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Abstract

The multisymplectic analysis of the Short Pulse Equation known in nonlin-
ear optics is used in order to construct a geometric multisymplectic integrator
of it. A brief comparison of its effectiveness relative to the pseudo-spectral
integration scheme is presented.

1 Introduction

The multisymplectic Hamiltonian formalism has emerged from geometric theories
in the calculus of variations [1|. It has been a subject of numerous investigations re-
cently [2 9| including possible applications to field quantization [10 13|. The multi-
symplectic approach to the construction of geometric numerical integrators of PDEs
was proposed in [14]. The application of the closely related “multi-symplectic” struc-
ture in wave propagation has been pioneered by Bridges [15].

In this contribution we apply the multisymplectic formalism to the short pulse equa-
tion (SPE) known in nonlinear optics. The short pulse equation has appeared re-
cently [16,17] as a description of ultra-short pulses when the standard nonlinear
Schrédinger equation cannot be applied because the slowly varying envelope ap-
proximation it is based on is not valid anymore. In [18,19] the integrability of this
equation has been proven, and in [20] an example of the exact solution has been
constructed. In [21]| three integrable two component generalizations of SPE have
been found.

Here we apply the multisymplectic formalism in order to construct a multisymplec-
tic geometric integrator for SPE. This work is a part of the investigation of the
properties of ultra-short pulses in nonlinear optics with the help of SPE and its
generalizations which requires a stable and robust numerical integration scheme for
SPE.

The multisymplectic formulation of SPE is discussed in Sect. 2. In Sect. 3 we con-
struct the simplest multisymplectic integrator and briefly compare its effectiveness
with the well known pseudo-spectral numerical integration [22].

2 The multisymplectic formulation of SPE

The short pulse equation
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can be written in the form
L, 3
if we introduce the potential ¢
This equation can be derived from the first order Lagrangian
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Using the standard multisymplectic (De Donder-Weyl) Hamiltonian formalism, we
introduce the polymomenta
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and the (De Donder-Weyl) Hamiltonian
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Then the multisymplectic (De Donder-Weyl) Hamiltonian equations take the form
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This set of first order equations is equivalent to SPE written in terms of the potential
function ¢(z,t), Eq. 2. It is well known that these equations can be obtained from
the geometrical formulation of first order variational problems using the Poincare-
Cartan form and its exterior derivative (the multisymplectic form) [1,9].

Q=doANdp® Adt +do Adp' Adx —dH A dx A dt. (8)

In order to establish a connection with the multi-symplectic formulation of Bridges
[15] which has became more popular in discussions of geometric integrators of PDEs,
let us introduce the set of variables Z¥ := (¢, p*,p'). Then the DW Hamiltonian
equations can be written in matrix form

B'0,7 + 30,7 = V 4 H, (9)



where the S-matrices

0
0
-1

0
0
-1

0 1 0 0
gt = 00 ], =10 E (10)
00 0 0

can be identified with the so-called Duffin-Kemmer-Petiau matrices (in 2D) [23]
which fulfill the DKP algebra relations (a, b, ¢ = (z,1)).
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This form of DW Hamiltonian equations generalizes the Hamiltonian equations in
mechanics written in the form

watZ = 8ZH,
0 1. : :
where 10 )" the symplectic matrix and Z := (p,q) .

Associated with the above two antisymmetric matrices 3 are two pre-symplectic
forms

1
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The structure given by two pre-symplectic forms % and &! is called multi-symplectic
by Bridges [15]. In the notations introduced by Bridges (1997) 3% = K and ' =
M and H = —S. These notations are now standard in the papers devoted to
the geometric (multisymplectic) integrators of PDEs [24 28|. In this notation the
fundamental multisymplectic conservation law is written in the form:

d/dtk' + d/dzk” = 0. (13)

3 A multisymplectic integrator for SPE

The simplest realization of the multisymplectic integrator is constructed by the
discretization of DW Hamiltonian equations using the midpoint method in both x
and t directions:
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We obtain:
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As a consequence of the statement proven by Bridges and Reich [24] this integrator
fulfills the discretized multisymplectic conservation law.

3.1 The numerical implementation

We solve the initial boundary value problem for Eq. 1 using the above multi-
symplectic integrator. We know the initial value u(z,t = 0), its discretization
U;j=0,? = 1,..., N, and the vanishing values of the solutions on the right bound-
ary (the wave propagates from the right to the left). Hence, we know pfdzo and
¢ij=0,1 = 1, N, and p’}v,j = o¢Nnj =Dn; tPNj1 = 0,5 =0,..., M. From the known
values at three mesh points (i+1,7), (¢+1,7+1), and (7, 5) (see Fig. 1) we calculate
new values at the point (4,7 + 1), i.e. given pi,, ;, Py i1, Phjs Qiv1gs Piv1jrts Pigs
and pj; ;41 + Piy1,, We obtain pﬁ,jH, Gij+1 and pii +p’;7j. Then the integrator

yields
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We first calculate pj ;,, from the cubic Eq. (16a) (the root which ensures the conti-
nuity of the solution is selected). Then Eq. (16b) yields ¢; ;11 and Eq. (16¢) yields
Pije1 + i, (see Fig. 1). Thus, we obtain u; 11 = 2p} ;.
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Figure 1: The discretization mesh.

In order to test the effectiveness of the method, we numerically propagate the known
Sakovich’ exact solution of SPE [20] to ¢t = 100. The evolution of the Sakovich exact
solution (with m = 0.2) is shown on Fig. 2 at ¢ = 0 and ¢ = 100.

The exact solution is compared with the numerical solutions obtained using the
multisymplectic scheme and the pseudo-spectral scheme. We compare the error of
the methods, and the CPU time required to reach ¢t = 100 at different values of
discretization steps At and Ax. The error of numerical integration is given by the
standard deviation:

1 _
i=1

where u; ; is the numerical solution and %, ; is the exact Sakovich’ solution at time
t = jAL.

The results of the multisymplectic integration for different values of At and Az =
Xmaz/N (Xmae = 400) are shown of Fig. 3. As expected, the error decreases with
Ax and At decreasing. The multisymplectic method appears to be more effective
than the pseudo-spectral method. For example, for N = 27 and At = 0.0001 the
error of the multisymplectic scheme o ~ 6.5 x 107¢, while for the pseudo-spectral
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Figure 2: The evolution of the Sakovich’ solution (with m = 0.2) for ¢ = 0 and
t = 100.
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Figure 3: The dependence of the error of the multisymplectic integrator from At for
different values of Ax.

method o ~ 7 x 107°. The CPU time required by the multisymplectic methods
is 40000 sec, while the pseudo-spectral method requires ~ 100000 sec (on 3GHz
Pentium 4 PC).

In conclusion, we have used the multisymplectic formulation of SPE in order to con-
struct the geometric multisymplectic integrator of SPE. We have compared the ef-
fectiveness of the corresponding numerical scheme with the pseudo-spectral method
which uses the Runge-Kutta integration. The multisymplectic integration appears
to be an order of magnitude more precise and approximately 2.5 times faster at long
propagation times than the pseudo-spectral method. A comparison with the exact
solution of SPE shows that the multisymplectic integration is stable and robust and
preserves the energy functional.
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