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Abstra
tWe 
onsider a new intera
ting parti
le system on the one-dimensional lat-ti
e that interpolates between TASEP and Toom's model: A parti
le 
annotjump to the right if the neighboring site is o

upied, and when jumping to theleft it simply pushes all the neighbors that blo
k its way.We prove that for �at and step initial 
onditions, the large time �u
tuationsof the height fun
tion of the asso
iated growth model along any spa
e-like pathare des
ribed by the Airy1 and Airy2 pro
esses. This in
ludes �u
tuationsof the height pro�le for a �xed time and �u
tuations of a tagged parti
le'straje
tory as spe
ial 
ases.1 Introdu
tionWe 
onsider a model of intera
ting parti
le systems, whi
h is a generalization ofthe TASEP (totally asymmetri
 simple ex
lusion pro
ess) and the Toom model.Besides the extension of some universality results to a new model, the main featureof this paper is the extension of the range of analysis to any �spa
e-like� paths inspa
e-time, whose extreme 
ases are �xed time and �xed parti
le (tagged parti
leproblem), see below for details.Consider the system of N parti
les x1 > · · · > xN in Z that undergoes the following
ontinuous time Markovian evolution: Ea
h parti
le has two exponential 
lo
ks �one is responsible for its jumps to the left while the other one is responsible for itsjumps to the right. All 2N 
lo
ks are independent, and the rates of all left 
lo
ksare equal to L while the rates of all right 
lo
ks are equal to R. When the ith left
lo
k rings, the ith parti
le jumps to the nearest va
ant site on its left. When the
ith right 
lo
k rings, the ith parti
le jumps to the right by one provided that the site
xi + 1 is empty; otherwise it stays put. The main goal of the paper is to study theasymptoti
 properties of this system when the number of parti
les and the evolutiontime be
ome large.If L = 0 then the dynami
s is known under the name of Totally Asymmetri
 SimpleEx
lusion Pro
ess (TASEP), and if R = 0 the dynami
s is a spe
ial 
ase of Toom'smodel studied in [9℄ (see referen
es therein too). Both systems belong to the Kardar-Parisi-Zhang (KPZ) universality 
lass of growth models in 1 + 1 dimensions.Parti
le's jump to the nearest va
ant spot on its left 
an be also viewed as theparti
le pushing all its left neighbors by one if they prevent it from jumping tothe left. This point of view is often bene�
ial be
ause it remains meaningful for1



in�nite systems, and also the order of parti
les is not being 
hanged. Be
ause ofthis pushing e�e
t we 
all our system the Pushing Asymmetri
 Simple Ex
lusionPro
ess or PushASEP.Observe that for a N-parti
le PushASEP with parti
les x1(t) > · · · > xN(t), theevolution of (x1, . . . , xM) for anyM ≤ N is theM-parti
le PushASEP not in�uen
edby the presen
e of the remaining N −M parti
les. This "triangularity property"seems to be a key feature of our model that allows our analysis to go through.Our results split in two groups � algebrai
 and analyti
.Algebrai
ally, we derive a determinantal formula for the distribution of the N-parti
le PushASEP with an arbitrary �xed initial 
ondition, and we also representthis distribution as a gap probability for a (possibly, signed) determinantal pointpro
ess (see [12, 16, 17, 21, 22℄ for information on determinantal pro
esses). The re-sult is obtained in greater generality with jump rates L and R being both time andparti
le-dependent (Proposition 3.1). The �rst part (the determinantal formula, seeProposition 2.1) is a generalization of similar results due to [2, 19, 20℄ obtained bythe Bethe Ansatz te
hniques. Also, a 
losely related result have been obtained veryre
ently in [10℄ using a version of the Robinson-S
hensted-Knuth 
orresponden
e.Analyti
ally, we use the above-mentioned determinantal pro
ess to study the largetime behavior of the in�nite-parti
le PushASEP with two initial 
onditions:1. Flat initial 
ondition with parti
les o

upying all even integers.2. Step initial 
ondition with parti
les o

upying all negative integers.It is not obvious that the in�nite-parti
le PushASEP started from these initial 
on�g-urations is 
orre
tly de�ned, and some work needs to be done to prove the existen
eof the Markovian dynami
s. However, we take a simpler path here and 
onsider ourin�nite-parti
le system as a limit of growing �nite-parti
le systems. It turns out thatfor the above initial 
onditions, the distribution of any �nite number of parti
les atany �nitely many time moments stabilizes as the total number of parti
les in thesystem be
omes large enough. It is this limiting distribution that we analyze.We are able to 
ontrol the asymptoti
 behavior of the joint distribution of
xn1(t1), . . . , xnk

(tk) with xn1(0) ≥ · · · ≥ xnk
(0) and t1 ≥ · · · ≥ tk. It is the se
-ond main novel feature of the present paper (the �rst one being the model itself)that we 
an handle joint distributions of di�erent parti
les at di�erent time mo-ments. As spe
ial 
ases we �nd distributions of several parti
les at a given timemoment and distribution of one parti
le at several time moments (a.k.a. the taggedparti
le).In the growth model formulation of PushASEP (that we do not give here; it 
an beeasily re
onstru
ted from the growth models for TASEP and Toom's model des
ribedin [9℄ and referen
es therein), this 
orresponds to joint distributions of values of theheight fun
tion at a �nite number of spa
e-time points that lie on a spa
e-like path;for that reason we use the term `spa
e-like path' below. The two extreme spa
e-likepaths were des
ribed above � they 
orrespond to t1 = · · · = tk and n1 = · · · = nk.2



The algebrai
 te
hniques of handling spa
e-like paths are used in the subsequentpaper [5℄ to analyze two di�erent models, namely the polynu
lear growth (PNG)model on a �at substrate and TASEP in dis
rete time with parallel update.Our main result states that large time �u
tuations of the parti
le positions alongany spa
e-like path have exponents 1/3 and 2/3, and that the limiting pro
ess isthe Airy1 pro
ess for the �at initial 
ondition and the Airy2 pro
ess for the stepinitial 
ondition (see the review [11℄ and Se
tion 2.4 below for the de�nition of thesepro
esses).In the PushASEP model, we have the �u
tuation exponent 1/3 even in the 
ase ofzero drift. This is due to the asymmetry in the dynami
al rules and it is 
onsistentwith the KPZ hypothesis. In fa
t, from KPZ we expe
t to have the 1/3 exponentwhen j′′(ρ) 6= 0, where j(ρ) is the 
urrent of parti
les as a fun
tion of their density
ρ, and j′′(ρ) = −2(R+ L/(1 − ρ)3) for PushASEP.We �nd it remarkable that up to s
aling fa
tors, the �u
tuations are independentof the spa
e-like path we 
hoose (this phenomenon was also observed in [7℄ forthe polynu
lear growth model (PNG) with step initial 
ondition). It is natural to
onje
ture that this type of universality holds at least as broadly as KPZ-universalitydoes.Interestingly enough, so far it is unknown how to study the joint distribution of
xn1(t1) and xn2(t2) with xn1(0) > xn2(0) and t1 < t2 (two points on a time-likepath); this question remains a major open problem of the subje
t.Previous results. For the TASEP and PNG models, large time �u
tuation resultshave already been obtained in the following 
ases: For the step initial 
ondition theAiry2 pro
ess has been shown to o

ur in the s
aling limit for �xed time [14,15,18℄,and more re
ently for tagged parti
le [13℄. For TASEP, the Airy1 pro
ess o

ursfor �at initial 
onditions in 
ontinuous time [4℄ and in dis
rete time with sequentialupdate [3℄ with generalization to the initial 
ondition of one parti
le every d ≥ 2sites1. Also, a transition between the Airy2 and Airy1 pro
esses was obtained in [6℄.These are �xed time results; the only previous result 
on
erning general spa
e-likepaths is to be found in [7℄ in the 
ontext of the PNG model, where the Airy2 pro
esswas obtained as a limit for a dire
ted per
olation model.Outline. The paper is organized as follows. In Se
tion 2 we des
ribe the modeland the results. In Proposition 2.1 the transition probability of the model is given.Then, we de�ne what we mean by spa
e-like paths, and formulate the s
aling limitresults; the de�nitions of the Airy1 and Airy2 pro
esses are re
alled in Se
tion 2.4.In Se
tion 3 we state the general kernel for PushASEP (Proposition 3.1) and thenparti
ularize it to step and �at initial 
onditions (Proposition 3.4 and 3.6). InSe
tion 4 we �rst prove Proposition 2.1 and then obtain the general kernel for adeterminantal measure of a 
ertain form (Theorem 4.2), whi
h in
ludes the one of1Similar results for dis
rete time TASEP with parallel update and PNG model will follow frommore general results of [5℄. 3



PushASEP. Finally, the asymptoti
 analysis is the 
ontent of Se
tion 5.A
knowledgmentsA.Borodin was partially supported by the NSF grants DMS-0402047 and DMS-0707163.2 The PushASEP model and limit results2.1 The PushASEPThe model we 
onsider is an extension of the well known totally asymmetri
 simpleex
lusion pro
ess (TASEP) on Z. The allowed 
on�guration are like in the TASEP,i.e., 
on�gurations 
onsist of parti
les on Z, with the 
onstraint that at ea
h site 
anbe o

upied by at most one parti
le (ex
lusion 
onstraint). We 
onsider a dynami
sin 
ontinuous time, where parti
les are allowed to jump to the right and to the leftas follows. A parti
le jumps to its right-neighbor site with some rate, provided thesite is empty (TASEP dynami
s). To the left, a parti
le jump to its left-neighborsite with some rate and, if the site is already o

upied by another parti
le, this ispushed to its left-neighbor and so on (push dynami
s).To de�ne pre
isely the jump rates, we need to introdu
e a few notations. Thedynami
s preserves the parti
le position, thus we 
an asso
iate to ea
h parti
le alabel. Let xk(t) be the position of parti
le k at time t. We 
hoose the right-leftlabelling, i.e., xk(t) > xk+1(t) for all k ∈ I ⊆ Z, t ≥ 0. With this labelling, we
onsider vk > 0, k ∈ I, and some smooth positive in
reasing fun
tions a(t), b(t) with
a(0) = b(0) = 0. Then, the right jump rate of parti
le k is ȧ(t)vk, while its left jumprate is ḃ(t)/vk.In Proposition 2.1 we derive the expression of the transition probability from time
t = 0 to time t for N parti
les, proven in Se
tion 4.Proposition 2.1. Consider N parti
les with initial 
onditions xi(0) = yi. Denoteits transition probability until time t by

G(xN , . . . , x1; t) = P(xi(t) = xi, 1 ≤ i ≤ N |xi(0) = yi, 1 ≤ i ≤ N). (2.1)Then
G(xN , . . . , x1; t) (2.2)
=

( N∏

n=1

vxn−yn
n e−a(t)/vne−b(t)vn

)
det [Fk,l(xN+1−l − yN+1−k, a(t), b(t))]1≤k,l≤N ,where

Fk,l(x, a, b) =
1

2πi

∮

Γ0

dzzx−1

∏k−1
i=1 (1 − vN+1−iz)∏l−1
j=1(1 − vN+1−jz)

ebzea/z, (2.3)4
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Figure 1: An example of a spa
e-like path. Its slope is, in absolute value, at most 1.where Γ0 is any anti
lo
kwise oriented simple loop with in
luding only the pole at
z = 0.2.2 Spa
e-like pathsFrom Proposition 2.1 one 
an 
ompute the joint distribution of parti
le positionsat a given time t, in a similar way of what we made in [4℄. However, one of themain motivation for this work is to enlarge the spe
trum of the situations whi
h 
anbe analyzed to what we 
all spa
e-like paths. In this 
ontext, spa
e-like paths aresequen
es of parti
le numbers and times in the ensemble

