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AbstratWe onsider a new interating partile system on the one-dimensional lat-tie that interpolates between TASEP and Toom's model: A partile annotjump to the right if the neighboring site is oupied, and when jumping to theleft it simply pushes all the neighbors that blok its way.We prove that for �at and step initial onditions, the large time �utuationsof the height funtion of the assoiated growth model along any spae-like pathare desribed by the Airy1 and Airy2 proesses. This inludes �utuationsof the height pro�le for a �xed time and �utuations of a tagged partile'strajetory as speial ases.1 IntrodutionWe onsider a model of interating partile systems, whih is a generalization ofthe TASEP (totally asymmetri simple exlusion proess) and the Toom model.Besides the extension of some universality results to a new model, the main featureof this paper is the extension of the range of analysis to any �spae-like� paths inspae-time, whose extreme ases are �xed time and �xed partile (tagged partileproblem), see below for details.Consider the system of N partiles x1 > · · · > xN in Z that undergoes the followingontinuous time Markovian evolution: Eah partile has two exponential loks �one is responsible for its jumps to the left while the other one is responsible for itsjumps to the right. All 2N loks are independent, and the rates of all left loksare equal to L while the rates of all right loks are equal to R. When the ith leftlok rings, the ith partile jumps to the nearest vaant site on its left. When the
ith right lok rings, the ith partile jumps to the right by one provided that the site
xi + 1 is empty; otherwise it stays put. The main goal of the paper is to study theasymptoti properties of this system when the number of partiles and the evolutiontime beome large.If L = 0 then the dynamis is known under the name of Totally Asymmetri SimpleExlusion Proess (TASEP), and if R = 0 the dynamis is a speial ase of Toom'smodel studied in [9℄ (see referenes therein too). Both systems belong to the Kardar-Parisi-Zhang (KPZ) universality lass of growth models in 1 + 1 dimensions.Partile's jump to the nearest vaant spot on its left an be also viewed as thepartile pushing all its left neighbors by one if they prevent it from jumping tothe left. This point of view is often bene�ial beause it remains meaningful for1



in�nite systems, and also the order of partiles is not being hanged. Beause ofthis pushing e�et we all our system the Pushing Asymmetri Simple ExlusionProess or PushASEP.Observe that for a N-partile PushASEP with partiles x1(t) > · · · > xN(t), theevolution of (x1, . . . , xM) for anyM ≤ N is theM-partile PushASEP not in�uenedby the presene of the remaining N −M partiles. This "triangularity property"seems to be a key feature of our model that allows our analysis to go through.Our results split in two groups � algebrai and analyti.Algebraially, we derive a determinantal formula for the distribution of the N-partile PushASEP with an arbitrary �xed initial ondition, and we also representthis distribution as a gap probability for a (possibly, signed) determinantal pointproess (see [12, 16, 17, 21, 22℄ for information on determinantal proesses). The re-sult is obtained in greater generality with jump rates L and R being both time andpartile-dependent (Proposition 3.1). The �rst part (the determinantal formula, seeProposition 2.1) is a generalization of similar results due to [2, 19, 20℄ obtained bythe Bethe Ansatz tehniques. Also, a losely related result have been obtained veryreently in [10℄ using a version of the Robinson-Shensted-Knuth orrespondene.Analytially, we use the above-mentioned determinantal proess to study the largetime behavior of the in�nite-partile PushASEP with two initial onditions:1. Flat initial ondition with partiles oupying all even integers.2. Step initial ondition with partiles oupying all negative integers.It is not obvious that the in�nite-partile PushASEP started from these initial on�g-urations is orretly de�ned, and some work needs to be done to prove the existeneof the Markovian dynamis. However, we take a simpler path here and onsider ourin�nite-partile system as a limit of growing �nite-partile systems. It turns out thatfor the above initial onditions, the distribution of any �nite number of partiles atany �nitely many time moments stabilizes as the total number of partiles in thesystem beomes large enough. It is this limiting distribution that we analyze.We are able to ontrol the asymptoti behavior of the joint distribution of
xn1(t1), . . . , xnk

(tk) with xn1(0) ≥ · · · ≥ xnk
(0) and t1 ≥ · · · ≥ tk. It is the se-ond main novel feature of the present paper (the �rst one being the model itself)that we an handle joint distributions of di�erent partiles at di�erent time mo-ments. As speial ases we �nd distributions of several partiles at a given timemoment and distribution of one partile at several time moments (a.k.a. the taggedpartile).In the growth model formulation of PushASEP (that we do not give here; it an beeasily reonstruted from the growth models for TASEP and Toom's model desribedin [9℄ and referenes therein), this orresponds to joint distributions of values of theheight funtion at a �nite number of spae-time points that lie on a spae-like path;for that reason we use the term `spae-like path' below. The two extreme spae-likepaths were desribed above � they orrespond to t1 = · · · = tk and n1 = · · · = nk.2



The algebrai tehniques of handling spae-like paths are used in the subsequentpaper [5℄ to analyze two di�erent models, namely the polynulear growth (PNG)model on a �at substrate and TASEP in disrete time with parallel update.Our main result states that large time �utuations of the partile positions alongany spae-like path have exponents 1/3 and 2/3, and that the limiting proess isthe Airy1 proess for the �at initial ondition and the Airy2 proess for the stepinitial ondition (see the review [11℄ and Setion 2.4 below for the de�nition of theseproesses).In the PushASEP model, we have the �utuation exponent 1/3 even in the ase ofzero drift. This is due to the asymmetry in the dynamial rules and it is onsistentwith the KPZ hypothesis. In fat, from KPZ we expet to have the 1/3 exponentwhen j′′(ρ) 6= 0, where j(ρ) is the urrent of partiles as a funtion of their density
ρ, and j′′(ρ) = −2(R+ L/(1 − ρ)3) for PushASEP.We �nd it remarkable that up to saling fators, the �utuations are independentof the spae-like path we hoose (this phenomenon was also observed in [7℄ forthe polynulear growth model (PNG) with step initial ondition). It is natural toonjeture that this type of universality holds at least as broadly as KPZ-universalitydoes.Interestingly enough, so far it is unknown how to study the joint distribution of
xn1(t1) and xn2(t2) with xn1(0) > xn2(0) and t1 < t2 (two points on a time-likepath); this question remains a major open problem of the subjet.Previous results. For the TASEP and PNG models, large time �utuation resultshave already been obtained in the following ases: For the step initial ondition theAiry2 proess has been shown to our in the saling limit for �xed time [14,15,18℄,and more reently for tagged partile [13℄. For TASEP, the Airy1 proess oursfor �at initial onditions in ontinuous time [4℄ and in disrete time with sequentialupdate [3℄ with generalization to the initial ondition of one partile every d ≥ 2sites1. Also, a transition between the Airy2 and Airy1 proesses was obtained in [6℄.These are �xed time results; the only previous result onerning general spae-likepaths is to be found in [7℄ in the ontext of the PNG model, where the Airy2 proesswas obtained as a limit for a direted perolation model.Outline. The paper is organized as follows. In Setion 2 we desribe the modeland the results. In Proposition 2.1 the transition probability of the model is given.Then, we de�ne what we mean by spae-like paths, and formulate the saling limitresults; the de�nitions of the Airy1 and Airy2 proesses are realled in Setion 2.4.In Setion 3 we state the general kernel for PushASEP (Proposition 3.1) and thenpartiularize it to step and �at initial onditions (Proposition 3.4 and 3.6). InSetion 4 we �rst prove Proposition 2.1 and then obtain the general kernel for adeterminantal measure of a ertain form (Theorem 4.2), whih inludes the one of1Similar results for disrete time TASEP with parallel update and PNG model will follow frommore general results of [5℄. 3



PushASEP. Finally, the asymptoti analysis is the ontent of Setion 5.AknowledgmentsA.Borodin was partially supported by the NSF grants DMS-0402047 and DMS-0707163.2 The PushASEP model and limit results2.1 The PushASEPThe model we onsider is an extension of the well known totally asymmetri simpleexlusion proess (TASEP) on Z. The allowed on�guration are like in the TASEP,i.e., on�gurations onsist of partiles on Z, with the onstraint that at eah site anbe oupied by at most one partile (exlusion onstraint). We onsider a dynamisin ontinuous time, where partiles are allowed to jump to the right and to the leftas follows. A partile jumps to its right-neighbor site with some rate, provided thesite is empty (TASEP dynamis). To the left, a partile jump to its left-neighborsite with some rate and, if the site is already oupied by another partile, this ispushed to its left-neighbor and so on (push dynamis).To de�ne preisely the jump rates, we need to introdue a few notations. Thedynamis preserves the partile position, thus we an assoiate to eah partile alabel. Let xk(t) be the position of partile k at time t. We hoose the right-leftlabelling, i.e., xk(t) > xk+1(t) for all k ∈ I ⊆ Z, t ≥ 0. With this labelling, weonsider vk > 0, k ∈ I, and some smooth positive inreasing funtions a(t), b(t) with
a(0) = b(0) = 0. Then, the right jump rate of partile k is ȧ(t)vk, while its left jumprate is ḃ(t)/vk.In Proposition 2.1 we derive the expression of the transition probability from time
t = 0 to time t for N partiles, proven in Setion 4.Proposition 2.1. Consider N partiles with initial onditions xi(0) = yi. Denoteits transition probability until time t by

G(xN , . . . , x1; t) = P(xi(t) = xi, 1 ≤ i ≤ N |xi(0) = yi, 1 ≤ i ≤ N). (2.1)Then
G(xN , . . . , x1; t) (2.2)
=

( N∏

n=1

vxn−yn
n e−a(t)/vne−b(t)vn

)
det [Fk,l(xN+1−l − yN+1−k, a(t), b(t))]1≤k,l≤N ,where

Fk,l(x, a, b) =
1

2πi

∮

Γ0

dzzx−1

∏k−1
i=1 (1 − vN+1−iz)∏l−1
j=1(1 − vN+1−jz)

ebzea/z, (2.3)4
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Figure 1: An example of a spae-like path. Its slope is, in absolute value, at most 1.where Γ0 is any antilokwise oriented simple loop with inluding only the pole at
z = 0.2.2 Spae-like pathsFrom Proposition 2.1 one an ompute the joint distribution of partile positionsat a given time t, in a similar way of what we made in [4℄. However, one of themain motivation for this work is to enlarge the spetrum of the situations whih anbe analyzed to what we all spae-like paths. In this ontext, spae-like paths aresequenes of partile numbers and times in the ensemble

S = {(nk, tk), k ≥ 1|(nk, tk) ≺ (nk+1, tk+1)}, (2.4)where, by de�nition,
(ni, ti) ≺ (nj, tj) if nj ≥ ni, tj ≤ ti, and the two ouples are not idential. (2.5)The two extreme ases are (1) �xed time, tk = t for all k, and (2) �xed partilenumber, nk = n for all k. This last situation is known as tagged partile problem.Sine the analysis is of the same degree of di�ulty for any spae-like path, we willonsider the general situation.Consider any smooth funtion π, w0 = π(w1), in the forward light one of the originthat satis�es

|π′| ≤ 1, |w1| ≤ π(w1). (2.6)These are spae-like paths in R×R+, see Figure 1. The �rst ondition (the spae-like property) is related to the appliability of our result to sequenes of partilesin S. The seond ondition just re�et the hoie of having t ≥ 0 and n ≥ 0. Timeand partile number are onneted with the variables w1 and w0 by a rotation of 45degrees. To avoid unneessary √
2's, we set

