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Abstract

We develop a model which describes the evolution of a phase transition
that occurs in some part of a rechargeable lithium battery during the process
of charging/discharging. The model is capable to simulate hysteretic behavior
of the voltage - charge characteristics.

During discharging of the battery, the interstitial lattice sites of a small
crystalline host system are filled up with lithium atoms and these are re-
leased again during charging. We show within the context of a sharp interface
model that two mechanical phenomena go along with a phase transition that
appears in the host system during supply and removal of lithium. At first the
lithium atoms need more space than it is available by the interstitial lattice
sites, which leads to a maximal relative change of the crystal volume of about
6%. Furthermore there is an interface between two adjacent phases that has
very large curvature of the order of magnitude 100 m, which evoke here a
discontinuity of the normal component of the stress. In order to simulate the
dynamics of the phase transitions and in particular the observed hysteresis
we establish a new initial and boundary value problem for a nonlinear PDE
system that can be reduced in some limiting case to an ODE system.

1 Introduction

The arrangement shown in Figure 1 roughly indicates the processes in a lithium
battery during discharging and charging. During discharging electrons leave the
anode to travel through an outer circuit. The anode is here assumed to be a metallic
lithium electrode. The remaining positive lithium ions leave the anode and move
through an electrolyte towards the cathode, which is the central object of the current
modelling. It consists of a carbon coated single crystal FePO4 with the shape of a
small sphere of about 50 nm diameter. The FePO4 lattice offers interstitial lattice
sites that serve to store lithium atoms. When the battery is fully charged, all
interstitial lattice sites are empty. During discharging the arriving lithium ions
combine at the carbon coated surface of the FePO4 ball with the inflowing electrons
and hereafter they occupy the interstitial lattice sites. After complete discharging
a maximal number of sites of the interstitial lattice is occupied by a lithium atom.
During recharging of the battery the reverse process takes place.

The objective of the current study is the modelling of the loading/unloading pro-
cesses of the FePO4 lattice with Lithium atoms. The model describes diffusion
with mechanical coupling within an open system. It relies on various experimental
observations and assumptions:

1. The voltage - charge plot, see Figure 2 exhibits a hysteretic behavior. The
characteristics of voltage against the total charge of the battery during charging,
red arrows, is different from discharging, blue arrows.
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Figure 1: Basic constituents of a rechargeable lithium battery

Figure 2: Typical charge and discharge curve for a LiFePO4 cathode. The voltage
is plotted as a function of the total charge per mass. The charging (red arrows)
and discharging (blue arrows) were performed under constant current regime. The
electrode was prepared as described elsewhere [6].
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2. The lithium atoms need more space as it is offered by the interstitial lattice sites.
In case of a fixed external pressure, this leads to a change of the volume of the
FePO4 ball up to 6% for the fully occupied interstitial lattice.

3. There is a compact region of total lithium fraction where the distribution of
the lithium atoms within the FePO4 ball decomposes into two phases with different
local lithium fractions across the interface between the adjacent phases. Currently
we assume that there is a single interface with the shape of a sphere. Thus in the
2-phase region we currently deal with an inner core and an outer shell. Furthermore
we assume that the interface originates at the outer surface during loading as well
as during unloading.

4. At the interface of the two phases we take surface tension into account, which is
of enormous importance due to the small interfacial radius.

Further assumptions will be given later on. Here we remark that the volume change
of the FePO4 ball and the incorporation of surface tension at the interface lead
within the model to a hysteretic behavior of the loading/unloading process.

Finally we mention a recent study, see [11], by Wagemaker, Borghols and Mulder.
The authors observe a strong dependence between the maximal possible Li content
and the size of the host system, and they conjecture likewise mechanical effects as
the origin for this phenomenon. In fact, it is a typical feature of the mechanical
boundary value problem, that the size of the considered system is of large influence.

We have organized the paper as follows:

In Chapter 2 we describe the constitution of the host system. The thermodynamic
model is developed in Chapter 3 and extended in the appendix. This model relies on
local conservation laws in the bulk phases, on jump conditions, i.e. Stefan conditions,
across the interface and in particular on so called kinetic relations, which determine
the interfacial motion and the evolution of the atomic lithium fractions on both
sides of the interface. We end up with a system of nonlinear diffusion equations
with mechanical coupling.

Chapter 4 considers the limiting case of infinite bulk mobility, whereby we may
reduce the PDE system into an ODE system for the atomic Li fraction, the interfacial
radius and the external radius of the FePO4 ball as functions of time.

Various simulations are the content of Chapter 5. We illustrate the influence of
the mechanical phenomena on the relevant chemical potentials. We determine the
possible equilibria and we extract from these data the hysteric behavior of the load-
ing/unloading processes. Finally we simulate the evolution of the host system for
various initial data.
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2 Constitution of the host system

The mechanical constitution of the host system from Figure 1 is described in detail
by T. Maxisch and G. Ceder in [9]. It is composed of a deformable crystal lattice of
the substance FePO4. The undeformed crystal has orthorhombic olivine symmetry.
Furthermore there is a sublattice whose lattice sites may be empty or occupied by Li
atoms. These can be supplied or removed through the external boundary, and this
process is called lithiation. To each unit of FePO4 there corresponds one single site
in the sublattice. The occupation of the sublattice with Li atoms does not change
the orthorhombic olivine symmetry. However, the elastic stiffness coefficients and
the crystal volume change if the number of Li atoms is changed.

At room temperature there exists a region of total Li concentration where the dis-
tribution of Li atoms on the sublattice sites is realized by two coexisting phases
that differ by high and small Li concentrations. Theoretical studies on the evolution
of Li atoms in the host system by Han et.al [8], Srinivasan and Newman [10] and
the current study rely on this phenomenon, which is experimentally investigated by
Yamada et.al. [12].

Based on previous studies by Srinivasan and Newman [10] and Han et.al [8], we
currently also assume that the two phases exhibit a simple morphology: They appear
as an inner spherical core and an outer shell with a moving interface. However, it
is important to note that in 2007 this assumed symmetry is criticized by Allen,
Jow and Wolfenstine [1]. Due to some experimental hints these authors prefer a
plane interface that may move in some preferred direction of the matrix lattice. For
this reason we have formulated the current model in a form so that this case is
included, see in particular the appendix. In other words, only the current numerical
exploitation of the model relies on the spherical core assumption, so that we may
follow Allen et al.’s proposal in a further study.

3 Thermodynamic description of the host system

3.1 Conservation laws of particle numbers

We consider the host system as a body Ω that may be represented by a single
phase or by two coexisting phases, so that Ω = Ω− ∪ Ω+ as it is indicated in
Figure 3. Ω− and Ω+ denote the inner core with radius rI respectively the outer
shell with radius r0. At any time t ≥ 0, the thermodynamic state of the body
Ω is described by a certain number of variables, which may be functions of space
x = (xi)i=1,2,3 = (x1, x2, x3) ∈ Ω. The host system consists of three constituents:
There are FePO4 units (M) generating the deformable lattice, which we shall call the
matrix lattice. The matrix lattice has orthorhombic symmetry in the undeformed
state. Furthermore there is an interstitial sublattice, whose constituents are Li -
atoms (Li) and vacancies (V). The number densities of the constituents are denoted
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Figure 3: The 2-phase morphology of the host system

by nM, nLi and nV.