S = {(nk, tk), k ≥ 1|(nk, tk) ≺ (nk+1, tk+1)}, (2.4)where, by de�nition,
(ni, ti) ≺ (nj, tj) if nj ≥ ni, tj ≤ ti, and the two 
ouples are not identi
al. (2.5)The two extreme 
ases are (1) �xed time, tk = t for all k, and (2) �xed parti
lenumber, nk = n for all k. This last situation is known as tagged parti
le problem.Sin
e the analysis is of the same degree of di�
ulty for any spa
e-like path, we will
onsider the general situation.Consider any smooth fun
tion π, w0 = π(w1), in the forward light 
one of the originthat satis�es

|π′| ≤ 1, |w1| ≤ π(w1). (2.6)These are spa
e-like paths in R×R+, see Figure 1. The �rst 
ondition (the spa
e-like property) is related to the appli
ability of our result to sequen
es of parti
lesin S. The se
ond 
ondition just re�e
t the 
hoi
e of having t ≥ 0 and n ≥ 0. Timeand parti
le number are 
onne
ted with the variables w1 and w0 by a rotation of 45degrees. To avoid unne
essary √
2's, we set

{
w1 = t−n

2

w0 = t+n
2

}
⇐⇒

{
t = w0 + w1

n = w0 − w1

} (2.7)5



For a large parameter T we 
onsider the s
aling
{
w1 = θT − uT 2/3,

w0 = π(θ)T − π′(θ)uT 2/3 + 1
2
π′′(θ)u2T 1/3.Then,

t(u) = (π(θ) + θ)T − (π′(θ) + 1)uT 2/3 + 1
2
π′′(θ)u2T 1/3,

n(u) =
[
(π(θ) − θ)T + (1 − π′(θ))uT 2/3 + 1

2
π′′(θ)u2T 1/3

]
. (2.8)Setting π(θ) = 1−θ we get the �xed time 
ase with t = T , while setting π(θ) = α+θwe get the tagged parti
le situation with parti
le number n = αT .2.3 S
aling limitsUniversality o

urs in the large T limit. In Proposition 3.1 we will get an expressionfor the joint distribution in the general setting. For the asymptoti
 analysis we
onsider the 
ase where all parti
les have the same jump rates, i.e., we set

vk = 1 for all k ∈ I. (2.9)Moreover, we 
onsider time-homogeneous 
ase, i.e., we set a(t) = Rt and b(t) = Ltfor some R,L ≥ 0 (for time non-homogeneous 
ase, one would just repla
e R and Lby some time-dependent fun
tions). Two important initial 
onditions are(a) �at initial 
ondition: parti
les start from 2Z,(b) step initial 
ondition: parti
les start from Z− = {. . . ,−3,−2,−1}.In the �rst 
ase, the ma
ros
opi
 limit shape is �at, while in the se
ond 
ase it is
urved, see [11℄ for a review on universality in the TASEP. For TASEP with stepinitial 
onditions and parti
le-dependent rates vk, the study of tagged parti
le hasbeen 
arried out in [13℄.Flat initial 
onditionsFor the �at initial 
ondition, it is not very di�
ult to get the proper s
aling limitas T → ∞. The initial position of parti
le n(u) is −2n(u) and during time t(u) itwill have travelled around v t(u), where v is the mean speed of parti
les, given by
v = −2L+R/2. (2.10)The reason is that the density of parti
le is 1/2 and the parti
les jumps to the rightwith rate R but the site on its right has a 1/2 
han
e to be empty. Moreover,parti
les move (and push) to the left with rate L but typi
ally every se
ond move6



to the left is due to a push from another parti
le. Therefore, the res
aled pro
ess isgiven by
u 7→ XT (u) =

xn(u)(t(u)) − (−2n(u) + v t(u))

−T 1/3
, (2.11)where n(u) and t(u) are de�ned in (2.8). The res
aled pro
ess XT has a limit forlarge T given in terms of the Airy1 pro
ess, A1 (see [4, 6, 11℄ and Se
tion 2.4 fordetails on A1).Theorem 2.2 (Convergen
e to the Airy1 pro
ess). Let us set the verti
al and hor-izontal res
aling

Sv = ((8L+R)(π(θ) + θ))1/3, Sh =
4((8L+R)(π(θ) + θ))2/3

(R+ 4L)(π′(θ) + 1) + 4(1 − π′(θ))
. (2.12)Then

lim
T→∞

XT (u) = SvA1(u/Sh) (2.13)in the sense of �nite dimensional distributions.The proof of this theorem is in Se
tion 5. The spe
ialization for �xed time t = T is
Sv = (8L+R)1/3, Sh =

(8L+R)2/3

2
, (2.14)and the one for tagged parti
le n = αT at times t(u) = T − 2uT 2/3, obtained bysetting θ = (1 − α)/2, is

Sv = (8L+R)1/3, Sh =
2(8L+R)2/3

4L+R
. (2.15)Step initial 
onditionThe proper res
aled pro
ess for step initial 
ondition is quite intri
ate. Denote by βtthe typi
al position of parti
le with number around αt at time t. In the situationspreviously studied in the literature, there was a ni
e fun
tion β = β(α). In thepresent situation this is not anymore true, but we 
an still des
ribe the limit shape.More pre
isely, α and β are parametrized by a µ ∈ (0, 1) via

α(µ) = (1 − µ)2(R+ L/µ2), β(µ) = −((1 − 2µ)R+ L/µ2). (2.16)In parti
ular, we have
α(µ) =

π(θ) − θ

π(θ) + θ
. (2.17)For any given θ, there exists only one µ su
h that (2.17) holds, be
ause α is stri
tlymonotone in µ. Some 
omputations are needed, but �nally we get the res
aling ofthe position x as a fun
tion of u, namely,

x(u) = σ0T − σ1uT
2/3 + σ2u

2T 1/3, (2.18)7
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σ0 = (π(θ) + θ)β(µ)

σ1 = 1 + (π′(θ) + 1)
(
µR− L

µ

)
+ (1 − π′(θ))

1

1 − µ
(2.19)

σ2 = 1
2
π′′(θ)

(
µR + L

µ
− 1

1−µ

)
+

(π′(θ)(1 − α(µ)) − (1 + α(µ)))2

4(1 − µ)3(π(θ) + θ)(R + L/µ3)
.The res
aled pro
ess is then given by

u 7→ XT (u) =
xn(u)(t(u)) − (σ0T − σ1uT

2/3 + σ2u
2T 1/3)

−T 1/3
, (2.20)with n(u) as in (2.8). Let us de�ne the 
onstants

κ0 =
(π(θ) + θ)(R+ L/µ3)

µ(1 − µ)
,

κ1 =
(π′(θ) + 1)(R+ L/µ2)

2µ
− π′(θ) − 1

2µ(1 − µ)2
. (2.21)Then, a detailed asymptoti
 analysis would lead to,

lim
T→∞

XT (u) = µκ
1/3
0 A2(κ1κ

−2/3
0 u), (2.22)in the sense of �nite dimensional distributions, where A2 is the Airy2 pro
ess(see [11, 14, 18℄ and Se
tion 2.4 for details on A2). As for the �at PNG, spe
ial
ases are tagged parti
le and �xed time. In Se
tion 5.2 we obtain (2.22) by look-ing at the 
ontribution 
oming from the series expansion around a double 
riti
alpoint. To get (2.22) rigorously, one has to 
ontrol (1) the error terms in the 
onver-gen
e on bounded sets and (2) get some bounds to get 
onvergen
e of the Fredholmdeterminants. This is what we a
tually do the in the �at initial 
ondition setting.8



2.4 Limit pro
essesFor 
ompleteness, we shortly re
all the de�nitions of the limit pro
ess A1 and A2appearing above. The notation Ai(x) below stands for the 
lassi
al Airy fun
tion [1℄.De�nition 2.3 (The Airy1 pro
ess). The Airy1 pro
ess A1 is the pro
ess with m-point joint distributions at u1 < u2 < . . . < um given by the Fredholm determinantP( m⋂

k=1

{A1(uk) ≤ sk}
)

= det(1− χsKA1χs)L2({u1,...,um}×R), (2.23)where χs(uk, x) = 1(x > sk) and the kernel KA1 is given by
KA1(u1, s1; u2, s2) = − 1√

4π(u2 − u1)
exp

(
− (s2 − s1)

2

4(u2 − u1)

)1(u2 > u1)

+Ai(s1 + s2 + (u2 − u1)
2) exp

(
(u2 − u1)(s1 + s2) +

2

3
(u2 − u1)

3

)
. (2.24)De�nition 2.4 (The Airy2 pro
ess). The Airy2 pro
ess A2 is the pro
ess with m-point joint distributions at u1 < u2 < . . . < um given by the Fredholm determinantP( m⋂

k=1

{A2(uk) ≤ sk}
)

= det(1− χsKA1χs)L2({u1,...,um}×R), (2.25)where χs(uk, x) = 1(x > sk) and the kernel KA2 is given by
KA2(u1, s1; u2, s2) =

{∫R+
e−λ(u2−u1)Ai(s1 + λ)Ai(s2 + λ), u2 ≥ u1,

−
∫R−

e−λ(u2−u1)Ai(s1 + λ)Ai(s2 + λ), u2 < u1.
(2.26)3 Finite time kernel3.1 General kernel for PushASEPIn Theorem 4.2 we will derive a general expression for joint distributions of a de-terminantal measure. In parti
ular, it follows that the joint distribution of parti
lepositions is given by a Fredholm determinant of the formP( m⋂

k=1

{xnk
(tk) ≥ ak}

)
= det

(1− χ̃aKχ̃a

)
ℓ2({(n1,t1),...,(nm,tm)}×Z)

(3.1)with ((n1, t1), . . . , (nm, tm)) ∈ S, and χ̃a((nk, tk))(x) = 1(x < ak).Before stating the result, proven in Se
tion 4, we introdu
e a spa
e of fun
tions
Vn. Consider the set of numbers {v1, . . . , vn} and let {u1 < u2 < . . . < uν} be theirdi�erent values, with αk being the multipli
ity of uk (vk is the jump rate of parti
lewith label k). Then we de�ne the spa
e

Vn = span{xlux
k, 1 ≤ k ≤ ν, 0 ≤ l ≤ αk − 1}. (3.2)9



Proposition 3.1 (PushASEP kernel). The kernel K for the PushASEP is given by
K((n1, t1), x1; (n2, t2), x2) = −φ((n1,t1),(n2,t2))(x1, x2)+

n2∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) (3.3)where

Ψn,t
n−l(x) =

1

2πi

∮

Γ0

dzzx−yl−1ea(t)/z+b(t)z (1 − v1z) · · · (1 − vnz)

(1 − v1z) · · · (1 − vlz)
, (3.4)the fun
tions {Φn,t

n−l, l = 1, . . . , n}, are obtained by the orthogonality relation
∑

x∈ZΨn,t
n−l(x)Φ

n,t
n−k(x) = δk,l, (3.5)and by the requirement span{Φn,t

n−l(x), 1 ≤ l ≤ n} = Vn. Finally, the �rst term hasthe form
φ((n1,t1),(n2,t2))(x, y) =

1

2πi

∮

Γ0

dz

zy−x+1

e(a(t1)−a(t2))/ze(b(t1)−b(t2))z

(1 − vn1+1z) · · · (1 − vn2z)
1[(n1,t1)≺(n2,t2)].(3.6)3.2 Kernel for step initial 
onditionWe set all the jump rates to 1: v1 = v2 = · · · = 1. The transition fun
tion (3.6)does not depend on initial 
onditions. It is useful to rewrite it in a slightly di�erentform.Lemma 3.2. The transition fun
tion 
an be rewritten as

φ((n1,t1),(n2,t2))(x, y) (3.7)
=

1

2πi

∮

Γ0,1

dw
1

wx−y+1

(
w

w − 1

)n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)].Proof of Lemma 3.2. The proof follows by the 
hange of variable z = 1/w in(3.6).Lemma 3.3. Let yi = −i, i ≥ 1. Then, the fun
tions Φ and Ψ are given by

