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Abstract. A general class of nonlinear infinite dimensional optimization problems is con-
sidered that covers semi-linear elliptic control problems with distributed control as well as
boundary control. Moreover, pointwise inequality constraints on the control and the state
are incorporated. The general optimization problem is perturbed by a certain class of per-
turbations, and we establish convergence of local solutions of the perturbed problems to a
local solution of the unperturbed optimal control problem. These class of perturbations in-
clude finite element discretization as well as data perturbation such that the theory implies
convergence of finite element approximation and stability w.r.t. noisy data.

1. Introduction

In this paper, we develop a stability analysis for a general class of optimization problems that
is suitable for the numerical analysis of nonlinear state-constrained optimal control problems.
Optimization problems with pointwise inequality constraints on the state are known to be
theoretically and numerically challenging due to the low regularity of the optimal solution
(cf. for instance Casas [7] or Alibert and Raymond [2]). Nevertheless, in the recent past, there
has been some progress concerning the numerical approximation of linear-quadratic problems
with pointwise state constraints (see Deckelnick and Hinze [14, 15, 16], Deckelnick, Günther
and Hinze [17], and Meyer [26]). However, less is known in case of nonlinear problems. To
the authors’ knowledge, the only contribution in this field has been performed by Casas and
Mateos in [8]. They considered a full finite element discretization of a semi-linear state-
constrained optimal control problem and proved convergence of global optima of the discrete
problems to a global optimum of the infinite dimensional problem. However, it is well known
that, in general, optimization algorithms only compute locally optimal solutions. Therefore,
we also address the convergence to local optima in this paper. To cope with different types
of control problems, we consider a general class of optimization problems, given by

(PG)

 minimize f(u) := ϕ(S(u)) +
α

2
‖u‖2

H

subject to u ∈ C and G(u) ∈ K ⊂ Y.

where H is a real Hilbert space, Y a real Banach space, G : H → Y a continuous operator,
and C ⊂ H and K ⊂ Y are closed and convex subsets. For a more precise definition of
the quantities in (PG), see Section 2 below. The second constraint, i.e. G(u) ∈ K, may
be regarded as state constraint in this context. In the course of the paper, we will see
that semi-linear elliptic problems with distributed control in two and three dimensions and
boundary control in two dimensions are covered by (PG). The discussion of boundary controls
in three dimensions is much more delicate, but is in parts also included in the general theory
(see Section 3.2). Since we aim to analyze different discretization schemes as well as other
perturbations of the problem, we consider a general class of perturbations that is measured
by some parameter h which represents for instance the mesh size in case of discretization or
the noise level of a certain perturbation of problem data. As already indicated, we focus on
the convergence to local optima, more precisely we answer the following question:

Consider a fixed unique local optimum of (PG), denoted by u∗, and a certain perturbation of
(PG) with associated perturbation parameter h measuring in some sense the magnitude of the
perturbation. Under which conditions on the perturbation, does a sequence of local optima of
the perturbed problems exist which converges to u∗ if the perturbation parameter h tends to
zero?

We will see that the required conditions allow for a wide class of perturbations including:
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• Semi-discretization in the spirit of [14]
• Full discretization with different ansatz functions for the control
• Perturbation of the problem data
• Lavrentiev type regularization of the state constraints according to [28].

Hence, the presented analysis implies convergence of finite element schemes as well as stability
w.r.t. certain noisy data. The latter issue was already addressed by Griesse in [20]. However,
here we allow for data perturbations that in parts differ from the ones considered in [20].

The paper is organized as follows: After introducing the notation, we present the general class
of optimization problems in Section 2. Its discussion is based on a Slater type assumption
in combination with a technique developed for the numerical analysis of control-constrained
semi-linear problems by Casas and Tröltzsch in [11]. Section 3 is then concerned with different
specific settings covered by the general theory. It is divided into two parts, the first addressing
distributed controls, while the second part deals with boundary controls. In Section 4, we
present a numerical example that confirms the theory in the linear-quadratic case.