Among the objectives of this study is the determination of the functions

nM(t, x), nLi(t, x), nV(t, x) and rI(t), r0(t). (1)

We assume that there is no diffusion on the matrix lattice, which is fully occupied
by the FePO4 units, so that nM(t, x) changes exclusively due to the deformation of
the lattice. On the sublattice we have diffusion, which, however, is restricted by the
side condition that matrix lattice and sublattice have equal number of lattice sites,
thus we have

nM(t, x) = nLi(t, x) + nV(t, x). (2)

Next we introduce the velocities υ = (υi)i=1,2,3 = (υ1, υ2, υ3) of the constituents by
the functions

υM(t, x), υLi(t, x), υV(t, x) (3)

According to the constraint (2) we relate the velocity of the matrix to the other
velocities by

nMυM(t, x) = nLiυLi(t, x) + nVυV(t, x). (4)

The constraint (4) is motivated by the conservation laws for the particle numbers,
which read in regular points of Ω

∂nM

∂t
+ div(nMυM) = 0,

∂nLi

∂t
+ div(nLiυLi) = 0,

∂nV

∂t
+ div(nVυV) = 0. (5)

Due to (2) and (4) there are only two independent conservation laws, and we prefer
to deal with (5)1 and (5)2 in the sequel.

If the state of the host system is in the 2-phase region, singular points will appear at
the interface I between the adjacent phases. At I the conservation laws of particle
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numbers assume the form

−wν [[nM]] + [[nMυ
ν
M]] = 0, −wν [[nLi]] + [[nLiυ

ν
Li]] = 0, −wν [[nV]] + [[nVυ

ν
V]] = 0.

(6)
Herein wν denotes the normal speed of the interface and ν is the normal vector, which
points into the + region. The double bracket gives the difference of a quantity that
suffers a discontinuity at the interface: [[ψ]] ≡ ψ+ − ψ−.

We conclude that the atomic fluxes

ṄM ≡ −nM(υν
M − wν), ṄLi ≡ −nLi(υ

ν
Li − wν) and ṄV ≡ −nV(υν

V − wν) (7)

are continuous across the interface, i.e.

Ṅ+
M = Ṅ−

M , Ṅ+
Li = Ṅ−

Li , and Ṅ+
V = Ṅ−

V . (8)

In the considered case of spherical morphology, the interface is completely described
by its time dependent radius rI(t). In this case we have in polar coordinates ν =
(1, 0, 0) and wν = ṙI(t). Likewise in the bulk, we take (8)1 and (8)2 as the two
independent conservation laws for x ∈ I.
The quantities that appear in the conservation laws of particle numbers can be
combined to define further quantities that are needed for the description of the
thermodynamic state of the host system. Among these are the mass density ρ and
the barycentric velocity υ, which are defined by

ρ ≡ mLinLi +mMnM and ρυ ≡ mLinLiυLi +mMnMυM, (9)

where mM and mLi denote the atomic masses of FePO4 and Li. Note that the
vacancies do not contribute to mass density and barycentric velocity .

A linear combination of the conservations laws for particle numbers imply the con-
servation laws for the total mass, viz.

∂ρ

∂t
+div(ρυ) = 0 for x ∈ Ω+/− and −wν [[ρ]]+ [[ρυν ]] = 0 for x ∈ I. (10)

Next we introduce the atomic fraction of Li, y, and the diffusion fluxes with respect
to the velocity υM of the crystal lattice, jLi = (ji

Li)i=1,2,3 and jV = (ji
V)i=1,2,3:

y ≡ nLi

nM

, jLi ≡ nLi(υLi − υM), jV ≡ nV(υV − υM). (11)

Diffusion fluxes with respect to the barycentric velocity υ are also important, fLi =
(f i

Li)i=1,2,3, fV = (f i
V)i=1,2,3 and fM = (f i

M)i=1,2,3:

fLi ≡ nLi(υLi − υ), fV ≡ nV(υV − υ) and fM ≡ nM(υV − υ). (12)

Finally we list several identities between the various diffusion fluxes. They read

jLi + jV = 0, mLifLi +mMfM = 0, fLi = jLi + yfM, fV = jV + (1− y)fM, (13)

and at the interface we have

mLiṄLi +mMṄM = −ρ(υν − wν). (14)
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3.2 Conservation law of momentum

The conservation law of momentum determines the motion of the matrix lattice,
i.e. the displacement u = (ui)i=1,2,3 = (u1, u2, u3). If we ignore elastic waves in the
matrix lattice, this conservation law reduces to a quasi-static force balance, which
reads in regular points in Ω

div σ = 0. (15)

The newly introduced quantity σ = (σij)i,j=1,2,3 is the Cauchy stress tensor with
σij = σji. The detailed description of motion, strain and stresses will be given in
the Appendix, because here we apply a simplified mechanical model that ignores (i)
the orthorhombic symmetry and (ii) the deviatoric stresses so that the stress tensor
reduces to a pressure p: σij = −pδij.

The quasi-static momentum balance at the interface I is given by

[[σij]]νj = −2γkMν
i, respectively for the special case at hand [[p]] = −2γ

rI
.

(16)
γ > 0 is the surface tension and kM denotes the mean curvature, which reads in
polar coordinates for a sphere: kM = −1/rI.

3.3 Constitutive Model, Part 1: Some pieces of the second
law of thermodynamics

In this and the following sections we rely on the recent study by Dreyer et.al. [2] to
show that the knowledge of the free energy is sufficient in order to give all constitutive
quantities as functions of the variables. Here we start with the assumption that the
specific free energy, ψ, is given by the general representations

ψ = ψ̂(T, nLi, nV) = ψ̃(T, y, ρ). (17)

The both functions ψ̂ and ψ̃ are related to each other in a simple manner by means
of the transformation

y =
nLi

nLi + nV

and ρ = (nLi + nV)m(y) with m(y) ≡ mM +mLiy. (18)

In the following, the function ψ̂ will be used to calculate the chemical potentials µLi

and µV whereas ψ̃ gives the pressure p. According to the 2nd law of thermodynamics
we have, see [2] for details,

µLi =
∂ρψ̂

∂nLi

, µV =
∂ρψ̂

∂nV

, p = ρ2∂ψ̃

∂ρ
, ρψ + p = µLinLi + µVnV. (19)

The equations (19)1 to (19)3 give some parts of the Gibbs equation and (19)4 is
called Gibbs-Duhem equation. The explicit form of the functions ψ̂ and ψ̃ will be
given and exploited in the next Section.
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A further content of the 2nd law of thermodynamics is the entropy inequality, which
identifies on its left hand side the entropy production in the two bulk phases. It
reads

−fLi∇µLi − fV∇µV = −fLi∇(µLi − mLi +mM

mM

µV) ≥ 0. (20)

The equality sign holds in equilibrium, where the entropy production assumes its
minimum value zero. In non-equilibrium the production of entropy must be positive.
Thus in equilibrium we have fLi = 0 and ∇(µLi − (mLi +mM)/mM µV) = 0.

The most simple possibility to satisfy the entropy inequality in non-equilibrium is
given by Fick’s law

fLi = −MB(T, y)∇(µLi − mLi +mM

mM

µV), (21)

where the bulk mobility satisfies MB(T, y) > 0.

Note that the entropy inequality holds point-wise, thus there is also an inequality
at the interface I, viz.

−ρ(υν − wν)[[ψ +
1

2
(υ − w)2]] + [[σij(υi − wi)]]νj − [[µLif

ν
Li + µVf

ν
V]] ≥ 0. (22)

The derivation of the entropy inequalities (20) and (22) are found to be in [4] and
[3]. In particular details concerning the treatment of vacancies and side conditions
are given there.