Ψn,t
k (x) =

1

2πi

∮

Γ0,1

dw
(w − 1)k

wx+n+1
ea(t)w+b(t)/w ,

Φn,t
j (x) =

1

2πi

∮

Γ1

dz
zx+n

(z − 1)j+1
e−a(t)z−b(t)/z . (3.8)Proof of Lemma 3.3. Ψn,t

k (x) 
omes by the 
hange of variable z = 1/w in (3.4). For
k ≥ 0, the pole at w = 1 is irrelevant, but in the kernel Ψn,t

k enters also for negativesvalues of k. Let us 
ompute ∑
x∈ZΦn,t

j (x)Ψn,t
k (x). The x-dependent terms give

∑

x∈Z(z/w)x =
w

w − z
1{|z|<|w|} −

w

w − z
1{|w|<|z|}. (3.9)10



Thus, before taking inside the sum in the integral we divide it into {x ≥ 0} and
{x < 0} whi
h gives the two 
ontributions in the r.h.s. of (3.9). The di�eren
ebetween the two terms is that the integration paths satisfy |z| < |w| for the �rstterm and |w| < |z| for the se
ond term. At w = z there is a simple pole, thereforeby deforming the integration paths to make them 
oin
iding, the net result is theresidue at w = z. The terms in the exponential and the terms like z(··· ) simplify,leading to

∑

x∈ZΦn,t
j (x)Ψn,t

k (x) =
1

2πi

∮

Γ1

dz(z − 1)k−j−1 = δj,k. (3.10)
Proposition 3.4 (Step initial 
onditions, �nite time kernel). The kernel for yi = −i,
i ≥ 1, is given by

K((n1, t1), x1; (n2, t2), x2) (3.11)
= − 1

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)]

+
1

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
eb(t1)/w+a(t1)w

eb(t2)/z+a(t2)z

(1 − w)n1+1

wx1+n1+1

zx2+n2

(1 − z)n2+1

1

w − z
.The 
ontours Γ0 and Γ1 in
lude the poles w = 0 and z = 1, respe
tively, and noother poles.Proof of Proposition 3.4. Consider the main term of the kernel, namely

n2∑

k=1

Ψn1,t1
n1−k(x1)Φ

n2,t2
n2−k(x2) =

n2∑

k=1

( 1

2πi

∮

Γ0,1

dw
(w − 1)n1−k

wx1+n1+1
ea(t1)w+b(t1)/w

)

×
( 1

2πi

∮

Γ1

dz
zx2+n2

(z − 1)n2−k+1
e−a(t2)z−b(t2)/z

)
.First take the sum inside and then we extend it to +∞, sin
e the se
ond termis identi
ally equal to zero for k > n2. The integration paths are taken so that

|z − 1| < |w − 1|. The k-dependent terms are
∑

k≥1

(
z − 1

w − 1

)k

=
w − 1

w − z
. (3.12)Noti
e now we have a new pole at w = z, but at w = 1 the pole vanished. Thereforethe main part of the kernel equals

1

(2πi)2

∮

Γ1

dz

∮

Γ0,z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w − 1)n1+1

wx1+n1+1

zx2+n2

(z − 1)n2+1

1

w − z
. (3.13)The 
ontribution of the pole at w = z is exa
tly equal to the 
ontribution of thepole at z = 1 in the transition fun
tion (3.7). Therefore in the �nal result the �rst11



term 
oming from (3.7) has the integral only around z = 0, and the se
ond termis (3.13) but with the integral over w only around the pole at w = 0. Finally, a
onjugation by a fa
tor (−1)n1−n2 leads to the result.3.3 Kernel for �at initial 
onditionWe again 
onsider the 
ase v1 = v2 = · · · = 1.Lemma 3.5. Let yi = −2i, i ≥ 1. Then, the fun
tions Φ and Ψ are given by
Ψn,t

k (x) =
1

2πi

∮

Γ0,1

dw
(w(w − 1))k

wx+2n+1
ea(t)w+b(t)/w ,

Φn,t
j (x) =

1

2πi

∮

Γ1

dz
(2z − 1)zx+2n

(z(z − 1))j+1
e−a(t)z−b(t)/z . (3.14)Proof of Lemma 3.5. The proof is like in Lemma 3.3, but the residue terms leadthis time to

∑

x∈ZΦn,t
j (x)Ψn,t

k (x) =
1

2πi

∮

Γ1

dz(2z − 1)(z(z − 1))k−j−1 = δj,k (3.15)by the 
hange of variable w = z(z − 1).Proposition 3.6 (Flat initial 
onditions, �nite time kernel). The kernel for yi =
−2i, i ∈ Z, is given by

K((n1, t1), x1; (n2, t2), x2)

= − 1

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1 ea(t1)w+b(t1)/w

ea(t2)w+b(t2)/w
1[(n1,t1)≺(n2,t2)]

+
−1

2πi

∮

Γ1

dz
ea(t1)(1−z)+b(t1)/(1−z)

ea(t2)z+b(t2)/z

zn1+n2+x2

(1 − z)n1+n2+x1+1
. (3.16)Proof of Proposition 3.6. The strategy is similar to the one of Proposition 3.4. Thistime, the sum in k is

∑

k≥1

(
z(z − 1)

w(w − 1)

)k

=
w(w − 1)

(w − z)(w − 1 + z)
. (3.17)So, the pole for w = 1 is now repla
ed by two simple poles, one at w = z and oneat w = 1 − z. The pole at w = z 
an
els with the one at z = 1 of (3.7). Thus weare left with

1

(2πi)2

∮

Γ1

dz

∮

Γ0,1−z

dw
ea(t1)w+b(t1)/w

ea(t2)z+b(t2)/z

(w − 1)n1+1

(z − 1)n2+1

zx2+n2−1

wx1+n1

2z − 1

(w − z)(w − 1 + z)
. (3.18)12



This is the main part of the kernel for the initial 
ondition yi = −2i, i ≥ 1. Toobtain the kernel for yi = −2i, i ∈ Z, we just have to look far enough into the bulkof our system, until when the in�uen
e of the fa
t that there are only a �nite numberof parti
les on the right vanishes. For the kernel, this means that the pole at w = 0vanishes. Therefore, we are left with the 
ontribution of the simple pole at w = 1−z,and 
omputing the 
orresponding residue leads to the result of the Proposition, upto a fa
tor (−1)n1−n2 , whi
h however have no impa
t on the Fredholm determinantin question.4 Determinantal measuresIn this se
tion we �rst prove Proposition 2.1. Then, we use it to extend the measureto spa
e-like paths. More pre
isely, we �rst obtain a general determinantal formulain Theorem 4.1. Then, in Theorem 4.2, we prove that the measure has determinantal
orrelations and obtain an expression of the asso
iated kernel.Proof of Proposition 2.1. We �rst prove that the initial 
ondition is satis�ed. Wehave
Fk,l(x, 0) =

1

2πi

∮

Γ0

dzzx−1

∏k−1
i=1 (1 − vN+1−iz)∏l−1
j=1(1 − vN+1−jz)

. (4.1)(a) Fk,l(x, 0) = 0 for x ≥ 1 be
ause the pole at z = 0 vanishes.(b) Fk,l(x, 0) = 0 for k ≥ l and x < l − k, be
ause then
Fk,l(x, 0) =

1

2πi

∮

Γ0

dzzx−1(1 − vlz) · · · (1 − vk−1z) (4.2)and the residue at in�nity equals to zero for x < l − k.Assume that xN < · · · < x1. If xN > yN , also xl > yN for l = 1, . . . , N − 1.Thus F1,l(xN+1−l − yN , 0) = 0 using (a). Therefore G(xN , . . . , x1; 0) = 0. Onthe other hand, it xN < yN , then xN < yk − N + k, k = 1, . . . , N − 1. Thus
F1,k(xN −yN+1−k, 0) = 0 using (b) and the fa
t that xN −yN+1−k < 1−k. Thereforewe 
on
lude that G(xN , . . . , x1; 0) = 0 if xN 6= yN . For xN = yN , F1,1(0, 0) = 1 andby (a) F1,l(xN+1−l − yN , 0) = 0 for l = 2, . . . , N . This means that

G(xN , . . . , x1; 0) = δxN ,yN
G(xN−1, . . . , x1; 0). (4.3)By iterating the pro
edure we obtain

G(xN , . . . , x1; 0) =
N∏

k=1

δxk,yk
. (4.4)Noti
e that the prefa
tor in (2.2) is equal to one at t = 0.13



The initial 
ondition being settled, we need to prove that (2.2) satis�es thePushASEP dynami
s. For that purpose, let us �rst 
ompute dFk,l(x,t)

dt
.

dFk,l(x, t)

dt
= ȧ(t)Fk,l(x− 1, t) + ḃ(t)Fk,l(x+ 1, t), (4.5)from whi
h it follows, by di�erentiating the prefa
tor and the determinant 
olumnby 
olumn,

dG(xN , . . . , x1; t)

dt
= −

(
ȧ(t)

N∑

k=1

vk + ḃ(t)

N∑

k=1

1

vk

)
G(xN , . . . , x1; t)

+ȧ(t)
N∑

k=1

vkG(. . . , xk − 1, . . . ; t) (4.6)
+ḃ(t)

N∑

l=1

1

vl
G(. . . , xl + 1, . . . ; t).To pro
eed, we need an identity. Using

zx

1 − vN+1−lz
=

vN+1−lz
x+1

1 − vN+1−lz
+ zx (4.7)it follows that

Fk,l+1(x, t) = Fk,l(x, t) + vN+1−lFk,l+1(x+ 1, t). (4.8)Therefore, for j = 2, . . . , N , by setting ỹk = yN+1−k,
G(. . . , xj, xj−1 = xj , . . . ; t) =

1

ZN
det

[
v

xN+1−l

N+1−l Fk,l(xN+1−l − ỹk, t)
]

1≤k,l≤N

=
1

ZN
det

[
. . . v

xj

j Fk,N+1−j(xj − ỹk, t) v
xj

j−1Fk,N+2−j(xj−1 − ỹk, t) · · ·
]
.Here ZN does not depend on the xj 's. Using (4.8) we have

v
xj

j−1Fk,N+2−j(xj − ỹk, t) (4.9)
= v

xj

j−1Fk,N+1−j(xj − ỹk, t) + v
xj+1
j−1 Fk,N+2−j(xj + 1 − ỹk, t)

vj

vj−1
.Using this identity in the previous formula, the �rst term 
an
els being proportionalto its left 
olumn, and the se
ond term yields

G(. . . , xj , xj−1 = xj , . . . ; t) =
vj

vj−1

G(. . . , xj, xj−1 = xj + 1, . . . ; t). (4.10)
14



With (4.10) we 
an go ba
k to (4.6). First, 
onsider all the terms in (4.6) whi
h areproportional to ȧ(t). They have the form
−

N∑

k=1

vkG(. . . ; t) +

N∑

k=1

vkG(. . . , xk − 1, . . . ; t) (4.11)
= −v1G(. . . ; t) −

N∑

k=2

vk(1 − δxk−1,xk+1)G(. . . ; t) (4.12)
+vNG(xN − 1, . . . ; t) +

N−1∑

k=1

vk(1 − δxk+1,xk
)G(. . . , xk − 1, . . . ; t) (4.13)

−
N∑

k=2

vkG(. . . , xk, xk−1 = xk + 1, . . . ; t) (4.14)
+

N−1∑

k=1

vkG(. . . , xk+1 = xk, xk, . . . ; t). (4.15)By using (4.10) and shifting the summation index by one, we get that (4.15) equals
N∑

k=2

vk−1G(. . . , xk, xk−1 = xk + 1, . . . ; t)
vk

vk−1
, (4.16)whi
h 
an
els (4.14). The expression (4.12) is the 
ontribution in the master equa-tion of the parti
les jumping to the right and leaving the state (xN , . . . , x1) withjump rate ȧ(t)vk, while (4.13) is the 
ontribution of the parti
les arriving to the state

(xN , . . . , x1). Therefore, the jumps to the right satisfy the ex
lusion 
onstraint.Se
ondly, 
onsider all the terms in (4.6) whi
h are proportional to ḃ(t). They are
−

