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AbstratA model for the evolution of damage that allows for omplete disintegrationis addressed. Small strains and a linear response funtion are assumed. The��ow rule� for the damage parameter is rate-independent. The stored energyinvolves the gradient of the damage variable, whih determines an internallength-sale. Quasi-stati fully rate-independent evolution is onsidered aswell as rate-dependent evolution inluding visous/inertial e�ets. Illustrative2-dimensional omputer simulations are presented, too.1 IntrodutionDamage, as a speial sort of inelasti response of solid materials, results from mi-rostrutural hanges under mehanial load. Routine omputational simulationsbased on various models are widely performed in engineering, although mostly with-out being supported by rigorous mathematial and numerial analysis.We will onsider damage as a rate-independent proess. This is often, althoughnot always, an appropriate onept and has appliations in a variety of industri-ally important materials, espeially to onrete [Fre02, FrN95, Ort87℄, �lled poly-mers [DPO94℄, or �lled rubbers [GoS91, Mie95, MiK00℄. Being rate-independent,it is neessarily an ativated proess, i.e. to trigger a damage the mehanial stressmust ahieve a ertain ativation threshold. The mathematial di�ulty is re�etedin the fat that only loal-in-time existene for a simpli�ed salar model or for arate-dependent 0- or 1-dimensional model has been obtained, see [BoS04, DMT01,FKNS98, FKS99℄. The 3-dimensional situation was investigated in [FrG06, MiR06,MiRo℄ with the fous to inomplete damage. The main fous of this paper is onomplete damage, i.e. the material an ompletely disintegrate and its displaementompletely loses any sense on suh regions. We show how mathematial modelingan be used to derive well-posed models by suppressing the use of the displaement
u and formulating everything in terms of stresses and energies. In Setions 2-3 wewill neglet all rate dependent proesses like visosity and inertia so that the damageproess is quasistati and fully rate-independent. Eventually, in Setions 4, we willombine a rate-independent damage proess with visosity and inertia whih are, ofourse, rate-dependent.We onsider an anisotropi material but on�ne ourselves to a materials with linearelasti response and an isotropi damage using only one salar damage parameter un-der small strains (as in [BBT01, BoS04, Fre02, FrN96℄). Moreover, we use gradient-of-damage theory [DBH96, Fre02, FrN95, FrN96, LoA99, Mau92, PMG04, StH03℄1



expressing a ertain nonloality in the sense that damage of a partiular spot is tosome extent in�uened by its surrounding, leading to possible hardening or softening-like e�ets, and introduing a ertain internal length sale eventually preventingdamage mirostruture development. From the mathematial viewpoint, the dam-age gradient has a ompatifying harater and opens possibilities for the suessfulanalysis of the model. Anyhow, some investigations are still possible without gra-dient of damage, as shown in [FrG06℄ for inomplete damage, leading to a possiblemirostruture in the damage pro�le.The goal of this artile is to survey and further develop basi mathematial toolsfoused on omplete damage.2 Complete quasistati damage at small strainsWe will onsider spei� stored energy ϕ quadrati in terms of small-strain tensor e,linear in terms of salar damage parameter z, and onvex in terms of a gradient ofthe damage g:
ϕ(e, z, g) =

1

2
zCe : e +

κ

p
|g|p + δ[0,+∞)(z), (1)where C ∈ Rd×d×d×d is a positive-de�nite elastiity tensor satisfying Cijkl = Cjikl =

Cklij, d ∈ N denotes the onsidered spatial dimension, and κ > 0 is a so-alledfator of in�uene, and δ[0,+∞) is the indiator funtion of the interval [0, +∞),i.e. δ[0,+∞)(z) = 0 for z ≥ 0 while δ[0,+∞)(z) = +∞ otherwise. In this setion, weonsider the �rst-order gradient of the damage pro�le ζ , hene we put ∇ζ(t, x) inplae of the variable g ∈ Rd. Another ingredient of the damage-evolution model isa spei� dissipated energy
̺(ż) =

{

−a ż if ż ≤ 0,
+∞ elsewhere. (2)where a > 0 determines the phenomenology how muh energy (per d-dimensional�volume�) is dissipated by aomplishing the damage proess, i.e. by dereasing zfrom 1 to 0. The value +∞ re�ets that we onsider damage as a unidiretionalproess, i.e. damage an only develop, but the material an never heal. Note that ̺ isdegree-1 homogeneous, whih is related with the intended rate-independent evolutionof the damage proess. Simultaneously, a is also ativation threshold determiningthe level of the �inelasti� driving fore σi := ϕ′

z(e, z, g) − divϕ′
g(e, z, g) (with thephysial dimension as stress) that triggers the damage proess.As we want to fous on omplete damage where the material an ompletely disin-tegrate, in the quasi-stati ase we annot have loading by dead load as e.g. grav-ity load. Thus we will onsider a �hard-devie� loading by time-varying Dirihletboundary onditions but zero bulk fores. Considering the �elasti� stress tensor2



σe := ϕ′
e(e, z, g) that should be in quasistati equilibrium. Altogether formally weonsider the problem

div
(

σe

)

= 0, σe := ϕ′
e(e(u), ζ,∇ζ) = ζCe(u), e(u) =

(∇u)⊤+∇u

2
, (3a)

∂̺
(∂ζ

∂t

)

+ σi + σr ∋ 0, σr ∈ N[0,+∞)(ζ),

σi := ϕ′
z(e(u), ζ,∇ζ)− divϕ′

g(e(u), ζ,∇ζ)

=
1

2
Ce(u) : e(u) − div(κ|∇ζ |p−2∇ζ), (3b)where ∂̺ denotes the subdi�erential of the onvex funtion ̺. We also denoted σr a�reation fore� to the onstraint 0 ≤ ζ , and N[0,+∞) = ∂δ[0,+∞) denotes the normalone. In fat, as the evolution of ζ is unidiretional (here non-inreasing in time)and ζ will be presribed at the beginning, see (9) below, it always holds 0 ≤ ζ(t, x) ≤

ζ0(x). Usually ζ0 = 1 is onsidered so even ζ ∈ [0, 1] a.e. on Q := (0, T ) × Ω.This is indeed to be understood only formally beause in the ompletely damagedpart ζ = 0 and displaements u as well as strain e(u) lose any sense.Therefore, we will also onsider the regularized stored energy
ϕε(e, z, g) =

1

2
(z+ε)Ce : e +

κ

p
|g|p + δ[0,+∞)(z), (4)and then the regularized problem

div
(

σe

)

= 0, σe = (ζ+ε)Ce(u), (5a)
∂̺

(∂ζ

∂t

)