{
w1 = t−n

2

w0 = t+n
2

}
⇐⇒

{
t = w0 + w1

n = w0 − w1

} (2.7)5



For a large parameter T we onsider the saling
{
w1 = θT − uT 2/3,

w0 = π(θ)T − π′(θ)uT 2/3 + 1
2
π′′(θ)u2T 1/3.Then,

t(u) = (π(θ) + θ)T − (π′(θ) + 1)uT 2/3 + 1
2
π′′(θ)u2T 1/3,

n(u) =
[
(π(θ) − θ)T + (1 − π′(θ))uT 2/3 + 1

2
π′′(θ)u2T 1/3

]
. (2.8)Setting π(θ) = 1−θ we get the �xed time ase with t = T , while setting π(θ) = α+θwe get the tagged partile situation with partile number n = αT .2.3 Saling limitsUniversality ours in the large T limit. In Proposition 3.1 we will get an expressionfor the joint distribution in the general setting. For the asymptoti analysis weonsider the ase where all partiles have the same jump rates, i.e., we set

vk = 1 for all k ∈ I. (2.9)Moreover, we onsider time-homogeneous ase, i.e., we set a(t) = Rt and b(t) = Ltfor some R,L ≥ 0 (for time non-homogeneous ase, one would just replae R and Lby some time-dependent funtions). Two important initial onditions are(a) �at initial ondition: partiles start from 2Z,(b) step initial ondition: partiles start from Z− = {. . . ,−3,−2,−1}.In the �rst ase, the marosopi limit shape is �at, while in the seond ase it isurved, see [11℄ for a review on universality in the TASEP. For TASEP with stepinitial onditions and partile-dependent rates vk, the study of tagged partile hasbeen arried out in [13℄.Flat initial onditionsFor the �at initial ondition, it is not very di�ult to get the proper saling limitas T → ∞. The initial position of partile n(u) is −2n(u) and during time t(u) itwill have travelled around v t(u), where v is the mean speed of partiles, given by
v = −2L+R/2. (2.10)The reason is that the density of partile is 1/2 and the partiles jumps to the rightwith rate R but the site on its right has a 1/2 hane to be empty. Moreover,partiles move (and push) to the left with rate L but typially every seond move6



to the left is due to a push from another partile. Therefore, the resaled proess isgiven by
u 7→ XT (u) =

xn(u)(t(u)) − (−2n(u) + v t(u))

−T 1/3
, (2.11)where n(u) and t(u) are de�ned in (2.8). The resaled proess XT has a limit forlarge T given in terms of the Airy1 proess, A1 (see [4, 6, 11℄ and Setion 2.4 fordetails on A1).Theorem 2.2 (Convergene to the Airy1 proess). Let us set the vertial and hor-izontal resaling

Sv = ((8L+R)(π(θ) + θ))1/3, Sh =
4((8L+R)(π(θ) + θ))2/3

(R+ 4L)(π′(θ) + 1) + 4(1 − π′(θ))
. (2.12)Then

lim
T→∞

XT (u) = SvA1(u/Sh) (2.13)in the sense of �nite dimensional distributions.The proof of this theorem is in Setion 5. The speialization for �xed time t = T is
Sv = (8L+R)1/3, Sh =

(8L+R)2/3

2
, (2.14)and the one for tagged partile n = αT at times t(u) = T − 2uT 2/3, obtained bysetting θ = (1 − α)/2, is

Sv = (8L+R)1/3, Sh =
2(8L+R)2/3

4L+R
. (2.15)Step initial onditionThe proper resaled proess for step initial ondition is quite intriate. Denote by βtthe typial position of partile with number around αt at time t. In the situationspreviously studied in the literature, there was a nie funtion β = β(α). In thepresent situation this is not anymore true, but we an still desribe the limit shape.More preisely, α and β are parametrized by a µ ∈ (0, 1) via

α(µ) = (1 − µ)2(R+ L/µ2), β(µ) = −((1 − 2µ)R+ L/µ2). (2.16)In partiular, we have
α(µ) =

π(θ) − θ

π(θ) + θ
. (2.17)For any given θ, there exists only one µ suh that (2.17) holds, beause α is stritlymonotone in µ. Some omputations are needed, but �nally we get the resaling ofthe position x as a funtion of u, namely,

x(u) = σ0T − σ1uT
2/3 + σ2u

2T 1/3, (2.18)7
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σ0 = (π(θ) + θ)β(µ)

σ1 = 1 + (π′(θ) + 1)
(
µR− L

µ

)
+ (1 − π′(θ))

1

1 − µ
(2.19)

σ2 = 1
2
π′′(θ)

(
µR + L

µ
− 1

1−µ

)
+

(π′(θ)(1 − α(µ)) − (1 + α(µ)))2

4(1 − µ)3(π(θ) + θ)(R + L/µ3)
.The resaled proess is then given by

u 7→ XT (u) =
xn(u)(t(u)) − (σ0T − σ1uT

2/3 + σ2u
2T 1/3)

−T 1/3
, (2.20)with n(u) as in (2.8). Let us de�ne the onstants

κ0 =
(π(θ) + θ)(R+ L/µ3)

µ(1 − µ)
,

κ1 =
(π′(θ) + 1)(R+ L/µ2)

2µ
− π′(θ) − 1

2µ(1 − µ)2
. (2.21)Then, a detailed asymptoti analysis would lead to,

lim
T→∞

XT (u) = µκ
1/3
0 A2(κ1κ

−2/3
0 u), (2.22)in the sense of �nite dimensional distributions, where A2 is the Airy2 proess(see [11, 14, 18℄ and Setion 2.4 for details on A2). As for the �at PNG, speialases are tagged partile and �xed time. In Setion 5.2 we obtain (2.22) by look-ing at the ontribution oming from the series expansion around a double ritialpoint. To get (2.22) rigorously, one has to ontrol (1) the error terms in the onver-gene on bounded sets and (2) get some bounds to get onvergene of the Fredholmdeterminants. This is what we atually do the in the �at initial ondition setting.8



2.4 Limit proessesFor ompleteness, we shortly reall the de�nitions of the limit proess A1 and A2appearing above. The notation Ai(x) below stands for the lassial Airy funtion [1℄.De�nition 2.3 (The Airy1 proess). The Airy1 proess A1 is the proess with m-point joint distributions at u1 < u2 < . . . < um given by the Fredholm determinantP( m⋂

k=1

{A1(uk) ≤ sk}
)

= det(1− χsKA1χs)L2({u1,...,um}×R), (2.23)where χs(uk, x) = 1(x > sk) and the kernel KA1 is given by
KA1(u1, s1; u2, s2) = − 1√

4π(u2 − u1)
exp

(
− (s2 − s1)

2

4(u2 − u1)

)1(u2 > u1)

+Ai(s1 + s2 + (u2 − u1)
2) exp

(
(u2 − u1)(s1 + s2) +

2

3
(u2 − u1)

3

)
. (2.24)De�nition 2.4 (The Airy2 proess). The Airy2 proess A2 is the proess with m-point joint distributions at u1 < u2 < . . . < um given by the Fredholm determinantP( m⋂

k=1

{A2(uk) ≤ sk}
)

= det(1− χsKA1χs)L2({u1,...,um}×R), (2.25)where χs(uk, x) = 1(x > sk) and the kernel KA2 is given by
KA2(u1, s1; u2, s2) =

{∫R+
e−λ(u2−u1)Ai(s1 + λ)Ai(s2 + λ), u2 ≥ u1,

−
∫R−

e−λ(u2−u1)Ai(s1 + λ)Ai(s2 + λ), u2 < u1.
(2.26)3 Finite time kernel3.1 General kernel for PushASEPIn Theorem 4.2 we will derive a general expression for joint distributions of a de-terminantal measure. In partiular, it follows that the joint distribution of partilepositions is given by a Fredholm determinant of the formP( m⋂

k=1

{xnk
(tk) ≥ ak}

)
= det

(1− χ̃aKχ̃a

)
ℓ2({(n1,t1),...,(nm,tm)}×Z)

(3.1)with ((n1, t1), . . . , (nm, tm)) ∈ S, and χ̃a((nk, tk))(x) = 1(x < ak).Before stating the result, proven in Setion 4, we introdue a spae of funtions
Vn. Consider the set of numbers {v1, . . . , vn} and let {u1 < u2 < . . . < uν} be theirdi�erent values, with αk being the multipliity of uk (vk is the jump rate of partilewith label k). Then we de�ne the spae

Vn = span{xlux
k, 1 ≤ k ≤ ν, 0 ≤ l ≤ αk − 1}. (3.2)9



Proposition 3.1 (PushASEP kernel). The kernel K for the PushASEP is given by
K((n1, t1), x1; (n2, t2), x2) = −φ((n1,t1),(n2,t2))(x1, x2)+

n2∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) (3.3)where

Ψn,t
n−l(x) =

1

2πi

∮

Γ0

dzzx−yl−1ea(t)/z+b(t)z (1 − v1z) · · · (1 − vnz)

(1 − v1z) · · · (1 − vlz)
, (3.4)the funtions {Φn,t

n−l, l = 1, . . . , n}, are obtained by the orthogonality relation
∑

x∈ZΨn,t
n−l(x)Φ

n,t
n−k(x) = δk,l, (3.5)and by the requirement span{Φn,t

n−l(x), 1 ≤ l ≤ n} = Vn. Finally, the �rst term hasthe form
φ((n1,t1),(n2,t2))(x, y) =

1

2πi

∮

Γ0

dz

zy−x+1

e(a(t1)−a(t2))/ze(b(t1)−b(t2))z

(1 − vn1+1z) · · · (1 − vn2z)
1[(n1,t1)≺(n2,t2)].(3.6)3.2 Kernel for step initial onditionWe set all the jump rates to 1: v1 = v2 = · · · = 1. The transition funtion (3.6)does not depend on initial onditions. It is useful to rewrite it in a slightly di�erentform.Lemma 3.2. The transition funtion an be rewritten as

φ((n1,t1),(n2,t2))(x, y) (3.7)
=

1

2πi

∮

Γ0,1

dw
1

wx−y+1

(
w

w − 1

)n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)].Proof of Lemma 3.2. The proof follows by the hange of variable z = 1/w in(3.6).Lemma 3.3. Let yi = −i, i ≥ 1. Then, the funtions Φ and Ψ are given by

Ψn,t
k (x) =

1

2πi

∮

Γ0,1

dw
(w − 1)k

wx+n+1
ea(t)w+b(t)/w ,

Φn,t
j (x) =

1

2πi

∮

Γ1

dz
zx+n

(z − 1)j+1
e−a(t)z−b(t)/z . (3.8)Proof of Lemma 3.3. Ψn,t

k (x) omes by the hange of variable z = 1/w in (3.4). For
k ≥ 0, the pole at w = 1 is irrelevant, but in the kernel Ψn,t

k enters also for negativesvalues of k. Let us ompute ∑
x∈ZΦn,t

j (x)Ψn,t
k (x). The x-dependent terms give

∑

x∈Z(z/w)x =
w

w − z
1{|z|<|w|} −

w

w − z
1{|w|<|z|}. (3.9)10



Thus, before taking inside the sum in the integral we divide it into {x ≥ 0} and
{x < 0} whih gives the two ontributions in the r.h.s. of (3.9). The di�erenebetween the two terms is that the integration paths satisfy |z| < |w| for the �rstterm and |w| < |z| for the seond term. At w = z there is a simple pole, thereforeby deforming the integration paths to make them oiniding, the net result is theresidue at w = z. The terms in the exponential and the terms like z(··· ) simplify,leading to