N∑

k=1

1

vk
G(. . . ; t) +

N∑

k=1

1

vk
G(. . . , xk + 1, . . . ; t). (4.17)Let us denote by m(k) the index of the last parti
le to the right of parti
le k su
hthat parti
le m(k) belongs to the same blo
k of parti
les as parti
le k (we say thattwo parti
les are in the same blo
k if between them all sites are o

upied). Then,(4.17) takes the form

(4.17) = −
N∑

k=1

1

vk
G(. . . ; t) +

N∑

k=1

1

vk
G(. . . , xk + 1, xk + 1, . . . , xk + k −m(k), . . . ; t).(4.18)Using (4.10) we get

1

vk
G(. . . , xk + 1, xk + 1, . . . , xk + k −m(k), . . . ; t)

=
1

vk

vk

vk−1
G(. . . , xk + 1, xk + 2, . . . , xk + k −m(k), . . . ; t) (4.19)

=
1

vk−1
G(. . . , xk + 1, xk−1 + 1, . . . , xk + k −m(k), . . . ; t). (4.20)15



By iterations we �nally obtain
(4.17) = −

N∑

k=1

1

vk
G(. . . ; t) +

N∑

k=1

1

vm(k)

G(. . . , xk + 1, xk−1 + 1, . . . , xm(k) + 1, . . . ; t).(4.21)The �rst term in (4.21) is the 
ontribution of parti
les pushing to the left and leavingthe state (xN , . . . , x1), while the se
ond term is the 
ontribution of parti
les arrivingat the state (xN , . . . , x1) be
ause they were pushed, and the parti
le number k pushesto the left with rate ḃ(t)/vk.We would like to obtain the joint distribution of parti
le Nk at time tk for N1 ≥
N2 ≥ . . . ≥ Nm ≥ 1 and 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm. By Proposition 2.1, this 
an bewritten as an appropriate marginal of a produ
t of m determinants.Notational remark: Below there is an abuse of notation. For example, xn

l (ti) and
xn

l (ti+1) are 
onsidered di�erent variables even if ti = ti+1. One 
ould 
all themsimply xn
l (i) and xn

l (i+1), but then one loses the 
onne
tion with the times ti's. Inthis sense, ti is 
onsidered as a symbol, not as a number.Theorem 4.1. Let us set t0 = 0, a(t0) = b(t0) = 0, and Nm+1 = 0. The joint dis-tribution of PushASEP parti
les is a marginal of a determinantal measure, obtainedby summation of the variables in the set
D = {xl

k(ti), 1 ≤ k ≤ l, 1 ≤ l ≤ Ni, 0 ≤ i ≤ m} \ {xNi
1 (ti), 1 ≤ i ≤ m}; (4.22)the range of summation for any variable in this set in Z. Pre
isely,P(xNi

(ti) = xNi
1 (ti), 1 ≤ i ≤ m|xk(0) = yk(0), 1 ≤ k ≤ N1)

= const ×
∑

D

det
[
ΨN1

N1−l(x
N1
k (t0))

]
1≤k,l≤N1

×
m∏

i=1

[
det[Tti,ti−1

(xNi
l (ti), x

Ni
k (ti−1))]1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det[φn(xn−1
k (ti), x

n
l (ti))]1≤k,l≤n

] (4.23)where
Ttj ,ti(x, y) =

1

2πi

∮

Γ0

dzzx−y−1e(a(tj )−a(ti))/ze(b(tj )−b(ti))z, (4.24)
ΨN1

N1−l(x) =
1

2πi

∮

Γ0

dzzx−yl−1(1 − vl+1z) · · · (1 − vN1z), (4.25)
φn(x, y) = vy−x

n 1[y≥x] and φn(x
n−1
n , y) = vy

n. (4.26)Remark: the variables xn−1
n parti
ipating in the last fa
tor of (4.23) are �
titious,
f. (4.26), and are used for 
onvenien
e of notation only.16
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Figure 3: A graphi
al representation of variables entering in the determinantal stru
-ture, illustrated for m = 2. The wavy lines represents the time evolution between
t0 and t1 and from t1 to t2. The rest is the interla
ing stru
ture on the variablesindu
ed by the det[φn(· · · )]. The bla
k dots are the only variables whi
h are notin the summation set D = D(0) ∪ D∗(t1) ∪ · · · ∪ D∗(tm) (see Figure 4 too). Thevariables of the border of the interla
ing stru
tures are expli
itly indi
ated.We illustrate the determinantal stru
ture in Figure 3.Proof of Theorem 4.1. Sin
e the evolution is Markovian, we haveP(xNi

(ti) = xNi
1 (ti), 1 ≤ i ≤ m|xk(0) = xk

1, 1 ≤ k ≤ N1)

=
∑P(xk(0) = xk

1(0), 1 ≤ k ≤ N1|xk(0) = yk, 1 ≤ k ≤ N1) (4.27)
×

m∏

i=1

P(xk(ti) = xk
1(ti), 1 ≤ k ≤ Ni|xk(ti−1) = xk

1(ti−1), 1 ≤ k ≤ Ni)where the sum is over xk
1(0), 1 ≤ k ≤ N1, and xk

1(ti), 1 ≤ k ≤ Ni − 1, i = 1, . . . , m.Note that so far the lower index of all variables xk
l is identi
ally equal to 1.The 
ontinuation of the proof requires a series of Lemmas 
olle
ted at the end ofthis se
tion, see Se
tion 4.1. We apply Proposition 2.1 to the m+1 fa
tors in (4.27),namely,P(xk(ti) = xk

1(ti), 1 ≤ k ≤ Ni|xk(ti−1) = xk
1(ti−1), 1 ≤ k ≤ Ni) (4.28)

= const ×
( Ni∏

n=1

vxn
1 (ti)−xn

1 (ti−1)
n

)
det

[
Fk,l(x

Ni+1−l
1 (ti) − xNi+1−k

1 (ti−1)
]
1≤k,l≤Ni

.First we 
olle
t all the fa
tors 
oming from the ∏Ni

n=1 v
xn
1 (ti)−xn

1 (ti−1)
n . We have the

17



fa
tor
( N1∏

n=1

vxn
1 (0)−yk

n

) m∏

k=1

Nn∏

n=1

vxn
1 (tk)−xn

1 (tk−1)
n

=
( N1∏

n=1

v−yn
n

)( m−1∏

i=1

Ni∏

n=Ni+1+1

vxn
1 (ti)

n

) Nm∏

n=1

vxn
1 (tm)

n . (4.29)Then we apply Lemma 4.4 to all the fa
tors det[Fk,l(· · · )]. For the initial 
onditionwe have
∑

eD(0)

det
[
FN1+1−l,1(x

N1
k (0) − yl, 0, 0)

]
1≤k,l≤N1

N1∏

n=2

det
[
ϕn(xn−1

k (0), xn
l (0))

]
1≤k,l≤n

.(4.30)For the other terms, i = 1, . . . , m, we get
∑

eD(ti)

det
[
FNi+1−l,1(x

Ni
k (ti) − xl

1(ti−1), ai, bi)
]
1≤k,l≤Ni

×
Ni∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

. (4.31)Thus, the probability we want to 
ompute in (4.27) is obtained by a marginal ofa measure on m + 1 interla
ing triangles, when we sum over all the variables in
D(0), D∗(t1), . . . , D

∗(tm), see Figure 4 for the de�nitions of these sets. At this pointwe apply Lemma 4.5 as follows. For i = 1, . . . , m−1 we do the sum over the variablesin D̂(ti). Noti
e that the remaining variables in (4.29) do not belong to the D̂(ti),thus we fa
torize them out. So, r.h.s. of (4.27) is, up to a 
onstant, equal to
∑

(4.29) × det
[
FN1+1−l,1(x

N1
k (0) − yl, 0, 0)

]
1≤k,l≤N1

×
[

m−1∏

i=0

( Ni∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

)

× det
[
FNi+1+1−l,1(x

Ni+1

k (ti+1) − xl
1(ti), ai+1, bi+1)

]
1≤k,l≤Ni+1

]

×
Nm∏

n=2

det
[
ϕn(xn−1

k (tm), xn
l (tm))

]
1≤k,l≤n

(4.32)with the sum is over the variables des
ribed just above. By summing over the D̂(ti),the determinant with FNi+1+1−l,1 be
omes a determinant with F1,1 and the produ
t
18



of the det[ϕn(· · · )] is restri
ted to n = Ni+1 + 1, . . . , Ni. Thus,
(4.27) = const ×

∑
(4.29) × det

[
FN1+1−l,1(x

N1

k (0) − yl, 0, 0)
]
1≤k,l≤N1

×
m∏

i=1

(
det

[
F1,1(x

Ni
k (ti) − xNi

l (ti−1), ai, bi)
]
1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

) (4.33)where we set Nm+1 = 0 (the 
ontribution from n = 1 is 1). Finally, by usingLemma 4.6 we 
an in
lude the terms in (4.29) into the ϕn's by modifying the lastrow, i.e., by setting it equal to vy
n. Thus,

(4.27) = const × det
[
FN1+1−l,1(x

N1

k (0) − yl, 0, 0)
]
1≤k,l≤N1

×
m∏

i=1

(
det

[
F1,1(x

Ni
k (ti) − xNi

l (ti−1), ai, bi)
]
1≤k,l≤Ni

×
Ni∏

n=Ni+1+1

det
[
φn(x

n−1
k (ti), x

n
l (ti))

]
1≤k,l≤n

)
. (4.34)The identi�
ation to the expressions in Theorem 4.1 uses the representations (2.3)and (3.4).The �rst line represent the initial 
ondition at t0 = 0, the term with ΨN1

N1−l inTheorem 4.1. These N1 variables evolves until time t1 and this is represented by the�rst line (term Tt1,t0). After that, there is a redu
tion of the number of variablesfrom N1 to N2 by the interla
ing stru
ture, whi
h is followed by the time evolutionfrom t1 to t2. This is repeated m − 1 times. Finally it ends with an interla
ingstru
ture. If N1 = N2, then the �rst interla
ing stru
ture is trivial (not present),while if for example t2 = t1, then the time evolution is just the identity.In what follows, the pi
ture to keep in mind is that, starting from bottom to top inFigure 3, it 
orresponds to having a sort of vi
ious walkers with in
reasing numberof walkers when the transition is made by the φ's, and with 
onstant number ofwalkers if the transition is the temporal one made by T .The determinantal measure in (4.23) is written with outer produ
t over time mo-ments but it 
an be rewritten by taking the outer produ
t over the index n in thevariables xn
k 's. Let us introdu
e the following notations. For any level n there is anumber c(n) ∈ {0, . . . , m+ 1} of produ
ts of terms T whi
h are the time evolutionof n parti
les between 
onse
utive times in the set {t1, . . . , tm} (in other words c(n)is #{i|Ni = n}). Let us denote them by tn0 < . . . < tnc(n). Noti
e that tn0 = tn+1

c(n+1),
19



tN1
0 = t0, tN1

1 = t1, and t00 = t0c(0) = tm. Then, the measure in (4.23) takes the form
const ×

N1∏

n=1

[
det[φn(xn−1

k (tn−1
0 ), xn

l (tnc(n)))]1≤k,l≤n (4.35)
×

c(n)∏

a=1

det[Ttna ,tna−1
(xn

k(tna), xn
l (tna−1))]1≤k,l≤n

]
det[ΨN1

N1−l(x
N1
k (tN1

0 ))]1≤k,l≤N1.In Theorem 4.2 we show that a measure on the xn
k(tna) of the form (4.35) is determi-nantal and we give the expression for the kernel. Then we parti
ularize it in 
ase ofthe PushASEP with parti
le dependent jump rates. For this purpose, we introdu
ea 
ouple of notations. For any two time moments tn1

a1
, tn2

a2
, we de�ne the 
onvolutionover all the transitions between them by φ(t

n1
a1

,t
n2
a2

) (ba
kwards in time, sin
e forwardin the n's), i.e.,
φ(t

n1
a1

,t
n2
a2

) = Tt
n1
a1

,t
n1
0

∗ φn1 ∗ T n1+1 ∗ · · · ∗ φn2−1 ∗ Tt
n2
c(n2)