+ σi + σr ∋ 0, σr ∈ N[0,+∞)(ζ),

σi =
1

2
Ce(u) : e(u) − div(κ|∇ζ |p−2∇ζ). (5b)As we have the displaement well de�ned if ε > 0, we an easily onsider the Dirihletboundary onditions

u|Γ(t, x) = w(t, x) (6)where Γ ⊂ ∂Ω is a part of the boundary of Ω where the hard-devie loading isapplied. For simpliity, the remaining boundary onditions are onsidered as homo-geneous Neumann one:
Ce(u)ν = 0 on ∂Ω\Γ and κ|∇ζ |p−2 ∂ζ

∂ν
= 0 on ∂Ω, (7)where ν denotes the outer unit normal to the boundary ∂Ω of Ω. Then we de�nethe Gibbs' stored energy

Gε(t, u, ζ) :=











1

2
(ζ+ε)Ce(u) : e(u) +

κ

p
|∇ζ |p if u|Γ = w(t, ·) andif 0 ≤ ζ a.e. on Ω,

+∞ elsewhere, (8)3



We still presribe an initial ondition ζ0 for the damage pro�le:
ζ(0) = ζ0. (9)By the de�nition of the subdi�erential ∂̺(ż) = {σ∈R; ∀z̃∈R : ̺(ż) + (z̃−ż)σ ≤

̺(z̃)}, the inlusion (5b) an equivalently be written as a variational inequality
∀z̃ : ̺

(∂ζ

∂t

)

≤ ̺(z̃) +
(

z̃ − ∂ζ

∂t

)

(

σi + σr

) (10)for a.a. (t, x) ∈ Q := (0, T ) × Ω, where Ω ⊂ R
d is a onsidered domain oupied bythe body and T > 0 a �xed time horizon. This ould be used for a de�nition of aweak solution.Here, however, we an use homogeneity of ̺ to formulate a more suitable oneptof so-alled energeti solution. By (2), we have

σi + σr ∈ ∂̺
(∂z

∂t

)

⊂ ∂̺(0) = [−a, +∞). (11)By the de�nition of the subdi�erential ∂̺(0) and properties of ̺, this means 0 =
̺(0) ≤ ̺(z̃) − (σi + σr)z̃ for any z̃ ∈ R. Written for z̃ − z instead of z̃, we have
0 ≤ ̺(z̃−z)+(σi+σr)(z̃−z). Further, by onvexity of ϕε(e, ·, ·), we have ϕε(e, z, g) ≤
ϕε(e, z̃, g̃)− ξ1(z̃−z) − ξ2 · (g̃−g) for any (ξ1, ξ2) ∈ ∂(z,g)ϕε(e, z, g). In partiular, wewill use it for ξ1 = 1

2
Ce : e + σr and ξ2 = (κ|∇ζ |p−2∇ζ). Altogether, substituting

e = e(u), g = ∇ζ(x) and z = ζ(x) we have
∫

Ω

ϕε

(

e(u(t)), ζ(t),∇ζ(t)
)

dx ≤
∫

Ω

ϕε

(

e(u(t)), ζ̃,∇ζ̃
)

− (σi+σr)
(

ζ̃−ζ(t)
)

dx

≤
∫

Ω

ϕε

(

e(u(t)), ζ̃,∇ζ̃
)

+ ̺
(

ζ̃−ζ(t)
)

dx

∀0 ≤ ζ̃∈W 1,p(Ω). (12)If ζ(t) satis�es (12), we say that ζ(t) is partially stable at t. Summing (5b) tested by
∂ζ
∂t

with (5a) tested by ∂(u−w)
∂t

, using −(σi+σr)
∂ζ
∂t

≥ ̺(∂ζ
∂t

) for any −(σi+σr) ∈ ∂̺(∂ζ
∂t

),integrating it over the time interval [0, T ], and applying by-part integration in time,we obtain formally the Gibbs-type energy balane
Gε

(

T, u(T ), ζ(T )
)

+ Var̺(ζ ; 0, T ) ≤ Gε

(

0, u(0), ζ(0)
)

+

∫ T

0

∫

Ω

σe :e
(∂w

∂t

)

dx dt (13)where w means an extension of w from (6) onto the whole Ω and the variation Var̺of ζ with respet to ̺ (i.e. total dissipation of energy within the damage proess) is,in view of (2), given by a simple formula
Var̺(ζ ; t1, t2) =







a

∫

Ω

ζ(t1, x)−ζ(t2, x) dx if ζ(·, x) is nondereasingon [t1, t2] for a.a. x ∈ Ω,
+∞ otherwise.4



Let us denote by �B� and �BV� the Banah spae of everywhere de�ned boundedmeasurable and bounded-variation funtions, respetively. Moreover, let us abbre-viate I := (0, T ), Ī := [0, T ], Q := I × Ω, and Σ := I × Γ. It is important that, as
ϕ(e, ·, ·) is onvex, (13) together with the partial stability (12) allows us to derivebakwards (10). This authorizes us to introdue a de�nition of a solution:De�nition 2.1 (Weak/energeti solution.) We all (uε, ζε) with uε ∈
B(Ī; W 1,2(Ω; Rd)) and ζε ∈ B(Ī; W 1,p(Ω; Rd)) ∩ BV(Ī; L1(Ω)) a weak/energeti so-lution to the original problem (5) with the initial ondition (9) and the boundaryondition (6)-(7) if(i) the partial stability (12) holds for all t ∈ [0, T ], i.e.

∫

Ω

ϕε

(

e(uε(t)), ζε(t),∇ζε(t)
)

dx ≤
∫

Ω

ϕε

(

e(uε(t)), ζ̃,∇ζ̃
)

+ ̺
(

ζ̃−ζε(t)
)

dx

∀0 ≤ ζ̃∈W 1,p(Ω). (14)(ii) the energy inequality (13) holds with (uε, ζε) in plae of (u, ζ),(iii) (5a) is satis�ed in the weak sense, i.e.
∫

Q

(ζε(t)+ε)Ce(uε(t)) : e(v) dx dt = 0 ∀t ∈ [0, T ], v ∈ W 1,2(Ω; Rd),

v|Σ = 0, (15)(iv) (6) and (9) hold with (uε, ζε) in plae of (u, ζ).As the fore equilibrium (5a) is governed by minimization of the onvex funtional
Gε(t, ·, ζε) whih also governs the evolution of ζε, (5a) and the partial stability (12)is equivalent to the �full� stability

∫

Ω

ϕε(e(uε(t)), ζε(t),∇ζε(t)) dx ≤
∫

Ω

ϕε(e(ũ), ζ̃,∇ζ̃) + ̺(ζ̃−ζε(t)) dx

∀(ũ, ζ̃) ∈ W 1,2(Ω; Rd) × W 1,p(Ω),

ũ|Γ = w(t), ζ̃ ≥ 0. (16)The on�guration (uε(t), ζε(t)) is alled stable at t if it satis�es (16). In fat, under(16), the energy inequality (13) implies even energy equality at any time t, i.e.
Gε

