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Abstract

We consider a new interacting particle system on the one-dimensional lat-
tice that interpolates between TASEP and Toom’s model: A particle cannot
jump to the right if the neighboring site is occupied, and when jumping to the
left it simply pushes all the neighbors that block its way.

We prove that for flat and step initial conditions, the large time fluctuations
of the height function of the associated growth model along any space-like path
are described by the Airy; and Airys processes. This includes fluctuations
of the height profile for a fixed time and fluctuations of a tagged particle’s
trajectory as special cases.

1 Introduction

We consider a model of interacting particle systems, which is a generalization of
the TASEP (totally asymmetric simple exclusion process) and the Toom model.
Besides the extension of some universality results to a new model, the main feature
of this paper is the extension of the range of analysis to any “space-like” paths in
space-time, whose extreme cases are fixed time and fixed particle (tagged particle
problem), see below for details.

Consider the system of N particles x; > --- > zy in Z that undergoes the following
continuous time Markovian evolution: Each particle has two exponential clocks
one is responsible for its jumps to the left while the other one is responsible for its
jumps to the right. All 2N clocks are independent, and the rates of all left clocks
are equal to L while the rates of all right clocks are equal to R. When the ith left
clock rings, the ¢th particle jumps to the nearest vacant site on its left. When the
1th right clock rings, the ith particle jumps to the right by one provided that the site
x; + 1 is empty; otherwise it stays put. The main goal of the paper is to study the
asymptotic properties of this system when the number of particles and the evolution
time become large.

If L = 0 then the dynamics is known under the name of Totally Asymmetric Simple
Exclusion Process (TASEP), and if R = 0 the dynamics is a special case of Toom’s
model studied in [9] (see references therein too). Both systems belong to the Kardar-
Parisi-Zhang (KPZ) universality class of growth models in 1 + 1 dimensions.

Particle’s jump to the nearest vacant spot on its left can be also viewed as the
particle pushing all its left neighbors by one if they prevent it from jumping to
the left. This point of view is often beneficial because it remains meaningful for



infinite systems, and also the order of particles is not being changed. Because of
this pushing effect we call our system the Pushing Asymmetric Simple Exclusion
Process or PushASEP.

Observe that for a N-particle PushASEP with particles x(t) > --- > an(t), the
evolution of (x1, ...,z ) forany M < N is the M-particle PushASEP not influenced
by the presence of the remaining N — M particles. This "triangularity property"
seems to be a key feature of our model that allows our analysis to go through.

Our results split in two groups — algebraic and analytic.

Algebraically, we derive a determinantal formula for the distribution of the N-
particle PushASEP with an arbitrary fixed initial condition, and we also represent
this distribution as a gap probability for a (possibly, signed) determinantal point
process (see [12,16,17,21,22| for information on determinantal processes). The re-
sult is obtained in greater generality with jump rates L and R being both time and
particle-dependent (Proposition 3.1). The first part (the determinantal formula, see
Proposition 2.1) is a generalization of similar results due to 2,19, 20| obtained by
the Bethe Ansatz techniques. Also, a closely related result have been obtained very
recently in [10] using a version of the Robinson-Schensted-Knuth correspondence.

Analytically, we use the above-mentioned determinantal process to study the large
time behavior of the infinite-particle PushASEP with two initial conditions:

1. Flat initial condition with particles occupying all even integers.
2. Step initial condition with particles occupying all negative integers.

It is not obvious that the infinite-particle PushASEP started from these initial config-
urations is correctly defined, and some work needs to be done to prove the existence
of the Markovian dynamics. However, we take a simpler path here and consider our
infinite-particle system as a limit of growing finite-particle systems. It turns out that
for the above initial conditions, the distribution of any finite number of particles at
any finitely many time moments stabilizes as the total number of particles in the
system becomes large enough. It is this limiting distribution that we analyze.

We are able to control the asymptotic behavior of the joint distribution of
Ty (t1), ..., Tn, (t) with 2,,(0) > -+ > 2, (0) and t; > --- > t;. It is the sec-
ond main novel feature of the present paper (the first one being the model itself)
that we can handle joint distributions of different particles at different time mo-
ments. As special cases we find distributions of several particles at a given time
moment and distribution of one particle at several time moments (a.k.a. the tagged
particle).

In the growth model formulation of PushASEP (that we do not give here; it can be
easily reconstructed from the growth models for TASEP and Toom’s model described
in 9] and references therein), this corresponds to joint distributions of values of the
height function at a finite number of space-time points that lie on a space-like path;
for that reason we use the term ‘space-like path’ below. The two extreme space-like
paths were described above — they correspond to t; =--- =t; and ny = - - - = ng.



The algebraic techniques of handling space-like paths are used in the subsequent
paper [5] to analyze two different models, namely the polynuclear growth (PNG)
model on a flat substrate and TASEP in discrete time with parallel update.

Our main result states that large time fluctuations of the particle positions along
any space-like path have exponents 1/3 and 2/3, and that the limiting process is
the Airy; process for the flat initial condition and the Airys process for the step
initial condition (see the review [11| and Section 2.4 below for the definition of these
processes).

In the PushASEP model, we have the fluctuation exponent 1/3 even in the case of
zero drift. This is due to the asymmetry in the dynamical rules and it is consistent
with the KPZ hypothesis. In fact, from KPZ we expect to have the 1/3 exponent
when j”(p) # 0, where j(p) is the current of particles as a function of their density
p, and j"(p) = —2(R+ L/(1 — p)?) for PushASEP.

We find it remarkable that up to scaling factors, the fluctuations are independent
of the space-like path we choose (this phenomenon was also observed in [7] for
the polynuclear growth model (PNG) with step initial condition). It is natural to
conjecture that this type of universality holds at least as broadly as KPZ-universality
does.

Interestingly enough, so far it is unknown how to study the joint distribution of
Ty, (t1) and xp,(t2) with z,,(0) > 2,,(0) and ¢; < ¢ (two points on a time-like
path); this question remains a major open problem of the subject.

Previous results. For the TASEP and PNG models, large time fluctuation results
have already been obtained in the following cases: For the step initial condition the
Airys process has been shown to occur in the scaling limit for fixed time [14,15,18|,
and more recently for tagged particle [13]. For TASEP, the Airy; process occurs
for flat initial conditions in continuous time [4] and in discrete time with sequential
update [3] with generalization to the initial condition of one particle every d > 2
sites’. Also, a transition between the Airy, and Airy; processes was obtained in [6].
These are fixed time results; the only previous result concerning general space-like
paths is to be found in [7] in the context of the PNG model, where the Airys process
was obtained as a limit for a directed percolation model.

Outline. The paper is organized as follows. In Section 2 we describe the model
and the results. In Proposition 2.1 the transition probability of the model is given.
Then, we define what we mean by space-like paths, and formulate the scaling limit
results; the definitions of the Airy; and Airy, processes are recalled in Section 2.4.
In Section 3 we state the general kernel for PushASEP (Proposition 3.1) and then
particularize it to step and flat initial conditions (Proposition 3.4 and 3.6). In
Section 4 we first prove Proposition 2.1 and then obtain the general kernel for a
determinantal measure of a certain form (Theorem 4.2), which includes the one of

1Similar results for discrete time TASEP with parallel update and PNG model will follow from
more general results of [5].



PushASEP. Finally, the asymptotic analysis is the content of Section 5.
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2 The PushASEP model and limit results

2.1 The PushASEP

The model we consider is an extension of the well known totally asymmetric simple
exclusion process (TASEP) on Z. The allowed configuration are like in the TASEP,
i.e., configurations consist of particles on Z, with the constraint that at each site can
be occupied by at most one particle (exclusion constraint). We consider a dynamics
in continuous time, where particles are allowed to jump to the right and to the left
as follows. A particle jumps to its right-neighbor site with some rate, provided the
site is empty (TASEP dynamics). To the left, a particle jump to its left-neighbor
site with some rate and, if the site is already occupied by another particle, this is
pushed to its left-neighbor and so on (push dynamics).

To define precisely the jump rates, we need to introduce a few notations. The
dynamics preserves the particle position, thus we can associate to each particle a
label. Let xx(t) be the position of particle k at time t. We choose the right-left
labelling, i.e., xx(t) > xp41(t) for all k € I C Z, t > 0. With this labelling, we
consider v, > 0, k € I, and some smooth positive increasing functions a(t), b(t) with
a(0) = b(0) = 0. Then, the right jump rate of particle k is a(t)vg, while its left jump
rate is b(t) /v

In Proposition 2.1 we derive the expression of the transition probability from time
t = 0 to time t for N particles, proven in Section 4.

Proposition 2.1. Consider N particles with initial conditions x;(0) = y;. Denote
its transition probability until time t by

Then
G(zn,...,x1;t) (2.2)
N
— ( H Uﬁn_yne—a(t)/vn e_b(t)vn) det [Fk’l (xN—I—l—l — YN+1—k, a(t), b(t>)]1§k‘,l§N 5
n=1
where .
1 R BT
Fioi(w,a,b) = — f{ dezrt st U ON102) (2.3)
2mi To Hj:l(l — UN+1—jz>
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Figure 1: An example of a space-like path. Its slope is, in absolute value, at most 1.

where I'y is any anticlockwise oriented simple loop with including only the pole at
z=0.