,t
n2
a2

(4.36)where
T n = Ttn

c(n)
,tn0
. (4.37)If no su
h fa
tor exists, then we set φ(t

n1
a1

,t
n2
a2

) = 0. Above we used
Tt3,t2 ∗ Tt2,t1 = Tt3,t1 , (4.38)whi
h is an immediate 
orollary of (4.24). In a more general 
ase 
onsidered inTheorem 4.2 below, if (4.38) does not holds, then T n is just the 
onvolution of thetransitions between tnc(n) and tn0 by de�nition. Moreover, de�ne the matrix M withentries Mk,l, 1 ≤ k, l ≤ N1,

Mk,l =
(
φk ∗ T k ∗ · · · ∗ φN1 ∗ T N1 ∗ ΨN1

N1−l

)
(xk−1

k ) (4.39)and the ve
tor
Ψ

n,tna
n−l = φ(tna ,t

N1
0 ) ∗ ΨN1

N1−l. (4.40)Theorem 4.2. Assume that the matrix M is invertible. Then, the probability mea-sure of the form (4.35) viewed as (N1 + . . . + Nm)-point pro
ess is determinantal,and the 
orrelation kernel 
an be 
omputed as follows
K(tn1

a1
, x1; t

n2
a2
, x2) = −φ(t

n1
a1

,t
n2
a2

)(x1, x2) (4.41)
+

N1∑

k=1

n2∑

l=1

Ψ
n1,t

n1
a1

n1−k (x1)[M
−1]k,l(φl ∗ φ(tl

c(l)
,t

n2
a2

))(xl−1
l , x2).In the 
ase when the matrix M is upper triangular, there is a simpler way to writethe kernel. Set

Φ
n,tna
n−k(x) =

n∑

l=1

[M−1]k,l

(
φl ∗ φ(tl

c(l)
,tna ))(xl−1

l , x) (4.42)20



for all n = 1, . . . , N1 and k = 1, . . . , n. Then, {
Φ

n,tna
n−k

}
k=1,...,n

is the unique basis ofthe linear span of
{

(φ1 ∗ φ(t1
c(1)

,tna ))(x0
1, x), . . . , (φn ∗ φ(tn

c(n)
,tna ))(xn−1

n , x)
} (4.43)that is di�erent from (4.43) by a triangular matrix (as in (4.42)), and that isbiorthogonal to {Ψn,tna

n−k}:
∑

x∈ZΦ
n,tna
i (x)Ψ

n,tna
j (x) = δi,j , i, j = 0, . . . , n− 1. (4.44)The 
orrelation kernel 
an then be written as

K(tn1
a1
, x1; t

n2
a2
, x2) = −φ(t

n1
a1

,t
n2
a2

)(x1, x2) +

n2∑

k=1

Ψ
n1,t

n1
a1

n1−k (x1)Φ
n2,t

n2
a2

n2−k (x2). (4.45)Moreover, one has the identity
φ(t

n1
a1

,t
n2
a2

) ∗ Φ
n2,t

n2
a2

n2−l = Φ
n1,t

n1
a1

n1−l (4.46)for n1 ≥ n2 and a1 ≤ a2 for n1 = n2.Proof of Theorem 4.2. The proof is similar to the one of Lemma 3.4 in [4℄, whi
h isin its turn based on the formalism of [8℄. The only pla
e where the argument 
hangessubstantially is the de�nition of the matrix L, see [4℄, formula (3.32). The variablesof interest are in the spa
e Y = X(1) ∪ · · · ∪ X(N1), with X(n) = X
(n)
0 ∪ · · · ∪ X

(n)
c(n),where X

(n)
a = Z is the spa
e where the n variables at time tna live. Let us also denote

I = {1, . . . , N1}. Then, the matrix L written with the order given by the entries inthe set of all variables X = I ∪ Y be
omes
L =




0 E0 0 E1 0 E2 0 · · · EN1−1 0
0 0 −T1 0 0 0 0 · · · 0 0
0 0 0 −W[1,2) 0 0 0 · · · 0 0
0 0 0 0 −T2 0 0 · · · 0 0
0 0 0 0 0 −W[2,3) 0 · · · 0 0
0 0 0 0 0 0 −T3 · · · 0 0... ... ... ... ... ... ... . . . ... ...
0 0 0 0 0 0 0 · · · −W[N1−1,N1) 0
0 0 0 0 0 0 0 · · · 0 −TN1

Ψ(N1) 0 0 0 0 0 0 · · · 0 0




(4.47)
with the matrix blo
ks in L have the following entries:

[Ψ(N1)]x,j = ΨN1
N1−j(x), x ∈ X

(N1)
0 , j ∈ I, (4.48)

[En]i,y =

{
φn+1(x

n
n+1, y), i = n + 1, y ∈ X

(n+1)
c(n+1),

0, i ∈ I \ {n+ 1}, y ∈ X
(n+1)
c(n+1),

(4.49)
[W[n,n+1)]x,y = φn+1(x, y), x ∈ X

(n)
0 , y ∈ X

(n+1)
c(n+1), (4.50)21



and Tn is the matrix made of blo
ks
Tn =




Tn,1 0 0

0
. . . 0

0 0 Tn,c(n)


 , (4.51)where

[Tn,a]x,y = Ttna ,tna−1
(x, y), x ∈ X(n)

a , y ∈ X
(n)
a−1. (4.52)The rest of the proof is along the same lines as that of Lemma 3.4 in [4℄.Although the argument gives a proof in the 
ase when all variables xn

a(tnb ) vary over�nite sets, a simple limiting argument immediately extends the statement to anydis
rete sets, provided the series that de�nes Mk,l are absolutely 
onvergent, whi
his 
ertainly true in our 
ase.A spe
ial 
ase of Theorem 4.2 is Proposition 3.1 stated in Se
tion 3, whi
h we provebelow.Proof of Proposition 3.1. This is a spe
ialization of Theorem 4.2. The kerneldepends only on the a
tual times and parti
le numbers, therefore we might dropthe label ai of tni
ai
. Equivalently, we 
an use the notation (ni, ti) instead of tni

ai
, togo ba
k to the natural notations of the model. For PushASEP we have ΨN1

N1−l(x) =
FN1+1−l,1(x− yl, 0, 0) and

Ttj ,ti(x, y) = F1,1(x− y, a(tj) − a(ti), b(tj) − b(ti)). (4.53)First of all, we sum over the {xN1

k (0), 1 ≤ k ≤ N1} variables, sin
e we are not inter-ested in the initial 
onditions (being �xed). While applied to the Fk,l(x, a(ti), b(ti)),the time evolution Ttj ,ti 
hanges it into Fk,l(x, a(tj), b(tj)),
∑

y∈Z Ttj ,ti(x, y)Fk,l(y, a(ti), b(ti)) = Fk,l(x, a(tj), b(tj)). (4.54)This implies that Theorem 4.2 still holds but with tN1
0 = t1 and

ΨN1
N1−l(x) = FN1+1−l,1(x− yl, a(t1), b(t1)). (4.55)We have, see (4.65), that

(φk ∗ Fl,N1+1−k)(x, a, b) = Fl,N1+2−k(x, a, b). (4.56)Using (4.54) and (4.56) repeatedly one then gets
Ψ

n,tnk
n−l (x) = FN1+1−l,N1+1−n(x− yl, a(t

n
k), b(tnk)) (4.57)whi
h 
an be rewritten as (3.4). 22



Next we show that the matrixM is upper triangular. On
e again, (4.54) and (4.56)are applied several times, leading to
Mk,l =

∑

y∈Z vy
kFN1+1−l,N1+1−k(y − yl, a(t

k
c(k)), b(t

k
c(k))). (4.58)Set ak = a(tkc(k)) and bk = b(tkc(k)). Then, for k < l,

Mk,l =
∑

y∈Z vy
k

1

2πi

∮

Γ0

dzzy−yl−1eak/z+bkz (1 − vl+1z) · · · (1 − vN1z)

(1 − vk+1z) · · · (1 − vN1z)
. (4.59)We divide the sum over y in two regions, {y ≥ 0} and {y < 0}, and then we takethem inside the integral and use

∑

y∈Z(az)y =
∑

y≥0

(az)y +
∑

y<0

(az)y =
1

1 − az
1{|az|<1} −

1

1 − az
1{|az|>1}. (4.60)For k > l the new term in the denominator, 1−vkz, is 
an
elled so that this is not apole and we 
an deform the 
ontours to be the same. Thus for k > l the net resultis zero. This is not the 
ase for k ≤ l, sin
e in that 
ase the new pole at 1/vk doesnot have to vanish. Moreover, the diagonal terms are not zero, thus the matrix Mis invertible. In fa
t, Mk,k = vyl+1

k evkak+bk/vk 6= 0.Sin
e M is upper triangular, we need to determine the spa
e VN1 where the orthog-onalization has to be made. The k-th basis ve
tor is
(φk ∗φ(tk

c(k)
,t1))(xk−1

k , x) =
∑

y∈Z vy
N1

1

2πi

∮

Γ0

dzzy−x−1 eak/z+bkz

(1 − vk+1z) · · · (1 − vN1z)
. (4.61)We apply (4.60) and obtain

fk(x) ≡
1

2πi

∮

Γ1/vk

dzz−x−1 eak/z+bkz

(1 − vkz)(1 − vk+1z) · · · (1 − vN1z)
(4.62)plus residue terms whi
h are linear 
ombinations of the (φn ∗φ(tn

c(n)
,t1))(xn−1

n , x) with
n > k. Therefore the spa
e VN1 is generated by the fun
tions fk for k = 1, . . . , N1.For k = N1, the evaluation of the residue leads to fN1(x) = const × vx

N1
. For k =

N1 − 1, if vN1−1 6= vN1 , then fN1−1(x) = const × vx
N1−1, while if vN1−1 = vN1 , it gives

fN1−1(x) = const × x vx
N1
, sin
e the pole is of order 2. In general, fk(x) = const× vx

kif vk 6= vl for all l > k and fk(x) = const × Polym(x)vx
k if there are m values of

l ∈ {k + 1, . . . , N1} su
h that vk = vl, where Polym(x) is a polynomial of order min x. This is due to the fa
t that the pole is of order m + 1. Therefore, the spa
ewhere the orthogonalization has to be done is the one indi
ated in the Proposition.Finally, we need an expression for the transition between two times, whi
h is given by(4.36). Every time that we 
onvolute a φk with T , we get an extra fa
tor 1/(1−vkz)in the integral. Therefore, if tn2
a2

≤ tn1
a1

and n2 ≥ n1, then
φ(t

n1
a1

,t
n2
a2

)(x, y) =
1

2πi

∮

Γ0

dzzx−y−1 e
(a(t

n1
a1

)−a(t
n2
a2

))/ze(b(t
n1
a1

)−b(t
n2
a2

))z

(1 − vn1+1z) · · · (1 − vn2z)
, (4.63)23



while φ(t
n1
a1

,t
n2
a2

)(x, y) = 0 otherwise.4.1 Some lemmasIn this subse
tion we state and prove the Lemmas used in the proof of Theorem 4.2.Lemma 4.3. Let us de�ne the fun
tion
ϕn(x, y) =

{
vy−x

n , y ≥ x,
0, y < x.