(

t, uε(t), ζε(t)
)

+ Var̺(ζε; 0, t) = Gε

(

0, uε(0), ζ0

)

+

∫ t

0

∫

Ω

σe :e
(∂w

∂t

)

dx dt (17)with σe = (ζε + ε)Ce(uε). Note that (16) at t = 0 in fat qualify through (9)also ζ0 to be stable. The onditions (16)�(17) leads to a onept introdued in[MiT99, MiT04, MTL02℄ (see also [Mie05℄ for a survey)5



De�nition 2.2 (Energeti solution.) We all (uε, ζε) with uε ∈
B(Ī; W 1,2(Ω; Rd)) and ζε ∈ B(Ī; W 1,p(Ω; Rd)) ∩ BV(Ī; L1(Ω)) an energeti solutionto the original problem (5) with the initial ondition (9) and the boundary ondition(6)-(7) if(i) the stability (16) holds for all t ∈ [0, T ],(ii) the energy balane (17) holds with (uε, ζε) in plae of (u, ζ) for all t ∈ [0, T ],and(iii) (6) and (9) hold with (uε, ζε) in plae of (u, ζ).As already said, De�nitions 2.1 and 2.2 are equivalent to eah other. Under thehard-devie loading w ∈ W 1,1(I; W 1/2,2(Γ)) (and thus onsidering an extension from
W 1,1(I; W 1,2(Ω)) for (13) or (17)), assuming p > d and stability of ζ0, the existeneof a (weak) energeti solution (uε, ζε) is guaranteed for any ε > 0, f. [MiR06℄. Theproof onsists in limit passage with τ → 0 for an approximate solution obtainedby the impliit time-disretization with a time step τ , whih leads to a reursiveminimization problemMinimize ∫

Ω

ζk
τε+ε

2
Ce(∇uk

τε) : e(∇uk
τε) − aζk

τε +
κ

p

∣

∣∇ζk
τε

∣

∣

p
dxsubjet to 0 ≤ ζk

τε ≤ ζk−1
τε , uk

τε|Γ = w(kτ),

uk
τε ∈ W 1,2(Ω; Rd) , ζk

τε ∈ W 1,p(Ω),















(18)for k = 1, ..., K := T/τ with ζ0
τε := ζ0. Having (some) solutions (uk

τε, ζ
k
τε) to (18), weassemble the pieewise onstant interpolation (uτε, ζτε) so that uτε|((k−1)τ,kτ ] = uk

τεfor k = 1, ..., T/τ . Likewise, we de�ne also ζτε. Also, wτ denotes the pieewiseonstant interpolation of w. For the right-hand side of (19) below, we assume theprolongation ζτε(t) = ζ0
τε = ζ0 for t < 0, and similarly wτ (t) = w(0) and uτε(t) = u0

τεfor t < 0, with u0
τε minimizing Gε(0, ·, ζ0). We have the two-sided disrete energyestimate:

∫ t

0

∫

Ω

(ζτε+ε)Ce(uτε+w−wτ ) : e
(∂w

∂θ

)

dx dθ

≤ Gε

(

t, uτε(t), ζτε(t)
)

+ Var̺(ζτε; 0, t) − Gε(0, uτε(0), ζ0)

≤
∫ t

0

∫

Ω

(ζR
τε+ε)Ce(uR

τε+w−wR
τ ) :e

(∂w

∂θ

)

dx dθ (19)holds with t = kτ for any k = 1, ..., T/τ , where (·)R
τ denotes funtions �retarded� by

τ , i.e. [uR
τε](t) := uτε(t − τ), and where w has the meaning of an extension of theboundary onditions into Ω; f. [MiR06, Lemma 3.3℄.We are now going to formulate a suitable solution to the omplete damage problem.The essential peuliarity is that displaement u and the strain e(u) are no longerwell de�ned on areas that are ompletely damaged, i.e. where ζ = 0.At eah time t, we have, however, estimates on the stress (ζε(t)+ε)Ce(uε(t)) in

L2(Ω; Rd×d
sym) uniform with respet to ε > 0, where Rd×d

sym is the set of symmetri6



d×d-matries. Eah weak luster point s is alled a realizable stress. The set of allrealizable stresses is weakly ompat in L2(Ω; Rd×d
sym), f. [BMR07, Proposition 2.8℄.A realizable stress s that minimizes s 7→ 1

2

∫

Ω
s : e(w(t)) dx is alled an e�etivestress at a given t. Let us remark that one an also de�ne an e�etive strain e ∈

L2
loc({x∈Ω; ζ(t, x) > 0}; Rd×d

sym) by
e(t, x) = C

−1
(

s(t, x)

ζ(t, x)

) for all t and a.a. x∈Ω suh that ζ(t, x) > 0 (20)where C
−1 means the inversion of the mapping C : R

d×d
sym → R

d×d
sym . It is importantthat e(t) is a orresponding limit of e(uε(t)) for ε → 0, f. [BMR07, Set. 2.3℄ fordetails. Let us de�ne, for a given damage pro�le ζ , the e�etive stored energy asthe so-alled Γ-limit [Dal95℄ of the olletion {Gε(t, u, ζ̃)}ε>0:

ggg(t, ζ) := lim inf
0≤ζ̃∈W 1,p(Ω)

ε→0+, ζ̃ ⇀ ζ in W 1,p(Ω)
min

u∈W 1,2(Ω;Rd)
Gε(t, u, ζ̃). (21)The so-alled reovery sequene of damage pro�les that asymptotially reahes thevalue ggg(t, ζ) involves ζ̃ = (ζ − δ)+ when δ → 0+ su�iently slowly with respet to

ε → 0+. An important result of [BMR07℄ is that for eah t and ζ there is uniquee�etive equilibrium stress s(t, ζ) (i.e., div s = 0). Hene, we an write
ggg(t, ζ) =

∫

Ω

1

2
s(t, ζ) : e(w(t)) +

κ

p

∣

∣∇ζ
∣

∣

p
dx. (22)Also, we have an important formula for the power of external loading:

∂ggg

∂t
(t, ζ) =

∫

Ω

s(t, ζ) : e
(∂w

∂t

)

dx. (23)Our de�nition for the omplete damage is based on the energeti-solution oneptas in De�nition 2.2.De�nition 2.3 (Energeti solution for omplete damage.) The proess ζ :
[0, T ] → W 1,p(Ω) is alled an energeti solution to the problem given by the data ϕ,
̺, w, and ζ0, if, beside (9), also(i) ζ ∈ BV([0, T ]; L1(Ω)) ∩ B([0, T ]; W 1,p(Ω)),(ii) it is stable for all t ∈ [0, T ] in the sense that

ggg
(

t, ζ(t)
)