2.2 Space-like paths

From Proposition 2.1 one can compute the joint distribution of particle positions
at a given time ¢, in a similar way of what we made in [4]. However, one of the
main motivation for this work is to enlarge the spectrum of the situations which can
be analyzed to what we call space-like paths. In this context, space-like paths are
sequences of particle numbers and times in the ensemble

S = {(nk, tr), k = (e, te) < (Mer1; tesr) }, (2.4)
where, by definition,
(n;,t;) < (nj,t;) if n; > n;,t; <t;, and the two couples are not identical. (2.5)

The two extreme cases are (1) fixed time, ¢, = t for all k, and (2) fixed particle
number, n, = n for all k. This last situation is known as tagged particle problem.
Since the analysis is of the same degree of difficulty for any space-like path, we will
consider the general situation.

Consider any smooth function 7, w® = 7(w'), in the forward light cone of the origin
that satisfies
7' <1, |w'| < m(wh). (2.6)

These are space-like paths in R x R, see Figure 1. The first condition (the space-
like property) is related to the applicability of our result to sequences of particles
in §. The second condition just reflect the choice of having t > 0 and n > 0. Time
and particle number are connected with the variables w! and w° by a rotation of 45
degrees. To avoid unnecessary v/2’s, we set

wt = Lo t = w+w!
{woz %}@{n:wo_wl (2.7)

o~
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For a large parameter 7" we consider the scaling

wt =0T — uT?3,
w’ =7(0)T — 7' (O)uT?? + 1" (0)u*T"/3.

Then,

t(u) = (71'(9) + 9)T — (7'(’(9) + 1)uT2/3 + %ﬂ”(&)ule/?’,
n(w) = [(m(0) = O)T + (1 — 7' (0)uT?? + §7"(0)u*T"]. (2.8)

Setting 7(0) = 1—6 we get the fixed time case with t = T, while setting () = a+0
we get the tagged particle situation with particle number n = oT'.

2.3 Scaling limits

Universality occurs in the large T" limit. In Proposition 3.1 we will get an expression
for the joint distribution in the general setting. For the asymptotic analysis we
consider the case where all particles have the same jump rates, i.e., we set

vy =1forall ke[l (2.9)

Moreover, we consider time-homogeneous case, i.e., we set a(t) = Rt and b(t) = Lt
for some R, L > 0 (for time non-homogeneous case, one would just replace R and L
by some time-dependent functions). Two important initial conditions are

(a) flat initial condition: particles start from 27,
(b) step initial condition: particles start from Z_ = {... =3, -2, —1}.

In the first case, the macroscopic limit shape is flat, while in the second case it is
curved, see [11] for a review on universality in the TASEP. For TASEP with step
initial conditions and particle-dependent rates vy, the study of tagged particle has
been carried out in [13].

Flat initial conditions

For the flat initial condition, it is not very difficult to get the proper scaling limit
as T'— oo. The initial position of particle n(u) is —2n(u) and during time #(u) it
will have travelled around v t(u), where v is the mean speed of particles, given by

v=—2L+ R/2. (2.10)

The reason is that the density of particle is 1/2 and the particles jumps to the right
with rate R but the site on its right has a 1/2 chance to be empty. Moreover,
particles move (and push) to the left with rate L but typically every second move



to the left is due to a push from another particle. Therefore, the rescaled process is
given by
Ty (t(w) — (—2n(u) + vi(u))

w i Xo(u) = 7 : (2.11)

where n(u) and t(u) are defined in (2.8). The rescaled process X7 has a limit for
large T' given in terms of the Airy; process, A; (see [4,6,11] and Section 2.4 for
details on Ay).

Theorem 2.2 (Convergence to the Airy; process). Let us set the vertical and hor-
izontal rescaling

4((8L + R)(m(0) + 0))¥/?

Sy = (BL+ R)(x(0) +0))"*, S, = R0 < 1) ran =y (21
Then
Jim Xr(u) = SpAi(u/Sh) (2.13)

in the sense of finite dimensional distributions.

The proof of this theorem is in Section 5. The specialization for fixed time ¢t = T is

(8L + R)*/3

Sy = (8L + R)1/37 Sp = 9 ’

(2.14)
and the one for tagged particle n = o7 at times t(u) = T — 2uT?/3, obtained by
setting 0 = (1 — ) /2, is

2(8L + R)*3

— (8L 1/3 —
Sy = 8L+ R)"?, S, LT R

(2.15)

Step initial condition

The proper rescaled process for step initial condition is quite intricate. Denote by [t
the typical position of particle with number around ot at time t. In the situations
previously studied in the literature, there was a nice function § = ((«). In the
present situation this is not anymore true, but we can still describe the limit shape.
More precisely, a and (3 are parametrized by a p € (0, 1) via

a(p) =1 —p?(R+L/p*), Bu)=—((1-2u)R+ L/ (2.16)
In particular, we have
_m(0) -0
o) =TT
For any given 6, there exists only one p such that (2.17) holds, because « is strictly

monotone in g. Some computations are needed, but finally we get the rescaling of
the position x as a function of u, namely,

(2.17)

z(u) = 00T — o uT?? + ouT/3, (2.18)

7



Figure 2: Parametric plot of (8(u), a(u)), for L =1, R = 4.

where

oo = (m(0)+0)5(k)
o = 14 @0+ 1) (1R L) + (1 - (0)

L—p
o Ly, @O0 a) - 1+ a()?
= O (R ) O ) o L

The rescaled process is then given by

T (t(w) = (00T — o1uT?? + o9uT"/?)
U r— XT(U) = — 7 7

with n(u) as in (2.8). Let us define the constants

o (@) +O)(R+ L/y?)
" (L — ) ’
@O DRELD) A0 -1
' 24 2u(1— )2’

Then, a detailed asymptotic analysis would lead to,

2/3

71im Xr(u) = M/ﬁ(l)/gAg(KJlKJa u),

(2.19)

(2.20)

(2.21)

(2.22)

in the sense of finite dimensional distributions, where A, is the Airy, process
(see [11,14,18] and Section 2.4 for details on Az). As for the flat PNG, special
cases are tagged particle and fixed time. In Section 5.2 we obtain (2.22) by look-
ing at the contribution coming from the series expansion around a double critical
point. To get (2.22) rigorously, one has to control (1) the error terms in the conver-
gence on bounded sets and (2) get some bounds to get convergence of the Fredholm
determinants. This is what we actually do the in the flat initial condition setting.



2.4 Limit processes

For completeness, we shortly recall the definitions of the limit process A; and A,
appearing above. The notation Ai(x) below stands for the classical Airy function [1].

Definition 2.3 (The Airy; process). The Airy; process A; is the process with m-

point joint distributions at uy < us < ... < Uy, given by the Fredholm determinant
P (i () < se}) = det(l = oK x) (g, iy (2:23)
k=1

where xs(uy, ) = 1(z > si) and the kernel K 4, is given by

A, (ug, 815U, 89) = ——————exp | ——— Uy > U
b T 47 (ug — uy) 4(ug — uq) ? !
. 2
+A1(81 + So + (UQ — U1)2) exp ((UQ — ul)(sl + 82) + g(Ug — u1)3> . (224)
Definition 2.4 (The Airys process). The Airys process Ay is the process with m-
point joint distributions at uy < us < ... < Uy, given by the Fredholm determinant
P( (M Aa(ur) < 5e}) = det(l = xoKa ) p2(un,impxry (2:25)
k=1

where xs(uy, ) = 1(z > si) and the kernel K 4, is given by

f]RJr 6_>‘(u2_u1)Ai(81 + )\)AI(SQ + )\), Uy = Uq,

2.26
— [ € M2 AI(s + A)Ai(sy + A),  up < ug. (2:26)

KAQ(U1,81;U2,82) = {

3 Finite time kernel

3.1 General kernel for PushASEP

In Theorem 4.2 we will derive a general expression for joint distributions of a de-
terminantal measure. In particular, it follows that the joint distribution of particle
positions is given by a Fredholm determinant of the form

IP( (i, (1) = ak}) = det (1= XK ) im0y oty (31)
k=1

with ((n1,t1), ..., (Rm,tm)) € S, and Xa((ng, tx))(x) = 1(x < ay).

Before stating the result, proven in Section 4, we introduce a space of functions
V,,. Consider the set of numbers {vy,...,v,} and let {u; < us < ... <w,} be their
different values, with ay, being the multiplicity of uy (vy is the jump rate of particle
with label k). Then we define the space

V, = span{z'uf, 1 <k <v,0 <1< ap — 1} (3.2)



Proposition 3.1 (PushASEP kernel). The kernel K for the PushASEP is given by

K((nl,tl),xl; (n2,t2),x ) ¢((”1 it1),(n2, t2))($1,:1}2 +Z \I’nl tl >(I)Z§f2k(x2> (33)

ni— k
k=1
where
Wt (2) = — f dym-u—1ga/z+(n: (L= 012) - (1 = Un2) (3.4)
n—I 27 To (1 _ vlz) e (1 o UIZ) s

the functions {@Ztl,l =1,...,n}, are obtained by the orthogonality relation
Z Ot ()™ (x) = Oy, (3.5)
TEZL

and by the requirement span{q)Zfl(x),l <l <n} =1V,. Finally, the first term has
the form

a —a z (b —b z
¢((n1,t1)7(n2,t2))(x y) = 1 7{ dz  elaltr)=a(t2))/z o (b(t1)—b(t2))

Lty 41) < (n2 t2)] -

omi Jro 2 (1= v, 12) - (1 — U, 2)
(3.6)
3.2 Kernel for step initial condition
We set all the jump rates to 1: v; = vy = --- = 1. The transition function (3.6)

does not depend on initial conditions. It is useful to rewrite it in a slightly different
form.