(4.64)Then the following re
urren
e relations holds
Fk,l+1(x, a, b) = (ϕN+1−l ∗ Fk,l)(x, a, b) (4.65)and
Fk−1,l(x, a, b) = (ϕN+2−k ∗ Fk,l)(x, a, b). (4.66)From (4.66) and ϕn(x, y) = ϕn(0, y − x) = ϕn(−y,−x) it follows

Fk−1,l(−x, a, b) =
∑

y∈Z Fk,l(−y, a, b)ϕN+2−k(y, x). (4.67)Proof of Lemma 4.3. We have
Fk,l(x, a, b) =

1

2πi

∮

Γ0

dzzx−1ebzea/z (1 − vNz) · · · (1 − vN+2−kz)

(1 − vNz) · · · (1 − vN+2−lz)
. (4.68)Then applying ∑

y≥x v
y−x
N+1−lz

y = zx/(1 − vN+1−lz) (for |z| ≪ 1), we get that inthe denominator we have an extra fa
tor, whi
h 
orresponds to in
reasing l by one.Similarly, applying ϕN+2−k, the extra fa
tor in the denominator 
an
els the last onein the numerator, thus this is equivalent to de
reasing k by one.We de�ne the following domains, whi
h will o

urs several times in the following. Agraphi
al representation is in Figure 4. Let us denote the set of interla
ing variablesat time ti by
D(ti) = {xn

k(ti), 1 ≤ n ≤ Ni, 1 ≤ k ≤ n|xn+1
k (ti) < xn

k(ti) ≤ xn+1
k+1(ti)}. (4.69)Then let

D̃(ti) = {xn
k(ti) ∈ D(ti)|k ≥ 2}, D̂(ti) = {xn

k(ti) ∈ D(ti)|n ≤ Ni+1 − 1}, (4.70)and
D∗(ti) = D(ti) \ {xNi

1 (ti)}, D̂∗(ti) = D∗(ti) \ D̂(ti). (4.71)
24
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D̂(ti) D̂∗(ti)Figure 4: A graphi
al representation of the summation domains that o

urs in thenext lemmas and theorem. The bold lines passes through the border of the domains.Lemma 4.4. We have the identity
det

[
Fk,l(x

Ni+1−l
1 (ti) − xNi+1−k

1 (ti−1), a, b)
]
1≤k,l≤Ni

= const
∑

eD(ti)

( Ni∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

)

× det
[
FNi+1−l,1(x

Ni
k (ti) − xl

1(ti−1), a, b)
]
1≤k,l≤Ni

(4.72)where we set ϕn(xn−1
n , x) = 1.Proof of Lemma 4.4. By 
hanging the indi
es we get that l.h.s. of (4.72) is, up toa sign, equal to

det
[
FNi+1−l,k(x

Ni+1−k
1 (ti) − xl

1(ti−1), a, b)
]
1≤k,l≤Ni

(4.73)Using repeatedly the identity (4.65) we have
Fn,k(x, a, b) = (ϕNi+2−k ∗ · · · ∗ ϕNi

∗ Fn,1)(x, a, b). (4.74)Therefore,
(4.73) = det

[
(ϕNi+2−k ∗ · · · ∗ ϕNi

∗ FNi+1−l,1)(x
Ni+1−k
1 − xl

1(ti−1), a, b)
]
1≤i,j≤Ni(4.75)We write expli
itly the 
onvolution by introdu
ing expli
it summation variables as

25



follows
(ϕNi+2−k ∗ · · · ∗ ϕNi

∗ FNi+1−l,1)(x
Ni+1−k
1 − xl

1(ti−1), a, b)

=
∑

x
Ni+1−k+n
n ,
1≤n≤k−1

( k−1∏

n=1

ϕNi+1−k+n(x
Ni−k+n
n , xNi+1−k+n

n+1 )
)

×FNi+1−l,1(x
Ni
k − xl

1(ti−1), a, b), (4.76)where we used the fa
t that ϕm(x, y) = ϕm(x + c, y + c) for any c ∈ Z. By multi-linearity of the determinant, we 
an take the sums and the fa
tors ϕ's out of thedeterminant with the result
(4.73) =

∑

xn
k (ti),

2≤n≤Ni,
2≤k≤n

( Ni∏

n=2

n−1∏

k=1

ϕn(x
n−1
k (ti), x

n
k+1(ti))

)

× det
[
FNi+1−l,1(x

Ni

k − xl
1(ti−1), a, b)

]
1≤i,j≤Ni

. (4.77)The produ
t of the ϕ's is non-zero only if xn−1
k (ti) ≤ xn

k+1(ti) is satis�ed for all thevariables. Moreover, in the symmetri
 part of the remaining summation domain,e.g., when x3
3(ti) ≥ x2

2(ti) and x3
2(ti) ≥ x2

2(ti), the produ
t of the ϕ's is symmetri
,while the last determinant is antisymmetri
 in the variables {xNi
k , k = 1, . . . , Ni}.By iteration (a simple generalization of Lemma 3.3 in [4℄) it follows that the resultis un
hanged if we restri
t the sum to D̃(ti), i.e., to the interla
ing 
on�gurations.The produ
t of the determinants of ϕ's in the right-hand side of (4.72) is either 1or 0 depending on whether the variables interla
e (belongs to D(ti)) or not. Thisimplies (4.72).Lemma 4.5. We have the identity

∑

bD(ti)

( Ni+1∏

n=2

det
[
ϕn(xn−1

k (ti), x
n
l (ti))

]
1≤k,l≤n

)

× det
[
FNi+1+1−l,1(x

Ni+1

k (ti+1) − xl
1(ti), a, b)

]

1≤k,l≤Ni+1

= det
[
F1,1(x

Ni+1

k (ti+1) − x
Ni+1

l (ti), a, b)
]
1≤k,l≤Ni+1

. (4.78)Proof of Lemma 4.5. By an analogue (essentially inverse) pro
edure as in the proofof Lemma 4.4, we �rst get
(4.78) =

∑

xn
k (ti),

2≤n≤Ni+1−1,
1≤k≤n

( Ni+1∏

n=2

n−1∏

k=1

ϕn(xn−1
k (ti), x

n
k+1(ti))

)

× det
[
FNi+1+1−l,1(x

Ni+1

k (ti+1) − xl
1(ti), a, b)

]
1≤k,l≤Ni+1

. (4.79)26



Now we insert by linearity the fa
tor ∏Ni+1

n=l+1 ϕn(xn−1
l (ti), x

n
l+1(ti)) to terms

FNi+1+1−l,1(x
Ni+1

k (ti+1) − xl
1(ti), a, b) as well as the sum over the 
orresponding vari-ables. The sums are 
arried out by using (4.67), from whi
h we get the r.h.s. of(4.78).Lemma 4.6. Let us de�ne

φn(x, y) = ϕn(x, y), φn(xn−1
n , y) = vy

n. (4.80)Then
vxn

1
n det

[
ϕn(xn−1

k , xn
l )

]
1≤k,l≤n

= det
[
φn(xn−1

k , xn
l )

]
1≤k,l≤n

(4.81)Proof of Lemma 4.6. It is a 
onsequen
e of the fa
t that both determinants arezero if the variables xj
i do not interla
e and when they do, the matri
es are upper-triangular with diagonal equal to zero and with equal entries in the �rst n− 1 rows.The only di�eren
e is for the last row, where the matrix in l.h.s. of (4.81) has entries

1 and r.h.s. of (4.81) has entries vxn
l

n .5 Asymptoti
 analysis5.1 Flat initial 
onditionsTo prove Theorem 2.2 we need the uniform 
onvergen
e of the kernel in boundedsets as well as bounds uniform in T . These results are provided in the followingPropositions 5.1, 5.2, 5.3.Let us de�ne the res
aled and 
onjugate kernel by
Kresc

T (u1, s1; u2, s2) = K((n1, t1), x1; (n2, t2), x2)T
1/3 e

t2(2L+R/2)2x2

et1(2L+R/2)2x1
(5.1)where ni = n(ui), ti = t(ui), and

xi = [−2ni + v ti − siT
1/3]. (5.2)Proposition 5.1 (Uniform 
onvergen
e in a bounded set). Fix u1, u2, then for any�xed ℓ > 0, the res
aled kernel Kresc

T 
onverges uniformly for (s1, s2) ∈ [−ℓ, ℓ]2 as
lim

T→∞
Kresc

T (u1, s1; u2, s2) = S−1
v KA1(S

−1
h u1, S

−1
v s1;S

−1
h u2, S

−1
v s2), (5.3)with KA1 the kernel of the Airy1 pro
ess, see (2.24), and Sv, Sh are de�ned in (2.12).Proof of Proposition 5.1. First we 
onsider the term 
oming from the se
ond integralin (3.16), namely

−T 1/3

2πi

∮

Γ1

dz
eRt1(1−z)+Lt1/(1−z)

eRt2z+Lt2/z

zn1+n2+x2

(1 − z)n1+n2+x1+1

et2(2L+R/2)2x2

et1(2L+R/2)2x1
. (5.4)27



De�ne the fun
tions
H(z) = Rz + L/z − (R/2 − 2L) ln(z),

g0(z) = (π(θ) + θ)H(z),

g1(z, u) = −u(π′(θ) + 1)H(z) + u(1 − π′(θ)) ln(z(1 − z)),

g2(z, u, s) = u2π′′(θ)[H(z) + ln(z(1 − z))] + s ln(z), (5.5)from whi
h we then set
f0(z) = g0(1 − z) − g0(z),

f1(z) = g1(1 − z, u1) − g1(z, u2) − g1(1/2, u1) + g1(1/2, u2),

f2(z) = g2(1 − z, u1, s1) − g2(z, u2, s2) − g2(1/2, u1, s1) + g2(1/2, u2, s2),

f3(z) = − ln(1 − z). (5.6)With these notations we get
(5.4) =

−T 1/3

2πi

∮

Γ1

dzeTf0(z)+T 2/3f1(z)+T 1/3f2(z)+f3(z). (5.7)The fun
tion f0(z) has a double 
riti
al point at z = 1/2 and the 
ontribution forlarge T will be dominated by the one 
lose z = 1/2. Thus we need to do seriesexpansions around the 
riti
al point. Computations leads to
f0(z) = 1

3
κ0(z − 1/2)3 + O((z − 1/2)4),

f1(z) = −(u1 − u2)κ1(z − 1/2)2 + O((z − 1/2)3),

f2(z) = −(s1 + s2)(z − 1/2) + O((z − 1/2)2),

f3(z) = ln(2) + O((z − 1/2)) (5.8)with
κ0 = 8(8L+R)(π(θ) + θ), κ1 = (R+ 4L)(π′(θ) + 1) + 4(1 − π′(θ)). (5.9)First we 
hoose Γ1 to be a steep des
ent path2 for f0(z). We 
onsider Γ1 = γ∨γc∨ γ̄,where γ = {1/2 + e−Iπ/3ξ, 0 ≤ ξ ≤ 1/2}, γ̄ its image with respe
t to 
omplex
onjugation, and γc = {1 − 1/2eIφ, π/6 ≤ φ ≤ 2π − π/6}. We also have f0(z) =

SR(z)R(π(θ) + θ) + SL(z)L(π(θ) + θ), with
SR(z) = 1 − 2z +

1

2
ln(z/(1 − z)), SL(z) =

1

1 − z
− 1

z
− 2 ln(z/(1 − z)). (5.10)On γ, simple 
omputations leads to

dRe(SR(z))

dξ
= − 8ξ2(1 + 2ξ2)

((1 + ξ2) + 2ξ2)((1 − ξ)2 + 2ξ2)
,

dRe(SL(z))

dξ
= − 64ξ2((1 + 2ξ2)2 − 12ξ4)

((1 + ξ2) + 2ξ2)2((1 − ξ)2 + 2ξ2)2
(5.11)2For an integral I =

∫
γ

dzetf(z), we say that γ is a steep des
ent path if (1) Re(f(z)) is maximumat some z0 ∈ γ: Re(f(z)) < Re(f(z0)) for z ∈ γ \ {z0}, and (2) Re(f(z)) is monotone along γex
ept at its maximum point z0 and, if γ is 
losed, at a point z1 where the minimum of Re(f) isrea
hed. 28



whi
h are both stri
tly less than 0 for ξ ∈ (0, 1/2). Moreover, on γc,
dRe(SR(z))

dφ
= −4 sin(φ)(1 − cos(φ))

5 − 4 cos(φ)
,

dRe(SL(z))

dφ
= −32 sin(φ)(1 − cos(φ))(2 − cos(φ))

(5 − 4 cos(φ))2
(5.12)whi
h are both stri
tly less than 0 for cos(φ) ∈ (−1, 1). Therefore the 
hosen Γ1 isa steep des
ent path for f0(z).Take any δ > 0 and set Γδ

