, Platen, Schweizer [7]). Besides tlJ_e risky asset S, 
we assume that there is a bond with constant unit value. 

We denote the underlying probability space by (n, :F, :F, P), where :F = 
(:Ft)o9~T is the filtration generated by the flow of O'-algebras 

fort E [O, T]. We also set :F =FT. The proces~ S = {St, 0 ::::; t ::::; T} is thus 
an (:F, P)-martingale. 
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Now let us consider the problem of hedging a contingent claim of the form 
H = f (ST) on the price of the risky asset at maturity T, which is traded at 
time t = 0. 

A dynamical trading strategy </; = {<Pt = (et, 17t), 0 ::; t ::; T} is a strategy 
to build a portfolio consisting at time t of the amount et of the risky asset 
and the amount 77t of the bond. Here< is assumed to be :F -predictable and 
77 is :F-adapted. 

Given a trading strategy </;, we shall define its value process V ( </>) = 
{Vt(</>), 0::; t::; T} by 

Vt(<P) = etst + 17t · 1 (2) 
and its cost process C(</;) = {Ct(</>),O ~ t::; T} (see [3]) by 

Ct(</>)= Vt(</>) - lat esdSs. (3) 

Given a contingent claim Hat maturity T, we shall say that</> hedges against 
H if VT(</>)= H. 

The problem that we address in this paper is that of determining a sui-
table trading strategy that hedges against H, when the trader does not have 
full information about the underlying price process. We are going to model 
lack of information by working with a subfiltration to which S is possibly 
not adapted. The latter is the case if the asset is observed only at discrete 
times. 

A right-continuous filtration A= (At, 0 ::; t ~ T) with At ~:Ft, t E [O, T] 
will be called a subfiltration if Ao measures S0 and AT measures ST. 

Examples for subfiltrations are easily obtained from the o--algebras gene-
rated by the observations Srn at some given time instants 0 = To < T1 < ... < 
TT= T, which could represent e.g., daily stock data excluding weekends. We 
remark that such subfiltrations do not satisfy the assumptions in [2] since 
the asset Sis not adapted with respect to them. 

Given a subfiltration A, a trading strategy ¢ = { cPt = (et, 17t), 0 ::; t ::; T} 
will be called A-admissible if it hedges against H, 77 is A-adapted and < is 
A-predictable with 

(4) 

We denote by 1/i(A) the set of A -admissible trading strategies. 
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A trading strategy ¢ will be called A-mean self financing if it is A-
admissible and its conditional cost process 

B(</>,A) = {Bt(</>,A) = E{Ct(<!>) I At},O ~ t ~ T} (5) 

is an (A, P)-martingale. 
We can now adapt a lemma from [11] 

Lemma 1 There exists a bijection between the A-predictable processes e = 
{et, 0 ~ t ~ T} satisfying (4) and the A-mean self-financing strategies </> = 
{<Pt = (et, 77t), 0 ~ t ~ T} by putting 

(6) 

Proof It is enough to note that with the choice (6) we obtain from (5), (3) 
and (2) the conditional cost 

Bt(</>,A) E {Vt(¢) - fat esdSs I At} 

E { H - foT esdSs I At}= E{BT(</>,A) I At} 

as an (A, P)-martingale. 

Given a sub-filtration A and a trading strategy ¢ E 'lf(A); we recall from 
[3] the notion of remaining risk process R( ¢,A) = {Rt(</>, A), 0 ~ t ~ T} 
given by 

Rt(</>, A)= E{( CT(¢) - Ct( ¢))2 I At}· (7) 
A trading strategy ¢* E '!f(A) will be called A-risk-minimizing if for all 
¢ E '!f(A) and all t E [O, T] for which St is Armeasurable 

(8) 

In this paper we address the following 
Problem. Given any subfiltration A, determine an A-mean self financing 

and A-risk-minimizing strategy ¢* that hedges against H, together with its 
value process Vt(¢*). 
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To obtain an answer to this problem take into account that under our 
filtration :F, using a well known decomposition (see [10]) the contingent claim 
H can be represented in the form 

H = E{H I :Ft}+ lT µsdSs, (9) 

where µ = {µn t ~ r ~ T} is :F-predictable. 

Theorem 1 Given a subfiltration A and a contingent claim H with E{H2 I 
Ao} < oo we consider the A-predictable processµ* = {µ;, 0 ~ t ~ T} with 

* E{µtaLSf I At} ( ) 
µt = E{aLSt I At} · 10 

Then <P = (e,7/) E 'ljJ(A) is an A-risk-minimizing and A-mean self financing 
strategy that hedges against H if and only if et = µ; with equality holding in 
L2( dP x d(S)) and 'T/t is choosen according to {6) for all t E [O, T]. Further-
more, we have v0 =Vo(</>)= E{H I Ao}. 
Proof Given any <P E 'ljJ(A) we can compute the remaining risk for times t 
for which St is Armeasurable in the form 

E{(Cr(<P) - Ct(</>)) 2 I At} 

E { ( H - E{ H I A,} - { l,dS,) 2 I A,} 
E { (f (µ., -l,)dS, +o,)' I Al 

with 
()t = E{H I :Ft} - E{H I At} 

We get 

Zt : Rt(</>, A) - E{ e~ I At} 

E { ({(µ., - e.)' cr;_s;ds I A,} 
E { lT E{(µ" - µ:)2CT;_s; I As}ds I At} + 

E { lT E{[2(µs - µ:)(µ: - es)+(µ:·_ es)2]CT;_s; I As}ds I At} 
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Finally, we obtain using (10) 

Taking into account that (µ: - es) 2a;_s; is nonnegative it then follows that 
Rt(</>, A) is minimized for all t E [O, T] for which St is At-measurable if and 
only if 

foT E{(µ: - es)2a;_s; I As}ds = 0, 

which corresponds to the statement of the theorem recalling that by (1) 

d(S)t = a;_s;dt. 
The above proof uses mainly the fact that the stochastic integral J(µs -

µ:)dSs is orthogonal to other stochastic integrals f a 8 dSs where as is A-
adapted.Process µ* appears in this way as a conditional expectation of µ 
with respect to dP x d(S) . 

3 Computation of a risk-minimizing strategy 
under discrete observation 

To get an explicit example we now assume the volatility a to be a discrete-
time finite-state inhomogeneous and right-continuous Markov chain which is 
sometimes suggested by the analysis of historical volatilities as in Galai [4]. 
We shall assume that the jump times are the points Tn, n = 0, 1, ... , N, at 
which we also observe the asset price S.r,,,· Thus our subfiltration is 

We denote by J = { ai, ... , ak} the finite state space of the Markov chain a 
and by 

Pr.,.(j, i) = P{ O"r,,,+ 1 = aj I O"r.,. = ai} 

its transition probabilities at time Tn. Then we obtain from Theorem 1 
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for t E ( Tn, Tn+iJ, n = 1, ... , N - 1, where µt is Ft-measurable and follows 
from a Black-Scholes type formula as described in Hull, White [8]. 

In principle there is no problem to compute explicitly e: in the above 
case. We omit these formulae. They depend on the conditional probabilities 
P( Urn = aj I F;J fort E ( Tn, Tn+1] and j = 1, ... , k. These probabilities can 
be estimated by filtering techniques, see e.g. Di Masi, Runggaldier [1 J. 

In many cases, when one finds another specific structure for the volatility, 
one can use stochastic numerical methods as described in Kloeden, Platen [9] 
or used in Hofmann, Platen, Schweizer [7] to compute the hedging strategy 
and the option price. 

Aknowledgment The authors would like to thank the referees for valu-
able suggestions and remarks. 
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