Lemma 3.2. The transition function can be rewritten as

¢((n1,t1),(n27t2))(aj’ y) (3.7)
1 1 w n2=n a(ty)wb(ty) /w
T omi To1 R (w — 1) mﬂ[(nhtl)<("2,t2ﬂ‘

Proof of Lemma 3.2. The proof follows by the change of variable z = 1/w in
(3.6). O

Lemma 3.3. Let y; = —i,1 > 1. Then, the functions ® and U are given by

1 (w— 1)k
n,t _ a(t)w+b(t)/w
\I]k ($) - 27 To dw rtn+l € )
n,t 1 2 —a(t)z—b(t)/z
P, (x) = — dz————e¢ . (3.8)

27 Jp, (2 —1)711

Proof of Lemma 3.3. W;"'(z) comes by the change of variable z = 1/w in (3.4). For
k > 0, the pole at w = 1 is irrelevant, but in the kernel \IIZ’t enters also for negatives

values of k. Let us compute > _, q)?t(x)\lfzt(x) The z-dependent terms give

D (z/w)” = tﬁ . wtf . : (3.9)

w
€7
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Thus, before taking inside the sum in the integral we divide it into {z > 0} and
{z < 0} which gives the two contributions in the r.h.s. of (3.9). The difference
between the two terms is that the integration paths satisfy |z| < |w]| for the first
term and |w| < |z| for the second term. At w = z there is a simple pole, therefore
by deforming the integration paths to make them coinciding, the net result is the
residue at w = z. The terms in the exponential and the terms like 20) simplify,
leading to

> (@)U (z) = if} dz(z — D)F 77 =5, (3.10)

2mi
TEZ
O
Proposition 3.4 (Step initial conditions, finite time kernel). The kernel fory; = —1,
1> 1, 15 given by
K((nl,tl),l’l;(ng,tg),l’g) (311)
1 1 w nz—mni ea(tl)w-i-b(tl)/w
= ‘% e (1 - ) T L) <(nao)
dw b(t1)/w+a(t)w (1 - w)nl-l—l Z:cz-l—nz 1
27T1 T t2 /z+a tg) wm1+n1+1 (1 _ Z)TL2+1 w — Z'

The contours T'y and 'y include the poles w = 0 and z = 1, respectively, and no
other poles.

Proof of Proposition 3.4. Consider the main term of the kernel, namely

Z \I/nl’tl ng,tg (l’ ) - i (i d’Uj (w - 1)n1_k 6a(t1)w+b(t1)/w>
ny— k: nz—k: 2 - 27T1 To 1 wx1+n1+1
k=1 )

% ! 7{ o etz
— Z———— € .
2mi Jp, (2 — 1)kl

First take the sum inside and then we extend it to 400, since the second term
is identically equal to zero for k > ny. The integration paths are taken so that
|z — 1| < |w — 1|. The k-dependent terms are

Z(;:ll)k:z:i (3.12)

k>1

Notice now we have a new pole at w = z, but at w = 1 the pole vanished. Therefore
the main part of the kernel equals

a(t1)w+b(t1)/w ( _ 1)n1+1 Zmz—l—ng 1
fél dz \é‘o dw ea(tz z+b(t2)/z ,wxl—i—nl-i-l (Z _ ]_)n2+1 w — Z' (313)

27r1

The contribution of the pole at w = z is exactly equal to the contribution of the
pole at z = 1 in the transition function (3.7). Therefore in the final result the first

11



term coming from (3.7) has the integral only around z = 0, and the second term
is (3.13) but with the integral over w only around the pole at w = 0. Finally, a
conjugation by a factor (—1)™~"2 leads to the result. O

3.3 Kernel for flat initial condition

We again consider the case vy = vy =--- = 1.

Lemma 3.5. Let y; = —21, @ > 1. Then, the functions ® and ¥ are given by

1 (w(w —1))*
n,t o a(t)w+b(t)/w
Upi(z) = ori o d we+2n+1 € ’
1 (22 — 1)z%2n
n,t —a(t)z—b(t)/z
7 (x) B=2=b(t)/= (3.14)

2 Jr, (2 — 1)

Proof of Lemma 3.5. The proof is like in Lemma 3.3, but the residue terms lead
this time to

3 (@)U (2) = 1‘%idzﬁk——1)((z——w)k” . (3.15)

-~ 2mi
TEL
by the change of variable w = z(z — 1). O

Proposition 3.6 (Flat initial conditions, finite time kernel). The kernel for y; =
—2i, 1 € Z, 15 given by

K((n1,t1), 215 (g, ta), 22)

1 1 w  \"TM ealt)wtb(t)/w
IZE ww“ﬂﬁ4<1—w) ety b Lmtn)<(naita)
-1 ea(t1)(1=2)+b(t1)/(1-2) Sn1tnatas
* 2mri dz ealt2)z4b(t2)/z (] — z)mitneter+l’ (3.16)

Proof of Proposition 3.6. The strategy is similar to the one of Proposition 3.4. This
time, the sum in £ is

2(z—1) k_ w(w —1)
Z(w(w—l)) S (w—2)(w—142) (3.17)

k>1

So, the pole for w = 1 is now replaced by two simple poles, one at w = z and one
at w =1 — z. The pole at w = z cancels with the one at z = 1 of (3.7). Thus we
are left with

4 a(t1 Jw+b(t1)/w (’UJ - 1)n1+1 To+no—1 25— 1
. (3.18
e Rl B e e e i e e L

12



This is the main part of the kernel for the initial condition y; = —2¢, ¢ > 1. To
obtain the kernel for y; = —2i, ¢+ € Z, we just have to look far enough into the bulk
of our system, until when the influence of the fact that there are only a finite number
of particles on the right vanishes. For the kernel, this means that the pole at w =0
vanishes. Therefore, we are left with the contribution of the simple pole at w = 1—z,
and computing the corresponding residue leads to the result of the Proposition, up
to a factor (—1)"~"2 which however have no impact on the Fredholm determinant
in question. U

4 Determinantal measures

In this section we first prove Proposition 2.1. Then, we use it to extend the measure
to space-like paths. More precisely, we first obtain a general determinantal formula
in Theorem 4.1. Then, in Theorem 4.2, we prove that the measure has determinantal
correlations and obtain an expression of the associated kernel.

Proof of Proposition 2.1. We first prove that the initial condition is satisfied. We
have

1 Pl — »
Fr(2,0) = =— f dzzw—lngj( N+ Z). (4.1)
2mi To Hj:l(l — UN+1_jZ)

(a) Fy(z,0) =0 for x > 1 because the pole at z = 0 vanishes.
(b) Fii(x,0) =0 for k > [ and z <[ — k, because then

Fou(e,0) = — ﬁ 22" (1 = pyz) -+ (1 — v ) (4.2)

1

and the residue at infinity equals to zero for z < [ — k.

Assume that oy < -+ < x1. If oy > yn, also z; > yy for I = 1,..., N — 1.
Thus Fi(xnt1-1 — yn,0) = 0 using (a). Therefore G(zy,...,21;0) = 0. On
the other hand, it zy < yn, then zy < ypo — N+ k, Kk =1,...,N — 1. Thus
Fy p(xn —yn+s1-k, 0) = 0 using (b) and the fact that xy —ynyi11- < 1 —k. Therefore
we conclude that G(xy,...,21;0) =0 if xy # yn. For xy = yn, F11(0,0) = 1 and
by (a) Fii(@nt1-1 —yn,0) =0 for [ =2,..., N. This means that

G(xn,...,21;0) = 0pp 4y G(TN_1, ..., 21;0). (4.3)

By iterating the procedure we obtain

N

Gy, ..., 21;0) = [ [ 6o (4.4)

k=1

Notice that the prefactor in (2.2) is equal to one at ¢t = 0.

13



The initial condition being settled, we need to prove that (2.2) satisfies the
dFy (1)

PushASEP dynamics. For that purpose, let us first compute —

dFk’l(H?, t)

T = a(t)Fi(x — 1,8) + b(t) Fy(z + 1, 1), (4.5)

from which it follows, by differentiating the prefactor and the determinant column
by column,

dG(l’Nydt..,xl;t) _ —<a(t);vk+6(t);%>G(xN,...,x1;t)
+a(t) Y oG m =1, ) (4.6)

To proceed, we need an identity. Using

T r+1
z _ UN41-1Z

+2° (4.7)

I—oyp1z 1—onp12

it follows that
Fk7l+1(£L’, t) = Fk7l(l’, t) + ’UN+1_le7l+1(ZL' + 1, t). (48)

Therefore, for j = 2,..., N, by setting yr = yn+1-&,

1 o ~
G(...,xj,xj1 =x4,...;t) = In det | v Fra(wn - — yk’t)] 1<kI<N
1 T ~ Zj U
" Iy det | ... 07 Frvia—(2 — 06 t) 00 Fevio—j (€51 = s t) - }

Here Zy does not depend on the z;’s. Using (4.8) we have

v Fnyaj (25 — G t) (4.9)
. - xi+1 ~ Uj
= Ujile,NJrl—j(Ij - yk,t) + UjflL Fk7N+2—j($j + 1 =y, t)v.]l'
-

Using this identity in the previous formula, the first term cancels being proportional
to its left column, and the second term yields

U.
G(...,l’j,l’j_l = ZL’j,...;t) = U—jG(...,l’j,ZL'j_l =Tj + 1,,t> (410)
j—1

14



With (4.10) we can go back to (4.6). First, consider all the terms in (4.6) which are
proportional to a(t). They have the form

N N
—kaG(...;t)+kaG(...,xk—1,...;t) (4.11)
k=1 k=1

N
= —0G(.it) = > (L= G0y 1)G( 5 1) (4.12)
k=2
N-1
toyGlay — L)+ > (1= 640 )G( e — 1, 58)  (4.13)
k=1
N
= G gy = x4 1,5t (4.14)
k=2
N-1
+kaG(---7ajk+1 :flfk,flfk,...;t). (415)
k=1

By using (4.10) and shifting the summation index by one, we get that (4.15) equals

N

v
S Gl mp e = o+ 1) (4.16)
2 V-1

which cancels (4.14). The expression (4.12) is the contribution in the master equa-
tion of the particles jumping to the right and leaving the state (zy,...,z;) with
jump rate a(t)vy, while (4.13) is the contribution of the particles arriving to the state
(zn,...,x1). Therefore, the jumps to the right satisfy the exclusion constraint.