≤ ggg(t, ζ̃) +

∫

Ω

̺
(

ζ̃−ζ(t)
)

dx ∀0 ≤ ζ̃∈W 1,p(Ω), (24)(iii) and, for any 0 ≤ t1 < t2 ≤ T , the energy equality holds:
ggg
(

t2, ζ(t2)
)

+ Var̺(ζ ; t1, t2) = ggg(t1, ζ(t1)) +

∫ t2

t1

∫

Ω

s(t, ζ(t)) :e
(∂w

∂t

)

dx dt, (25)in partiular, the funtion t 7→
∫

Ω
s(t, ζ(t)) : e(∂w

∂t
(t)) dx belongs to L1(0, T ).7



Existene of an energeti solution has been proved in [BMR07℄ by onvergene ofthe above introdued regularization for ε → 0.Proposition 2.4 (Existene of energeti solutions, onvergene of (uε, ζε).)Let p > d and w ∈ C1([0, T ]; W 1/2,2(Γ; Rd)), Then, there exist a subsequene {εn}n∈Nonverging to 0 and a proess ζ : [0, T ] → W 1,p(Ω) being an energeti solutionaording to De�nition 2.3 suh that the following holds for all t ∈ [0, T ]:(i) Gεn
(t, uεn

(t), ζεn
(t)) → ggg(t, ζ(t)),(ii) Var̺(ζεn

; 0, t) → Var̺(ζ ; 0, t),(iii) ζεn
(t) → ζ(t) strongly in W 1,p(Ω),(iv) (ζεn
(t) + ε)C(e(uεn

(t))) ⇀ s(t, ζ(t)) weakly in L2(Ω; Rd×d
sym).Remark 2.5 (Quasi-stress.) In fat, we have bounded in B(Ī; L2(Ω; Rd×d

sym)) notonly the stress (ζε+ε)Ce(uε) but even √
ζε+εCe(uε), whih thus onverges (as asubsequene) weakly* in L∞(I; L2(Ω; Rd×d

sym)) to some χ. Let us all it quasi-stress.We have s =
√

ζχ for the orresponding e�etive stress s and, by (20), χ =
√

ζCewith the e�etive strain on the part with ζ > 0. Contrary to the stress itself whihonverges even L2-strongly to zero on the ompletely damaged part, f. [BMR07,Proposition 2.5℄, √ζε+εCe(uε) need not onverge to zero on this part.Remark 2.6 (Large strains.) Generalization for stored energies that are non-quadrati in terms of strain seems di�ult, however. For inomplete damage (or,in other words, ε > 0 �xed) we refer to [MiR06℄ where suh a model was analyzedeven at large strains and a unilateral ontat.3 Numerial implementation, 2D omputational sim-ulationsIn order to arrive at an implementable numerial algorithm, we perform a spatialdisretization of the time-inremental minimization problem (18). To that end,we introdue �nite-dimensional spaes Uh ⊂ W 1,2(Ω; R2) and Zh ⊂ W 1,p(Ω) andonsider the following minimization problem:Minimize ∫

Ω

ζk
τhε+ε

2
Ce(∇uk

τhε) : e(∇uk
τhε) − aζk

τhε +
κ

p

∣

∣∇ζk
τhε

∣

∣

p
dxsubjet to 0 ≤ ζk

τhε ≤ ζk−1
τhε , uk

τhε|Γ = w(kτ),

uk
τhε ∈ Uh , ζk

τhε ∈ Zh















(26)for k = 1, ..., K := T/τ with (u0
τhε, ζ

0
τhε) := (u0, ζ0), i.e. the disretized inrementalproblem leads to a non-onvex, box-onstrained optimization program. Note thatthe onvergene of the fully disrete solution to the solution of the spae-time on-tinuous problem is guaranteed thanks to abstrat approximation results availablein [MiRo℄. 8



In the atual numerial implementation, the spatial disretization is performed usingthe linear onforming �nite elements, e.g. [BiS96, Bra07℄. Moreover, for omputa-tional e�ieny, we restrit our attention to d = 2 and dare to hoose p = 2 (whih�ts with the theory presented in Setion 2 only �up to epsilon� as we have required
p > d).For a given regularization parameter ε and the time level k, we express the disrete�elds in the form

uk
τhε(x) = Nu

h(x)uk
h, ζk

τhε(x) = N
ζ
h(x)ζk

h, (27)where uk
h and ζk

h denote vetors of the nodal values of displaement and damageparameter �elds, respetively (indies τε are omitted in the sequel for the sake ofbrevity) and Nu
h and N

ζ
h denote the operators of pieewise linear basis funtions.The disrete problem (26) an now be re-written in a fully algebrai formatMinimize 1

2
ukT

h Ku
h

(

ζk
h

)

uk
h +

1

2
ζkT

h K
ζ
hζ

k
h + f

ζT

h ζk
hsubjet to 0 ≤ ζk

h ≤ ζk−1
h , uk

h,D = wD(kτ)







(28)with omponents of wD storing the nodal displaements on the Dirihlet part of theboundary. The individual matries are provided by:
Ku

h (ζh) =

∫

Ωh

BuT

h (x)
((

ε + N
ζ
h(x)ζh

)

C(x)
)

Bu
h(x) dx, (29)

K
ζ
h =

∫

Ωh

B
ζT

h κ(x)Bζ
h(x) dx, (30)

f
ζ
h = −

∫

Ωh

a(x)N ζT

h (x) dx, (31)where the B operators ontain derivatives of the shape funtions and C is the Voigtrepresentation of the material sti�ness tensor C; see e.g. [BiS96℄.The disrete formulation (28) leads to a (usually large-sale) non-onvex program.Nevertheless, reognizing that the objetive funtion is quadrati separately in uk
hand ζk

h and exploiting the formal similarity between the ε-regularized damage modeland the Franfort-Marigo variational approah to frature [BFM00℄, the problem (28)an be e�iently solved employing a variant of the alternate minimization algorithmproposed reently by Bourdin in [Bou07, Bou℄. In the urrent ontext, the inremen-tal version of algorithm is brie�y summarized in Table 1. In eah internal iteration,the minimization problem with respet to u (Step 4) redues to the solution ofa sparse system of linear equations, while the subsequent sparse box-onstrainedproblem is solved using a re�etive Newton method introdued in [CoL96℄.The onvergene of the alternate minimization was studied by Bourdin in [Bou07℄,where it was shown that the algorithm onverges to a ritial point of the dis-retized problem in a �nite number of iterations. Of ourse, there is no guaran-tee that the ritial point is a global minimizer of the non-onvex objetive fun-tion, whih is a ruial assumption of the theoretial framework. This obstale9