1.1. Notation. Let us introduce the notation used throughout the paper. If X is a linear
normed function space, then we notate ‖ · ‖X for a standard norm used in X. Moreover,
the dual of X is denoted by X∗, and for the associated dual pairing, we write 〈 . , . 〉X,X∗ .
If it is obvious in which spaces the respective dual pairing is considered, then the subscript
occasionally is neglected. Now, given another linear normed space Y , the space of all bounded
linear operators from X to Y is denoted by L(X, Y ). For an arbitrary A ∈ L(X, Y ), the
associated adjoint operator is denoted by A∗ ∈ L(Y ∗, X∗). If X is continuously embedded in

Y , we write X ↪→ Y and, if the embedding is in addition dense, we write X
d
↪→ Y . Given

an optimal control problem, we call a function feasible for this problem if it satisfies the
constraints of the problem, i.e., for instance in case of (PG), u ∈ H is feasible if u ∈ C and
G(u) ∈ K hold true. Finally, throughout the paper, c denotes a generic constant, while ε is
an arbitrary small number greater zero.

2. A general class of state-constrained problems

Let us recall the general class of optimization problems:

(PG)

 minimize f(u) := ϕ(S(u)) +
α

2
‖u‖2

H

subject to u ∈ C and G(u) ∈ K.

The constraint G(u) ∈ K will be referred to as state constraint in all what follows, whereas
u ∈ C is called control-constraint. For the discussion of this problem, we rely on the following
conditions:

Assumption A1. The control space H is a real Hilbert space, and the set C is a closed and
convex subset of H. Moreover, the operator G is continuous from H to a real Banach space Y .
The set K is a closed and convex subset of Y , and there exists a u ∈ C such that G(u) ∈ K.
Furthermore, S is a continuous operator from H into a Banach Space W where the latter is
continuously embedded in another Banach space V . The functional ϕ : V → R is continuous
and moreover, if considered with domain in W , is continuously Fréchet-differentiable. In
addition to that, un ⇀ u in H implies G(un) → G(u) in Y , and the same holds for S when
considered with range in V , i.e. un ⇀ u in H ensures S(un) → S(u) in V . Finally, there is
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a constant c > −∞ with

c ≤ inf
u∈C

G(u)∈K

f(u),
(2.1)

and α is a positive real number.

In the following, S is sometimes considered as operator with range in V , for simplicity also
denoted by S. Before we introduce a perturbation of (PG), let us discuss (PG) in more details.

It is well known that Assumption A1 implies the existence of a globally optimal solution.
However, due to the nonlinearity of the problem, one cannot expect the uniqueness of the
optimal solution. For this reason, let us define the notion of unique local solutions to (PG):

Definition 2.1. A control u∗ ∈ C, satisfying G(u∗) ∈ K, is called local optimum for (PG) if
there exists a real number ε > 0 such that

f(u) ≥ f(u∗) ∀u ∈ C with G(u) ∈ K, ‖u− u∗‖H < ε.

If the inequality is strict for all u 6= u∗, then u∗ is a unique locally optimal solution.

Notice that for instance a quadratic growth condition of the form

f(u) = f(u∗) + κ ‖u− u∗‖2
H , κ > 0, (2.2)

ensures uniqueness of a local optimum. Such a growth condition holds true if second-order
sufficient conditions are satisfied by the local optimum (see (SSC) below). In all what follows,
let us consider a fixed unique local optimum u∗. For the subsequent discussion, we require
the following assumption to be satisfied by u∗:

Assumption A2. Let U be a real reflexive Banach space which is densely embedded in H,
and denote the associated dual space with respect to the inner product in H by U∗. There
is a neighborhood U(u∗) in U∗, where G can be extended to an operator from U∗ to Y , for
simplicity also denoted by G. Moreover, G is twice continuously Fréchet-differentiable from
U∗ to Y in U(u∗). Similarly, also S can be extended to an operator from U∗ to W in U(u∗),
which is once continuously Fréchet-differentiable.

Note that the dense embedding of U in H immediately implies H ↪→ U∗. Hence, Assumption
A2 implies that G and S are continuously Fréchet-differentiable from H to Y and W , respec-
tively, at u ∈ H if ‖u− u∗‖H is sufficiently small. Next let us define the projection operator
of elements in H on the set C.