∑

x∈ZΦn,t
j (x)Ψn,t

k (x) =
1

2πi

∮

Γ1

dz(z − 1)k−j−1 = δj,k. (3.10)
Proposition 3.4 (Step initial onditions, �nite time kernel). The kernel for yi = −i,
i ≥ 1, is given by

K((n1, t1), x1; (n2, t2), x2) (3.11)
= − 1

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)]

+
1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
eb(t1)/w+a(t1)w

eb(t2)/z+a(t2)z

(1 − w)n1+1

wx1+n1+1

zx2+n2

(1 − z)n2+1

1

w − z
.The ontours Γ0 and Γ1 inlude the poles w = 0 and z = 1, respetively, and noother poles.Proof of Proposition 3.4. Consider the main term of the kernel, namely

n2∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) =

n2∑

k=1

( 1

2πi

∮

Γ0,1

dw
(w − 1)n1−k

wx1+n1+1
ea(t1)w+b(t1)/w

)

×
( 1

2πi

∮

Γ1

dz
zx2+n2

(z − 1)n2−k+1
e−a(t2)z−b(t2)/z

)
.First take the sum inside and then we extend it to +∞, sine the seond termis identially equal to zero for k > n2. The integration paths are taken so that

|z − 1| < |w − 1|. The k-dependent terms are
∑

k≥1

(
z − 1

w − 1

)k

=
w − 1

w − z
. (3.12)Notie now we have a new pole at w = z, but at w = 1 the pole vanished. Thereforethe main part of the kernel equals

1

(2πi)2

∮

Γ1

dz

∮

Γ0,z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w − 1)n1+1

wx1+n1+1

zx2+n2

(z − 1)n2+1

1

w − z
. (3.13)The ontribution of the pole at w = z is exatly equal to the ontribution of thepole at z = 1 in the transition funtion (3.7). Therefore in the �nal result the �rst11



term oming from (3.7) has the integral only around z = 0, and the seond termis (3.13) but with the integral over w only around the pole at w = 0. Finally, aonjugation by a fator (−1)n1−n2 leads to the result.3.3 Kernel for �at initial onditionWe again onsider the ase v1 = v2 = · · · = 1.Lemma 3.5. Let yi = −2i, i ≥ 1. Then, the funtions Φ and Ψ are given by
Ψn,t

k (x) =
1

2πi

∮

Γ0,1

dw
(w(w − 1))k

wx+2n+1
ea(t)w+b(t)/w ,

Φn,t
j (x) =

1

2πi

∮

Γ1

dz
(2z − 1)zx+2n

(z(z − 1))j+1
e−a(t)z−b(t)/z . (3.14)Proof of Lemma 3.5. The proof is like in Lemma 3.3, but the residue terms leadthis time to

∑

x∈ZΦn,t
j (x)Ψn,t

k (x) =
1

2πi

∮

Γ1

dz(2z − 1)(z(z − 1))k−j−1 = δj,k (3.15)by the hange of variable w = z(z − 1).Proposition 3.6 (Flat initial onditions, �nite time kernel). The kernel for yi =
−2i, i ∈ Z, is given by

K((n1, t1), x1; (n2, t2), x2)

= − 1

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)]

+
−1

2πi

∮

Γ1

dz
ea(t1)(1−z)+b(t1)/(1−z)

ea(t2)z+b(t2)/z

zn1+n2+x2

(1 − z)n1+n2+x1+1
. (3.16)Proof of Proposition 3.6. The strategy is similar to the one of Proposition 3.4. Thistime, the sum in k is

∑

k≥1

(
z(z − 1)

w(w − 1)

)k

=
w(w − 1)

(w − z)(w − 1 + z)
. (3.17)So, the pole for w = 1 is now replaed by two simple poles, one at w = z and oneat w = 1 − z. The pole at w = z anels with the one at z = 1 of (3.7). Thus weare left with

1

(2πi)2

∮

Γ1

dz

∮

Γ0,1−z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w − 1)n1+1

(z − 1)n2+1

zx2+n2−1

wx1+n1

2z − 1

(w − z)(w − 1 + z)
. (3.18)12



This is the main part of the kernel for the initial ondition yi = −2i, i ≥ 1. Toobtain the kernel for yi = −2i, i ∈ Z, we just have to look far enough into the bulkof our system, until when the in�uene of the fat that there are only a �nite numberof partiles on the right vanishes. For the kernel, this means that the pole at w = 0vanishes. Therefore, we are left with the ontribution of the simple pole at w = 1−z,and omputing the orresponding residue leads to the result of the Proposition, upto a fator (−1)n1−n2 , whih however have no impat on the Fredholm determinantin question.4 Determinantal measuresIn this setion we �rst prove Proposition 2.1. Then, we use it to extend the measureto spae-like paths. More preisely, we �rst obtain a general determinantal formulain Theorem 4.1. Then, in Theorem 4.2, we prove that the measure has determinantalorrelations and obtain an expression of the assoiated kernel.Proof of Proposition 2.1. We �rst prove that the initial ondition is satis�ed. Wehave
Fk,l(x, 0) =

1

2πi

∮

Γ0

dzzx−1

∏k−1
i=1 (1 − vN+1−iz)∏l−1
j=1(1 − vN+1−jz)

. (4.1)(a) Fk,l(x, 0) = 0 for x ≥ 1 beause the pole at z = 0 vanishes.(b) Fk,l(x, 0) = 0 for k ≥ l and x < l − k, beause then
Fk,l(x, 0) =

1

2πi

∮

Γ0

dzzx−1(1 − vlz) · · · (1 − vk−1z) (4.2)and the residue at in�nity equals to zero for x < l − k.Assume that xN < · · · < x1. If xN > yN , also xl > yN for l = 1, . . . , N − 1.Thus F1,l(xN+1−l − yN , 0) = 0 using (a). Therefore G(xN , . . . , x1; 0) = 0. Onthe other hand, it xN < yN , then xN < yk − N + k, k = 1, . . . , N − 1. Thus
F1,k(xN −yN+1−k, 0) = 0 using (b) and the fat that xN −yN+1−k < 1−k. Thereforewe onlude that G(xN , . . . , x1; 0) = 0 if xN 6= yN . For xN = yN , F1,1(0, 0) = 1 andby (a) F1,l(xN+1−l − yN , 0) = 0 for l = 2, . . . , N . This means that

G(xN , . . . , x1; 0) = δxN ,yN
G(xN−1, . . . , x1; 0). (4.3)By iterating the proedure we obtain

G(xN , . . . , x1; 0) =
N∏

k=1

δxk,yk
. (4.4)Notie that the prefator in (2.2) is equal to one at t = 0.13



The initial ondition being settled, we need to prove that (2.2) satis�es thePushASEP dynamis. For that purpose, let us �rst ompute dFk,l(x,t)

dt
.

dFk,l(x, t)

dt
= ȧ(t)Fk,l(x− 1, t) + ḃ(t)Fk,l(x+ 1, t), (4.5)from whih it follows, by di�erentiating the prefator and the determinant olumnby olumn,

dG(xN , . . . , x1; t)

dt
= −

(
ȧ(t)

N∑

k=1

vk + ḃ(t)

N∑

k=1

1

vk

)
G(xN , . . . , x1; t)

+ȧ(t)
N∑

k=1

vkG(. . . , xk − 1, . . . ; t) (4.6)
+ḃ(t)

N∑

l=1

1

vl
G(. . . , xl + 1, . . . ; t).To proeed, we need an identity. Using

zx

1 − vN+1−lz
=

vN+1−lz
x+1

1 − vN+1−lz
+ zx (4.7)it follows that

Fk,l+1(x, t) = Fk,l(x, t) + vN+1−lFk,l+1(x+ 1, t). (4.8)Therefore, for j = 2, . . . , N , by setting ỹk = yN+1−k,
G(. . . , xj, xj−1 = xj , . . . ; t) =

1

ZN
det

[
v

xN+1−l

N+1−l Fk,l(xN+1−l − ỹk, t)
]

1≤k,l≤N

=
1

ZN
det

[
. . . v

xj

j Fk,N+1−j(xj − ỹk, t) v
xj

j−1Fk,N+2−j(xj−1 − ỹk, t) · · ·
]
.Here ZN does not depend on the xj 's. Using (4.8) we have

v
xj

j−1Fk,N+2−j(xj − ỹk, t) (4.9)
= v

xj

j−1Fk,N+1−j(xj − ỹk, t) + v
xj+1
j−1 Fk,N+2−j(xj + 1 − ỹk, t)

vj

vj−1
.Using this identity in the previous formula, the �rst term anels being proportionalto its left olumn, and the seond term yields

G(. . . , xj , xj−1 = xj , . . . ; t) =
vj

vj−1

G(. . . , xj, xj−1 = xj + 1, . . . ; t). (4.10)
14



With (4.10) we an go bak to (4.6). First, onsider all the terms in (4.6) whih areproportional to ȧ(t). They have the form
−

N∑

k=1

vkG(. . . ; t) +

N∑

k=1

vkG(. . . , xk − 1, . . . ; t) (4.11)
= −v1G(. . . ; t) −

N∑

k=2

vk(1 − δxk−1,xk+1)G(. . . ; t) (4.12)
+vNG(xN − 1, . . . ; t) +

N−1∑

k=1

vk(1 − δxk+1,xk
)G(. . . , xk − 1, . . . ; t) (4.13)

−
N∑

k=2

vkG(. . . , xk, xk−1 = xk + 1, . . . ; t) (4.14)
+

N−1∑

k=1

vkG(. . . , xk+1 = xk, xk, . . . ; t). (4.15)By using (4.10) and shifting the summation index by one, we get that (4.15) equals
N∑

k=2

vk−1G(. . . , xk, xk−1 = xk + 1, . . . ; t)
vk

vk−1
, (4.16)whih anels (4.14). The expression (4.12) is the ontribution in the master equa-tion of the partiles jumping to the right and leaving the state (xN , . . . , x1) withjump rate ȧ(t)vk, while (4.13) is the ontribution of the partiles arriving to the state

(xN , . . . , x1). Therefore, the jumps to the right satisfy the exlusion onstraint.Seondly, onsider all the terms in (4.6) whih are proportional to ḃ(t). They are
−

N∑

k=1

1

vk
G(. . . ; t) +

N∑

k=1

1

vk
G(. . . , xk + 1, . . . ; t). (4.17)Let us denote by m(k) the index of the last partile to the right of partile k suhthat partile m(k) belongs to the same blok of partiles as partile k (we say thattwo partiles are in the same blok if between them all sites are oupied). Then,(4.17) takes the form

(4.17) = −
N∑

k=1

1

vk
G(. . . ; t) +

N∑

k=1

1

vk
G(. . . , xk + 1, xk + 1, . . . , xk + k −m(k), . . . ; t).(4.18)Using (4.10) we get

1

vk
G(. . . , xk + 1, xk + 1, . . . , xk + k −m(k), . . . ; t)

=
1

vk

vk

vk−1
G(. . . , xk + 1, xk + 2, . . . , xk + k −m(k), . . . ; t) (4.19)