The interfacial entropy production will be used to formulate relations that are similar
to Fick’s law in the bulk phases. To this end we bring the left hand side of (22) by
means of σij = −pδij, the flux definitions (11), (12) and (7), the conservation laws
(8), the Gibbs-Duhem relation (19)4 and the identities (13) and (14) into a more
appropriate form:

ṄLi[[µLi − µV +
mLi

2
(υ − w)2]] + ṄM[[µV +

mM

2
(υ − w)2]] ≥ 0. (23)

Note the similarity between (20) and (23). In any case the entropy production is
a sum of products flux × driving force. In (20) the flux is the diffusion flux of Li
and the driving force has to be identified with the gradient of a chemical potential
difference. At the interface two products contribute to the entropy production: The
flux of the first contribution is the atomic Li flux across the interface and the jump
of the chemical potential difference plus a kinetic contribution is the driving force.
The flux of the second product is identified as the atomic FePO4 flux and the driving
force is the jump consisting of the chemical potential of the vacancies plus a kinetic
contribution. The both kinetic contributions are often small in comparison with the
chemical potentials.

The equality sign of (23) holds in equilibrium and in non-equilibrium the interfacial
entropy production must be positive. Thus in equilibrium we have ṄLi = 0 and
ṄM = 0, and the possible equilibria are determined by

[[µLi − µV]] = 0 and [[µV]] = 0. (24)
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In an analogous manner to the bulk, the simplest possibility to satisfy the interfacial
entropy production in equilibrium as well as in non-equilibrium is given by the ansatz

ṄLi = MLi
I [[µLi−µV +

mLi

2
(υ−w)2]], and ṄM = MM

I [[µV +
mM

2
(υ−w)2]]. (25)

Thus there are two positive mobilities at the interface, viz. MLi
I and MM

I .

We may conclude from the results of this section that if we were to know the free
energy density, we could calculate all the other constitutive quantities. However,
the bulk mobility and the two interfacial mobilities must be determined either by
statistical thermodynamics or by experiments.

3.4 Constitutive law, Part2: Explicit forms of the pressure,
free energy density and chemical potentials

The strategy to determine the specific free energy, i.e. the two functions ψ̂(T, nLi, nV)
and ψ̃(T, y, ρ), is as follows: At first we use (19)3 to determine the ρ dependence of
the function ψ̃, which is given by the pressure. Therefore we start with a constitutive
law that relates the pressure to the volume change of the matrix lattice. We assume

p = p̄+K(
nM

n̄M

− h(y)) with h(y) =
1

1 + yδ
. (26)

Here n̄M denotes the particle density of FePO4 in the undeformed reference state of
the matrix lattice. The bulk modulus is denoted by K. According to [9], K depends
on the Li fraction y, but we ignore that fact in the simplified model. The function
h(y) describes the phenomenon that Li atoms need more space than the vacancies.
If δ = 0 we were to have nM = n̄M at p = p̄ . However, there is a volumetric
expansion (V − V̄ )/V̄ of the host system if the Li fraction changes from 0 to 1. We
denote its maximum for y = 1 by δ ≡ (Vmax− V̄ )/V̄ , which is about 0.06. For other
values of y we simply interpolate and write (V − V̄ )/V̄ = yδ. The volume expansion
is measured at the reference pressure, where we have nM/n̄M = h(y), on the other
hand nM/n̄M = V̄ /V , therefore we obtain h(y) as it is given by (26)2.

Next we apply (19)3 to calculate the mechanical part of the free energy from the
pressure. Since the derivative of the function ψ̃ depends on the variables y and ρ,
we represent p in the same variables, and we integrate

∂ψ̃

∂ρ
=

p

ρ2
=
p̄−Kh(y)

ρ2
+

K

n̄Mm(y)

1

ρ
. (27)

We obtain

ρψ̃(T, y, ρ) = (p̄−Kh(y))( ρ

n̄Mm(y)h(y)
−1)+K

ρ

n̄Mm(y)
log(

ρ

n̄Mm(y)h(y)
)+

ρ

m(y)
C(T, y).

(28)
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We have chosen the integration constant so that the remaining unknown function
C(T, y) can be identified with the chemical part of the free energy density, which is
defined by

C(T, y) ≡ ψ̃chem(T, y) ≡ ψ̃(T, y, n̄Mm(y)h(y)). (29)

The definition of the chemical part relies on the fact that this part is determined at
constant reference pressure, which is guaranteed by the definition (29). We now can
also define the mechanical part of the free energy density by

ρψmech ≡ ρψ − ρψchem, (30)

and we conclude that the first two terms on the right hand side of (28) give ρψmech.

The motivation of that decomposition relies on the fact, that our knowledge on the
two contributions to the free energy originates from different sources. The chemical
part can be calculated within statistical thermodynamics, and the simplest model
that is capable to exhibit two coexisting phases is given by, see also the phase field
approach by Han et. al. [8] where the same function is used,

ρψchem = nMΩ

(
y(1− y) +

kT

Ω
(y log(y) + (1− y) log(1− y)

)
≡ nMΩf(y). (31)

The first term gives an energetic contribution whose strength is controlled by the
constant Ω > 0, whereas the second contribution is purely entropic. k denotes
the Boltzmann constant. Note that the positivity of Ω may lead to a non-convex
function, which is necessary to obtain two coexisting phases.

Thus the free energy density for the host system can be written as

ρψ = ΩnMf(y) + (p̄−Kh(y))(
nM

n̄Mh(y)
− 1) +K

nM

n̄M

log(
nM

n̄Mh(y)
) (32)

Next we calculate the chemical potentials. According to (19)1 and (19)2 we need
the identities

∂nM

∂nLi

= 1,
∂nM

∂nV

= 1,
∂y

∂nLi

=
1− y

nM

,
∂y

∂nV

= − y

nM

. (33)

We obtain for Li

1

Ω
µLi = f + (1− y)f ′+

a1

(
log(

nM

n̄Mh
)− h′

h
(1− n̄Mh

nM

)(1− y)

)
+ a2

(
1− h′

h
(1− y)

)
1

h
, (34)

and for the vacancies

1

Ω
µV = f − yf ′ + a1

(
log(

nM

n̄Mh
) +

h′

h
(1− n̄Mh

nM

)y

)
+ a2

(
1 +

h′

h
y

)
1

h
. (35)

The newly introduced constants a1 = K/n̄MΩ and a2 = p̄/n̄MΩ control the strength
of mechanical in comparison to chemical driving forces.
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4 The model for infinite bulk diffusivity and spher-

ical symmetry

In this section we exploit the thermodynamic model for the host system under some
assumptions that will drastically simplify the analysis. The general case will be
treated in a forthcoming study.

4.1 Simplifying assumptions

Recall that the model contains three inherent time scales, and a fourth time scale is
given by the boundary conditions. These scales can be extracted from the mobility
in the bulk, MB, the mobilities for interfacial kinetics, M I

Li and M I
M, and the speed

of supply and removal of Li atoms at the outer boundary. Relying on data found
in [8], we now assume that the fastest of these processes is diffusion in the bulk,
and we consider the limiting case of infinite bulk mobility. In other words: For
finite diffusion flux and infinite bulk mobility, the chemical potentials and thus the
number densities of the constituents become homogeneous within the two phases,
because Fick’s law (21), viz. fLi = −MB∇(µLi − (mLi +mM)/mM µV), assumes the
form fLi = −∞×0 and thus cannot be used anymore to determine the diffusion flux
in this limiting case. In fact we shall see that for infinite bulk mobility fLi follows
from the local conservation law for the Li content.

In Section 3.4 we have already ignored the orthorhombic symmetry of the matrix
lattice and the deviatoric stress components, so that the constitutive law (26) for
the pressure is sufficient to describe the deformation of the lattice.