1 = {z ∈ Γ0||z − 1/2| ≤ δ}. Then, if in (5.7) we integrateonly along Γδ
1 instead of integrating along Γ1, the error made is just of order O(e−cT )for some c > 0 (more exa
tly, c ∼ δ3 for δ small). Thus we now 
onsider the integralon Γδ

1 only. There, we 
an use the above series expansions to obtain
−2T 1/3

2πi

∫

Γδ
1

dze
1
3
κ0T (z−1/2)3+(u2−u1)κ1T 2/3(z−1/2)2−2(s1+s2)(z−1/2)

×eO
(

T (z−1/2)4,T 2/3(z−1/2)3,T 1/3(z−1/2),(z−1/2)
)
. (5.13)The di�eren
e between (5.13) and the same integral without the error term 
an bebounded by applying |ex − 1| ≤ |x|e|x| to O(· · · ). Thus, this error term 
an bebounded by

2T 1/3

2π

∫

Γδ
1

dz
∣∣∣e

1
3
c0κ0T (z−1/2)3+(u2−u1)c1κ1T 2/3(z−1/2)2−2c2(s1+s2)(z−1/2)

×O
(
T (z − 1/2)4, T 2/3(z − 1/2)3, T 1/3(z − 1/2), (z − 1/2)

)∣∣∣ (5.14)for some c0, c1, c2 whi
h 
an be taken as 
lose to 1 as needed by setting δ smallenough. Then, by the 
hange of variable T 1/3(z − 1/2) = w one gets that this errorterm is of order O(T−1/3) (what is needed is just c0 > 0).It remains to 
onsider the leading term, namely (5.13) without the error terms.By extending the integral to in�nity by 
ontinuing the two small straight segmentsforming Γδ
1, the error made is of order O(e−cT ). Thus we obtained that (5.4) is, upto an error O(e−cT , T−1/3) uniform for s1, s2 ∈ [−ℓ, ℓ]2, equal to

−2T 1/3

2πi

∫

γ∞

dze
1
3
κ0T (z−1/2)3+(u2−u1)κ1T 2/3(z−1/2)2−2(s1+s2)(z−1/2), (5.15)where γ∞ is a path going from eiπ/3∞ to e−iπ/3∞. By the 
hange of variable w =

(κ0T )1/3(z − 1/2), we get
(5.15) =

−1

2πi

∫

γ∞

dw
2

κ
1/3
0

e
1
3
w2+(u2−u1)w2κ1/κ

2/3
0 −2(s1+s2)w/κ1/3 (5.16)

= S−1
v Ai

(
S−1

h (u2 − u1)
2 + S−1

v (s1 + s2)
)

×e 2
3
S−1

h (u2−u1)3+S−1
v S

−1/2
h (u2−u1)(s1+s2)29



with Sv and Sh de�ned in (2.12). Here we used the Airy fun
tion representation
−1

2πi

∫

γ∞

dvev3/3+av2+bv = Ai(a2 − b) exp(2a3/3 − ab). (5.17)To �nish the proof, we need to 
onsider the term 
oming from the �rst integral in(3.16), namely
−T

1/3

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1

e(Rw+L/w)(t1−t2)
et2(2L+R/2)2x2

et1(2L+R/2)2x1
. (5.18)This 
an be rewritten as

(5.18) =
−T 1/3

2πi

∮

Γ0

dw

w
eT 2/3(p0(w)−p0(1/2))+T 1/3(p1(w)−p1(1/2)) (5.19)with

p0(w) = (u2 − u1)(π
′(θ) + 1)H(w) − (u2 − u1)(1 − π′(θ)) ln(w(1 − w)),

p1(w) = −(u2
2 − u2

1)
π′′(θ)

2
[H(w) + ln(w(1 − w))] − (s2 − s1) ln(w), (5.20)where H(w) is the fun
tion de�ned in (5.5). Remark that we need to do the analysisonly for u2 > u1. The fun
tion p0 has 
riti
al point at w = 1/2. The seriesexpansions of p0 and p1 around w = 1/2 are

p0(w) = κ1(u2 − u1)(w − 1/2)2 + O((w − 1/2)3),

p1(w) = 2(s1 − s2)(w − 1/2) + O((w − 1/2)2). (5.21)We 
hoose as path Γ0 = {1
2
eiφ, φ ∈ (−π, π]}. This is a steep des
ent path for p0. Infa
t, for w ∈ Γ0,

Re(H(w)) = (R/2 + 2L) cos(φ) + (R/2 − 2L) ln(2), (5.22)
Re(− ln(w(1 − w))) = ln(2) − ln |1 − w| = 2 ln(2) − 1

2
ln(5 − 4 cos(φ)),whi
h are de
reasing when cos(φ) de
reases. Thus, we 
an integrate only on Γδ

0 =

{w ∈ Γ0||w− 1/2| ≤ δ} and, for a small δ, the error term is just of order O(e−cT 2/3
)with c > 0 (c ∼ δ2 as δ ≪ 1). The integral over Γδ

0 is then given by
−2T 1/3

2πi

∫

Γδ
0

dweκ1(u2−u1)(w−1/2)2T 2/3+2(s1−s2)(w−1/2)T 1/3

×eO((w−1/2)3T 2/3,(w−1/2)2T 1/3,(w−1/2)). (5.23)As above, we use |ex − 1| ≤ |x|e|x|, to 
ontrol the di�eren
e between (5.23) andthe same expression without the error terms. By taking δ ≪ 1 and the 
hangeof variable (w − 1/2)T 1/3 = W , we get that this di�eren
e is of order O(T−1/3)uniformly for s1, s2 in a bounded set. On
e we have taken away the error terms in30



(5.23), we extend the integral to 1/2 ± i∞. By this we make only an error of order
O(e−cT 2/3

). The integration path 
an be deformed to 1/2 + iR without passing byany poles, therefore by setting w = 1/2 + iyT−1/3 we get
−1

π

∫R dye−κ1(u2−u1)y2+2(s1−s2) = − 1√
πκ1(u2 − u1)

exp

(
− (s2 − s1)

2

κ1(u2 − u1)

)

= − S−1
v√

4π(u2 − u1)S
−1
h

exp

(
− (s2 − s1)

2S−1
v

4(u2 − u1)S
−1
h

)
. (5.24)Sin
e all the error terms in the series expansions are uniform for (s1, s2) ∈ [−ℓ, ℓ]2,the result of the Proposition is proven.Proposition 5.2 (Bound for the di�usion term of the kernel).For any s1, s2 ∈ R and u2 − u1 > 0 �xed, the bound

∣∣∣∣
et2(2L+R/2)2x2

et1(2L+R/2)2x1

T 1/3

2πi

∮

Γ0

dw
1

wx1−x2+1

(
w

1 − w

)n2−n1

e(Rw+L/w)(t1−t2)

∣∣∣∣

≤ const e−|s1−s2| (5.25)holds for T large enough and const independent of T .Proof of Proposition 5.2. From the analysis in Proposition 5.1, we just need abound for |s2 − s1| ≥ ℓ, ℓ > 0 �xed. We start with (5.19) but to obtain a de
ayingbound for large |s2 − s1| we 
onsider another path Γ0.Consider an ε with 0 < ε ≪ 1 and set Γ0 = {w = ρeiφ, φ ∈ [−π, π)}, with
ρ =





1
2

+ (s2−s1)T−1/3

(u2−u1)κ1
, if |s2 − s1| ≤ εT 1/3,

1
2

+ ε
(u2−u1)κ1

, if s2 − s1 ≥ εT 1/3,
1
2
− ε

(u2−u1)κ1
, if s2 − s1 ≤ −εT 1/3.

(5.26)We have d
dφ

Re(w − 1
2
ln(w)) = −ρ sin(φ), d

dφ
Re(1/w + 2 ln(w)) = −4

ρ
sin(φ), and

d
dφ

Re(− ln(w(1 − w))) = − ρ sin(φ)
1−2ρ cos(φ)+ρ2 . Thus Γ0 is a steep des
ent path for p0(z)but also for the term in p1 proportional to s2 − s1. Let, for a small δ > 0 �xed,

Γδ
0 = {w = ρeiφ, φ ∈ (−δ, δ)}. Then

(5.19) = eT 2/3(p0(ρ)−p0(1/2))+T 1/3(p1(ρ)−p1(1/2)) (5.27)
×

(
O(e−cT 2/3

) +
−T 1/3

2πi

∫

Γδ
0

dw

w
eT 2/3(p0(w)−p0(ρ))+T 1/3(p1(w)−p1(ρ))

)for some c > 0 (for small δ, c ∼ δ2). On Γδ
0 the si-dependent term inRe(p1(w)−p1(ρ))is equal to zero and the rest is of order O(φ2). Therefore the last integral 
an bebounded by

T 1/3

2π

∫ δ

−δ

dφ

ρ
e−

1
2

T 2/3(u2−u1)
[
(π′(θ)+1)(Rρ+L/ρ)+(1−π′(θ))ρ/(1−ρ)2

]
φ2+O(T 2/3φ4,T 1/3φ2). (5.28)31



For δ small enough, and T large enough, the terms O(T 2/3φ4) and O(T 1/3φ2) areboth 
ontrolled by the �rst term in the exponential. Then, by the 
hange of variable
T 1/3φ = ψ one sees that r.h.s. of (5.28) is bounded by a 
onstant, uniformly in T .What remains is therefore to bound the �rst term in the r.h.s. of (5.27). By the
hoi
e in (5.26) of ρ, |ρ− 1/2| ≤ ε/((u2 − u1)κ1) ≪ 1 for ε small enough whi
h 
anbe still 
hosen. Series expansion for ρ 
lose to 1/2 leads to

p0(ρ) − p0(1/2) = −2(s2 − s1)(ρ− 1/2)T 1/3(1 + O(ρ− 1/2))

+ κ1(u2 − u1)(ρ− 1/2)2T 2/3(1 + O(ρ− 1/2)). (5.29)By (5.26) we obtain the bounds
p0(ρ) − p0(1/2) = − (s2 − s1)

2

(u2 − u1)κ1
(1 + O(ε)), if |s2 − s1| ≤ εT 1/3, (5.30)

p0(ρ) − p0(1/2) = −(s2 − s1)εT
1/3

(u2 − u1)κ1
(1 + O(ε)), if |s2 − s1| ≥ εT 1/3.Combining the above result we have

|(5.25)| ≤
[
O(e−µT 2/3

) + O(1)
][
e
− (s2−s1)2

(u2−u1)κ1
(1+O(ε))

+ e
− (s2−s1)εT1/3

(u2−u1)κ1
(1+O(ε))

]
. (5.31)Thus by taking an ε small enough and then T large enough the bound (5.31) impliesthe statement to be proven, sin
e for any α > 0, there exists a Cα < ∞ su
h that

e−α(s2−s1)2 ≤ Cαe
−|s2−s1|.Proposition 5.3 (Bound on the main term of the kernel).For any (s1, s2) ∈ [−ℓ,∞)2, the bound

∣∣∣∣
−T 1/3

2πi

∮

Γ1

dz
eRt1(1−z)+Lt1/(1−z)

eRt2z+Lt2/z

zn1+n2+x2

(1 − z)n1+n2+x1+1

et2(2L+R/2)2x2

et1(2L+R/2)2x1

∣∣∣∣

≤ const e−(s1+s2) (5.32)holds for T large enough, where const is a 
onstant independent of T .Proof of Proposition 5.3. For (s1, s2) ∈ [−ℓ, ℓ]2, this is a 
onsequen
e of the estimatesin the proof of Proposition 5.1. Therefore we 
an 
onsider just (s1, s2) ∈ [−ℓ,∞)2 \
[−ℓ, ℓ]2. Let us introdu
e the notations s̃i = (si + 2ℓ)T−2/3, whi
h then belongs to
[ℓT−2/3,∞). Then, the integral to be bounded is