Assumption A3. The operator Pc : H → C, defined by

Pc(v) := arg min
u∈C

{1

2
‖u− v‖2

H

}
,

maps U to U .

Now, assume that the interior of K is nonempty. Hence, the supporting hyperplane theorem
implies that it can be expressed as

intK =
⋂

η∈Y ∗

{y ∈ Y | 〈η , y〉Y ∗,Y < g(η)},

where g : Y ∗ → R denotes the support functional, i.e. g(η) = supy∈K〈η , y〉Y ∗,Y (cf. for
instance [25, Section 5.13]). The non-emptiness of K is also part of the following linearized
Slater-condition:
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Assumption A4. A function û ∈ U ∩ C exists such that

G(u∗) +G′(u∗)(û− u∗) ∈ intK.

Thus, there exists a τ > 0 with

〈η , G(u∗) +G′(u∗)(û− u∗)〉Y ∗,Y ≤ g(η)− τ

for all η ∈ Y ∗.

According to Assumption A2, f is continuously Fréchet differentiable from H to R at u∗.
Together with the Slater condition, this allows to derive first-order necessary optimality con-
ditions by means of the generalized Karush-Kuhn-Tucker theory (cf. for instance Zowe and
Kurcyusz [33]). According to Casas [7, Theorem 5.2], the corresponding optimality system is
given by the following

Theorem 2.2. Let u∗ be the optimal solution to (PG). Then, there exists a Lagrange multi-
plier µ ∈ Y ∗ such that(

αu∗ + S ′(u∗)∗ϕ′(S(u∗)) +G′(u∗)∗µ , u− u∗
)

H
≥ 0 ∀u ∈ C (2.3)

〈µ , y −G(u∗)〉Y ∗,Y ≤ 0 ∀ y ∈ K, (2.4)

where S and G are considered as operators with domain in H.

Let us define p = S ′(u∗)∗ϕ′(S u∗) +G′(u∗)∗µ ∈ H. Then (2.3) implies

u∗ = arg min
u∈C

{1

2
‖u− (−α−1p)‖2

H

}
= Pc(−α−1p)

Thanks to the Fréchet-differentiability of S and G at u∗ from U∗ to W and Y , respectively,
we have p ∈ U and hence, Assumption A3 yields

u∗ ∈ U. (2.5)

Clearly, Theorem 2.2 is not sufficient for local optimality. It is well known that the following
conditions ensure local optimality of solutions satisfying (2.3) and (2.4):

f ′′(u∗)h2 > 0 ∀ h ∈ C(u∗), (SSC)

where C(u∗) denotes the critical cone defined by

C(u∗) := {h ∈ H |h = u− u∗, u ∈ C, G(u) ∈ K}.

Observe that (SSC) requires that S and ϕ are twice continuously Fréchet-differentiable in
their respective spaces which is not covered by Assumptions A1 and A2. Nevertheless this
additional assumption is not necessary for the subsequent discussion. Notice further that
C(u∗) can be shrunken by introducing strongly active sets, cf. for instance [10] and the
references cited therein. As stated above, conditions (SSC) guarantee a quadratic growth
condition of the form (2.2) so that they also guarantee unique local optimality.

Next we introduce a perturbation of (PG). To that end, let a positive parameter h ∈ R be
given. Associated to h, we consider a subspace Uh of H (not necessarily a proper subspace)
and define the projection operator Πh : H → Uh ∩ C for an arbitrary u ∈ H by

Πh(u) = arg min
uh∈Uh∩C

‖u− uh‖2
H . (2.6)
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Given Uh, the perturbed optimization problem is defined by

(PGh)

 minimize fh(u) := ϕ(Sh(u)) +
α

2
‖u‖2

H

subject to u ∈ Uh ∩ C and Gh(u) ∈ K
with perturbations of S and G, respectively, denoted by Sh and Gh. Problem (PGh) should
fulfill the following conditions:

Assumption A5. For every h > 0, the operators Sh : H → Vh ⊆ V and Gh : H → Yh ⊆ Y
are continuous in the respective spaces. Furthermore, a function δ : R+ → R+ exists with
δ(h) → 0 as h ↓ 0 and