A further assumption concerns the geometric shape of the host system and of the
interface I. We assume that the host system is a sphere with outer time dependent
radius r0(t), and the morphology of the distribution of the two phases is an inner
core Ω− with interfacial radius rI and an outer shell Ω+. It is important to note that
this assumption has been criticized by Allen et. al., see [1], and we shall devote a
further study to their reasonings.

Finally we have to fix the location rI(t0) where the interface starts when we enter
into the 2-phase region. Loading and unloading of the host system with Li atoms
happens at the outer boundary. Despite the idealized assumption of homogeneity
of the densities in bulk, it is obvious that if we reach the 2-phase region by supply
of Li at r0, the Li fraction will be slightly larger here than in the interior, so that
the interface will start at the outer boundary for the loading process. On the other,
the interface will also start at the outer boundary if we approach the 2-phase region
during unloading of Li, because in that case the Li fraction at r0 will obviously be
slightly smaller than in the interior.
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4.2 Conservation laws of particle numbers

For spherical symmetry the relevant conservation laws of particle numbers (5) read
in regular points of the bulk phases

∂nM

∂t
+

1

r2

∂r2nMυM

∂r
= 0 and

∂nLi

∂t
+

1

r2

∂r2nLiυLi

∂r
= 0, (36)

and in singular points on the interface we have from (6)

n+
M(υ+

M − ṙI) = n−M(υ−M − ṙI) and n+
Li(υ

+
Li − ṙI) = n−Li(υ

−
Li − ṙI). (37)

The boundary conditions that we need to exploit these equations are

lim
r→0

r2υM,Li = 0, υM(t, r0(t)) = ṙ0(t), j(t, r0(t)) = j0(t). (38)

The function ṙ0(t) follows from the solution of the mechanical part of the problem,
see the next section, while the external Li flux j0(t) can be related to the electric
current. This latter boundary condition motivates to substitute the Li velocity υLi

by the Li flux according to υLi = j + nLiυM.

The boundary condition (38)3 indicates that the host system is an open system for
Li. However, the total number NM of FePO4 particles is conserved, and we can
formulate its global conservation law NM = N−

M +N+
M, which reads more explicitly

for the simplified case at hand

n̄Mr̄
3
0 = n−Mr

3
I + n+

M(r3
0 − r3

I ). (39)

Recall that n̄M is the density of FePO4 particles in the deformation free reference
state, i.e. y = 0 and p = p̄. The outer radius of the host system in this state is
denoted by r̄0.

Due to the homogeneity assumption, the densities nM(t) and nLi(t) depend only on
time, thus we may simply integrate the conservation laws (36) to obtain

r2nMυM(t, r) = −ṅM
r3

3
+ a(t) and r2j(t, r) = −nMẏ

r3

3
+ b(t). (40)

The functions a(t) and b(t) are determined by the boundary conditions (38) and
they assume different values in Ω+ and Ω−. They will be determined by the four
boundary condition (38) to obtain in Ω−

n−Mυ
−
M(t, r) = −1

3
ṅ−Mr and j−(t, r) = −1

3
n−Mẏ

− r, (41)

and in Ω+ we have

r2n+
Mυ

+
M(t, r) = r2

0n
+
Mṙ0 +

1

3
ṅ+

M(r3
0 − r3) and r2j+(t, r) = r2

0j0 +
1

3
n+

Mẏ
+(r3

0 − r3).

(42)
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Next we exploit the jump conditions (37). We start with (37)2, which may be written
as

j+ − j− + (y+ − y−)n−M(υ−M − ṙI) = 0. (43)

The fluxes j+ and j− will be eliminated by means of (41)2 and (42)2, and after use
of the conservation law (39) we obtain

3r2
0j0 + n+

Mẏ
+(r3

0 − r3
I ) + n−Mẏ

−r3
I − (y+ − y−)(n−Mr

3
I )
· = 0. (44)

Now we may use (39) once more to substitute the factor of ẏ+ so that after some
simple rearrangements (44) reduces to

3r2
0j0 +

d

dt

(
n̄Mr̄

3
0y

+ − (y+ − y−)n−Mr
3
I

)
= 0. (45)

This form of the Stefan condition can easily be integrated, and the final result is

n̄Mr̄
3
0y

+(t)− (y+(t)− y−(t))n−M(t)r3
I (t) = q̃(t), (46)

where the source function q̃(t) is defined by

q̃(t) ≡ −
∫ t

t0

3r2
0j0(τ)dτ + n̄Mr̄

3
0y

+(t0)− (y+(t0)− y−(t0))n
−
M(t0)r

3
I (t0). (47)

4.3 The mechanical problem

The mechanical problem which is formulated in Section 3.2 reads in radial coordi-
nates

∂p

∂r
= 0 for r ∈ Ω+/−(t) and p− − p+ =

2γ

rI
for r = rI(t). (48)

From (48)1 we conclude

p = p+(t) for r ∈ Ω+(t) and p = p−(t) for r ∈ Ω−(t). (49)

There are two cases possible that lead to different boundary conditions at the outer
boundary r = r0(t).

Case 1: The outer pressure p0 is fixed, i.e. p+ = p0. In that case the outer radius r0
changes in fact with time and must be calculated from the conservation law (39).

Case 2: The external radius r0 is fixed, i.e. r = r0. In that case the pressure
p+ = p0(t) changes with time and must be calculated from the constitutive law (26).

At first we exploit the pressure controlled Case 1. We insert the constitutive law
(26) into p+ = p0 and into the interfacial condition (48)2 to obtain

n+
M = n̄M(h(y+) +

1

K
(p0 − p̄)) and n−M = n̄M(h(y−) +

1

K
(p0 − p̄+

2γ

rI
)). (50)
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Finally we solve the conservation law (39) for r0(t),

r3
0 =

1

n+
M

(n̄Mr̄
3
0 + (n+

M − n−M)r3
I ). (51)

Thus we are able to eliminate n+
M and n−M in the chemical potentials, see (34) and

(35), and we end up with chemical potentials that depend on the Li fractions y−,
y+ and on the interfacial radius rI.

In an analogous manner we treat the volume controlled Case 2. Here the resulting
density of the matrix constituent reads in Ω+

n+
M =

n̄Mr̄
3
0

r3
0

(1 + (h(y+)− h(y−))(
rI
r̄0

)3 − 2γ

K
(
rI
r̄0

)2), (52)

and in Ω− we have

n−M =
n̄Mr̄

3
0

r3
0

(1 + (h(y+)− h(y−))((
r0
r̄0

)3 − (
rI
r̄0

)3) +
2γ

K

1

rI
((
r0
r̄0

)3 − (
rI
r̄0

)3)). (53)

For fixed r0, the pressure p0 depends on time, and this dependence is obviously given
by

p0 = p̄+K(
n+

M(t)

n̄M

− h(y+(t))). (54)

Note that the possibility to treat the mechanical problem independent of the diffu-
sion problem is an extraordinary case, which is meet here because we have ignored
deviatoric stresses, so that the stress tensor reduces to a pressure. In the general
case diffusion and mechanics must be solved simultaneously.