Table 1: Coneptual implementation of the optimization algorithm for time level kand an initial value of interval variable ζ(0).1: Set j = 02: repeat3: Set j = j + 14: Solve u(j) = arg min
uD=wD(kτ)

1

2
uTKu

h

(

ζ(j−1)
)

u5: Solve ζ(j) = arg min
0≤ζ≤ζ

k−1

h

1

2
uT(j)

Ku
h

(

ζ
)

u(j) +
1

2
ζTK

ζ
hζ + f

ζ
h

T

ζ6: until ‖ζ(j) − ζ(j−1)‖∞ ≤ δ7: Set uk
h = u(j), ζk

h = ζ(j)an be, for example, resolved by resorting to the global stohasti optimization ap-proahes [HJK00, IKLK04, MLZS00℄. Suh tehniques, however, require very largenumber of iterations and as suh are appliable only to very inexpensive objetivefuntions. Fortunately, it is possible to onstrut a feasible numerial approahexploiting the two-sided energeti estimates (19).To that end, onsider the disretized version of (19)
− η +

k
∑

j=1

∫ jτ

(j−1)τ

∫

Ωh

(ζj
τhε+ε)Ce(uj

τhε+w−wτ ) : e
(∂w

∂θ

)

dx dθ

≤ Gε

(

kτ, uk
τhε, ζ

k
τhε

)

+ Var̺(ζτhε; 0, kτ) − Gε(0, u
0
τhε, ζ

0
hε)

≤ η +

k
∑

j=1

∫ jτ

(j−1)τ

∫

Ωh

(ζj−1
τhε +ε)Ce(uj−1

τhε+w−wR
τ ) :e

(∂w

∂θ

)

dx dθ (32)where η is an energy tolerane parameter introdued for the numerial implemen-tation. The previous ondition is used to detet loal minimizers: if the result ofthe alternate minimization algorithm ζk
h fails to verify the inequality (32), the al-gorithm is restarted from the previous time level with ζk

h used as an initial valuefor the minimization algorithm instead of ζk−1
h . This proedure is repeated until anadmissible solution is found, see Table 2 for additional details. It is worth notingthat the resulting algorithm shares similar features with the baktraking shemeintrodued by Bourdin [Bou07℄ in the framework of variational frature theories.Performane of the proposed algorithm will be illustrated on two benhmark prob-lems inspired by [SAS04℄: an inhomogeneous and a pre-nothed speimen, see Fig-ure 1. The orresponding geometri and material data together with the algorithmparameters are gathered in Figure 1 and Table 3, respetively. Both strutures areassumed to be in the plane stress state and are subjet to a proportional-in-timeaxially symmetri hard-devie loading. In both ases, the spatial disretization wasperformed using the unstrutured mesh generator T3D [Ryp98℄ and the problem sizewas redued using symmetries of the speimens. The analyzed time interval [0, 1] wasdeomposed into 100 idential time steps (a physial dimension of time is omitted in10



Table 2: Coneptual implementation of the time stepping proedure.1 : Set k = 1, ζ−1
h = 0, ζ0

h = 0, ζ(0) = 02 : repeat3 : Determine ζk
h using the alternate minimization algorithmfor time tk and initial value ζ(0).4 : Set ζ(0) = ζk

h5 : if two-sided inequality (32) is satis�ed6 : Set k = k + 17 : else8 : Set k = k − 19 : end10 : until k ≤ K

(a) 4 m

1 m

0.2 m

0.2 mu(t) u(t)

x

y
Inhomogeneity
Threshold a/2

(b)
2 m

1 m

0.5 m

v(t)

v(t)

Notch

Figure 1: Sheme of simulated experiments; (a) inhomogeneous speimen, (b) pre-nothed speimenthe sequel beause of rate-independene). Finally, for the inhomogeneous speimen,the damage loalization is triggered by pre-existing imperfetions introdued by aredued ativation threshold in the shaded area on the axis of symmetry.The resulting energetis for the inhomogeneous speimen is displayed in Figure 2 fora representative hoie of the ε and h parameters. Clearly, in its basi version, thedisrete solution obtained by the alternate minimization algorithm fails to provide anappropriate energeti solution to the problem. The two-sided inequality is satis�edonly in the initial stage, where the speimen stays mainly elasti. At time t ≈ 0.61,the damage propagates simultaneously through the speimen, as manifested by thedrop of the sum of the globally dissipated and the Gibbs energy, see Figure 2(a).Even after this instant, however, this quantity inreases, whih is the onsequeneof the non-zero value of regularization parameter ε. Moreover, the damage pro�lestill evolves in the subsequent time levels, leading to the inrease in the dissipatedenergy balaned by the ontribution of the Gibbs energy.With the baktraking option ative, however, the algorithm detets the loal min-imizer at t ≈ 0.61 and, following the dotted line in Figure 2(a), returns to the timelevel where the inremental two-sided inequality is satis�ed. After the baktrak-11
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(a) (b)Figure 2: Global energetis of the inhomogeneous speimen (ε = 5 · 10−2, h =
0.03 m); (a) Without baktraking (energy balane fails), (b) with baktraking (anapproximate energeti solution)ing stage is ompleted, the alternate minimization algorithm is apable of �ndingan approximate energeti solution, f. Fig. 2(b). As further illustrated by Fig. 3,evolution of the damage pro�le for the algorithm with baktraking is more gradualwhen ompared with the basi variant.Additional numerial tests summarized in Figures 4 demonstrate the �mesh-independent�behavior of the method, i.e. the fat that the global energeti response is almostindependent of the disretization parameter h. The in�uene of the energy regular-ization parameter ε, however, is muh stronger, f. Figure 4(b). As ε → 0, the algo-rithms tries to reprodue the one-dimensional optimal damage pro�le ζ(x, y) ≈ |x|α,derived in [BMR07℄.The same set of numerial experiments was exeuted for the pre-nothed speimenleading to the results appearing in Figures 5, 6 and 7. When ompared to theinhomogeneous speimen, the global response shows similar trends for algorithmswith and without baktraking.It is further on�rmed by Figure 8 that the numerial results are almost independentTable 3: Parameter of the damage model and inremental algorithmYoung's modulus, E 27 GPaPossion's ratio, ν 0.2Fator of in�uene, κ 10 Jm−2Ativation threshold, a (see [FrN96℄) 500 Jm−3Maximal presribed displaement for the inhomogeneous speimen 5 · 10−4 mMaximal presribed displaement for the pre-nothed speimen 2.25 · 10−4 mTime step, τ 0.01Damage pro�le tolerane, δ 10−6Two-sided energy inequality tolerane, η 10−312
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(a) (b)Figure 5: Global energetis for the pre-nothed speimen (ε = 10−2, h = 0.03 m);(a) Without baktraking (energy balane fails), (b) with baktraking (an approx-imate energeti solution)4 Damage in visoelasti media with inertiaFinally we inlude also some rate-dependent phenomena, in partiular visosity andinertia. Combination with visosity has been addressed in Maxwellian rheology(even with plastiity) in [FeS03℄ and in the Kelvin-Voigt rheology in [HSS01, PPS07,SHS06, CFKSV06℄.We will onsider linear visosity in the Kelvin-Voigt rheology, i.e. the total stress σis omposed from the elasti ontribution σe := ζCe(u) as before and now also thevisous ontribution σv := ζDe(∂u
∂t