=
1

vk−1
G(. . . , xk + 1, xk−1 + 1, . . . , xk + k −m(k), . . . ; t). (4.20)15



By iterations we �nally obtain
(4.17) = −

N∑

k=1

1

vk
G(. . . ; t) +

N∑

k=1

1

vm(k)

G(. . . , xk + 1, xk−1 + 1, . . . , xm(k) + 1, . . . ; t).(4.21)The �rst term in (4.21) is the ontribution of partiles pushing to the left and leavingthe state (xN , . . . , x1), while the seond term is the ontribution of partiles arrivingat the state (xN , . . . , x1) beause they were pushed, and the partile number k pushesto the left with rate ḃ(t)/vk.We would like to obtain the joint distribution of partile Nk at time tk for N1 ≥
N2 ≥ . . . ≥ Nm ≥ 1 and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm. By Proposition 2.1, this an bewritten as an appropriate marginal of a produt of m determinants.Notational remark: Below there is an abuse of notation. For example, xn

l (ti) and
xn

l (ti+1) are onsidered di�erent variables even if ti = ti+1. One ould all themsimply xn
l (i) and xn

l (i+1), but then one loses the onnetion with the times ti's. Inthis sense, ti is onsidered as a symbol, not as a number.Theorem 4.1. Let us set t0 = 0, a(t0) = b(t0) = 0, and Nm+1 = 0. The joint dis-tribution of PushASEP partiles is a marginal of a determinantal measure, obtainedby summation of the variables in the set
D = {xl

k(ti), 1 ≤ k ≤ l, 1 ≤ l ≤ Ni, 0 ≤ i ≤ m} \ {xNi
1 (ti), 1 ≤ i ≤ m}; (4.22)the range of summation for any variable in this set in Z. Preisely,P(xNi

(ti) = xNi
1 (ti), 1 ≤ i ≤ m|xk(0) = yk(0), 1 ≤ k ≤ N1)

= const ×
∑

D

det
[
ΨN1

N1−l(x
N1
k (t0))

]
1≤k,l≤N1

×
m∏

i=1

[
det[Tti,ti−1

(xNi
l (ti), x

Ni
k (ti−1))]1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det[φn(xn−1
k (ti), x

n
l (ti))]1≤k,l≤n

] (4.23)where
Ttj ,ti(x, y) =

1

2πi

∮

Γ0

dzzx−y−1e(a(tj )−a(ti))/ze(b(tj )−b(ti))z, (4.24)
ΨN1

N1−l(x) =
1

2πi

∮

Γ0

dzzx−yl−1(1 − vl+1z) · · · (1 − vN1z), (4.25)
φn(x, y) = vy−x

n 1[y≥x] and φn(x
n−1
n , y) = vy

n. (4.26)Remark: the variables xn−1
n partiipating in the last fator of (4.23) are �titious,f. (4.26), and are used for onveniene of notation only.16
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Figure 3: A graphial representation of variables entering in the determinantal stru-ture, illustrated for m = 2. The wavy lines represents the time evolution between
t0 and t1 and from t1 to t2. The rest is the interlaing struture on the variablesindued by the det[φn(· · · )]. The blak dots are the only variables whih are notin the summation set D = D(0) ∪ D∗(t1) ∪ · · · ∪ D∗(tm) (see Figure 4 too). Thevariables of the border of the interlaing strutures are expliitly indiated.We illustrate the determinantal struture in Figure 3.Proof of Theorem 4.1. Sine the evolution is Markovian, we haveP(xNi

(ti) = xNi
1 (ti), 1 ≤ i ≤ m|xk(0) = xk

1, 1 ≤ k ≤ N1)

=
∑P(xk(0) = xk

1(0), 1 ≤ k ≤ N1|xk(0) = yk, 1 ≤ k ≤ N1) (4.27)
×

m∏

i=1

P(xk(ti) = xk
1(ti), 1 ≤ k ≤ Ni|xk(ti−1) = xk

1(ti−1), 1 ≤ k ≤ Ni)where the sum is over xk
1(0), 1 ≤ k ≤ N1, and xk

1(ti), 1 ≤ k ≤ Ni − 1, i = 1, . . . , m.Note that so far the lower index of all variables xk
l is identially equal to 1.The ontinuation of the proof requires a series of Lemmas olleted at the end ofthis setion, see Setion 4.1. We apply Proposition 2.1 to the m+1 fators in (4.27),namely,P(xk(ti) = xk

1(ti), 1 ≤ k ≤ Ni|xk(ti−1) = xk
1(ti−1), 1 ≤ k ≤ Ni) (4.28)

= const ×
( Ni∏

n=1

vxn
1 (ti)−xn

1 (ti−1)
n

)
det

[
Fk,l(x

Ni+1−l
1 (ti) − xNi+1−k

1 (ti−1)
]
1≤k,l≤Ni

.First we ollet all the fators oming from the ∏Ni

n=1 v
xn
1 (ti)−xn

1 (ti−1)
n . We have the

17



fator
( N1∏

n=1

vxn
1 (0)−yk

n

) m∏

k=1

Nn∏

n=1

vxn
1 (tk)−xn

1 (tk−1)
n

=
( N1∏

n=1

v−yn
n

)( m−1∏

i=1

Ni∏

n=Ni+1+1

vxn
1 (ti)

n

) Nm∏

n=1

vxn
1 (tm)

n . (4.29)Then we apply Lemma 4.4 to all the fators det[Fk,l(· · · )]. For the initial onditionwe have
∑

eD(0)

det
[
FN1+1−l,1(x

N1
k (0) − yl, 0, 0)

]
1≤k,l≤N1

N1∏

n=2

det
[
ϕn(xn−1

k (0), xn
l (0))

]
1≤k,l≤n

.(4.30)For the other terms, i = 1, . . . , m, we get
∑

eD(ti)

det
[
FNi+1−l,1(x

Ni
k (ti) − xl

1(ti−1), ai, bi)
]
1≤k,l≤Ni

×
Ni∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

. (4.31)Thus, the probability we want to ompute in (4.27) is obtained by a marginal ofa measure on m + 1 interlaing triangles, when we sum over all the variables in
D(0), D∗(t1), . . . , D

∗(tm), see Figure 4 for the de�nitions of these sets. At this pointwe apply Lemma 4.5 as follows. For i = 1, . . . , m−1 we do the sum over the variablesin D̂(ti). Notie that the remaining variables in (4.29) do not belong to the D̂(ti),thus we fatorize them out. So, r.h.s. of (4.27) is, up to a onstant, equal to
∑

(4.29) × det
[
FN1+1−l,1(x

N1
k (0) − yl, 0, 0)

]
1≤k,l≤N1

×
[

m−1∏

i=0

( Ni∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

)

× det
[
FNi+1+1−l,1(x

Ni+1

k (ti+1) − xl
1(ti), ai+1, bi+1)

]
1≤k,l≤Ni+1

]

×
Nm∏

n=2

det
[
ϕn(xn−1

k (tm), xn
l (tm))

]
1≤k,l≤n

(4.32)with the sum is over the variables desribed just above. By summing over the D̂(ti),the determinant with FNi+1+1−l,1 beomes a determinant with F1,1 and the produt
18



of the det[ϕn(· · · )] is restrited to n = Ni+1 + 1, . . . , Ni. Thus,
(4.27) = const ×

∑
(4.29) × det

[
FN1+1−l,1(x

N1

k (0) − yl, 0, 0)
]
1≤k,l≤N1

×
m∏

i=1

(
det

[
F1,1(x

Ni
k (ti) − xNi

l (ti−1), ai, bi)
]
1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

) (4.33)where we set Nm+1 = 0 (the ontribution from n = 1 is 1). Finally, by usingLemma 4.6 we an inlude the terms in (4.29) into the ϕn's by modifying the lastrow, i.e., by setting it equal to vy
n. Thus,

(4.27) = const × det
[
FN1+1−l,1(x

N1

k (0) − yl, 0, 0)
]
1≤k,l≤N1

×
m∏

i=1

(
det

[
F1,1(x

Ni
k (ti) − xNi

l (ti−1), ai, bi)
]
1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det
[
φn(x

n−1
k (ti), x

n
l (ti))

]
1≤k,l≤n

)
. (4.34)The identi�ation to the expressions in Theorem 4.1 uses the representations (2.3)and (3.4).The �rst line represent the initial ondition at t0 = 0, the term with ΨN1

N1−l inTheorem 4.1. These N1 variables evolves until time t1 and this is represented by the�rst line (term Tt1,t0). After that, there is a redution of the number of variablesfrom N1 to N2 by the interlaing struture, whih is followed by the time evolutionfrom t1 to t2. This is repeated m − 1 times. Finally it ends with an interlaingstruture. If N1 = N2, then the �rst interlaing struture is trivial (not present),while if for example t2 = t1, then the time evolution is just the identity.In what follows, the piture to keep in mind is that, starting from bottom to top inFigure 3, it orresponds to having a sort of viious walkers with inreasing numberof walkers when the transition is made by the φ's, and with onstant number ofwalkers if the transition is the temporal one made by T .The determinantal measure in (4.23) is written with outer produt over time mo-ments but it an be rewritten by taking the outer produt over the index n in thevariables xn
k 's. Let us introdue the following notations. For any level n there is anumber c(n) ∈ {0, . . . , m+ 1} of produts of terms T whih are the time evolutionof n partiles between onseutive times in the set {t1, . . . , tm} (in other words c(n)is #{i|Ni = n}). Let us denote them by tn0 < . . . < tnc(n). Notie that tn0 = tn+1

c(n+1),
19



tN1
0 = t0, tN1

1 = t1, and t00 = t0c(0) = tm. Then, the measure in (4.23) takes the form
const ×

N1∏

n=1

[
det[φn(xn−1

k (tn−1
0 ), xn

l (tnc(n)))]1≤k,l≤n (4.35)
×

c(n)∏

a=1

det[Ttna ,tna−1
(xn

k(tna), xn
l (tna−1))]1≤k,l≤n

]
det[ΨN1

N1−l(x
N1
k (tN1

0 ))]1≤k,l≤N1.In Theorem 4.2 we show that a measure on the xn
k(tna) of the form (4.35) is determi-nantal and we give the expression for the kernel. Then we partiularize it in ase ofthe PushASEP with partile dependent jump rates. For this purpose, we introduea ouple of notations. For any two time moments tn1

a1
, tn2

a2
, we de�ne the onvolutionover all the transitions between them by φ(t

n1
a1

,t
n2
a2

) (bakwards in time, sine forwardin the n's), i.e.,
φ(t

n1
a1

,t
n2
a2

) = Tt
n1
a1

,t
n1
0

∗ φn1 ∗ T n1+1 ∗ · · · ∗ φn2−1 ∗ Tt
n2
c(n2)

,t
n2
a2

(4.36)where
T n = Ttn

c(n)
,tn0
. (4.37)If no suh fator exists, then we set φ(t

n1
a1

,t
n2
a2

) = 0. Above we used
Tt3,t2 ∗ Tt2,t1 = Tt3,t1 , (4.38)whih is an immediate orollary of (4.24). In a more general ase onsidered inTheorem 4.2 below, if (4.38) does not holds, then T n is just the onvolution of thetransitions between tnc(n) and tn0 by de�nition. Moreover, de�ne the matrix M withentries Mk,l, 1 ≤ k, l ≤ N1,