4.4 Evolution equations

Finally we exploit the evolution equations (25) for spherical symmetry. In this case
it is easy to show by means of the definitions (7) that we have

Ṅ−
Li =

1

4πr2
I

d

dt
(n−My

−4π

3
r3
I ) and Ṅ−

M =
1

4πr2
I

d

dt
(n−M

4π

3
r3
I ). (55)

We insert these identities into the left hand sides of the kinetic relations (25) and
obtain

rI
3

d

dt
(n−My

−) + n−My
−drI
dt

= MLi
I [[µLi − µV +

mLi

2
(υ − w)2]], (56)

rI
3

dn−M
dt

+ n−M
drI
dt

= MM
I [[µV +

mM

2
(υ − w)2]]. (57)

These equations and the integrated Stefan condition (46) determine the evolution
of the interface radius rI and of the atomic Li fractions y+/−. To this end, however,
one has to eliminate n

+/−
M by means of (50) for fixed external pressure p0 or with

(52), (53) for fixed external radius r0.
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4.5 Dimensionless quantities

We introduce dimensionless quantities by means of the time scale of the external
flux, t0, and the radius r̄0 of the host system for y = 0,

τ ≡ t

t0
, ξI ≡ rI

r̄0
, ξ0 ≡ r0

r̄0
. (58)

The dimensionless internal time scales are defined by

τLi ≡ n̄Mr̄0
M I

LiΩ
, τM ≡ n̄Mr̄0

M I
MΩ

. (59)

Furthermore we define dimensionless versions of the density of the matrix lattice,
the diffusion flux, chemical potentials, the surface tension, the bulk modulus, and
the external pressure, viz.

ν ≡ nM

n̄M

, J ≡ r̄0n̄M

t0
j, µ̃ ≡ µ

Ω
, γ̃ ≡ γ

p̄r̄0
, K̃ ≡ K

p̄
, P ≡ p0

p̄
− 1. (60)

4.6 Summary

For fixed external pressure P we now give the explicit evolution system and initial
and boundary data in dimensionless quantities for the three variables y+/− and ξI.
The case of fixed external radius ξ0 will be exploited in a further paper.

The evolution equations rely on the ODE system (56) and (57). The appearing
kinetic energies are small for the case at hand and thus can be ignored. After some
simple rearrangements we have

1

3
ν−ξI

dy−

dt
=

1

τLi

(µ+ − µ−)− y−
1

τM
(µ+

V − µ−V), (61)

ν−(ν− − 1

3

2γ

K

1

ξI
)
dξI
dt

= δ
1

τLi

(µ+ − µ−) + (ν− − y−δ)
1

τM
(µ+

V − µ−V). (62)

The integrated Stefan condition (46) serves to determine y+ according to

y+ =
q − y−ν−ξ3

I

1− y−ν−ξ3
I

, (63)

where the source function

q(τ) ≡ −
∫ τ

τ0

3ξ2
0J0(τ̃)dτ̃ + y+(τ0)− (y+(τ0)− y−(τ0))ν

−(τ0)ξ
3
I (τ0) (64)

contains the Li flux across the external boundary and initial data. It is easy to
show that q(t) is the ratio of the total number of Li atoms and the total number
of interstitial lattice sites, i.e. q(t) = NLi(t)/NM. The solution of the mechanical
problem provides the dimensionless densities of the matrix particles in Ω+/−

ν+ = h(y+) +
1

K
P and ν− = h(y−) +

1

K
(P +

2γ

ξI
), (65)
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and the dimensionless external radius

ξ3
0 =

1

ν+
(1 + (ν+ − ν−)ξ3

I ), (66)

which changes with time for fixed external pressure.

For completeness we also write down the density of matrix particles for the case of
fixed volume. Recall that we shall not exploit this case here.

ν+ = (1 + (h(y+)− h(y−))ξ3
I −

2γ

K
ξ2
I , (67)

ν− = (1 + (h(y+)− h(y−))(ξ3
0 − ξ3

I ) +
2γ

K

1

ξI
(ξ3

0 − ξ3
I ). (68)

Finally we give the chemical potentials µ ≡ µLi− µV and µV in terms of the dimen-
sionless variables:

µ = f ′(y)− a1
h′(y)
h(y)

(1− h(y)

ν
)− a2

h′(y)
h(y)2

, (69)

µV = f(y)− yf ′(y) + a1

(
log(

ν

h(y)
) +

h′(y)
h(y)

(1− h(y)

ν
)y

)
+ a2

(
1 +

h′(y)
h(y)

y

)
1

h(y)
,

(70)

The functions h and ν account for the mechanical contributions to the chemical
potentials. Note that from (65) we have different representations for ν in Ω+/−, viz.
ν+(P, y+) and ν−(P, ξI, y

−). Accordingly there result different functions that repre-
sent the chemical potentials in the two phases. For the case of fixed external pressure
these are written as µ+(P, y+), µ−(P, ξI, y

+) and µ+
V(P, y+), µ−V(P, ξI, y

−). On the
other hand, if we consider a fixed external radius ξ0, we have ν+/−(ξ0, ξI, y

+, y−), i.e.
the both Li fractions appear in ν+ as well as in ν− and thus the chemical potential
functions exhibit the same behavior.

The system (61) - (70) is a closed system that will be used in the following to
determine the evolution of the host system for given external pressure P and external
Li flux J0(τ).

5 Simulations

In this section we numerically study the proposed model (61) - (70). To this end we
choose the following parameters as fixed:

The considered processes run at constant temperature T0 = 293.2K and constant
pressure p̄ = 1bar, i.e. P = 0. The atomic masses of Li and the matrix particles
FePO4 are mLi = 3 and mM = 105. The density of matrix particles is n̄M =
8.396 1028particles/m3 The mechanical parameters bulk modulus, surface tension
and maximal volume change are chosen as K = 7.5 1010N/m2, γ = 0.075N/m and
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δ = 0.06. The free energy contains the interaction energy Ω = 94.4 10−22J/atom and
the 3 parameters a1 = kT0/Ω = 0.390, a2 = K/(n̄MΩ) = 11.5 and a3 = p̄/(n̄MΩ) =
0.000115. Here k = 1.38 10−23J/K denotes the Boltzmann constant. We choose the
time and length scale of the model by t0 = 125664s and r̄0 = 20 10−9m, which is
the time scale of the external flux, respectively the radius of the host system for Li
fraction y = 0.

The two relaxation times τLi and τV of the model are not known because they did
not yet appear in the literature. However, we shall assume that they have values on
a time scale which is much smaller than the time scale of the external flux, and in
Section 5.3 we will introduce various choices of τLi and τV to show their influence on
the evolution of the host system.

5.1 Chemical Potentials

At first we discuss some properties of the chemical potentials µ ≡ µLi − µV and
µV. Figures 4 and 5 show the both potentials without and with mechanical con-
tributions. The mechanical phenomena are due to surface tension and Li induced
volume changes of the matrix lattice. If these are ignored we were to have µ = f ′(y)
and µV = f(y)− yf ′(y) with f given by (31)2. In this case the chemical potentials
exclusively depend on the Li fraction y, which is represented by the red respectively
green curve of Figure 4.

Figure 4: Relevant chemical potentials µ = µLi − µV and µV without mechanical
contributions

If the mechanical phenomena are taken into account, the chemical potentials ad-
ditionally depend on the location of the interface, i.e. on ξI. This dependence is
illustrated in Figure 5 by the yellow and blue curves, which give the chemical po-
tentials µ and µV for two different locations of the interface, viz. ξI = 0.43 and
ξI = 0.10.

The difference µ = µLi − µV is not very much influenced by the location of the
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Figure 5: Red and green: Chemical Potentials as in Figure 4 without mechanical
contributions. Yellow and blue: Chemical potentials with mechanical contributions
for 2 different interfacial radii.

interface. This fact is important to understand the observed evolution of the voltage,
which is determined by µ. On the other hand, the chemical potential of the vacancies
µV depends quite sensitive on a variation of ξI. This fact is related to the origin of
the hysteretic behavior of the charging/discharging process of the battery.