‖G(u)−Gh(u)‖Y ≤ δ(h) ‖u‖H and ‖S(u)− Sh(u)‖V ≤ δ(h) ‖u‖H (2.7)

for all u ∈ C. Moreover, the space Uh ⊂ H is not empty, closed, and convex. The projection
operator, defined by (2.6), satisfies

‖Πh(u
∗)− u∗‖U∗ ≤ c δ(h) ‖u∗‖U , ‖Πh(û)− û‖U∗ ≤ c δ(h) ‖û‖U

and ‖Πh(u
∗)− u∗‖H → 0 , ‖Πh(û)− û‖H → 0 , as h ↓ 0,

(2.8)

where u∗ is the fixed locally optimal solution of (PG) and û is the Slater point from Assumption
A4.

To ensure the existence of solutions to (PGh), we require the following

Assumption A6. Let {un} ⊂ H be an arbitrary sequence {un} ⊂ H converging weakly in H
to u. Then, for every h > 0, ϕ(Sh(un)) converges to ϕ(Sh(u)), i.e.

un ⇀ u in H ⇒ ϕ(Sh(un)) → ϕ(Sh(u)) in R, as n→∞. (2.9)

Furthermore, if in addition Gh(un) ∈ K holds for every n ∈ N, then Gh(u) ∈ K follows, i.e.,
for every h > 0, we have

un ⇀ u in H and Gh(un) ∈ K ∀n ∈ N ⇒ Gh(u) ∈ K. (2.10)

Finally, there exists a constant cp > −∞ such that

cp ≤ inf
u∈Uh∩C
Gh(u)∈K

fh(u),
(2.11)

holds for every h > 0.

In the following, we will see that Assumptions A4 and A5 imply the existence of a feasible
point for (PGh), provided h is chosen small enough (cf. Lemma 2.4 below). Consequently,
Assumption A6 guarantees the existence of at least one (global) solution to (PGh), cf. Remark
2.5. Analogously to Definition 2.1, we define local optima for (PGh).

Definition 2.3. A discrete control u∗h ∈ Uh ∩ C, satisfying Gh(u
∗
h) ∈ K, is a local optimum

for (PGh) if there exists a real number ε̃ > 0 such that

fh(uh) ≥ fh(u
∗
h) ∀uh ∈ Uh ∩ C with Gh(uh) ∈ K, ‖uh − u∗h‖H < ε̃.

Now, let us consider the following auxiliary problem:

(PGh,r)

 minimize fh(u) := ϕ(Sh(u)) +
α

2
‖u‖2

H

subject to u ∈ Uh ∩ C ∩Br(u
∗) and Gh(u) ∈ K,
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where Br(u
∗) denotes a ball of radius r around u∗ in H. Here, r satisfies

r < ε,

where ε denotes the parameter that defines the neighborhood where u∗ is locally optimal (see
Definition 2.1). Later on, we will see that there is at least one (global) solution to (PGh,r)
(see Remark 2.5 below). The overall proof of convergence now proceeds as follows: First, we
show that, for h small enough, a convex linear combination of the local minimizer u∗ and the
Slater point û is feasible for (PGh,r). Afterwards, it is shown that the weak limit of global
solutions of (PGh,r), denoted by ũ, is feasible for the original problem (PG). Together with
the uniqueness of the local solution u∗ in the ε-neighborhood, this two-way feasibility gives
u∗ = ũ. Finally, we prove that the global solutions of (PGh,r) are local minimizers of (PGh).
Throughout this section, Assumptions A1–A6 are supposed to be satisfied.

Lemma 2.4. There exist h0 > 0 and γ > 0 such that the sequence {vh}, defined by

vh := Πh(u
∗) + γ δ(h)(Πh(û)− Πh(u

∗)),

is feasible for (PGh,r) for all h ≤ h0.