−T 1/3

2πi

∮

Γ1

dzeTf0(z)+T 2/3f1(z)+T 1/3f2(z)+f3(z) (5.33)where f1(z) and f3(z) are given in (5.6), and f0(z) and f2(z) are just slight modi�-
ations of the fun
tions in (5.6), namely
f0(z) = (π(θ) + θ)(H(1 − z) −H(z)) + s̃1 ln(2(1 − z)) − s̃2 ln(2z),

f2(z) = g2(1 − z, u1,−2ℓ) − g2(z, u2,−2ℓ) − g2(1/2, u1,−2ℓ) + g2(1/2, u2,−2ℓ).32



We put s̃1 and s̃2 in f0(z), be
ause they are not restri
ted to be of order T−2/3 (asit was the 
ase in Proposition 5.1).First we need to �nd a steep des
ent path for f0(z). We 
hoose it as Γ1 = {1 −
ρeiφ, φ ∈ [−π, π)} with 0 < ρ ≤ 1/2, 
hoosen as follows,

ρ =

{
1
2
− ((s̃1 + s̃2)/κ0)

1/2, |s̃1 + s̃2| ≤ ε,
1
2
− (ε/κ0)

1/2, |s̃1 + s̃2| ≥ ε,
(5.34)for some small ε > 0 to be �xed later.To see that Γ1 is a steep des
ent path, we 
onsider f0(z) term by term. The termproportional to R(π(θ) + θ) satis�es

d

dφ
Re(1 − 2z + 1

2
ln(z/(1 − z))) = −ρ(3 − 8ρ cos(φ) + 4ρ2) sin(φ)

1 − 2ρ cos(φ) + ρ2
≤ 0 (5.35)for all 0 < ρ ≤ 1/2, with equality only at φ = 0,±π. The term proportional to

L(π(θ) + θ) satis�es
d

dφ
Re(1/(1−z)−1/z−2 ln(z/(1−z))) = −((1 − 2ρ cos(φ) + 2ρ2)2 − ρ2) sin(φ)

(1 − 2ρ cos(φ) + ρ2)2ρ
≤ 0(5.36)for all 0 < ρ ≤ 1/2, with equality only at φ = 0,±π. Finally, Re(ln(1 − z)) is
onstant on Γ1 and −Re(ln(2z)) = − ln(2|z|) is stri
tly de
reasing while moving on

Γ1 with |φ| in
reasing.For a small δ > 0, Γδ
1 = {1 − ρeiφ, φ ∈ (−δ, δ)}. We also de�ne

Q(ρ) = eRe
(

T (f0(1−ρ)−f0(1/2))+T 2/3(f1(1−ρ)−f1(1/2))+T 1/3(f2(1−ρ)−f2(1/2))
) (5.37)Sin
e Γ1 is a steep des
ent path of f0(z), the integral over Γ1 \ Γδ

1 is bounded by
Q(ρ)O(e−cT ) (5.38)for some c > 0 independent of T . The 
ontribution of the integral over Γδ

1 is boundedby
Q(ρ)

∣∣∣∣
−T 1/3

2πi

∫

Γδ
1

dzeT (f0(z)−f0(1−ρ))+T 2/3(f1(z)−f1(1−ρ))+T 1/3(f2(z)−f2(1−ρ))+f3(z)

∣∣∣∣ (5.39)The series expansion around φ = 0 is
Re(f0(1 − ρeiφ) − f0(1 − ρ)) = −γ1φ

2(1 + O(φ)) (5.40)with
γ1 =

s̃2ρ

2(1 − ρ)2
+

(π(θ) + θ)(1 − 2ρ)

(1 − ρ)2

(
Rρ(3 − 2ρ)

4
+
L(1 − ρ+ 2ρ2)

3ρ(1 − ρ)

)
, (5.41)33



and
Re(f1(1 − ρeiφ) − f1(1 − ρ)) = γ2φ

2(1 + O(φ)), (5.42)with
γ2 = (u2 − u1)κ1 + O(ρ− 1/2). (5.43)Finally, Re(f2(1 − ρeiφ) − f2(1 − ρ)) = O(φ2). Thus, by the 
hange of variable

z = 1 − ρeiφ, the above estimates, and by setting γ = γ1 + γ2T
−1/3, we get

(5.39) = Q(ρ)
T 1/3ρ

2π(1 − ρ)

∫ δ

−δ

dφe−γφ2T (1+O(φ))(1+O(T−1/3)). (5.44)By 
hoosing δ small enough (independent of T ) and then T large enough, the fa
torswith the error terms 
an be repla
ed by 1/2, thus
(5.39) ≤ Q(ρ)

T 1/3ρ

2π(1 − ρ)

∫ δ

−δ

dφe−γφ2T/2 ≤ Q(ρ)
1√

2πγT 1/3
. (5.45)Remark that, the worse 
ase is when γ be
omes small, and this happens when

ρ → 1/2, i.e., it is the 
ase of small values of s̃1 + s̃2. But even in this 
ase,
γ1T

1/3 ∼ (s1 + s2 + 4ℓ)1/2 ≥ (2ℓ)1/2, whi
h dominates γ2 ∼ O(1) for ℓ large. Thusby setting ℓ large enough, (5.39) ≤ Q(ρ)O(1). This estimate, 
ombined with (5.38),implies that the Proposition will be proven by showing that Q(ρ) ≤ const e−(s1+s2).Sin
e 1 − ρ is 
lose to 1/2, we 
an apply the series expansion of fi around z = 1/2.The expansion of f1 is in (5.8), while the one of f2 is the same as in (5.8) with
s1 + s2 = −4ℓ. Finally,
f0(z) = 1

3
κ0(z−1/2)3(1+O(z−1/2)2)− (s̃1 + s̃2)(z−1/2)(1+O(z−1/2)). (5.46)First 
onsider s̃1 + s̃2 ≤ ε. Then, with ρ 
hosen as in (5.34), we get

Q(ρ) = e−
2
3

T (s̃1+s̃2)3/2κ
−1/2
0 T (1+O(

√
ε))e(u2−u1)κ1(s̃1+s̃2)T 2/3κ−1

0 (1+O(
√

ε))

×e−4ℓ(s̃1+s̃2)κ
−1/2
0 T 1/3(1+O(

√
ε))

= e−
2
3
(s1+s2+4ℓ)3/2κ

−1/2
0 (1+O(

√
ε))e(u2−u1)κ1(s1+s2+4ℓ)κ−1

0 (1+O(
√

ε))

×e−4ℓ(s1+s2+4ℓ)κ
−1/2
0 T−1/3(1+O(

√
ε)). (5.47)Re
all that s1 + s2 + 4ℓ ≥ 2ℓ ≫ 1 for ℓ ≫ 1. Therefore by 
hoosing ℓ large enough(depending only on the 
oe�
ients κ0, κ1, u1, u2 whi
h are however �xed), all theterms are 
ontrolled by the �rst one, i.e.,

Q(ρ) ≤ e−
1
3
(s1+s2+4ℓ)3/2κ

−1/2
0 ≤ e−

1
3
(s1+s2)3/2κ

−1/2
0 . (5.48)Sin
e this de
ays more rapidly that exp(−(s1 + s2)), the Proposition holds for s̃1 +

s̃2 ≤ ε.The last 
ase is s̃1 + s̃2 ≥ ε. In this 
ase, with ρ 
hosen as in (5.34), we obtain
Q(ρ) = eTκ

−1/2
0 (1+O(

√
ε))

√
ε(ε/3−(s̃1+s̃2))e(u2−u1)κ1κ−1

0 εT 2/3(1+O(
√

ε))

×e−8ℓκ
−1/2
0 εT 1/3(1+O(

√
ε)). (5.49)34



But now, ε/3 − (s̃1 + s̃2) ≤ −2
3
(s̃1 + s̃2), thus the �rst term in the exponential is,up to a positive 
onstant,−√

εT 1/3(s1 + s2 + 4ℓ), whi
h dominates the se
ond term
∼ εT 2/3 ≤ s1 + s2 + 4ℓ, and it also dominates the third term. Therefore, for any
hoi
e of ε and ℓ made before, we 
an take T large enough su
h that

Q(ρ) ≤ e−
1
3

√
εT 1/3(s1+s2), (5.50)whi
h ends the proof of the Proposition.Proof of Theorem 2.2. The proof of Theorem 2.2 is the 
omplete analogue ofTheorem 2.5 in [3℄. The results in Propositions 5.1,5.3,5.4, and 5.5 in [3℄ are repla
edby the ones in Proposition 5.1, 5.2, 5.3. The strategy is to write the Fredholm seriesof the expression for �nite T and, by using the bounds in Propositions 5.2 and 5.3,see that it is bounded by a T -independent and integrable fun
tion. On
e this isproven, one 
an ex
hange the sums/integrals and the T → ∞ limit by the theoremof dominated 
onvergen
e. For details, see Theorem 2.5 in [3℄.5.2 Sket
h of the result (2.22)With the res
aling (2.8) and (2.18), the res
aled kernel writes

Kresc(u1, s1; u2, s2) = K((n1, t1), x1; (n2, t2), x2)T
1/3. (5.51)The main part of the kernel (the se
ond term in (3.11)) writes

T 1/3

(2πi)2

∮

Γ0

dw

∮

Γ1

dz
eTf0(w)+T 2/3f1(w;u1)+T 1/3f2(w;u1,s1)

eTf0(z)+T 2/3f1(z;u2)+T 1/3f2(z;u2,s2)

w − 1

(z − 1)w

1

w − z
(5.52)with

f0(w) = (π(θ) + θ)
(
Rw + L

w

)
+ (π(θ) − θ) ln

(
1−w

w

)
− σ0 ln(w),

f1(w; ui) = −
[
(π′(θ) + 1)

(
Rw + L

w

)
+ (π′(θ) − 1) ln

(
1−w

w

)
− σ1 ln(w)

]
ui,

f2(w; ui, si) =
[

1
2
π′′(θ)

(
Rw + L

w
+ ln

(
1−w

w

))
− σ2

]
u2

i + si ln(w). (5.53)The parameter µ is a
tually the position of the double 
riti
al point of f0(w). Seriesexpansions gives
f0(w) = f0(µ) − κ0

3
(w − µ)3 + O((w − µ)4),

f1(w; u1) = f1(µ; u1) − u1κ1(w − µ)2 + O((w − µ)3), (5.54)
f2(w; u1, s1) = f2(µ; u1, s1) −

(
κ2

1u
2
1

κ0

− s1

µ

)
(w − µ) + O((w − µ)2).The terms f1(µ; ui) and f2(µ; ui, si) 
an
el out by an appropriate 
onjugation of thekernel (5.52). We denote by ≃ an equality up to 
onjugation. Thus, asymptoti
ally,(5.52) goes to

T 1/3

µ(2πi)2

∮

Γ0

dw

∮

Γ1

dz

w − z

e−κ0(w−µ)3T/3−u1κ1(w−µ)2T 2/3+T 1/3(w−µ)(s1/µ−κ2
1u2

1/κ0)

e−κ0(z−µ)3T/3−u2κ1(z−µ)2T 2/3+T 1/3(z−µ)(s2/µ−κ2
1u2

2/κ0)
(5.55)35



With the 
hange of variable (w − µ)(κ0T )1/3 = W , (z − µ)(κ0T )1/3 = Z, we thenobtain
(5.55) =

κ
−1/3
0

µ(2πi)2

∫
dW

∫
dZ

1

W − Z

e
1
3
Z3+u2Z2κ1/κ

2/3
0 −Z(s2/µ−κ2

1u2
2/κ0)/κ

1/3
0

e
1
3
W 3+u1W 2κ1/κ

2/3
0 −W (s1/µ−κ2

1u2
1/κ0)/κ

1/3
0

. (5.56)Let us denote by S̃v = µκ
1/3
0 and S̃h = κ−1

1 κ
2/3
0 the verti
al and horizontal s
aling.Then

(5.56) = S̃−1
v KA2(S̃

−1
h u1, S̃

−1
v s1; S̃

−1
h u2, S̃

−1
v s2) (5.57)where KA2 is the extended Airy kernel asso
iated to the Airy2 pro
ess. An asymp-toti
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