Secondly, consider all the terms in (4.6) which are proportional to b(t). They are

N N

1 1
— —G(...;t)+ —G(..,xp+1,..5t). 4.17
DFLCORTED SE I ) (4.17

Let us denote by m(k) the index of the last particle to the right of particle k& such
that particle m(k) belongs to the same block of particles as particle k& (we say that
two particles are in the same block if between them all sites are occupied). Then,
(4.17) takes the form

N N
1 1
(4.17) = — —G(...;t)—l—g —G(. o+ Lo+ 1, g+ E—m(k),. .. t).
Vi Vi
k=1 k=1
(4.18)
Using (4.10) we get
1
—G(. o+ L+ 1,0 xg+ k—m(k),. .. 1)
Vg,
1 Vi
Vg Vk—1
1
= U—G(...,J}k—l—l,l’k_1+1,...,$k—|—]€—m(/{3),...;t). (4.20)
k—1
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By iterations we finally obtain

N N

1 1

(A17) == —G(.5t)+) - (k)G(-.~,zk+1,xk_1+1,...,xm(k)+1,...;t).
k=1 k=1 ™

Bl

(4.21)
The first term in (4.21) is the contribution of particles pushing to the left and leaving
the state (zy,...,x1), while the second term is the contribution of particles arriving
at the state (xy,...,z1) because they were pushed, and the particle number k pushes
to the left with rate b(t)/vy. O

We would like to obtain the joint distribution of particle N, at time t; for N; >
No>...>2N,>1land 0 <t; <ty <...<t,. By Proposition 2.1, this can be
written as an appropriate marginal of a product of m determinants.

Notational remark: Below there is an abuse of notation. For example, x]'(¢;) and
x}(t;+1) are considered different variables even if t; = ¢;1;. One could call them
simply z7'(i) and x}'(i + 1), but then one loses the connection with the times t;’s. In
this sense, t; is considered as a symbol, not as a number.

Theorem 4.1. Let us set ty = 0, a(ty) = b(ty) =0, and Ny = 0. The joint dis-
tribution of PushASEP particles is a marginal of a determinantal measure, obtained
by summation of the variables in the set

D={ak(t),1<k<L1<I<N;,0<i<m}\{z)i(t;,),1<i<m}; (4.22)
the range of summation for any variable in this set in 7. Precisely,

P(oy,(t:) = 27" (t:), 1 < i < mlzy(0) = yx(0), 1 < b < )
= const X Zdet [W%i_l(kal (to))}lgk,lgNl
D

X H [det [,];ivtifl ($5Vl(tl)a xi\h (ti—l))]lﬁkJSNi
1=1

N;
x JT detlon (e (8:), 27 (8:))1<ki<n (4.23)
n=N;;1+1
where
1
T, u(2,y) = o 3 dzz® Y Lelalts)—alti))/z o (b(t;)=b(t:))= (4.24)
0
1
\I'%i—z(x) = 5= 4 dzz" 11 —vgq2) - (1 —ow, 2), (4.25)
0
Pn(z,y) = vf Ly and ¢n($ﬁ_l>y)zvfi- (4.26)

Remark: the variables 27! participating in the last factor of (4.23) are fictitious,
cf. (4.26), and are used for convenience of notation only.
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Ny N e (k)

t1

ta

Figure 3: A graphical representation of variables entering in the determinantal struc-
ture, illustrated for m = 2. The wavy lines represents the time evolution between
to and t; and from ¢; to t5. The rest is the interlacing structure on the variables
induced by the det[¢,(---)]. The black dots are the only variables which are not
in the summation set D = D(0) U D*(¢;) U ---U D*(t,,) (see Figure 4 too). The
variables of the border of the interlacing structures are explicitly indicated.

We illustrate the determinantal structure in Figure 3.
Proof of Theorem 4.1. Since the evolution is Markovian, we have

P(xy, (t;) = 2 (t),1 < i < m|zp(0) = 28 1 <k < Ny)
= ) P(ax(0) = 2§(0),1 < k < Ny[an(0) = gy, 1 <k < Ny) (4.27)

i=1

where the sum is over 2%(0), 1 <k < Ny, and 2%(t;), 1 <k < N;—1,i=1,...,m.
Note that so far the lower index of all variables z¥ is identically equal to 1.

The continuation of the proof requires a series of Lemmas collected at the end of
this section, see Section 4.1. We apply Proposition 2.1 to the m+1 factors in (4.27),
namely,

P(xp(ts) = 2¥(t), 1 < k < Nyap(tioy) = 2V (ti1), 1 < k< Ny) (4.28)
N;
— const X <H Uzil(ti)—m?(ti71)> det [Fk,l(xivi-i_l_l(ti) . xi\fi—l—l—k(ti_l)} Lkt
n=1
First we collect all the factors coming from the [, pat =710 e have the
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factor

N1 m  Np

< H Uz?(o)—yk> H H Uz?(tk)—m’f(tk,l)
n=1 k=1n=1
N; Ny
= (H v y") ( H II v ”) [ it (4.29)
n=1 i=1 n=N;11+1 n=1

Then we apply Lemma 4.4 to all the factors det[Fy (- --)]. For the initial condition
we have

N1
> det [Fayoiea (@ (0) = 9,0,0)] , on, [T det [on(ai ™1 (0), 27 (0)] oy e -
D(0) n=2
(4.30)
For the other terms, i = 1,..., m, we get
Z det [FNz‘-i-l—l,l(x]kVi(ti) - lll (ti—1)> Qs bl)} 1<k, I<N;
D(t:)
N;
X Hdet [(pn(xz_l(tZ)vxln(tZ))] 1<k,l<n " (431)
n=2

Thus, the probability we want to compute in (4.27) is obtained by a marginal of
a measure on m + 1 interlacing triangles, when we sum over all the variables in
D(0), D*(t1), ..., D*(t.), see Figure 4 for the definitions of these sets. At this point
we apply Lemma 4.5 as follows. Fori=1,...,m—1 we do the sum over the variables
in D(t;). Notice that the remaining Varlables in (4.29) do not belong to the D(%;),
thus we factorize them out. So, r.h.s. of (4.27) is, up to a constant, equal to

> (4.29) x det [Fayy11(2(0) = 91,0,0)] 1,

m—1 N;
X [ ( H det [QOH(ZL'Z l(ti)a :L’?(t,))} 1<k,i<n )
d 1<k,l<Ni+1]

et [P 10120 (tiv1) = 4 (1), i, bisa)|

X ﬁ det [@n (2} (tm), xln(tm))}lgk,lgn (4.32)

with the sum is over the variables described just above. By summing over the lA)(ti),
the determinant with Fy, 111 becomes a determinant with F7; and the product
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of the det[p, (- )] is restricted to n = N;11 + 1,..., N;. Thus,
(4.27) = const x » (4.29) x det [Fy, 411 (z; " (0) — 1,0,0)], i

X H <d€t [FLl(l’]kVi (tz) - «Ti\fl (tz‘—l)a Qj, bz):| 1<k,I<N;
=1

< T det [palap™ @), 2 ()] oy e ) (4.33)

where we set N,,;1 = 0 (the contribution from n = 1 is 1). Finally, by using
Lemma 4.6 we can include the terms in (4.29) into the ¢,’s by modifying the last
row, i.e., by setting it equal to v¥. Thus,

(4.27) = const x det [FNlH_H(xéVl(O) —41,0,0)]

1<k, I<N;
) TT (det [Fial® () = 2 (i), 0 00)] oy e,
=1
N;
o TT det [onlep (), a7 (0))] e, ) (4.34)
n=N;1+1

The identification to the expressions in Theorem 4.1 uses the representations (2.3)
and (3.4). O

The first line represent the initial condition at t; = 0, the term with \If%i_l in
Theorem 4.1. These N; variables evolves until time ¢, and this is represented by the
first line (term 73, ;). After that, there is a reduction of the number of variables
from N; to Ny by the interlacing structure, which is followed by the time evolution
from t; to to. This is repeated m — 1 times. Finally it ends with an interlacing
structure. If N; = N,, then the first interlacing structure is trivial (not present),
while if for example ¢, = ¢;, then the time evolution is just the identity.

In what follows, the picture to keep in mind is that, starting from bottom to top in
Figure 3, it corresponds to having a sort of vicious walkers with increasing number
of walkers when the transition is made by the ¢’s, and with constant number of
walkers if the transition is the temporal one made by 7.