Finally we discuss the non-monotonicity of the chemical potentials. It is sufficient to
consider the difference µ. Let the Li fractions y1 < y2 indicate the boundaries of the
two regions 0 ≤ y < y1 and y2 < y ≤ 1 where µ is uniquely invertible with respect
to y. If the total Li fraction q lies in either one of those ranges the Li distribution of
the host system is represented by a single phase. For y1 ≤ q ≤ y2, there are three Li
fractions corresponding to a given value of µ and the host system may decompose
into two phases which are separated by an interface. The explicit determination of
the region where the Li distribution is represented by two adjacent phases is a subtle
problem that will be solved in the next sections of this study.

5.2 Possible equilibria

In this section we determine the possible equilibria for given q, i.e. total fraction q
of stored Li atoms.

The conditions for possible equilibria consists of the two equations (24), which guar-
antee zero interfacial entropy production,

µ+(P, y+) = µ−(P, ξI, y
−) and µ+

V(P, y+) = µ−V(P, ξI, y
−), (71)

and of the Stefan condition (63)

y+ =
q − y−ν−(P, ξI, y

−)ξ3
I

1− y−ν−(P, ξI, y−)ξ3
I

with q =
NLi

NM

. (72)

At first it is instructive to ignore the mechanical contributions. In that case, ac-
cording to (69) and (70), the equations (71) reduce to the classical common tangent
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construction

f ′(y+) = f ′(y−) and f(y+)− y+f ′(y+) = f(y−)− y−f ′(y−), (73)

which determine the so called Maxwell line. Up to a symmetry transformation the
solution (y+, y−) of (73), which is indicated in Figure 6 by the two white dots, is
unique. The symmetry of (73) implies that we may have y+ > y− as well as y+ < y−.
Furthermore it is important to note that a variation of the location of the interface
does not change the equilibrium. After (73) is solved for (y+, y−) we may use the
equation (72) in the form q = (1 − ξ3

I )y
+ + ξ3

I y
− to determine either the interface

radius ξI or q, which gives the ratio of total number of Li atoms and total number
of interstitial lattice sites.

Figure 6: µ = µLi − µV and the two equilibria y+ and y− without mechanical
contributions.

Next we include the mechanical phenomena into the discussion of the system (71),
(72). In that case the radius ξI of the interface appears in (71), and thus the
equilibria (y+, y−) depend on ξI.

Figure 7: Possible equilibria when mechanical contributions are taken into account.
Left: µ = µLi − µV and possible equilibria (y+, y−) for y+ > y− (yellow) and for
y+ < y− (green). Right : The corresponding interfacial radii ξI for given fixed total
Li fraction.
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There are two different compact domains of radii so that the triple (y+, y−, ξI) solves
the equations (71), and (72) serves to calculate the corresponding prescribed total
Li fraction q. The first domain contains the radii for which we have y+ > y−, while
in the second domain y+ < y−. There is no symmetry anymore between the outer
and inner region of the host system. From the left plot of Figure 7 we may read
off the possible atomic Li fractions in equilibrium, which are indicated by dots with
yellow color for y+ > y−, and with green color for y+ < y−.

The plot on the right hand side gives the corresponding interfacial radii for given
total atomic Li fractions. It is important to note that for given q there is a region
where two equilibria are possible. Which one is assumed by the host system for given
initial data depends on the ratio of the relaxation times, see Table 1 in Section 5.4.

5.3 On the origin of the hysteretic behaviour

We assume that the host system approaches interfacial equilibrium on a much faster
time scale than the loading respectively the unloading process. This assumption
exhibits a hysteretic behavior of loading and unloading of the host system.

For a demonstration of this statement we use the data from Figure 7 and the equation
(69) to establish a plot that gives the chemical potential −µ+ = −(µ+

Li−µ+
V) versus

the total electric charge of the cell shown in Figure 1, which is related to the total
Li content of the host system by 1− q. If the electrolyte is treated as a liquid with
infinite conductivity, it can be shown that the voltage U of the lithium cell is given
by U = −1/e(µ+

Li − µ+
V) + const..

Figure 8: Hysteretic behaviour during charging (green) and discharging (yellow).

We now compare the calculated hysteresis plot of Figure 8 with the corresponding
experimental data from Figure 2 and observe two essential differences. The experi-
mentally observed horizontal branches exhibit in the model a slight negative slope,
and the connections of the two-phase region to the single phase regions differ from
the corresponding experimental data.
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Various reasons for these discrepancies are possible. For example, in the current
paper our first exploitation of the model relies on several simplifying assumptions,
viz. (i) fast bulk diffusion in comparison with the interface evolution, (ii) the stress
deviator and the anisotropy of the FePO4 lattice have been ignored, (iii) the depen-
dence of the elastic coefficients on the Li fraction has been ignored, (iv) the shape
of the interface is a sphere and (v) the hysteresis is generated via local equilibrium
states.

Note that these five assumptions are not included in the general model that is
proposed in this study. In fact we exclusively introduced those assumptions for an
easy treatment of the simulations in this study. In a forthcoming paper we shall
rely on the complete model as it is established here, and in particular we shall give
a careful calibration of the model parameter to the experimental data. The main
objective of the current study is to show that there is a thermodynamic model that
is capable to describe and predict properties of the loading and unloading process
of the host system by Li atoms.

5.4 Evolutions for various initial and boundary data

In this section we choose various initial and boundary data to study the subsequent
evolution of the host system to the possible equilibrium states. The simulation is
based on the ODE system (61), (62) and the algebraic equation (63) which brings
via the source function q(τ) an explicit time dependence into (61) and (62).

The variables are the Li fractions y+(τ), y−(τ) in the two regions Ω+/−, and the
interface radius ξI(τ).

Here we consider a constant q = NLi/NM, i.e. the total content of Li atoms in the
host system is constant during the evolution. In order to demonstrate the influence
of the two relaxation times τLi and τV on the evolution we consider three cases, viz.

(τLi, τM) = (1, 1), (τLi, τM) = (10−3, 1), and (τLi, τM) = (1, 10−3). (74)

A careful examination of the system (61) and (62) reveals that τM controls the
evolution of the interface radius ξI and of the chemical potential difference µ+

V−µ−V,
whereas the evolution of the ratio y−/y+ is in first order determined by the value of
τLi.

Recall our assumption that during loading as well as during unloading the interface
starts to appear at the outer radius with y+ > y− during loading respectively with
y+ < y− during unloading. For this reason we consider initial data satisfying

ξI(0) = 0.99 ξ0(0), y−(0) =





0.95 y+(0) loading,
to simulate

1/0.95 y+(0) unloading.
(75)

From the initial data (75) we calculate q(0) = q(t) by means of (63), and provide
a list of ten values in the following table which describes the characteristics of the

21



evolution of the host system for the three pairs of relaxation times given by (74).
We observe that three possible final states: The initially 2-phase system may end
up as a single phase or in 2-phase equilibrium, which is indicated by the symbols 1
and 2, respectively. Furthermore the table gives the information whether the initial
conditions y+(0) > y−(0) and y+(0) < y−(0) are conserved during the evolution.
Recall that Figure 7 shows a region where two equilibria are possible for a given
total amount of Li atoms. Which of these are assumed by the host system depends
on the chosen relaxation times. For example, when the interface reaches the first
possible equilibrium location, see Figure 7, but the ratio y−/y+ needs more time
to establish equilibrium, then the interface motion still goes on up to the second
equilibrium location.

Table 1: Evolution of the host system for different initial data and relaxation times.

Finally we discuss a series of plots showing explicitly the evolution of the interface
radius ξI(τ), the ratio y−(τ)/y+(τ) and of the four chemical potentials µ+(τ), µ−(τ),
indicated by red respectively orange color, and µ+

V(τ), µ−V(τ), indicated by blue and
magenta. Thus the third plot in each row gives an instructive illustration how
the equilibria of the 2-phase state is approached, which is given by µ+ = µ− and
µ+

V = µ−V.