Mk,l =
(
φk ∗ T k ∗ · · · ∗ φN1 ∗ T N1 ∗ ΨN1

N1−l

)
(xk−1

k ) (4.39)and the vetor
Ψ

n,tna
n−l = φ(tna ,t

N1
0 ) ∗ ΨN1

N1−l. (4.40)Theorem 4.2. Assume that the matrix M is invertible. Then, the probability mea-sure of the form (4.35) viewed as (N1 + . . . + Nm)-point proess is determinantal,and the orrelation kernel an be omputed as follows
K(tn1

a1
, x1; t

n2
a2
, x2) = −φ(t

n1
a1

,t
n2
a2

)(x1, x2) (4.41)
+

N1∑

k=1

n2∑

l=1

Ψ
n1,t

n1
a1

n1−k (x1)[M
−1]k,l(φl ∗ φ(tl

c(l)
,t

n2
a2

))(xl−1
l , x2).In the ase when the matrix M is upper triangular, there is a simpler way to writethe kernel. Set

Φ
n,tna
n−k(x) =

n∑

l=1

[M−1]k,l

(
φl ∗ φ(tl

c(l)
,tna ))(xl−1

l , x) (4.42)20



for all n = 1, . . . , N1 and k = 1, . . . , n. Then, {
Φ

n,tna
n−k

}
k=1,...,n

is the unique basis ofthe linear span of
{

(φ1 ∗ φ(t1
c(1)

,tna ))(x0
1, x), . . . , (φn ∗ φ(tn

c(n)
,tna ))(xn−1

n , x)
} (4.43)that is di�erent from (4.43) by a triangular matrix (as in (4.42)), and that isbiorthogonal to {Ψn,tna

n−k}:
∑

x∈ZΦ
n,tna
i (x)Ψ

n,tna
j (x) = δi,j , i, j = 0, . . . , n− 1. (4.44)The orrelation kernel an then be written as

K(tn1
a1
, x1; t

n2
a2
, x2) = −φ(t

n1
a1

,t
n2
a2

)(x1, x2) +

n2∑

k=1

Ψ
n1,t

n1
a1

n1−k (x1)Φ
n2,t

n2
a2

n2−k (x2). (4.45)Moreover, one has the identity
φ(t

n1
a1

,t
n2
a2

) ∗ Φ
n2,t

n2
a2

n2−l = Φ
n1,t

n1
a1

n1−l (4.46)for n1 ≥ n2 and a1 ≤ a2 for n1 = n2.Proof of Theorem 4.2. The proof is similar to the one of Lemma 3.4 in [4℄, whih isin its turn based on the formalism of [8℄. The only plae where the argument hangessubstantially is the de�nition of the matrix L, see [4℄, formula (3.32). The variablesof interest are in the spae Y = X(1) ∪ · · · ∪ X(N1), with X(n) = X
(n)
0 ∪ · · · ∪ X

(n)
c(n),where X

(n)
a = Z is the spae where the n variables at time tna live. Let us also denote

I = {1, . . . , N1}. Then, the matrix L written with the order given by the entries inthe set of all variables X = I ∪ Y beomes
L =




0 E0 0 E1 0 E2 0 · · · EN1−1 0
0 0 −T1 0 0 0 0 · · · 0 0
0 0 0 −W[1,2) 0 0 0 · · · 0 0
0 0 0 0 −T2 0 0 · · · 0 0
0 0 0 0 0 −W[2,3) 0 · · · 0 0
0 0 0 0 0 0 −T3 · · · 0 0... ... ... ... ... ... ... . . . ... ...
0 0 0 0 0 0 0 · · · −W[N1−1,N1) 0
0 0 0 0 0 0 0 · · · 0 −TN1

Ψ(N1) 0 0 0 0 0 0 · · · 0 0




(4.47)
with the matrix bloks in L have the following entries:

[Ψ(N1)]x,j = ΨN1
N1−j(x), x ∈ X

(N1)
0 , j ∈ I, (4.48)

[En]i,y =

{
φn+1(x

n
n+1, y), i = n + 1, y ∈ X

(n+1)
c(n+1),

0, i ∈ I \ {n+ 1}, y ∈ X
(n+1)
c(n+1),

(4.49)
[W[n,n+1)]x,y = φn+1(x, y), x ∈ X

(n)
0 , y ∈ X

(n+1)
c(n+1), (4.50)21



and Tn is the matrix made of bloks
Tn =




Tn,1 0 0

0
. . . 0

0 0 Tn,c(n)


 , (4.51)where

[Tn,a]x,y = Ttna ,tna−1
(x, y), x ∈ X(n)

a , y ∈ X
(n)
a−1. (4.52)The rest of the proof is along the same lines as that of Lemma 3.4 in [4℄.Although the argument gives a proof in the ase when all variables xn

a(tnb ) vary over�nite sets, a simple limiting argument immediately extends the statement to anydisrete sets, provided the series that de�nes Mk,l are absolutely onvergent, whihis ertainly true in our ase.A speial ase of Theorem 4.2 is Proposition 3.1 stated in Setion 3, whih we provebelow.Proof of Proposition 3.1. This is a speialization of Theorem 4.2. The kerneldepends only on the atual times and partile numbers, therefore we might dropthe label ai of tni
ai
. Equivalently, we an use the notation (ni, ti) instead of tni

ai
, togo bak to the natural notations of the model. For PushASEP we have ΨN1

N1−l(x) =
FN1+1−l,1(x− yl, 0, 0) and

Ttj ,ti(x, y) = F1,1(x− y, a(tj) − a(ti), b(tj) − b(ti)). (4.53)First of all, we sum over the {xN1

k (0), 1 ≤ k ≤ N1} variables, sine we are not inter-ested in the initial onditions (being �xed). While applied to the Fk,l(x, a(ti), b(ti)),the time evolution Ttj ,ti hanges it into Fk,l(x, a(tj), b(tj)),
∑

y∈Z Ttj ,ti(x, y)Fk,l(y, a(ti), b(ti)) = Fk,l(x, a(tj), b(tj)). (4.54)This implies that Theorem 4.2 still holds but with tN1
0 = t1 and

ΨN1
N1−l(x) = FN1+1−l,1(x− yl, a(t1), b(t1)). (4.55)We have, see (4.65), that

(φk ∗ Fl,N1+1−k)(x, a, b) = Fl,N1+2−k(x, a, b). (4.56)Using (4.54) and (4.56) repeatedly one then gets
Ψ

n,tnk
n−l (x) = FN1+1−l,N1+1−n(x− yl, a(t

n
k), b(tnk)) (4.57)whih an be rewritten as (3.4). 22



Next we show that the matrixM is upper triangular. One again, (4.54) and (4.56)are applied several times, leading to
Mk,l =

∑

y∈Z vy
kFN1+1−l,N1+1−k(y − yl, a(t

k
c(k)), b(t

k
c(k))). (4.58)Set ak = a(tkc(k)) and bk = b(tkc(k)). Then, for k < l,

Mk,l =
∑

y∈Z vy
k

1

2πi

∮

Γ0

dzzy−yl−1eak/z+bkz (1 − vl+1z) · · · (1 − vN1z)

(1 − vk+1z) · · · (1 − vN1z)
. (4.59)We divide the sum over y in two regions, {y ≥ 0} and {y < 0}, and then we takethem inside the integral and use

∑

y∈Z(az)y =
∑

y≥0

(az)y +
∑

y<0

(az)y =
1

1 − az
1{|az|<1} −

1

1 − az
1{|az|>1}. (4.60)For k > l the new term in the denominator, 1−vkz, is anelled so that this is not apole and we an deform the ontours to be the same. Thus for k > l the net resultis zero. This is not the ase for k ≤ l, sine in that ase the new pole at 1/vk doesnot have to vanish. Moreover, the diagonal terms are not zero, thus the matrix Mis invertible. In fat, Mk,k = vyl+1

k evkak+bk/vk 6= 0.Sine M is upper triangular, we need to determine the spae VN1 where the orthog-onalization has to be made. The k-th basis vetor is
(φk ∗φ(tk

c(k)
,t1))(xk−1

k , x) =
∑

y∈Z vy
N1

1

2πi

∮

Γ0

dzzy−x−1 eak/z+bkz

(1 − vk+1z) · · · (1 − vN1z)
. (4.61)We apply (4.60) and obtain

fk(x) ≡
1

2πi

∮

Γ1/vk

dzz−x−1 eak/z+bkz

(1 − vkz)(1 − vk+1z) · · · (1 − vN1z)
(4.62)plus residue terms whih are linear ombinations of the (φn ∗φ(tn

c(n)
,t1))(xn−1

n , x) with
n > k. Therefore the spae VN1 is generated by the funtions fk for k = 1, . . . , N1.For k = N1, the evaluation of the residue leads to fN1(x) = const × vx

N1
. For k =

N1 − 1, if vN1−1 6= vN1 , then fN1−1(x) = const × vx
N1−1, while if vN1−1 = vN1 , it gives

fN1−1(x) = const × x vx
N1
, sine the pole is of order 2. In general, fk(x) = const× vx

kif vk 6= vl for all l > k and fk(x) = const × Polym(x)vx
k if there are m values of

l ∈ {k + 1, . . . , N1} suh that vk = vl, where Polym(x) is a polynomial of order min x. This is due to the fat that the pole is of order m + 1. Therefore, the spaewhere the orthogonalization has to be done is the one indiated in the Proposition.Finally, we need an expression for the transition between two times, whih is given by(4.36). Every time that we onvolute a φk with T , we get an extra fator 1/(1−vkz)in the integral. Therefore, if tn2
a2

≤ tn1
a1

and n2 ≥ n1, then
φ(t

n1
a1

,t
n2
a2

)(x, y) =
1

2πi

∮

Γ0

dzzx−y−1 e
(a(t

n1
a1

)−a(t
n2
a2

))/ze(b(t
n1
a1

)−b(t
n2
a2

))z

(1 − vn1+1z) · · · (1 − vn2z)
, (4.63)23



while φ(t
n1
a1

,t
n2
a2

)(x, y) = 0 otherwise.4.1 Some lemmasIn this subsetion we state and prove the Lemmas used in the proof of Theorem 4.2.Lemma 4.3. Let us de�ne the funtion
ϕn(x, y) =

{
vy−x

n , y ≥ x,
0, y < x.