The determinantal measure in (4.23) is written with outer product over time mo-
ments but it can be rewritten by taking the outer product over the index n in the
variables z7’s. Let us introduce the following notations. For any level n there is a
number ¢(n) € {0,...,m + 1} of products of terms 7 which are the time evolution
of n particles between consecutive times in the set {t1,...,¢,,} (in other words ¢(n)

is #{i|N; = n}). Let us denote them by ¢ < ... < teny- Notice that tg = t?&il),
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to" =to, t1* =t;, and 3 = t(c](o) = t,,. Then, the measure in (4.23) takes the form

Ny
const x [ [ | detlén (@i (t6™"), 27 (t5m))1 < i<n (4.35)

c(n)
x [ det[ Ty en (2 (2), a7 (En)r<kasn | det[ U (2 (10" ) 1<k i<y -

a=1

In Theorem 4.2 we show that a measure on the x} () of the form (4.35) is determi-
nantal and we give the expression for the kernel. Then we particularize it in case of
the PushASEP with particle dependent jump rates. For this purpose, we introduce

a couple of notations. For any two time moments ¢!, 72, we define the convolution

over all the transitions between them by ¢! (tai ta3) (backwards in time, since forward
in the n’s), i.e.,

I 12) = Ty s e Gy T e oy Tra 2 (4.36)
where
Tn - 7;?( ),t"- (437)

2

If no such factor exists, then we set ¢ ai+a3) = (0. Above we used

7;37t2 * 7;27t1 = Zg,t17 (438)

which is an immediate corollary of (4.24). In a more general case considered in
Theorem 4.2 below, if (4.38) does not holds, then 7™ is just the convolution of the
transitions between ¢y, and ¢g by definition. Moreover, define the matrix M with
entries My, 1 < k,1 < Ny,

M= (dp*T" s x gy, + TN % \1/%;_1)( =1 (4.39)

and the vector N
Ul = glat ) gl (4.40)

Theorem 4.2. Assume that the matriz M is invertible. Then, the probability mea-
sure of the form (4.35) viewed as (Ny + ...+ Np,)-point process is determinantal,
and the correlation kernel can be computed as follows

K(tp oty my) = ¢(t“1’ta2 (1, 72) (4.41)
= ni,lq _ l 32 _
+ ZZ% () [M Vg ( % 50 D)) (21 ).
k=1 I=1

In the case when the matriz M is upper triangular, there is a simpler way to write
the kernel. Set

n

O () = Y (M i (¢r + 9% ™) (2l ) (4.42)

=1
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1$ the unique basis of

foralln=1,...,Ny and k=1,...,n. Then, {<I>n 3

the linear span of
{(615 60 ) (af, 2),..., (6 9" W) (a1 )} (4.43)

that is different from (4.43) by a triangular matriz (as in (4.42)), and that is
biorthogonal to {\Ifﬁz}C

Z@"t” nt” )Zéi,ja Z,]ZO,,n_]- (444)

TEZ

The correlation kernel can then be written as

n "2 nq i1 no. th2
K (51 1 652, w0) = =0 (@1, 20) + ) U (@)@ (20). (445)
k=1
Moreover, one has the identity
G 4 @) = @ (4.46)

fOT nq Z No and aq S a9 fO’f’ ny = ny.

Proof of Theorem 4.2. The proof is similar to the one of Lemma 3.4 in [4], which is
in its turn based on the formalism of [8|. The only place where the argument changes
substantially is the definition of the matrix L, see [4], formula (3.32). The variables

of interest are in the space 2 = XM U ... U XM with X" = %(()n) U %C(n
where X" = 7 is the space where the n variables at time ¢ live. Let us also denote

I'={1,...,N1}. Then, the matrix L written with the order given by the entries in
the set of all variables X = I U%) becomes

0 Ey O FE 0 FEs 0 En 1 0

0 0-11 O 0 0 0 0 0

0 0 0 —Wpa O 0 0 0 0

0 0 0 0o -1y 0 0 0 0

0 0 O 0 0 —Wpgs 0 --- 0 0
L= "9 00 0 0 0 -T3- 0 0 (4.47)

0 0 O 0 0 0 0 - =Wn-1,n) O

0 0 0 0 0 0 0 --- 0 —Tn,
g 0 0 o 0 0 0 -- 0 0
with the matrix blocks in L have the following entries:
[T, = UN_(2), zexijel, (4.48)
Gpr1(Tn1,y), i=n+1, yel’(":jl
By = S0 vy (449)
, zEI\{n—l—l}yE%C(nH,

[W[n,n+1)]m,y = ¢n+1(x7 y)7 YRS % y € %in:il (450)
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and 7;, is the matrix made of blocks

T,1 O 0
T, = 0o - 0 : (4.51)
0 0 Them)
where
[Tn,a]m,y = Zg,tg,l(xvy% YIS %Ezn)a Y S %Ezn—)l' (452)

The rest of the proof is along the same lines as that of Lemma 3.4 in [4].

Although the argument gives a proof in the case when all variables x7 (¢}') vary over
finite sets, a simple limiting argument immediately extends the statement to any
discrete sets, provided the series that defines M ; are absolutely convergent, which
is certainly true in our case. ]

A special case of Theorem 4.2 is Proposition 3.1 stated in Section 3, which we prove
below.

Proof of Proposition 3.1. This is a specialization of Theorem 4.2. The kernel
depends only on the actual times and particle numbers, therefore we might drop
the label a; of ¢77. Equivalently, we can use the notation (n;, t;) instead of tai, to

go back to the natural notations of the model. For PushASEP we have \If%i_l(x) =
Fny+1-11(x — 41,0,0) and

Ty;0:(w,y) = Fra(e =y, alty) — alts), b(t;) — b(t:)). (4.53)

First of all, we sum over the {x,"(0),1 < k < N,} variables, since we are not inter-
ested in the initial conditions (being fixed). While applied to the Fy;(x,a(t;),b(t;)),
the time evolution 7y, ;, changes it into Fy(z, a(t;), b(t;)),

D Ty (@, y) Fraly. alts), b(ts)) = Fra(e, alt;), b(t;))- (4.54)

yez.
This implies that Theorem 4.2 still holds but with ¢} =#; and
U (2) = Frypama(z — yaty), b(t)). (4.55)
We have, see (4.65), that
(Or * Finy+1-k) (2, a,0) = FI ny42—k(2, @, b). (4.56)
Using (4.54) and (4.56) repeatedly one then gets
‘I’Zj'f(l’) = Fyt1-1.v+1-n(7 — Y1, a(ty), b(ty)) (4.57)

which can be rewritten as (3.4).
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Next we show that the matrix M is upper triangular. Once again, (4.54) and (4.56)
are applied several times, leading to

My, = szFN1+1—l,N1+1—k(y -, a(t’&k)), b(t’&k)))- (4.58)
YEL
Set ay, = a(t’j(k)) and by, = b(t’j(k)). Then, for k <,
1 o (1 —wvg12)--- (1 —vn, 2)
My, = vy—,jg dzzy v tew/x+brz hs L 4.59
e yEZZ Rori Jr, (1= vp12) - (1 — vy 2) (4.59)

We divide the sum over y in two regions, {y > 0} and {y < 0}, and then we take
them inside the integral and use

Y (a2)! =) (az) + ) (az)’ = : Ljazl<1} — : Ljazi>1y- (4.60)

1—az 1—az
yeZ y=>0 y<0

For k > [ the new term in the denominator, 1 — vz, is cancelled so that this is not a
pole and we can deform the contours to be the same. Thus for k£ > [ the net result
is zero. This is not the case for k& <[, since in that case the new pole at 1/v; does
not have to vanish. Moreover, the diagonal terms are not zero, thus the matrix M
is invertible. In fact, My, = vzlﬂe”k“”bk/”k #0.

Since M is upper triangular, we need to determine the space Vy, where the orthog-
onalization has to be made. The k-th basis vector is
eak/z—i—bkz

1
(gbk*(;b(tﬁ(k)’“))(x’g_l,x) = Zvy —% dzzv=o! . (4.61)

o (1= vp12) - (1 = vn, 2)

We apply (4.60) and obtain

1 eak/z—i-bk z

= — dzzot
fel@) = 55 7{1/% ) (I —opaz) (1 —om2)

(4.62)

plus residue terms which are linear combinations of the (¢, * ¢! ’tl))(atz_l, x) with
n > k. Therefore the space Vy, is generated by the functions f; for k =1,..., Ny.
For k = Ny, the evaluation of the residue leads to fy,(z) = const x v,. For k =
N1 —1,if vy, 1 # v, then fy,_1(z) = const x vg, _;, while if vy, = vy, it gives
fai—1(z) = const x zvf, , since the pole is of order 2. In general, fi,(x) = const x v
if vy # v for all [ > k and fy(z) = const x Poly,,(x)vf if there are m values of
le{k+1,...,N;} such that vy = v;, where Poly, (z) is a polynomial of order m
in . This is due to the fact that the pole is of order m + 1. Therefore, the space
where the orthogonalization has to be done is the one indicated in the Proposition.

Finally, we need an expression for the transition between two times, which is given by
(4.36). Every time that we convolute a ¢y, with 7, we get an extra factor 1/(1—wvgz)
in the integral. Therefore, if ty2 < ty! and ny > nq, then

. 1 B —a(tad)) /= o (bt ) —b(te3))z

o (2,y) = 5= 74 dzz® v 1 eleltad
airraz xr,Y) = - A
27 Jp, (1 —vpy112) - (1 —vy,2)

, (4.63)
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while ¢(fe1103) (2 y) = 0 otherwise. O

4.1 Some lemmas

In this subsection we state and prove the Lemmas used in the proof of Theorem 4.2.