) where C is a positive-de�nite elastiity tensoras before and D is a positive-de�nite visosity tensor satisfying Dijkl = Djikl = Dklij.Note that, like the elasti response, it is natural to assume that also the visousresponse depends on the damage ζ and vanishes in the ompletely damaged. Thissubstantially di�ers from previous studies [FeS03, HSS01, PPS07, SHS06℄ whih on-14
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ρ
∂2u

∂t2
− div

(

σv + σe

)

= f, σv = ζDe
(∂u

∂t

)

, σe = ζCe(u), (33a)
∂̺

(∂ζ

∂t

)

+ σi + σr ∋ 0, σr ∈ N[0,+∞)(ζ)

σi :=
1

2
Ce(u):e(u) − div(κ|∇kz|p−2∇ζ). (33b)Of ourse, now we must presribe also the initial ondition on the displaement and15
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u(0, ·) = u0 ∈ W 1,2(Ω; Rd),

∂u

∂t
(0, ·) = u̇0 ∈ L2(Ω; Rd),

ζ(0, ·) = ζ0 ∈ W 1,p(Ω). (34)We assume naturally 0 ≤ ζ0 ≤ 1.Similarly as before, let us take ε > 0 and onsider the regularized problem:
ρ
∂2u

∂t2
− div

(

(ζ+ε)De
(∂u

∂t

)

+ (ζ+ε)Ce(u)
)

= f, (35a)
∂̺

(∂ζ

∂t

)

+
1

2
Ce(u) : e(u) − div(κ|∇z|p−2∇ζ) + N[0,+∞)(ζ) ∋ 0. (35b)Its weak solution, let us denote it by (uε, ζε), an be obtained by rather standardmethods. The fore equilibrium (35a) in the weak form looks as

∫ T

0

(

〈

ρ
∂2uε

∂t2
, v

〉

+

∫

Ω

(ζε+ε)
(

De
(∂uε

∂t

)

+ Ce(uε)
)

: e(v) − f · v dx

)

dt = 0 (36)16



for all v ∈ L2(I; W 1,2(Ω; Rd)) with 〈·, ·〉 standing for the duality between W 1,2(Ω; Rd)∗and W 1,2(Ω; Rd). Like (14) and (13), we have now the �partial stability�
∫

Ω

ζε(t)+ε

2
Ce(uε(t)) : e(uε(t)) +

κ

p
|∇ζε(t)|p dx

≤
∫

Ω

ζ̃+ε

2
Ce(uε(t)) : e(uε(t)) +

κ

p
|∇ζ̃|p + ̺

(

ζ̃−ζε(t)
)

dx ∀0 ≤ ζ̃ ∈ W 1,p(Ω) (37)for any t ∈ [0, T ] with a from (2), and an energy inequality
∫

Ω

ρ

2

∣

∣

∣

∂uε

∂t
(T )

∣

∣

∣

2

+ Gε(T, uε(T ), ζε(T )) dx + Var̺(ζε; 0, T )

+

∫

Q

(ζε+ε)De
(∂uε

∂t

)

: e
(∂uε

∂t

)

dx dt

≤
∫

Ω

̺

2
|u̇0|2 + Gε(0, u0, ζ0) +

∫

Q

f ·∂uε

∂t
dx dt; (38)here we used ζ0 = 1 from (34) and, for oming from (13) to (38), we relied on (36)for all v := ∂uε

∂t
∈ L2(I; W 1,2(Ω; Rd)). Note that e(uε(T )) is well de�ned beause

∂uε

∂t
∈ L2(I; W 1,2(Ω; Rd)) just due to the regularization by ε > 0.Now, as no minimization of stored energy applies, we unfortunately do not have atour disposal the formula like 1

2

∫

Ω
σe : e(w) dx for the stored energy, f. (22). To avoidusage of e(u) on the fully damaged parts, the stored energy ∫

Ω
1
2
ζCe(u) : e(u) dx analternatively be written as ∫

Ω
1
2
χe:C

−1χe dx where we have denoted χe :=
√

ζCe(u)and, as above, C
−1 means the inversion of the mapping C : R

d×d
sym → R

d×d
sym . As inRemark 2.5, let us all χe an elasti quasi-stress; its physial dimension is againPa=J/m3 as a standard stress. Similarly, to avoid usage of e(∂u

∂t
), we introdue thevisous quasi-stress χv :=

√
ζDe(∂u

∂t
).Also, let us denote the orresponding quasi-stresses for (35), i.e.

χe,ε =
√

ζε+ε Ce(uε) and χv,ε =
√

ζε+ε De
(∂uε

∂t

)

. (39)Then, in terms of these quasi-stresses, (36) rewrites to
∫ T

0

(

〈

ρ
∂2uε

∂t2
, v

〉

+

∫

Ω

√

ζε+ε
(

χv,ε:D
−1e(v) + χe,ε:C

−1e(v)
)

− f · v dx

)

dt = 0.(40)Moreover, (37) and (38) an be written as
∫

Q

1

2
χe,ε:C

−1χe,ε +
κ

p
|∇ζε|p dx dt ≤

∫

Q

1

2

ζ̃+ε

ζε+ε
χe,ε:C

−1χe,ε

+
κ

p
|∇ζ̃|p − ̺

(

ζ̃−ζε

)

dx dt ∀0 ≤ ζ̃ ∈ W 1,p(Ω) (41)17



to be satis�ed for all t ∈ I and
∫

Ω

ρ

2

∣

∣

∣

∂uε

∂t
(T )