(4.64)Then the following reurrene relations holds
Fk,l+1(x, a, b) = (ϕN+1−l ∗ Fk,l)(x, a, b) (4.65)and
Fk−1,l(x, a, b) = (ϕN+2−k ∗ Fk,l)(x, a, b). (4.66)From (4.66) and ϕn(x, y) = ϕn(0, y − x) = ϕn(−y,−x) it follows

Fk−1,l(−x, a, b) =
∑

y∈Z Fk,l(−y, a, b)ϕN+2−k(y, x). (4.67)Proof of Lemma 4.3. We have
Fk,l(x, a, b) =

1

2πi

∮

Γ0

dzzx−1ebzea/z (1 − vNz) · · · (1 − vN+2−kz)

(1 − vNz) · · · (1 − vN+2−lz)
. (4.68)Then applying ∑

y≥x v
y−x
N+1−lz

y = zx/(1 − vN+1−lz) (for |z| ≪ 1), we get that inthe denominator we have an extra fator, whih orresponds to inreasing l by one.Similarly, applying ϕN+2−k, the extra fator in the denominator anels the last onein the numerator, thus this is equivalent to dereasing k by one.We de�ne the following domains, whih will ours several times in the following. Agraphial representation is in Figure 4. Let us denote the set of interlaing variablesat time ti by
D(ti) = {xn

k(ti), 1 ≤ n ≤ Ni, 1 ≤ k ≤ n|xn+1
k (ti) < xn

k(ti) ≤ xn+1
k+1(ti)}. (4.69)Then let

D̃(ti) = {xn
k(ti) ∈ D(ti)|k ≥ 2}, D̂(ti) = {xn

k(ti) ∈ D(ti)|n ≤ Ni+1 − 1}, (4.70)and
D∗(ti) = D(ti) \ {xNi

1 (ti)}, D̂∗(ti) = D∗(ti) \ D̂(ti). (4.71)
24
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D̂(ti) D̂∗(ti)Figure 4: A graphial representation of the summation domains that ours in thenext lemmas and theorem. The bold lines passes through the border of the domains.Lemma 4.4. We have the identity
det

[
Fk,l(x

Ni+1−l
1 (ti) − xNi+1−k

1 (ti−1), a, b)
]
1≤k,l≤Ni

= const
∑

eD(ti)

( Ni∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

)

× det
[
FNi+1−l,1(x

Ni
k (ti) − xl

1(ti−1), a, b)
]
1≤k,l≤Ni

(4.72)where we set ϕn(xn−1
n , x) = 1.Proof of Lemma 4.4. By hanging the indies we get that l.h.s. of (4.72) is, up toa sign, equal to

det
[
FNi+1−l,k(x

Ni+1−k
1 (ti) − xl

1(ti−1), a, b)
]
1≤k,l≤Ni

(4.73)Using repeatedly the identity (4.65) we have
Fn,k(x, a, b) = (ϕNi+2−k ∗ · · · ∗ ϕNi

∗ Fn,1)(x, a, b). (4.74)Therefore,
(4.73) = det

[
(ϕNi+2−k ∗ · · · ∗ ϕNi

∗ FNi+1−l,1)(x
Ni+1−k
1 − xl

1(ti−1), a, b)
]
1≤i,j≤Ni(4.75)We write expliitly the onvolution by introduing expliit summation variables as
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follows
(ϕNi+2−k ∗ · · · ∗ ϕNi

∗ FNi+1−l,1)(x
Ni+1−k
1 − xl

1(ti−1), a, b)

=
∑

x
Ni+1−k+n
n ,
1≤n≤k−1

( k−1∏

n=1

ϕNi+1−k+n(x
Ni−k+n
n , xNi+1−k+n

n+1 )
)

×FNi+1−l,1(x
Ni
k − xl

1(ti−1), a, b), (4.76)where we used the fat that ϕm(x, y) = ϕm(x + c, y + c) for any c ∈ Z. By multi-linearity of the determinant, we an take the sums and the fators ϕ's out of thedeterminant with the result
(4.73) =

∑

xn
k (ti),

2≤n≤Ni,
2≤k≤n

( Ni∏

n=2

n−1∏

k=1

ϕn(x
n−1
k (ti), x

n
k+1(ti))

)

× det
[
FNi+1−l,1(x

Ni

k − xl
1(ti−1), a, b)

]
1≤i,j≤Ni

. (4.77)The produt of the ϕ's is non-zero only if xn−1
k (ti) ≤ xn

k+1(ti) is satis�ed for all thevariables. Moreover, in the symmetri part of the remaining summation domain,e.g., when x3
3(ti) ≥ x2

2(ti) and x3
2(ti) ≥ x2

2(ti), the produt of the ϕ's is symmetri,while the last determinant is antisymmetri in the variables {xNi
k , k = 1, . . . , Ni}.By iteration (a simple generalization of Lemma 3.3 in [4℄) it follows that the resultis unhanged if we restrit the sum to D̃(ti), i.e., to the interlaing on�gurations.The produt of the determinants of ϕ's in the right-hand side of (4.72) is either 1or 0 depending on whether the variables interlae (belongs to D(ti)) or not. Thisimplies (4.72).Lemma 4.5. We have the identity

∑

bD(ti)

( Ni+1∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

)

× det
[
FNi+1+1−l,1(x

Ni+1

k (ti+1) − xl
1(ti), a, b)

]

1≤k,l≤Ni+1

= det
[
F1,1(x

Ni+1

k (ti+1) − x
Ni+1

l (ti), a, b)
]
1≤k,l≤Ni+1

. (4.78)Proof of Lemma 4.5. By an analogue (essentially inverse) proedure as in the proofof Lemma 4.4, we �rst get
(4.78) =

∑

xn
k (ti),

2≤n≤Ni+1−1,
1≤k≤n

( Ni+1∏

n=2

n−1∏

k=1

ϕn(xn−1
k (ti), x

n
k+1(ti))

)

× det
[
FNi+1+1−l,1(x

Ni+1

k (ti+1) − xl
1(ti), a, b)

]
1≤k,l≤Ni+1

. (4.79)26



Now we insert by linearity the fator ∏Ni+1

n=l+1 ϕn(xn−1
l (ti), x

n
l+1(ti)) to terms

FNi+1+1−l,1(x
Ni+1

k (ti+1) − xl
1(ti), a, b) as well as the sum over the orresponding vari-ables. The sums are arried out by using (4.67), from whih we get the r.h.s. of(4.78).Lemma 4.6. Let us de�ne

φn(x, y) = ϕn(x, y), φn(xn−1
n , y) = vy

n. (4.80)Then
vxn

1
n det

[
ϕn(xn−1

k , xn
l )

]
1≤k,l≤n

= det
[
φn(xn−1

k , xn
l )

]
1≤k,l≤n

(4.81)Proof of Lemma 4.6. It is a onsequene of the fat that both determinants arezero if the variables xj
i do not interlae and when they do, the matries are upper-triangular with diagonal equal to zero and with equal entries in the �rst n− 1 rows.The only di�erene is for the last row, where the matrix in l.h.s. of (4.81) has entries

1 and r.h.s. of (4.81) has entries vxn
l

n .5 Asymptoti analysis5.1 Flat initial onditionsTo prove Theorem 2.2 we need the uniform onvergene of the kernel in boundedsets as well as bounds uniform in T . These results are provided in the followingPropositions 5.1, 5.2, 5.3.Let us de�ne the resaled and onjugate kernel by
Kresc

T (u1, s1; u2, s2) = K((n1, t1), x1; (n2, t2), x2)T
1/3 e

t2(2L+R/2)2x2

et1(2L+R/2)2x1
(5.1)where ni = n(ui), ti = t(ui), and

xi = [−2ni + v ti − siT
1/3]. (5.2)Proposition 5.1 (Uniform onvergene in a bounded set). Fix u1, u2, then for any�xed ℓ > 0, the resaled kernel Kresc

T onverges uniformly for (s1, s2) ∈ [−ℓ, ℓ]2 as
lim

T→∞
Kresc

T (u1, s1; u2, s2) = S−1
v KA1(S

−1
h u1, S

−1
v s1;S

−1
h u2, S

−1
v s2), (5.3)with KA1 the kernel of the Airy1 proess, see (2.24), and Sv, Sh are de�ned in (2.12).Proof of Proposition 5.1. First we onsider the term oming from the seond integralin (3.16), namely

−T 1/3

2πi

∮

Γ1

dz
eRt1(1−z)+Lt1/(1−z)

eRt2z+Lt2/z

zn1+n2+x2

(1 − z)n1+n2+x1+1

et2(2L+R/2)2x2

et1(2L+R/2)2x1
. (5.4)27



De�ne the funtions
H(z) = Rz + L/z − (R/2 − 2L) ln(z),

g0(z) = (π(θ) + θ)H(z),

g1(z, u) = −u(π′(θ) + 1)H(z) + u(1 − π′(θ)) ln(z(1 − z)),

g2(z, u, s) = u2π′′(θ)[H(z) + ln(z(1 − z))] + s ln(z), (5.5)from whih we then set
f0(z) = g0(1 − z) − g0(z),

f1(z) = g1(1 − z, u1) − g1(z, u2) − g1(1/2, u1) + g1(1/2, u2),

f2(z) = g2(1 − z, u1, s1) − g2(z, u2, s2) − g2(1/2, u1, s1) + g2(1/2, u2, s2),

f3(z) = − ln(1 − z). (5.6)With these notations we get
(5.4) =

−T 1/3

2πi

∮

Γ1

dzeTf0(z)+T 2/3f1(z)+T 1/3f2(z)+f3(z). (5.7)The funtion f0(z) has a double ritial point at z = 1/2 and the ontribution forlarge T will be dominated by the one lose z = 1/2. Thus we need to do seriesexpansions around the ritial point. Computations leads to
f0(z) = 1

3
κ0(z − 1/2)3 + O((z − 1/2)4),

f1(z) = −(u1 − u2)κ1(z − 1/2)2 + O((z − 1/2)3),

f2(z) = −(s1 + s2)(z − 1/2) + O((z − 1/2)2),

f3(z) = ln(2) + O((z − 1/2)) (5.8)with
κ0 = 8(8L+R)(π(θ) + θ), κ1 = (R+ 4L)(π′(θ) + 1) + 4(1 − π′(θ)). (5.9)First we hoose Γ1 to be a steep desent path2 for f0(z). We onsider Γ1 = γ∨γc∨ γ̄,where γ = {1/2 + e−Iπ/3ξ, 0 ≤ ξ ≤ 1/2}, γ̄ its image with respet to omplexonjugation, and γc = {1 − 1/2eIφ, π/6 ≤ φ ≤ 2π − π/6}. We also have f0(z) =

SR(z)R(π(θ) + θ) + SL(z)L(π(θ) + θ), with
SR(z) = 1 − 2z +

1

2
ln(z/(1 − z)), SL(z) =

1

1 − z
− 1

z
− 2 ln(z/(1 − z)). (5.10)On γ, simple omputations leads to

dRe(SR(z))

dξ
= − 8ξ2(1 + 2ξ2)

((1 + ξ2) + 2ξ2)((1 − ξ)2 + 2ξ2)
,

dRe(SL(z))

dξ
= − 64ξ2((1 + 2ξ2)2 − 12ξ4)

((1 + ξ2) + 2ξ2)2((1 − ξ)2 + 2ξ2)2
(5.11)2For an integral I =

∫
γ

dzetf(z), we say that γ is a steep desent path if (1) Re(f(z)) is maximumat some z0 ∈ γ: Re(f(z)) < Re(f(z0)) for z ∈ γ \ {z0}, and (2) Re(f(z)) is monotone along γexept at its maximum point z0 and, if γ is losed, at a point z1 where the minimum of Re(f) isreahed. 28



whih are both stritly less than 0 for ξ ∈ (0, 1/2). Moreover, on γc,
dRe(SR(z))

dφ
= −4 sin(φ)(1 − cos(φ))

5 − 4 cos(φ)
,

dRe(SL(z))

dφ
= −32 sin(φ)(1 − cos(φ))(2 − cos(φ))

(5 − 4 cos(φ))2
(5.12)whih are both stritly less than 0 for cos(φ) ∈ (−1, 1). Therefore the hosen Γ1 isa steep desent path for f0(z).Take any δ > 0 and set Γδ

1 = {z ∈ Γ0||z − 1/2| ≤ δ}. Then, if in (5.7) we integrateonly along Γδ
1 instead of integrating along Γ1, the error made is just of order O(e−cT )for some c > 0 (more exatly, c ∼ δ3 for δ small). Thus we now onsider the integralon Γδ