Lemma 4.3. Let us define the function
—X

vty 2w,
on(,y) = { 0 y<z (4.64)

Then the following recurrence relations holds

Fi1(2, a,0) = (on+1-1 % Fiy)(z, a, b) (4.65)
and
Fk_l’l(flf, a, b) = (¢N+2—k * Fkl)(flf, a, b) (466)
From (4.66) and vn(x,y) = ¢n(0,y — ) = @, (—y, —x) it follows
Fk—l,l(_xv a, b) = Z Fk,l(_yv a, b)SON+2—k(y7 I‘) (467)
YyEZL

Proof of Lemma 4.3. We have

1 1—oyz) - (1 — Uy
Fri(x,a,b) = —% dzzx_lebze“/Z( onz) (L= oo kz). (4.68)
27i Jr, (1 —wvnz) (1 —vnioy2)

Then applying > ., vn52Y = 2°/(1 — vnp12) (for [2] < 1), we get that in
the denominator we have an extra factor, which corresponds to increasing [ by one.
Similarly, applying ¢y 2, the extra factor in the denominator cancels the last one
in the numerator, thus this is equivalent to decreasing k by one. U

We define the following domains, which will occurs several times in the following. A
graphical representation is in Figure 4. Let us denote the set of interlacing variables
at time ¢; by

D(t;) = {a}(t;),1 <n < N;y 1 < k <njaiti(t) < 22 (t) < :L"Zﬂ(tz)} (4.69)
Then let

D(t;) = {«}(t;) € D(t)lk > 2}, D(t;) = {a}(t;) € D(t:)|n < Nipa — 1}, (4.70)

and

D*(t;) = D(t;) \ {}"(t:)}, D*(t;) = D*(t:) \ D(t:). (4.71)
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Ni—1
Ty

Ty

Figure 4: A graphical representation of the summation domains that occurs in the
next lemmas and theorem. The bold lines passes through the border of the domains.

Lemma 4.4. We have the identity

det [Fhl(:civﬁl_l(ti) — x{vﬁl_k(ti_l), a, b)] L<kI<N,

= const Z (ﬁ det [, (277" (t:), xln(ti»}lgk,lgn)

D(t;) 7n=2
x det [FNi_H_l,l(l’éVi (tl) — Ill (ti—l)u a, b)} 1<kI<N; (472)

where we set @, (x" 1 ) = 1.

Proof of Lemma 4.4. By changing the indices we get that Lh.s. of (4.72) is, up to
a sign, equal to

det [FNiH_Lk(:)siV"“_k(ti) — ai(tiz1), a,b)] <k <N (4.73)

Using repeatedly the identity (4.65) we have

ka(l’, a, b) = (@Nri—?—k ¥ X QN K Fn,l)($7 a, b) (474)
Therefore,
(473) = det [(QONZ--I—Q—IC koo k QN ¥ FNi+1_l’1)(l’]1Vi+l_k - Z'll (ti—l)> a, b):| 1<i,j<N;
(4.75)

We write explicitly the convolution by introducing explicit summation variables as
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follows

(PN, 12— k*"'*@N * Fiv,p1- ll)(xivﬁl g Ill( 1),a,b)

o N —k+n _N;+1—k+n
= E < H ONi+1—ktn (T » Tpt1 ))

N +1— k+n
1<n<k 1

X Fnpi-in (o — 24 (tie1), a,b), (4.76)

where we used the fact that ¢, (z,y) = pm(z + ¢,y + ¢) for any ¢ € Z. By multi-
linearity of the determinant, we can take the sums and the factors ¢’s out of the
determinant with the result

N; n—1

473) = Y (HH% Ik+1(t)))

Iz(ti), n=2 k=1
2<n<N;,
2<k<n

x det [FNi+1_l71(Jf]kVi — .Z’ll(ti_l), a, b)] 1<ij<N; ° (477)

The product of the ¢’s is non-zero only if 2}~ ' (t;) < a7}, (t;) is satisfied for all the
variables. Moreover, in the symmetric part of the remaining summation domain,
e.g., when z3(t;) > xQ(t-) and z3(t;) > x3(t;), the product of the go s is symmetric,
while the last determinant is antisymmetric in the variables {a:k Jk=1,...,N;}.
By iteration (a simple generalization of Lemma 3.3 in [4]) it follows that the result
is unchanged if we restrict the sum to D(¢;), i.e., to the interlacing configurations.

The product of the determinants of ¢’s in the right-hand side of (4.72) is either 1
or 0 depending on whether the variables interlace (belongs to D(t;)) or not. This
implies (4.72). O

Lemma 4.5. We have the identity

Z (]ﬁl det [(pn(xz—l(ti), xl”(tz))} 1§k,l§n>
D(t;) 7n=2

xdt[F- R CARS (7 _lt"”b}
e Nip1+1 l,l(fk ( +1) 5”1( ) a ) 1<k,I<Niq1

— det [Fl,l(xﬁiﬂ(tm) — 2V (), a, b)] . (4.78)

1<k, I<N;41

Proof of Lemma 4.5. By an analogue (essentially inverse) procedure as in the proof
of Lemma 4.4, we first get

N1+1 n—1
(4.78) = Z ( H HSOn r (), (6 )))
n=2 k=1
2<n<NZ+1 1,
1<k<n
N;
X det |:FNi+1+1—l,1(xk (tip) — i (t), a, b)] L<hi<Niy (4.79)
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Now we insert by linearity the factor HnN:lil n(x] 7 (), a2, (t)) to terms

FNZ.+1+1_171(1'2V"“(ti+1) — 2t (), a,b) as well as the sum over the corresponding vari-
ables. The sums are carried out by using (4.67), from which we get the r.h.s. of
(4.78). 0

Lemma 4.6. Let us define

O, y) = on(,y),  Gulz) " y) =0l (4.80)

Then
vit det [, (27", 2f)] 1<ki<n = €t [6n (2™ 27)] 1<k I<n (4.81)

Proof of Lemma 4.6. It is a consequence of the fact that both determinants are
zero if the variables l’i do not interlace and when they do, the matrices are upper-
triangular with diagonal equal to zero and with equal entries in the first n — 1 rows.
The only difference is for the last row, where the matrix in Lh.s. of (4.81) has entries

1 and r.h.s. of (4.81) has entries onl O

5 Asymptotic analysis

5.1 Flat initial conditions

To prove Theorem 2.2 we need the uniform convergence of the kernel in bounded
sets as well as bounds uniform in 7". These results are provided in the following
Propositions 5.1, 5.2, 5.3.

Let us define the rescaled and conjugate kernel by

L3 €2CLE/2) 922
K™ (ug, s15ug, 82) = K((n1, 1), 215 (n2, t2), 22) T h LR g0 (5.1)
where n; = n(u;), t; = t(u;), and

Proposition 5.1 (Uniform convergence in a bounded set). Fiz uq,us, then for any
fized £ > 0, the rescaled kernel KE¢ converges uniformly for (s1,s9) € [—0, (] as

lim K5 (uy, 813 U2, 82) = Sy K4, (), 'ug, Sy s1; S ug, St sa), (5.3)

T—o00

with K 4, the kernel of the Airy, process, see (2.24), and S,, Sy, are defined in (2.12).

Proof of Proposition 5.1. First we consider the term coming from the second integral
in (3.16), namely

(5.4)

_T1/3 % eRtl(l—z)-l—Ltl/(l—z) Sn1tn2+zo et2(2L+R/2) T2
2 Jr,

6Rt2Z+Lt2/Z (1 _ Z)n1+n2+m1+1 et1(2L+R/2)2{E1 :
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Define the functions
H(z) = Rz+L/z—(R/2—2L)In(z),
go(z) = (m(0) +0)H (=),
gi(z,u) = —u(r'(0) + ) H(2) +u(l —7'(0)) In(2(1 - 2)),
g2(z,u,8) = u?a”(0)[H(2) +In(z(1 — 2))] + sln(z), (5.5)
from which we then set
fo(z) = go(1 —2) — go(2),
fi(z) = (1= 2z,u) — g1(z,u2) — g1(1/2,u1) + g1(1/2,us),

fo(2) = 91— z,u1,81) — ga(2,us, 82) — g2(1/2, w1, 51) + ga(1/2, us, 52),
fs(z) = —In(1-2). (5.6)
With these notations we get
1/3
(54) = — / ]{ Az POHTEHEAT L+ 15(2), (5.7)
2mi Jr,

The function fy(z) has a double critical point at z = 1/2 and the contribution for
large T will be dominated by the one close z = 1/2. Thus we need to do series
expansions around the critical point. Computations leads to

foz) = gro(z —1/2)° + O((z — 1/2)%),

hz) = —(u—uz)ri(z — 1/2)* + O((2 — 1/2)%),
faz) = —(s1+s2)(2 = 1/2) + O(( — 1/2)*),
f3(z) = In(2)+O((z —1/2)) (5-8)

with
ko =8(8L+ R)(m(0)+0), k1 =(R+4L)(7'(0) +1)+4(1 —7'(9)). (5.9)

First we choose I'; to be a steep descent path? for fy(z). We consider T’y = vV ~.V7,
where v = {1/2 4+ e 17/3¢,0 < ¢ < 1/2}, 7 its image with respect to complex
conjugation, and 7. = {1 — 1/2e!? 71/6 < ¢ < 27 — 7/6}. We also have fy(2) =
Sr(2)R(m(0) +6) + Sp(2)L(7w(0) + 6), with

Su(z) =1—2z+ % In(z/(1-2)), Su(z) = ! - % —omn(z/(1—2)). (5.10)
On ~, simple computations leads to
dRe(Sk(z)) _ 8¢(1 +2¢67)
d¢ ((1+&2)+28)((1 - ¢)* +2¢2)°
dRe(S1(2)) _  64€3((1+2¢7)* — 12¢%) (5.11)
d¢ ((1+&2) +282)2((1 - §)* + 2¢2) '

*For an integral I = [0 dzetf(?) | we say that v is a steep descent path if (1) Re(f(z)) is maximum
at some zg € v: Re(f(z)) < Re(f(z0)) for z € v\ {20}, and (2) Re(f(z)) is monotone along -y
except at its maximum point zo and, if 7 is closed, at a point z; where the minimum of Re(f) is
reached.