We start with (τLi, τM) = (1, 1), y+(0) > y−(0) and q = 0.294381, where only a single
phase may exist in equilibrium. This is exhibited in Figure 9 where the interface
ends up with ξI = 0.

Figure 9: Evolution of the host system: (τLi, τM) = (1, 1), y+(0) > y−(0) and
q = 0.294381.
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The next three examples show the influence of different relaxation times on the
evolution for the initial data y+(0) > y−(0) and q = 0.62. In each case we finally
end up here with a 2-phase equilibrium. The initial condition y+(0) > y−(0) is
conserved in Figures 10 and 11. Observe in Figure 11 that µ = µLi− µV establishes
much faster its equilibrium value µ+ = µ− than in Figure 10, which is due to the
much smaller relaxation time τLi. However, if τV is the smallest relaxation time, the
evolution drastically changes, which can be observed in Figure 12. In particular the
initial condition y+(0) > y−(0) is not conserved here.

Figure 10: Evolution of the host system: (τLi, τM) = (1, 1), y+(0) > y−(0) and
q = 0.62

Figure 11: Evolution of the host system: (τLi, τM) = (10−3, 1), y+(0) > y−(0) and
q = 0.62.

Figure 12: Evolution of the host system: (τLi, τM) = (1, 10−3), y+(0) > y−(0) and
q = 0.62

In the next three examples we change from total Li fraction q = 0.62 to q = 0.72
and consider again the case y+(0) > y−(0), which now is only conserved in Figure
13 where we have τLi = τV. Figure 14, i.e. τLi = 10−3 τV, a 2-phase equilibrium is
not possible, and this realized here by ξI → 0. Finally we observe in Figure 15 a
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non-monotone behavior of the interfacial radius and a very fast approach of µV to
its equilibrium value µ+

V = µ−V.

Figure 13: Evolution of the host system: (τLi, τM) = (1, 1), y+(0) > y−(0) and
q = 0.62

Figure 14: Evolution of the host system: (τLi, τM) = (10−3, 1), y+(0) > y−(0) and
q = 0.72

Figure 15: Evolution of the host system: (τLi, τM) = (1, 10−3), y+(0) > y−(0) and
q = 0.72

6 Appendix: Detailed description of motion, strain,

stress and their influence on the chemical po-

tentials

Introduction. In the current study we have described the deformation of the host
system due to surface tension and Li induced volume changes of the crystal lattice
within a simplified mechanical setting. In fact we have ignored that the host lattice
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of the LiyFePO4 particles have orthorhombic symmetry, so that 9 elastic constants
are needed for a complete mechanical characterization. Furthermore we have ignored
the deviatoric components of the stress, i.e. we have assumed the form σij = −pδij.

In this section we shall give the necessary mechanical framework, i.e. we extend the
constitutive theory of Sections 3.1 - 3.4. The application to the case at hand will be
done in a forthcoming paper. For those readers who are interested in more details
concerning the following statements we refer to [2] and [3]. The determination of the
elastic constants of LiyFePO4 and of the volume change due to lithiation is found
to be in the recent study by Maxisch and Ceder [9].

Motion, strain and stress. At first we introduce a reference state in order to mea-
sure the motion of a material point of the LiyFePO4 matrix. Let X = (X i)i=1,2,3 =
(X1, X2, X3) be the location of a material point in a reference state, whose location
at time t is given by x = (xi)i=1,2,3 = (x1, x2, x3). The location x is determined by
the function

x = χ(t,X) =
(
χ1(t,X), χ2(t,X), χ3(t,X)

)
. (76)

We call χ(t,X) = (χi(t,X))i=1,2,3 the motion of the material points of the crystal,
and the displacement of a material point at X is denoted by

U i(t,X) = χi(t,X)−X i. (77)

The motion can be used to calculate the velocity, υ̂ = (υ̂i)i=1,2,3 , and the deformation
gradient, F = (F ij)i,j=1,2,3, of the crystal:

υ̂i(t,X) =
∂χi(t,X)

∂t
, F ij =

∂χi

∂Xj
. (78)

We denote the Jacobian of F ij by J , and we assume that J > 0, so that we may
invert the motion xi = χi(t,X) at any time t with respect to the coordinates X i.
We write

X i = (χ−1)i(t, x), (79)

and define the displacement field ui by

ui(t, x) = U i(t, χ−1(t, x)). (80)

This is a typical example for the representation of mechanical quantities with re-
spect to actual coordinates. We call this representation the Euler or the spatial
description, whereas the representation with respect to the reference coordinates is
called the Lagrange or material description.

The velocity υ̂i(t,X) can likewise be given with respect to the coordinates xi. We
define υi(t, x) ≡ υ̂i(t, χ−1(t, x)), and we identify this quantity with the barycentric
velocity that was introduced by (9)2 in Section 3.1.

A similar definition for the mass density of the LiyFePO4 particles, viz. ρ(t, x) =
ρ̂(t, χ−1(t, x)), is useful to integrate the mass balance (10)1 to obtain

J = det(F ) =
ρ̄

ρ
, (81)
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where ρ̄ is the mass density for F ij = δij.

Further important objects for the description of the stretch are the right and the left
Cauchy-Green tensor, Cij and Bij, and for the description of the strain we define
the Green strain tensor Gij:

Cij = FmiFmj, Bij = F imF jm, Gij =
1

2
(Cij − δij). (82)

These quantities may also easily be given with respect to the spatial representation.

Next we decompose the stretch of a body into a part, which gives pure volume
changes of the body and the complementary part, which describes pure changes
of its shape. Pure changes of the volume are obviously given by the Jacobian J ,
whereas the unimodular tensor

cij ≡ J−2/3Cij with det(c) = 1 (83)

represents changes of the shape of a body.

Furthermore we need to introduce two measures of stress: (i) the Cauchy stress
σij = σji, which gives the actual force per actual surface element and (ii) the second
Piola-Kirchhoff stress tik, which is defined by

tij = J(F−1)im(F−1)jnσmn. (84)

The isotropic part of the Cauchy stress is related to the pressure p, which is defined
by

p = −1

3
σmm, so that σij = −p δij + σ〈ij〉 with σ〈jj〉 = 0. (85)

Here the angle brackets indicate the stress deviator, which represents the stress due
to pure changes of the shape of a solid, whereas the pressure is related to pure
changes of its volume.

Free energy, chemical potentials and stress. In the simplified mechanical treat-
ment, the specific free energy relies on the representation (17): ψ = ψ̂(T, nLi, nV) =
ψ̃(T, y, ρ). Its generalization to the complete mechanical description reads

ψ = ψ̂(T, nLi, nV, c
ij) = ψ̃(T, y, ρ, cij) = ψ̌(T, y, C ij). (86)

The calculation of the chemical potentials and the pressure, which is now defined
by p = −σnn/3, rely on the same rules as before, i.e. according to (19) we have

µLi =
∂ρψ̂

∂nLi

, µV =
∂ρψ̂

∂nV

, p = ρ2∂ψ̃

∂ρ
, ρψ + p = µLinLi + µVnV, (87)

and the function ψ̌(T, y, C ij) is used to calculate the 2nd Piola Kirchhoff stress by
means of

tij = 2ρ̄
∂ψ̌

∂C ij
. (88)
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Interfacial entropy inequality and kinetic relations. In order to obtain the
interfacial entropy inequality for the complete mechanical description we have to
substitute in (22) σij = −pδij + σ<ij> instead of σij = −pδij. After some simple
algebraic manipulations we now end up with

ṄLi[[µLi−µV−mLi

ρ
σ<ij>νiνj+

mLi

2
(υ−w)2]]+ṄM[[µV−mM

ρ
σ<ij>νiνj+

mM

2
(υ−w)2]] ≥ 0.