1 only. There, we an use the above series expansions to obtain
−2T 1/3

2πi

∫

Γδ
1

dze
1
3
κ0T (z−1/2)3+(u2−u1)κ1T 2/3(z−1/2)2−2(s1+s2)(z−1/2)

×eO
(

T (z−1/2)4,T 2/3(z−1/2)3,T 1/3(z−1/2),(z−1/2)
)
. (5.13)The di�erene between (5.13) and the same integral without the error term an bebounded by applying |ex − 1| ≤ |x|e|x| to O(· · · ). Thus, this error term an bebounded by

2T 1/3

2π

∫

Γδ
1

dz
∣∣∣e

1
3
c0κ0T (z−1/2)3+(u2−u1)c1κ1T 2/3(z−1/2)2−2c2(s1+s2)(z−1/2)

×O
(
T (z − 1/2)4, T 2/3(z − 1/2)3, T 1/3(z − 1/2), (z − 1/2)

)∣∣∣ (5.14)for some c0, c1, c2 whih an be taken as lose to 1 as needed by setting δ smallenough. Then, by the hange of variable T 1/3(z − 1/2) = w one gets that this errorterm is of order O(T−1/3) (what is needed is just c0 > 0).It remains to onsider the leading term, namely (5.13) without the error terms.By extending the integral to in�nity by ontinuing the two small straight segmentsforming Γδ
1, the error made is of order O(e−cT ). Thus we obtained that (5.4) is, upto an error O(e−cT , T−1/3) uniform for s1, s2 ∈ [−ℓ, ℓ]2, equal to

−2T 1/3

2πi

∫

γ∞

dze
1
3
κ0T (z−1/2)3+(u2−u1)κ1T 2/3(z−1/2)2−2(s1+s2)(z−1/2), (5.15)where γ∞ is a path going from eiπ/3∞ to e−iπ/3∞. By the hange of variable w =

(κ0T )1/3(z − 1/2), we get
(5.15) =

−1

2πi

∫

γ∞

dw
2

κ
1/3
0

e
1
3
w2+(u2−u1)w2κ1/κ

2/3
0 −2(s1+s2)w/κ1/3 (5.16)

= S−1
v Ai

(
S−1

h (u2 − u1)
2 + S−1

v (s1 + s2)
)

×e 2
3
S−1

h (u2−u1)3+S−1
v S

−1/2
h (u2−u1)(s1+s2)29



with Sv and Sh de�ned in (2.12). Here we used the Airy funtion representation
−1

2πi

∫

γ∞

dvev3/3+av2+bv = Ai(a2 − b) exp(2a3/3 − ab). (5.17)To �nish the proof, we need to onsider the term oming from the �rst integral in(3.16), namely
−T

1/3

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1

e(Rw+L/w)(t1−t2)
et2(2L+R/2)2x2

et1(2L+R/2)2x1
. (5.18)This an be rewritten as

(5.18) =
−T 1/3

2πi

∮

Γ0

dw

w
eT 2/3(p0(w)−p0(1/2))+T 1/3(p1(w)−p1(1/2)) (5.19)with

p0(w) = (u2 − u1)(π
′(θ) + 1)H(w) − (u2 − u1)(1 − π′(θ)) ln(w(1 − w)),

p1(w) = −(u2
2 − u2

1)
π′′(θ)

2
[H(w) + ln(w(1 − w))] − (s2 − s1) ln(w), (5.20)where H(w) is the funtion de�ned in (5.5). Remark that we need to do the analysisonly for u2 > u1. The funtion p0 has ritial point at w = 1/2. The seriesexpansions of p0 and p1 around w = 1/2 are

p0(w) = κ1(u2 − u1)(w − 1/2)2 + O((w − 1/2)3),

p1(w) = 2(s1 − s2)(w − 1/2) + O((w − 1/2)2). (5.21)We hoose as path Γ0 = {1
2
eiφ, φ ∈ (−π, π]}. This is a steep desent path for p0. Infat, for w ∈ Γ0,

Re(H(w)) = (R/2 + 2L) cos(φ) + (R/2 − 2L) ln(2), (5.22)
Re(− ln(w(1 − w))) = ln(2) − ln |1 − w| = 2 ln(2) − 1

2
ln(5 − 4 cos(φ)),whih are dereasing when cos(φ) dereases. Thus, we an integrate only on Γδ

0 =

{w ∈ Γ0||w− 1/2| ≤ δ} and, for a small δ, the error term is just of order O(e−cT 2/3
)with c > 0 (c ∼ δ2 as δ ≪ 1). The integral over Γδ

0 is then given by
−2T 1/3

2πi

∫

Γδ
0

dweκ1(u2−u1)(w−1/2)2T 2/3+2(s1−s2)(w−1/2)T 1/3

×eO((w−1/2)3T 2/3,(w−1/2)2T 1/3,(w−1/2)). (5.23)As above, we use |ex − 1| ≤ |x|e|x|, to ontrol the di�erene between (5.23) andthe same expression without the error terms. By taking δ ≪ 1 and the hangeof variable (w − 1/2)T 1/3 = W , we get that this di�erene is of order O(T−1/3)uniformly for s1, s2 in a bounded set. One we have taken away the error terms in30



(5.23), we extend the integral to 1/2 ± i∞. By this we make only an error of order
O(e−cT 2/3

). The integration path an be deformed to 1/2 + iR without passing byany poles, therefore by setting w = 1/2 + iyT−1/3 we get
−1

π

∫R dye−κ1(u2−u1)y2+2(s1−s2) = − 1√
πκ1(u2 − u1)

exp

(
− (s2 − s1)

2

κ1(u2 − u1)

)

= − S−1
v√

4π(u2 − u1)S
−1
h

exp

(
− (s2 − s1)

2S−1
v

4(u2 − u1)S
−1
h

)
. (5.24)Sine all the error terms in the series expansions are uniform for (s1, s2) ∈ [−ℓ, ℓ]2,the result of the Proposition is proven.Proposition 5.2 (Bound for the di�usion term of the kernel).For any s1, s2 ∈ R and u2 − u1 > 0 �xed, the bound

∣∣∣∣
et2(2L+R/2)2x2

et1(2L+R/2)2x1

T 1/3

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1

e(Rw+L/w)(t1−t2)

∣∣∣∣

≤ const e−|s1−s2| (5.25)holds for T large enough and const independent of T .Proof of Proposition 5.2. From the analysis in Proposition 5.1, we just need abound for |s2 − s1| ≥ ℓ, ℓ > 0 �xed. We start with (5.19) but to obtain a deayingbound for large |s2 − s1| we onsider another path Γ0.Consider an ε with 0 < ε ≪ 1 and set Γ0 = {w = ρeiφ, φ ∈ [−π, π)}, with
ρ =





1
2

+ (s2−s1)T−1/3

(u2−u1)κ1
, if |s2 − s1| ≤ εT 1/3,

1
2

+ ε
(u2−u1)κ1

, if s2 − s1 ≥ εT 1/3,
1
2
− ε

(u2−u1)κ1
, if s2 − s1 ≤ −εT 1/3.

(5.26)We have d
dφ

Re(w − 1
2
ln(w)) = −ρ sin(φ), d

dφ
Re(1/w + 2 ln(w)) = −4

ρ
sin(φ), and

d
dφ

Re(− ln(w(1 − w))) = − ρ sin(φ)
1−2ρ cos(φ)+ρ2 . Thus Γ0 is a steep desent path for p0(z)but also for the term in p1 proportional to s2 − s1. Let, for a small δ > 0 �xed,

Γδ
0 = {w = ρeiφ, φ ∈ (−δ, δ)}. Then

(5.19) = eT 2/3(p0(ρ)−p0(1/2))+T 1/3(p1(ρ)−p1(1/2)) (5.27)
×

(
O(e−cT 2/3

) +
−T 1/3

2πi

∫

Γδ
0

dw

w
eT 2/3(p0(w)−p0(ρ))+T 1/3(p1(w)−p1(ρ))

)for some c > 0 (for small δ, c ∼ δ2). On Γδ
0 the si-dependent term inRe(p1(w)−p1(ρ))is equal to zero and the rest is of order O(φ2). Therefore the last integral an bebounded by

T 1/3

2π

∫ δ

−δ

dφ

ρ
e−

1
2

T 2/3(u2−u1)
[
(π′(θ)+1)(Rρ+L/ρ)+(1−π′(θ))ρ/(1−ρ)2

]
φ2+O(T 2/3φ4,T 1/3φ2). (5.28)31



For δ small enough, and T large enough, the terms O(T 2/3φ4) and O(T 1/3φ2) areboth ontrolled by the �rst term in the exponential. Then, by the hange of variable
T 1/3φ = ψ one sees that r.h.s. of (5.28) is bounded by a onstant, uniformly in T .What remains is therefore to bound the �rst term in the r.h.s. of (5.27). By thehoie in (5.26) of ρ, |ρ− 1/2| ≤ ε/((u2 − u1)κ1) ≪ 1 for ε small enough whih anbe still hosen. Series expansion for ρ lose to 1/2 leads to

p0(ρ) − p0(1/2) = −2(s2 − s1)(ρ− 1/2)T 1/3(1 + O(ρ− 1/2))

+ κ1(u2 − u1)(ρ− 1/2)2T 2/3(1 + O(ρ− 1/2)). (5.29)By (5.26) we obtain the bounds
p0(ρ) − p0(1/2) = − (s2 − s1)

2

(u2 − u1)κ1
(1 + O(ε)), if |s2 − s1| ≤ εT 1/3, (5.30)

p0(ρ) − p0(1/2) = −(s2 − s1)εT
1/3

(u2 − u1)κ1
(1 + O(ε)), if |s2 − s1| ≥ εT 1/3.Combining the above result we have

|(5.25)| ≤
[
O(e−µT 2/3

) + O(1)
][
e
− (s2−s1)2

(u2−u1)κ1
(1+O(ε))

+ e
− (s2−s1)εT1/3

(u2−u1)κ1
(1+O(ε))

]
. (5.31)Thus by taking an ε small enough and then T large enough the bound (5.31) impliesthe statement to be proven, sine for any α > 0, there exists a Cα < ∞ suh that

e−α(s2−s1)2 ≤ Cαe
−|s2−s1|.Proposition 5.3 (Bound on the main term of the kernel).For any (s1, s2) ∈ [−ℓ,∞)2, the bound

∣∣∣∣
−T 1/3

2πi

∮

Γ1

dz
eRt1(1−z)+Lt1/(1−z)

eRt2z+Lt2/z

zn1+n2+x2

(1 − z)n1+n2+x1+1

et2(2L+R/2)2x2

et1(2L+R/2)2x1

∣∣∣∣

≤ const e−(s1+s2) (5.32)holds for T large enough, where const is a onstant independent of T .Proof of Proposition 5.3. For (s1, s2) ∈ [−ℓ, ℓ]2, this is a onsequene of the estimatesin the proof of Proposition 5.1. Therefore we an onsider just (s1, s2) ∈ [−ℓ,∞)2 \
[−ℓ, ℓ]2. Let us introdue the notations s̃i = (si + 2ℓ)T−2/3, whih then belongs to
[ℓT−2/3,∞). Then, the integral to be bounded is