28



which are both strictly less than 0 for £ € (0,1/2). Moreover, on 7.,

dRe(Sp(z) _ _4sin(6)(1 - cos())
do 5—4cos(¢)

dRe(Sc(z)) _ 32sin(¢)(1 — cos())(2 — cos(¢))

@ - G — 1cos(9)) 12

which are both strictly less than 0 for cos(¢) € (—1,1). Therefore the chosen I'; is
a steep descent path for fy(z).

Take any § > 0 and set I'} = {2 € Ty||z — 1/2| < &}. Then, if in (5.7) we integrate
only along I'? instead of integrating along I'y, the error made is just of order O(e=<T)
for some ¢ > 0 (more exactly, ¢ ~ 6% for § small). Thus we now consider the integral
on I'{ only. There, we can use the above series expansions to obtain

1/3
_QT/ / dze%’iOT(Z—l/Q)B'i‘(uz—UI)HIT2/3(2—1/2)2—2(51+52)(2—1/2)
27T1 79

1

XeO(T(z—1/2)4,T2/3(z—1/2)3,T1/3(z—1/2),(z—1/2))' (5.13)
The difference between (5.13) and the same integral without the error term can be
bounded by applying |e* — 1] < |z|el*l to O(---). Thus, this error term can be
bounded by

LeoroT(2—1/2)34(ug—u1)e1k1T?/3(2—1/2)2—2ca(s1+52)(2—1/2)

xO(T(z — 1/2)", T*3(z — 1/2)°, T3 (2 — 1/2), (= — 1/2))) (5.14)

for some cg, c1,co which can be taken as close to 1 as needed by setting 0 small
enough. Then, by the change of variable T'/3(z — 1/2) = w one gets that this error
term is of order O(T~'/3) (what is needed is just ¢y > 0).

It remains to consider the leading term, namely (5.13) without the error terms.
By extending the integral to infinity by continuing the two small straight segments
forming 'Y, the error made is of order O(e=T). Thus we obtained that (5.4) is, up
to an error O(e~", T='/3) uniform for s, s, € [, {]?, equal to

1/3
_22T/ / dze%HOT(2—1/2)3+(u2—ul)ﬁlT2/3(2—1/2)2—2(51+82)(2—1/2)’ (515)
i
N
where v, is a path going from ¢™/300 to e™/300. By the change of variable w =
(koT)Y3(2 — 1/2), we get
—1 2 lu;2—|—(u2—u1)11)2;@1/.142/3—2(51—i—sz)w/;@l/s
(515) = 2—7_” dwﬁ1/3€3 0 (516)
RES 0
= S,U_lAi(S}Zl(UQ — U1)2 + Sv_l(sl + 82))
1 1/2

(u2—u1)(s1+s2)
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with S, and S}, defined in (2.12). Here we used the Airy function representation

—1
—— [ dve”’ /B — Aj(a® — b) exp(2a®/3 — ab). (5.17)
2mi oo

To finish the proof, we need to consider the term coming from the first integral in
(3.16), namely

1/3 ng—ni to(2L+R/2)0x
TY d 1 ( w ) o(Rw+L/w)(t1—t2) € i, i (5.18)

- w — -
omi Jp,  wrrmeetl \1—w et (2L+R/2) 9z

This can be rewritten as

~T'? [ d
(5.18) = Sy 7{ EweTQ/S(po(w)—p0(1/2))+T1/3(pl(w)—p1(1/2)) (5_19)
1)

with
po(w) = (ug —up)('(0) + 1) H(w) — (uz — u)(1 — 7'(0)) In(w(l — w)),

7r~2(9) [H(w) + In(w(l — w))] = (s2 — s1) In(w),  (5.20)

pi(w) = —(uj —uj)

where H(w) is the function defined in (5.5). Remark that we need to do the analysis
only for uys > w;. The function py has critical point at w = 1/2. The series
expansions of py and p; around w = 1/2 are

po(w) = ki(ug — ur)(w—1/2)* + O((w — 1/2)%),
pi(w) = 2(s; —s9)(w—1/2) + O((w — 1/2)?). (5.21)

We choose as path Ty = {1¢'®, ¢ € (—m, mr]}. This is a steep descent path for py. In
fact, for w € I,

Re(H(w)) = (R/2+2L)cos(¢)+ (R/2—2L)In(2), (5.22)
Re(—In(w(l —w))) = In(2) —In|l —w|=2In(2) — L In(5 — 4 cos(¢)),

which are decreasing when cos(¢) decreases. Thus, we can integrate only on ') =
{w € To||lw—1/2| < 8} and, for a small §, the error term is just of order O(e=T*"*)
with ¢ > 0 (c ~ 6% as § < 1). The integral over ') is then given by

—9oT1/3
27

/ dweﬁl(ug—ul)(w—1/2)2T2/3+2(31—52)(w—1/2)T1/3
rg

XeO((w—1/2)3T2/3,(w—1/2)2T1/3,(w—1/2)). (5_23)
As above, we use |e® — 1] < |z]el”l, to control the difference between (5.23) and

the same expression without the error terms. By taking 6 < 1 and the change
of variable (w — 1/2)T/? = W, we get that this difference is of order O(T~1/3)
uniformly for sq, so in a bounded set. Once we have taken away the error terms in
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(5.23), we extend the integral to 1/2 + ico. By this we make only an error of order
O(e~<T**). The integration path can be deformed to 1/2 + iR without passing by
any poles, therefore by setting w = 1/2 +iyT /3 we get

2
_l / dye_nl(u2—ul)y2+2(sl—82) - _ 1 eXp <_ (82 - 81) )
T JRr k1 (us — uy) K1 (ug — uy)

-1 _ 2¢q-1
= — 5 exp (—(825—1)5”_1> . (5.24)
\/47T(u2 —uy)S; ! 4(uz —w)S,

Since all the error terms in the series expansions are uniform for (sy, s9) € [, (]?,
the result of the Proposition is proven. O

Proposition 5.2 (Bound for the diffusion term of the kernel).
For any s1,s2 € R and uy — uy > 0 fized, the bound

et2(2L+R/2) 92 T1/37{ d 1 ( w )nz_m e(Bw+L/w)(t1—t2)
r

w
6t1(2L+R/2) 9Qx1 27T1 wxl—xz-i-l 1 — w

< const e~ 172! (5.25)
holds for T large enough and const independent of T'.

Proof of Proposition 5.2. From the analysis in Proposition 5.1, we just need a
bound for |sy — s1| > ¢, £ > 0 fixed. We start with (5.19) but to obtain a decaying
bound for large |sy — s1| we consider another path I'y.

Consider an ¢ with 0 < ¢ < 1 and set Ty = {w = pe'?, ¢ € [-7,7)}, with

N V2
%+M’ if [s9 — 51| < T3,

(u2—u1)k1
p=19 3+ ey A s2—s1 2 eT'/?, (5.26)
% - (UQ—Zl)Rl’ if s5—5; < —eT3,

We have %Re(w — 1ln(w)) = .—psin(qb), d%Re(l/w + 2In(w)) = —%sin(qb), and
d%Re(—ln(w(l —w))) = —%. Thus Ty is a steep descent path for py(z)
but also for the term in p; proportional to sy — s1. Let, for a small § > 0 fixed,

) ={w = pe'®, ¢ € (—6,6)}. Then

(5'19) _ 6T2/3(po(P)—po(1/2))+T1/3(pl(P)—p1(1/2)) (5_27)
1/3
« (o / W 7273 (o a0) o ()T (1 (0) 1 (0)
27T1 Fg w

for some ¢ > 0 (for small 6, ¢ ~ 6%). On I') the s;-dependent term in Re(p;y (w)—p1(p))
is equal to zero and the rest is of order O(¢?). Therefore the last integral can be
bounded by

1/3 6
Y %e—%T”S(Uz—ul)[(ﬂ’(9)+1)(Rp+L/p)+(1—7r’(9))p/(1—p)2]¢2+O(T2/3¢47T1/3¢2). (5.28)
2r .5 p
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For § small enough, and 7' large enough, the terms O(T?3¢*) and O(T'/3¢?) are
both controlled by the first term in the exponential. Then, by the change of variable
T3¢ = 1) one sees that r.h.s. of (5.28) is bounded by a constant, uniformly in 7.

What remains is therefore to bound the first term in the r.h.s. of (5.27). By the
choice in (5.26) of p, |p —1/2| < e/((ug — u1)k1) < 1 for € small enough which can
be still chosen. Series expansion for p close to 1/2 leads to

po(p) = po(1/2) = —2(ss = s1)(p = 1/2)T*(1+ O(p - 1/2))
+ rmiug —ur)(p — 1/2)°T*3(1 4+ O(p — 1/2)).  (5.29)

By (5.26) we obtain the bounds

po(p) —po(1/2) = —%(1 + 0(¢)), if [sy — 51| < T3, (5.30)
So — S51)€ 1/3 .
po(p) —po(1/2) = —ﬁ(uog)), if |5y — 51| > T3,

Combining the above result we have
_ (sp=sper?/3

(sg—s )2
|(525)| S O(€_MT2/3)—|—O(1)] |:e_(u22—u11)m1(1+o(5))_‘_6 (ug—uq)ry (14+0(¢)) . (531)

Thus by taking an & small enough and then T large enough the bound (5.31) implies
the statement to be proven, since for any a > 0, there exists a C,, < oo such that
emels2=s1)" < O e~lsamsil, O

Proposition 5.3 (Bound on the main term of the kernel).
For any (s1, s2) € [—{,00)?, the bound

_T1/3 6Rt1(1—z)—|—Lt1/(1—z) pnitnetas et2(2L+R/2) T2
' 2mi ﬁl : eRtoz+Lts /2 (1 — z)mtnatoitl gh CL+R/2) 921
< const e~ (51752) (5.32)

holds for T large enough, where const is a constant independent of T'.