∣

∣

∣

2

+
1

2
χe,ε(T ):C−1χe,ε(T ) +

κ

p
|∇ζε(T )|p + δ[0,+∞)(ζε(T )) dx

+ Var̺(ζε; 0, T ) +

∫

Q

χv,ε:D
−1χv,ε dx dt

≤
∫

Ω

̺

2
|u̇0|2 +

1+ε

2
Ce(u0):e(u0) +

κ

p
|∇ζ0|p dx +

∫

Q

f ·∂uε

∂t
dx dt. (42)We derive a-priory estimates that are independent of ε > 0 by testing (35a) by ∂uε

∂t
.It is essential to use ∂ζε

∂t
≤ 0 and symmetry and positive de�niteness of C to obtain

1

2

∂

∂t

(

(ζε+ε)Ce(uε) : e(uε)
)

= (ζε+ε)Ce(uε) : e
(∂uε

∂t

)

+
1

2

∂ζε

∂t
Ce(uε) : e(uε)

≤ (ζε+ε)Ce(uε) : e
(∂uε

∂t

)

. (43)Thus
d

dt

∫

Ω

̺

2

∣

∣

∣

∂uε

∂t

∣

∣

∣

2

+
ζε+ε

2
Ce(uε) : e(uε) dx

+

∫

Ω

(ζε+ε)De(
∂uε

∂t
) : e(

∂uε

∂t
) dx ≤

∫

Ω

f · ∂uε

∂t
dx. (44)Assuming f ∈ L1(I; L2(Ω; Rd)), by Gronwall's inequality we obtain the bounds

∥

∥

∥

∂uε

∂t

∥

∥

∥

L∞(I;L2(Ω;Rd))
≤ C, (45a)

∥

∥

√

ζε+ε Ce(uε)
∥

∥

L∞(I;L2(Ω;Rd×d
sym ))

≤ Ce, (45b)
∥

∥

∥

√

ζε+ε De
(∂uε

∂t

)

∥

∥

∥

L2(Q;Rd×d
sym )

≤ Cv. (45)
∥

∥ζε

∥

∥

BV(Ī;L1(Ω))∩L∞(I;W 1,p(Ω))
≤ C, (45d)with some onstants C, Ce, and Cv. In other words, ‖χv,ε‖L2(Q;Rd×d

sym ) ≤ Cv, and
‖χe,ε‖L∞(I;L2(Ω;Rd×d

sym )) ≤ Ce. From this, for 0 < ε ≤ 1, we also obtain
∥

∥

∥

∂2uε

∂t2

∥

∥

∥

L2(I;W 1,2(Ω;Rd)∗)+L1(I;L2(Ω;Rd))

= sup
‖v‖Y≤1

∫

Q

√

ζε+ε
(

χv,ε:D
−1e(v) + χe,ε:C

−1e(v)
)

− f ·v dx dt

≤ sup
‖v‖Y≤1

2

∫

Q

χv,ε:D
−1e(v) + χe,ε:C

−1e(v) − f ·v dx dt

≤ 2|D−1|Cv + 2|C−1|Ce + 2‖f‖L1(I;L2(Ω;Rd)). (46)where ‖u‖Y = ‖u‖L2(I;W 1,2(Ω;Rd)) + ‖u‖L∞(I;L2(Ω;Rd)).18



Unfortunately, it does not seem that any estimate for ∂χe,ε

∂t
is available, whih bringstroubles by de�ning values of χe,ε at partiular times in the limit. In the spirit ofDe�nitions 2.1 and 2.3 but balaning Helmholtz stored energy (sine the by-partintegration in time of the outer loading is no longer neessary and advantageous)and in view of the estimates (45), we an exploit the above relations (36), (39), (41),and (42) when putting ε = 0 for a de�nition of a weak/energeti solution to theomplete-damage problem in the following way:De�nition 4.1 (Weak/energeti solution.) We all (u, χe, χv, ζ, E) with

u ∈ W 1,∞(I; L2(Ω; Rd)), (47a)
χe ∈ L∞(I; L2(Ω; Rd×d

sym)), (47b)
χv ∈ L2(Q; Rd×d

sym), (47)
ζ ∈ BV(Ī; L1(Ω)) ∩ B(Ī; W 1,p(Ω)), (47d)
E ∈ BV(Ī) (47e)suh that

e
(∂u

∂t

)

∈ L2
loc

(

{(t, x) ∈ Q; ζ(t, x) > 0}; Rd×d
sym

)

, (48a)
∂2u

∂t2
∈ L2(I; W 1,2(Ω; Rd)∗) + L1(I; L2(Ω; Rd)) (48b)a weak/energeti solution to the problem (33) with the initial onditions (34) andthe homogeneous Neumann boundary ondition, i.e. (7) with Γ = ∅, if

∫ T

0

(

〈

ρ
∂2u

∂t2
, v

〉

+

∫

Ω

√

ζ
(

χv:D
−1e(v) + χe:C

−1e(v)
)

− f · v dx

)

dt = 0 (49)for all v ∈ L2(I; W 1,2(Ω; Rd)), if the �partial stability�
∫

A

1

2
χe:C

−1χe +
κ

p
|∇ζ |p dx dt ≤

∫

A

1

2

ζ̃

ζ
χe:C

−1χe

+
κ

p
|∇ζ̃|p + ̺(ζ̃ − ζ) dx dt ∀0 ≤ ζ̃ ∈ Lp(I; W 1,p(Ω)) (50)and

χe =
√

ζ Ce(u) and χv :=
√

ζ De
(∂u

∂t

) on any open A ⊂ Qon whih ζ(t, x) > 0, (51)and if the energy inequality holds, i.e.
E(T ) +

∫

Ω

ρ

2

∣

∣

∣

∂u

∂t
(T )

∣

∣

∣

2

+ δ[0,+∞)(ζ(T )) dx + Var̺(ζ ; 0, T ) +

∫

Q

χv:D
−1χv dx dt

≤ E(0) +

∫

Ω

̺

2
|u̇0|2 dx +

∫

Q

f ·∂u

∂t
dx dt. (52)19



with E(0) =
∫

Ω
1
2
Ce(u0) : e(u0) + κ

p
|∇ζ0|p dx and, for all t1 ∈ I,

∫ t1

0

E(t) dt ≥
∫ t1

0

∫

Ω

1

2
χe:C

−1χe +
κ

p
|∇ζ |p dx dt. (53)Remark 4.2 Let us omment this de�nition espeially at the point that we laimmuh less information on the ompletely damaged part than we did in the quasistatievolution in Setion 2, whih is related with what we are able to prove. As aonsequene, we also annot prove full energy balane as an equality. Anyhow,the granted a-priory estimates (45) and (46) give ertain solid base for engineeringalulations and De�nition 4.1 then indiates what information we an surely readfor the limit when ε approahes zero. In fat, we have bounds also on some otherderived quantities, e.g. (ζε+ε) ∂