−T 1/3

2πi

∮

Γ1

dzeTf0(z)+T 2/3f1(z)+T 1/3f2(z)+f3(z) (5.33)where f1(z) and f3(z) are given in (5.6), and f0(z) and f2(z) are just slight modi�-ations of the funtions in (5.6), namely
f0(z) = (π(θ) + θ)(H(1 − z) −H(z)) + s̃1 ln(2(1 − z)) − s̃2 ln(2z),

f2(z) = g2(1 − z, u1,−2ℓ) − g2(z, u2,−2ℓ) − g2(1/2, u1,−2ℓ) + g2(1/2, u2,−2ℓ).32



We put s̃1 and s̃2 in f0(z), beause they are not restrited to be of order T−2/3 (asit was the ase in Proposition 5.1).First we need to �nd a steep desent path for f0(z). We hoose it as Γ1 = {1 −
ρeiφ, φ ∈ [−π, π)} with 0 < ρ ≤ 1/2, hoosen as follows,

ρ =

{
1
2
− ((s̃1 + s̃2)/κ0)

1/2, |s̃1 + s̃2| ≤ ε,
1
2
− (ε/κ0)

1/2, |s̃1 + s̃2| ≥ ε,
(5.34)for some small ε > 0 to be �xed later.To see that Γ1 is a steep desent path, we onsider f0(z) term by term. The termproportional to R(π(θ) + θ) satis�es

d

dφ
Re(1 − 2z + 1

2
ln(z/(1 − z))) = −ρ(3 − 8ρ cos(φ) + 4ρ2) sin(φ)

1 − 2ρ cos(φ) + ρ2
≤ 0 (5.35)for all 0 < ρ ≤ 1/2, with equality only at φ = 0,±π. The term proportional to

L(π(θ) + θ) satis�es
d

dφ
Re(1/(1−z)−1/z−2 ln(z/(1−z))) = −((1 − 2ρ cos(φ) + 2ρ2)2 − ρ2) sin(φ)

(1 − 2ρ cos(φ) + ρ2)2ρ
≤ 0(5.36)for all 0 < ρ ≤ 1/2, with equality only at φ = 0,±π. Finally, Re(ln(1 − z)) isonstant on Γ1 and −Re(ln(2z)) = − ln(2|z|) is stritly dereasing while moving on

Γ1 with |φ| inreasing.For a small δ > 0, Γδ
1 = {1 − ρeiφ, φ ∈ (−δ, δ)}. We also de�ne

Q(ρ) = eRe
(

T (f0(1−ρ)−f0(1/2))+T 2/3(f1(1−ρ)−f1(1/2))+T 1/3(f2(1−ρ)−f2(1/2))
) (5.37)Sine Γ1 is a steep desent path of f0(z), the integral over Γ1 \ Γδ

1 is bounded by
Q(ρ)O(e−cT ) (5.38)for some c > 0 independent of T . The ontribution of the integral over Γδ

1 is boundedby
Q(ρ)

∣∣∣∣
−T 1/3

2πi

∫

Γδ
1

dzeT (f0(z)−f0(1−ρ))+T 2/3(f1(z)−f1(1−ρ))+T 1/3(f2(z)−f2(1−ρ))+f3(z)

∣∣∣∣ (5.39)The series expansion around φ = 0 is
Re(f0(1 − ρeiφ) − f0(1 − ρ)) = −γ1φ

2(1 + O(φ)) (5.40)with
γ1 =

s̃2ρ

2(1 − ρ)2
+

(π(θ) + θ)(1 − 2ρ)

(1 − ρ)2

(
Rρ(3 − 2ρ)

4
+
L(1 − ρ+ 2ρ2)

3ρ(1 − ρ)

)
, (5.41)33



and
Re(f1(1 − ρeiφ) − f1(1 − ρ)) = γ2φ

2(1 + O(φ)), (5.42)with
γ2 = (u2 − u1)κ1 + O(ρ− 1/2). (5.43)Finally, Re(f2(1 − ρeiφ) − f2(1 − ρ)) = O(φ2). Thus, by the hange of variable

z = 1 − ρeiφ, the above estimates, and by setting γ = γ1 + γ2T
−1/3, we get

(5.39) = Q(ρ)
T 1/3ρ

2π(1 − ρ)

∫ δ

−δ

dφe−γφ2T (1+O(φ))(1+O(T−1/3)). (5.44)By hoosing δ small enough (independent of T ) and then T large enough, the fatorswith the error terms an be replaed by 1/2, thus
(5.39) ≤ Q(ρ)

T 1/3ρ

2π(1 − ρ)

∫ δ

−δ

dφe−γφ2T/2 ≤ Q(ρ)
1√

2πγT 1/3
. (5.45)Remark that, the worse ase is when γ beomes small, and this happens when

ρ → 1/2, i.e., it is the ase of small values of s̃1 + s̃2. But even in this ase,
γ1T

1/3 ∼ (s1 + s2 + 4ℓ)1/2 ≥ (2ℓ)1/2, whih dominates γ2 ∼ O(1) for ℓ large. Thusby setting ℓ large enough, (5.39) ≤ Q(ρ)O(1). This estimate, ombined with (5.38),implies that the Proposition will be proven by showing that Q(ρ) ≤ const e−(s1+s2).Sine 1 − ρ is lose to 1/2, we an apply the series expansion of fi around z = 1/2.The expansion of f1 is in (5.8), while the one of f2 is the same as in (5.8) with
s1 + s2 = −4ℓ. Finally,
f0(z) = 1

3
κ0(z−1/2)3(1+O(z−1/2)2)− (s̃1 + s̃2)(z−1/2)(1+O(z−1/2)). (5.46)First onsider s̃1 + s̃2 ≤ ε. Then, with ρ hosen as in (5.34), we get

Q(ρ) = e−
2
3

T (s̃1+s̃2)3/2κ
−1/2
0 T (1+O(

√
ε))e(u2−u1)κ1(s̃1+s̃2)T 2/3κ−1

0 (1+O(
√

ε))

×e−4ℓ(s̃1+s̃2)κ
−1/2
0 T 1/3(1+O(

√
ε))

= e−
2
3
(s1+s2+4ℓ)3/2κ

−1/2
0 (1+O(

√
ε))e(u2−u1)κ1(s1+s2+4ℓ)κ−1

0 (1+O(
√

ε))

×e−4ℓ(s1+s2+4ℓ)κ
−1/2
0 T−1/3(1+O(

√
ε)). (5.47)Reall that s1 + s2 + 4ℓ ≥ 2ℓ ≫ 1 for ℓ ≫ 1. Therefore by hoosing ℓ large enough(depending only on the oe�ients κ0, κ1, u1, u2 whih are however �xed), all theterms are ontrolled by the �rst one, i.e.,

Q(ρ) ≤ e−
1
3
(s1+s2+4ℓ)3/2κ

−1/2
0 ≤ e−

1
3
(s1+s2)3/2κ

−1/2
0 . (5.48)Sine this deays more rapidly that exp(−(s1 + s2)), the Proposition holds for s̃1 +

s̃2 ≤ ε.The last ase is s̃1 + s̃2 ≥ ε. In this ase, with ρ hosen as in (5.34), we obtain
Q(ρ) = eTκ

−1/2
0 (1+O(

√
ε))

√
ε(ε/3−(s̃1+s̃2))e(u2−u1)κ1κ−1

0 εT 2/3(1+O(
√

ε))

×e−8ℓκ
−1/2
0 εT 1/3(1+O(

√
ε)). (5.49)34



But now, ε/3 − (s̃1 + s̃2) ≤ −2
3
(s̃1 + s̃2), thus the �rst term in the exponential is,up to a positive onstant,−√

εT 1/3(s1 + s2 + 4ℓ), whih dominates the seond term
∼ εT 2/3 ≤ s1 + s2 + 4ℓ, and it also dominates the third term. Therefore, for anyhoie of ε and ℓ made before, we an take T large enough suh that

Q(ρ) ≤ e−
1
3

√
εT 1/3(s1+s2), (5.50)whih ends the proof of the Proposition.Proof of Theorem 2.2. The proof of Theorem 2.2 is the omplete analogue ofTheorem 2.5 in [3℄. The results in Propositions 5.1,5.3,5.4, and 5.5 in [3℄ are replaedby the ones in Proposition 5.1, 5.2, 5.3. The strategy is to write the Fredholm seriesof the expression for �nite T and, by using the bounds in Propositions 5.2 and 5.3,see that it is bounded by a T -independent and integrable funtion. One this isproven, one an exhange the sums/integrals and the T → ∞ limit by the theoremof dominated onvergene. For details, see Theorem 2.5 in [3℄.5.2 Sketh of the result (2.22)With the resaling (2.8) and (2.18), the resaled kernel writes

Kresc(u1, s1; u2, s2) = K((n1, t1), x1; (n2, t2), x2)T
1/3. (5.51)The main part of the kernel (the seond term in (3.11)) writes

T 1/3

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
eTf0(w)+T 2/3f1(w;u1)+T 1/3f2(w;u1,s1)

eTf0(z)+T 2/3f1(z;u2)+T 1/3f2(z;u2,s2)

w − 1

(z − 1)w

1

w − z
(5.52)with

f0(w) = (π(θ) + θ)
(
Rw + L

w

)
+ (π(θ) − θ) ln

(
1−w

w

)
− σ0 ln(w),

f1(w; ui) = −
[
(π′(θ) + 1)

(
Rw + L

w

)
+ (π′(θ) − 1) ln

(
1−w

w

)
− σ1 ln(w)

]
ui,

f2(w; ui, si) =
[

1
2
π′′(θ)

(
Rw + L

w
+ ln

(
1−w

w

))
− σ2

]
u2

i + si ln(w). (5.53)The parameter µ is atually the position of the double ritial point of f0(w). Seriesexpansions gives
f0(w) = f0(µ) − κ0

3
(w − µ)3 + O((w − µ)4),

f1(w; u1) = f1(µ; u1) − u1κ1(w − µ)2 + O((w − µ)3), (5.54)
f2(w; u1, s1) = f2(µ; u1, s1) −

(
κ2

1u
2
1

κ0

− s1

µ

)
(w − µ) + O((w − µ)2).The terms f1(µ; ui) and f2(µ; ui, si) anel out by an appropriate onjugation of thekernel (5.52). We denote by ≃ an equality up to onjugation. Thus, asymptotially,(5.52) goes to

T 1/3

µ(2πi)2

∮

Γ0

dw

∮

Γ1

dz

w − z

e−κ0(w−µ)3T/3−u1κ1(w−µ)2T 2/3+T 1/3(w−µ)(s1/µ−κ2
1u2

1/κ0)

e−κ0(z−µ)3T/3−u2κ1(z−µ)2T 2/3+T 1/3(z−µ)(s2/µ−κ2
1u2

2/κ0)
(5.55)35



With the hange of variable (w − µ)(κ0T )1/3 = W , (z − µ)(κ0T )1/3 = Z, we thenobtain
(5.55) =

κ
−1/3
0

µ(2πi)2

∫
dW

∫
dZ

1

W − Z

e
1
3
Z3+u2Z2κ1/κ

2/3
0 −Z(s2/µ−κ2

1u2
2/κ0)/κ

1/3
0

e
1
3
W 3+u1W 2κ1/κ

2/3
0 −W (s1/µ−κ2

1u2
1/κ0)/κ

1/3
0

. (5.56)Let us denote by S̃v = µκ
1/3
0 and S̃h = κ−1

1 κ
2/3
0 the vertial and horizontal saling.Then

(5.56) = S̃−1
v KA2(S̃

−1
h u1, S̃

−1
v s1; S̃

−1
h u2, S̃

−1
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