Proof of Proposition 5.3. For (sy,s9) € [—/, £]?, this is a consequence of the estimates
in the proof of Proposition 5.1. Therefore we can consider just (s, s3) € [—£,00)%\
[—¢,0]%. Let us introduce the notations §; = (s; + 2¢)T~2/3, which then belongs to
[¢T~2/3,00). Then, the integral to be bounded is

_T1/3

]{ dreT T2/ RV fo(2) 4 £ 2) (5.33)
2 Jr,

where fi(z) and f3(z) are given in (5.6), and fy(2) and fo(2) are just slight modifi-
cations of the functions in (5.6), namely

fo(z) = (@(O)+0)(H(1—2)—H(2))+ 5 In(2(1 —2)) — 52 1In(22),
fQ(Z) = g2(1 — Z,Uq, —26) — QQ(Z, Ug, —26) — 92(1/2,U1, —26) + 92(1/2,U2, —26)
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We put 3; and 3, in fy(2), because they are not restricted to be of order T-2/3 (as
it was the case in Proposition 5.1).

First we need to find a steep descent path for fy(z). We choose it as I'; = {1 —
pe'. ¢ € [—m,m)} with 0 < p < 1/2, choosen as follows,

L (51 + 32) /ko)Y?, |51 + 39| <¢
_ 2 1 2 0 ) 1 2] > ¢, 4
p { %_ (6/&0)1/2, 151 + 5| > e, (5.34)

for some small € > 0 to be fixed later.

To see that I'y is a steep descent path, we consider fy(z) term by term. The term
proportional to R(mw(0) + 0) satisfies

p3 —8pcos(o) + 4p")sin(d) _ (5 o)

iRe(l — 22+ 1 ln(z/(l —2))) =~ 1 —2pcos(¢) + p? N

do

for all 0 < p < 1/2, with equality only at ¢ = 0,4+x. The term proportional to
L(m(0) + 0) satisfies

(1 =2pcos(¢) +2p°)* — p)sin(e) _
(1 —2pcos(9) + p?)%p -

(5.36)

for all 0 < p < 1/2, with equality only at ¢ = 0,+x. Finally, Re(In(1 — 2)) is

constant on I'; and —Re(In(22)) = —In(2|z]) is strictly decreasing while moving on
Iy with |¢| increasing.

For a small § > 0, I'Y = {1 — pel®, ¢ € (—9,0)}. We also define

iRe( 1/(1—2)—1/2—2In(z/(1—2))) =

Q(p) = Re(T(o(1=p)= fo(1/2)+T/3 (f1(1=p)= 1 (1/2)+T/3(f3(1—p)f2(1/2))) (5.37)

Since I'; is a steep descent path of fo(z), the integral over I'; \ T' is bounded by

Q(p)O(e™ ) (5.38)

for some ¢ > 0 independent of T. The contribution of the integral over I'{ is bounded
by

_T1/3
2mi

Q(/))' /F(; dzel(Fo(2)=fo(l=p)+T/ (f1(2)= fr(1=p))+T"/3(f2(2) = f2(1=p))+f3(2) (5.39)

The series expansion around ¢ = 0 is

Re(foll — pe®) — foll - p)) = —1ué*(1 + O(6)) (5.40)
with
s GO +0(1-20) (RAB=20) L1 p+27)
= g (M i) e
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and
Re(f1(1 — pe'®) — fi(1 = p)) = 12¢*(1 + O(9)), (5.42)

with
Yo = (ug —ur)k1 + O(p — 1/2). (5.43)

Finally, Re(fa(1 — pe?) — fo(1 — p)) = O(¢?). Thus, by the change of variable
2z =1— pel?, the above estimates, and by setting v = v, + 7T /3, we get

T1/3p J 2 o o(Tr-1/3
(5:89) = Qo) s / dpe— 1 TA+O@)A+OT /) (5.44)
m™L=p)J-s

By choosing 4 small enough (independent of T') and then T large enough, the factors
with the error terms can be replaced by 1/2, thus

(5.39) < Qp) P / ST < Qo) (5.)
- 2r(1—p) J s - 2my T3

Remark that, the worse case is when + becomes small, and this happens when
p — 1/2, ie., it is the case of small values of 3; + 3. But even in this case,
T3 ~ (51 4 59+ 40)Y2 > (20)Y/2, which dominates 7, ~ O(1) for £ large. Thus
by setting ¢ large enough, (5.39) < Q(p)O(1). This estimate, combined with (5.38),
implies that the Proposition will be proven by showing that Q(p) < const e™(*1+52),
Since 1 — p is close to 1/2, we can apply the series expansion of f; around z = 1/2.
The expansion of f; is in (5.8), while the one of fy is the same as in (5.8) with
s1 + so = —4/. Finally,

fo(2) = 2ko(2 = 1/2)°(14+O(2 = 1/2)*) = (51 + 52) (2 — 1/2) (1 + O(2 — 1/2)). (5.46)
First consider §; + 5 < €. Then, with p chosen as in (5.34), we get

Qlp) = e—%T(§1+52)3/2“51/2T(1+O(\@))e(uz—ul)fil(§1+§2)T2/3“51(1+O(\@))

~ ~ —1/2
e~ ME1+52)Rg AT (14+0(V2))

—%(sl+sz+45)3/2nal/2(1+(9(\/§)) Uz —u1)K1 (81+82+4£)Hal(1+0(\/g))

e el
o~ Ms1sa 40y 2T (140(vE)). (5.47)

Recall that s; + so +4¢ > 2¢ > 1 for £ > 1. Therefore by choosing ¢ large enough
(depending only on the coefficients kg, k1, u1, us which are however fixed), all the
terms are controlled by the first one, i.e.,

3/2,.—1/2

< e glorten)ing (5.48)

Q(p) < e—%(s1+82+43)

Since this decays more rapidly that exp(—(s; + s2)), the Proposition holds for §; +
52 S £.
The last case is §; + §3 > ¢. In this case, with p chosen as in (5.34), we obtain

—1/2

Qlp) = o (HOWRVEE/3—(152)) (ua—u)mang T2 (1+0(2)

w p—8trg 2T 3 (140(v/E)). (5.49)
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But now, /3 — (51 + 53) < —2(5; + 8), thus the first term in the exponential is,
up to a positive constant,—/eT/3(s; + sy + 4¢), which dominates the second term
~ eT?3 < s + sy + 40, and it also dominates the third term. Therefore, for any
choice of € and ¢ made before, we can take T large enough such that

Qp) < eV Plarte), (5.50)
which ends the proof of the Proposition. O

Proof of Theorem 2.2. The proof of Theorem 2.2 is the complete analogue of
Theorem 2.5 in [3|. The results in Propositions 5.1,5.3,5.4, and 5.5 in |3| are replaced
by the ones in Proposition 5.1, 5.2, 5.3. The strategy is to write the Fredholm series
of the expression for finite 7" and, by using the bounds in Propositions 5.2 and 5.3,
see that it is bounded by a T-independent and integrable function. Once this is
proven, one can exchange the sums/integrals and the 7' — oo limit by the theorem
of dominated convergence. For details, see Theorem 2.5 in [3]. U

5.2 Sketch of the result (2.22)

With the rescaling (2.8) and (2.18), the rescaled kernel writes

K™ (uy, 51;Ug, S2) = K ((n1, 1), 215 (ng, ta), 22) T3, (5.51)
The main part of the kernel (the second term in (3.11)) writes
T1/3 eTo(w)+T2/3 fi (wyur)+T3 f2(wiur,s1) gy — 1
éo dw f; dz- T AT i () H T8 o (2 (2 — 1w w — 2 (5-52)
With
fo(w) = +6) (Rw+ L) + (7(6) — ) In (:=2) — o9 In(w
fi(w; uz) = [(W (0) + 1) (Rw+ %) + (7 '( )= 1ln (—) —0'1111( )] i,
fo(wiug, s;) = [377(0) (Rw + £ +In (22)) — 0] wf + s; In(w). (5.53)

The parameter p is actually the position of the double critical point of fo(w). Series
expansions gives

folw) = folu) = 2w — p)® + O((w — p)*),

3
flwsn) = i) — w0 — 0 + 0w — ). (5.54)
Pwss) = Bl = (8= 0 0+ 0((w - ).

The terms fi(u;u;) and fo(p; ug, $;) cancel out by an appropriate conjugation of the
kernel (5.52). We denote by ~ an equality up to conjugation. Thus, asymptotically,
(5.52) goes to

T1/3 Qs e—ro(w—PT/3—urms () T/5HTV3(w—p)(s1 /a3 /o)
27'('1 fi—‘o fi—‘l w—z e—no(z 1)3T/3—ugk1 (z—p)2T2/34TY/3(2—p)(s2/u— n1u2/no)

(5.55)
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With the change of variable (w — p)(koT)Y? = W, (z — u)(koT)Y? = Z, we then
obtain

K,al/?’ 1 €%Z3+u22251/53/3—Z(Sz/u—ﬁ%u%/ﬁo)/ﬁé/g
(5.55) = /dW/dZW v . (5.56)

u(27r1)2 6%W3+u1szil/53/3—W(Sl/#—ﬁ%u%/ﬁo)/ﬁé/g

/3 and S, = fil_llig/g the vertical and horizontal scaling.

Let us denote by S, = /m(l)
Then

(5.56) = S K 4, (S, uy, Sy sy Sy tug, Sy tsy) (5.57)

where K 4, is the extended Airy kernel associated to the Airy, process. An asymp-
totic analysis of large deviations similar to Propositons 5.2 and 5.3 above would
then lead to the result of (2.22).
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