∂t
(Ce(uε):e(uε)) whih equals to χe,ε:D

−1χv,ε whih isbounded due to (45b,) in L2(I; L1(Ω)).Proposition 4.3 Let p > d and f ∈ L1(I; L2(Ω; Rd)), u0 ∈ W 1,2(Ω; Rd), u̇0 ∈
L2(Ω; Rd), and ζ0 ∈ W 1,p(Ω), 0 ≤ ζ0 ≤ 1. Then there exists a weak/energetisolution in aord to De�nition 4.1.Proof. By (45b,), we an hoose a subsequene suh that χe,ε

∗⇀ χe in L∞(I; L2(Ω; Rd×d
sym))and χv,ε ⇀ χv in L2(Q; Rd×d

sym). Though the obtained χe need not be well de�nedat partiular time levels, the stored energy Eε : t 7→
∫

Ω
1
2
χe(t):C

−1χe(t) dx itself iswell de�ned and measurable beause its sum with the kineti energy has a boundedvariation whih is seen from (44) and (45). By Helly's priniple, we hoose a sub-sequene so that also Eε(t) → E(t) for all t ∈ [0, T ].The limit passage in (40) uses ζε → ζ in Lq(Q) with any 1 ≤ q < +∞, whihfollows by a generalized Aubin-Lions' theorem [Rou05, Cor.7.9℄ from the estimate ζεin L∞(I; W 1,p(Ω)) ∩BV(Ī; L1(Ω)), and also it uses χe,ε
∗⇀ χe in L∞(I; L2(Ω; Rd×d

sym))and χv,ε ⇀ χv in L2(Q; Rd×d
sym)).The limit passage in (39) uses also the bounds of e(uε) and e(∂uε

∂t
) in L2(K; Rd×d

sym)on any ompat ylinder K of the form [0, t]×K0 on whih ζ > 0. Here we use avery speial struture of the problem that K0 ⊂ Ω suh that ζ(t) > 0 on K0 impliesthat, for any δ > 0, there is ε0 suh that for any 0 < ε ≤ ε0 we have ζε(t) + ε ≥ δfor all x ∈ K0; here we used that W 1,p(Ω) is embedded into C(Ω̄) beause p > d.Thus also ζε + ε ≥ δ for all (t, x) ∈ K = [0, t]×K0 beause ζε(·, x) is noninreasing.Then we an pass to the limit in (39) and over A in (51) by ylinders of the form
K above.The limit passage in the �partial� stability ondition (41) in the term

∫

Q

1

2

ζ̃+ε

ζε+ε
χe,ε:C

−1χe,ε dx dt =

∫

Q

1

2
(ζ̃+ε)Ce(uε) : e(uε) dx dtis more di�ult than in the usual �full� stability (16) in the rate-independent ase.We must do it simultaneously with the left-hand-side term

∫

Q

1

2
(ζε+ε)Ce(uε) : e(uε) dx.20



Let us take 0 ≤ ζ̃ ≤ ζ and, following [BMR07, Proposition 2.10℄, put ζ̃δ := (ζ̃ − δ)+.Then, for any �xed δ > 0, we have ζ̃δ(t) ≤ ζε(t) if ε > 0 is small enough (dependingon t, however); reall that p > d so that W 1,p(Ω) ⊂ C(Ω̄) ompatly. Simultaneously
ζ̃δ(t) → ζ̃(t) in W 1,p(Ω̄). Indeed, let us onsider an open ǫ-neighbourhood Oǫ(t) ofa ompat set N(t) := {x∈Ω̄; ζ̃(t, x) = 0}. Then, for δ > 0 small enough, ζ̃δ > 0 on
Ω̄\Oǫ(t). For a.a. x ∈ Oǫ(t)\N(t), we have either ζ̃δ(x) = 0 or ζ̃δ(t, x) = ζ̃(t, x) − δand also ∇ζ̃δ(t, x) = 0 or ∇ζ̃δ(t, x) = ζ̃(t, x). Hene, for δ > 0 small enough,

∫

Ω

∣

∣∇ζ̃δ(t) −∇ζ̃(t)
∣

∣

p
dx =

∫

Oǫ(t)\N(t)

∣

∣∇ζ̃δ(t) −∇ζ̃(t)
∣

∣

p
dx

≤
∫

Oǫ(t)\N(t)

∣

∣∇ζ̃(t)
∣

∣

p
dx. (54)Yet, the last expression an be pushed to zero with ǫ → 0 beause |∇ζ̃(t)|p ∈ L1(Ω) isabsolutely ontinuous for a.a. t ∈ [0, T ]. Then also ∫ T

0

∫

Ω

∣

∣∇ζ̃δ(t)−∇ζ̃(t)
∣

∣

p
dx dt → 0by the Lebesgue dominated-onvergene theorem; the ommon integrable majorantis t 7→ ‖∇ζ̃(t)‖p

Lp(Ω;Rd)
.Then, by the �partial� stability for ζε, we have

∫

Q

̺(ζε − ζ̃δ) dx dt

≥
∫

Q

(ζε+ε

2
− ζ̃δ+ε

2

)

Ce(uε) : e(uε) +
κ

p
|∇ζε|p −

κ

p
|∇ζ̃δ|p dx dt

=

∫

Q

1

2

(

1 − ζ̃δ+ε

ζε+ε

)

χe,ε : C
−1χe,ε +

κ

p
|∇ζε|p −

κ

p
|∇ζ̃δ|p dx dt. (55)Now we use that (ζ̃δ+ε)/(ζε+ε) = ζ̃δ/ζ onverges strongly in any Lq(K), q < +∞,and weakly* in L∞(K) on every ompat ylinder K of the form [0, t] × K0 where

ζ > 0, as already used above. Then, by the weak lower semiontinuity, we obtain
∫

K

̺(ζ − ζ̃δ) dx dt ≥
∫

K

1

2

(

1 − ζ̃δ

ζ

)

χe : C
−1χe +

κ

p
|∇ζ |p − κ

p
|∇ζ̃δ|p dx dt. (56)Then we pass δ → 0 and use ζ̃δ → ζ̃ weakly* in L∞(Q) beause we proved alreadystrong onvergene in Lp(I; W 1,p(Ω)) and bounds in L∞(Q). When overing Ainvolved in (50) by ylinders of the form K, we obtain just (50).Limit passage in (42) is then by weak lower-semiontinuity. Here we use also thatthat Eε(t) → E(t) and the weak lower semiontinuity, hene we get also (53). 2Referenes[BBT01℄ E. Benvenuti, G. Borino, A. Tralli: A thermodynamially onsistent non-loal formulation for damaging materials, Euro. J. Meh. A/Solids 21 (2001),535-553. 21
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