(89)
The normal ν, with νiνi = 1, of the interface points into the + region. The velocity
of the interface is w, and wν denotes its normal speed.

We observe that we may read off from (89) kinetic relations of the same formal
structure as it is given by (25). The important difference to the case with pure
pressure is the contribution of the jump of the stress deviator to the driving forces.
Preliminary numerical calculations reveal that this contribution may induce that a
spherical as well as a flat interface may become unstable.

Decomposition of total strain into elastic and misfit strain. This paragraph
introduces the appearing peculiarities that we meet if we describe the deformation of
a solid that consists of several constituents. The following discussion gives the basic
prerequisite to formulate the appropriate constitutive law that relates the stress to
the strain. We choose as variables the Li fraction and the deformation gradient, i.e.
(y, F ).

We consider a reference state S̄ with (ȳ = 0, F̄ ij = δij), an intermediate state S∗
with (y∗ = y, F ij

∗ ) and the actual state S with (y, F ij). We assume, that these states
are related to each other by the following conditions: (i) The intermediate state is
reached from the reference state under constant reference stress σij = −p̄δij. (ii)
The transition of the intermediate state to the actual state by F ij

e at constant Li
fraction y leads to elastic stress σij 6= −p̄δij. For this reason we call F ij

e the elastic
part of the deformation gradient.

By means of the given rules we have decomposed the change of the state of a solid
into two parts, without and with deviations from the hydrostatic reference stress.
The deformation gradient F ij

∗ might be due to thermal expansion, which we do not
consider here, or/and due to the change of shape and volume because we have a
change of the Li fraction from ȳ = 0 to y∗ = y. In any case, F ij

∗ is experimentally
measured at the reference stress. On the other hand, elastic stresses are exclusively
due to changes of the atomic distances of the crystal lattice at fixed occupation of
lattice sites.

The reference, the intermediate and the actual state have mass densities ρ̄, ρ∗, ρ,
particle densities n̄M, n∗M nM and Li fractions ȳ = 0, y∗ = y, y. We thus have

ρ̄ = m(ȳ)n̄M, ρ∗ = m(y)n∗M, and ρ = m(y)nM, (90)

so that the three Jacobians J∗ = det(F∗) = ρ̄/ρ∗, Je = det(Fe) = ρ∗/ρ and J =
det(F ) = ρ̄/ρ are given by

J∗ = ν(y)
n̄M

n∗M
, Je =

n∗M
nM

, J = ν(y)
n̄M

nM

with ν ≡ m(ȳ)

m(y)
. (91)
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There is a multiplicative decomposition of the total deformation gradient according
to

F ij = F ik
e F

kj
∗ , (92)

which results by a simple geometric reasoning: We have three motions: The total
motion from S̄ to S: xi = χi(t,X), the motion at constant reference stress from S̄
to S∗: X i

∗ = χi
∗(t,X) and the pure elastic motion from S∗ to S: xi = χi

e(t,X∗). The
chain rule implies

F ij =
∂χi

∂Xj
=

∂χi
e

∂Xk∗

∂χk
∗

∂Xj
= F ik

e F
kj
∗ . (93)

The St.Venant-Kirchhoff law. We denote the 2nd Piola-Kirchhoff stresses with
respect to the states S̄ and S∗ by tij and zij, respectively. Obviously the both
stresses give the same (actual) Cauchy stress by

σij =
1

J
F ikF jltkl and σij =

1

Je

F ik
e F

jl
e z

kl, (94)

and by elimination of σkl we obtain with (92)

tij = J∗F−ik
∗ F−jl

∗ zkl. (95)

Recall that the transformation from S∗ to S is purely elastic, so that we have to
formulate the elastic stress strain relation for zij. For small strains we may use the
St. Venant-Kirchhoff law which reads

zij = −p̄JeC
−ij
e +

1

2
K̃ ijkl(y)(Ckl

e − δkl). (96)

Cij
e = F ki

e F
kj
e is the elastic Cauchy-Green tensor. The stiffness matrix K̃ijkl(y)

depends on the Li fraction and satisfies the general symmetries K̃ ijkl = K̃jikl =
K̃ijlk = K̃klij.

In order to obtain the free energy density according to (88) we have to calculate the
stress-strain relation for the stress tij. We insert the elastic law (96) into (95) and
define a stiffness matrix Kijkl and a misfit strain Cij

∗ by

K ijkl(y) ≡ J∗F−im
∗ F−jn

∗ F−ko
∗ F−lp

∗ K̃mnop(y) and Cij
∗ ≡ F ki

∗ F
kj
∗ . (97)

After some algebraic manipulations we finally obtain

tij = −p̄JC−ij +
1

2
K ijkl(y)(Ckl − Ckl

∗ (y)). (98)

The experimental data given by Maxisch and Ceder, [9] can be used to calculate
the various components of the stiffness matrix and the misfit strain. Unfortunately
the authors do not indicate whether their measurements rely on the stress-strain
relation (96) or on (98). However, we think they have used (96).
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Free energy density and chemical potentials for the St.Venant-Kirchhoff
law. The mechanical part of the free energy density relies on the thermodynamic
relation (88). By simple integration and by including the chemical part we obtain

ρψ = nMΩf(y) + p̄(
J∗
J
− 1) +

1

8J
(Ckl − Ckl

∗ )Kklnm(Cnm − Cnm
∗ ). (99)

In order to calculate the chemical potentials according to (87)1,2, we must represent
ρψ in the variables nLi, nV and cij, recall cij = (ν(y)n̄M/nM)−2/3Cij. We obtain for
lithium

µLi = Ω(f + (1− y)f ′)+
1

n̄Mν
((
mLi

mM

ν(1− y) + 1)(p̄J∗ − 1

8
(
1

3
Ckl + Ckl

∗ )Kklmn(Cmn − Cmn
∗ ))+

(1− y)(p̄J ′∗ +
1

8
(Ckl − Ckl

∗ )K
′ klmn(Cmn − Cmn

∗ )− 1

2
C
′ kl
∗ Kklmn(Cmn − Cmn

∗ ))),

(100)

and for the vacancies

µV = Ω(f − yf ′)+
1

n̄Mν
(−(

mLi

mM

νy − 1)(p̄J∗ − 1

8
(
1

3
Ckl + Ckl

∗ )Kklmn(Cmn − Cmn
∗ ))−

y(p̄J ′∗ +
1

8
(Ckl − Ckl

∗ )K
′ klmn(Cmn − Cmn

∗ )− 1

2
C
′ kl
∗ Kklmn(Cmn − Cmn

∗ ))), (101)

where a prime indicates the derivative with respect to the Li fraction y.

Thus we have completed the constitutive theory for the host system with chemical
and mechanical coupling.
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[2] T. Böhme, W. Dreyer, F. Duderstadt, and W.H. Müller A higher gradient
theory of mixtures for multi-component materials, WIAS Preprint No. 1286,
Philosophical Magazine submitted (2007).

[3] W. Dreyer, Jump Conditions at phase boundaries for ordered and disordered
phases, WIAS Preprint No. 869 (2003).

[4] W. Dreyer and F. Duderstadt, On the modelling of semi-insulating GaAs in-
cluding surface tension and bulk stresses, WIAS Preprint No. 995, to appear in
Proc. R. Soc. A (2008).

29
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