Proof. First, we show that vh fulfills the control-constraints. To this end, choose a fixed, but
arbitrary γ > 0. Thanks to (2.8), i.e. ‖Πh(u

∗) − u∗‖H → 0 and ‖Πh(û) − û‖H → 0 as h ↓ 0,
there is an h1 such that, for all h ≤ h1, ‖vh − u∗‖H ≤ r. Moreover, if h1 is chosen sufficiently
small, then γ δ(h) ≤ 1, and consequently vh ∈ Uh ∩ C by definition of Πh and the convexity
of Uh and C. It remains to verify the state-constraint. Recall that g denotes the support
functional of K and define yγ by yγ := G(u∗) + γ δ(h)G′(u∗)(û− u∗). Then, the feasibility of
u∗ and the linearized Slater condition (cf. Assumption A4) imply for an arbitrary η ∈ Y ∗

〈η , yγ〉Y ∗,Y ≤ g(η)− γ δ(h) τ. (2.12)

Now, set v := u∗ + γ δ(h)(û− u∗) so that vh → v in H because of (2.8). Due to the Fréchet-
differentiability of G in U(u∗) (see Assumption A2), there exist β, θ, ϑ ∈ [0, 1] such that

‖Gh(vh)− yγ‖Y

≤ ‖Gh(vh)−G(vh)‖Y + ‖G(vh)−G(v)‖Y

+ γ δ(h)

1∫
0

‖G′(u∗ + θ γ δ(h)(û− u∗))−G′(u∗)‖L(U∗,Y ) dθ ‖û− u∗‖U∗

≤ δ(h) ‖vh‖H +

1∫
0

‖G′(v + β(vh − v))‖L(U∗,Y ) dβ ‖vh − v‖U∗

+
(
γ δ(h)

)2

1∫
0

θ∫
0

‖G′′(u∗ + ϑ γ δ(h)(û− u∗))‖L(L(U∗,Y ),U∗) dϑ dθ ‖û− u∗‖2
U∗ ,

where we also used (2.7). Notice that, thanks to δ(h) → 0 for h ↓ 0, we have u∗+ϑ γ δ(h)(û−
u∗) ∈ U(u∗) and v + β(vh − v) ∈ U(u∗) for all ϑ, β ∈ [0, 1], if h is sufficiently small. Thus,
the continuous Fréchet-differentiability of G from U∗ to Y in these points is guaranteed by
Assumption A2 giving in turn G′(v+β(vh−v)) → G′(u∗) in L(U∗, Y ) and G′′(u∗+ϑ γ δ(h)(û−
u∗)) → G′′(u∗) in L(L(U∗, Y ), U∗) as h ↓ 0. Therefore, h2 > 0 and c > 0 exist such that, for
all h ≤ h2,

‖G′(v + β(vh − v))‖L(U∗,Y ) ≤ c , ‖G′′(u∗ + θ1 θ2 γ δ(h)(û− u∗))‖L(L(U∗,Y ),U∗) ≤ c.
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Moreover, (2.8) implies

‖vh − v‖U∗ ≤
(
1− γ δ(h)

)
‖Πh(u

∗)− u∗‖U∗ + γ δ(h) ‖Πh(û)− û‖U∗

≤ c δ(h)
((

1− γ δ(h)
)
‖u∗‖U + γ δ(h) ‖û‖U

)
≤ c

(
δ(h) + γ δ(h)2

)
,

where we used u∗, û ∈ U ∩ C for the last estimate (cf. (2.5)). Thus, thanks to vh ∈ C for all
h ≤ h1, we end up with

‖Gh(vh)− yγ‖Y ≤ c
(
δ(h) + γ δ(h)2 + γ2 δ(h)2

)
. (2.13)

For the rest of the proof, we argue by contradiction. To that end, assume that Gh(vh) /∈ K
for all h > 0. Then, by the minimum norm duality, the distance between Gh(vh) and K is
given by

d(Gh(vh), K) = max
‖η‖Y ∗=1

{
〈η , Gh(vh)〉Y ∗,Y − g(η)

}
≤ max

‖η‖Y ∗=1

{
〈η , yγ〉Y ∗,Y + ‖η‖Y ∗ ‖Gh(vh)− yγ‖Y − g(η)

}
≤ −δ(h)

[
γτ − c

(
1 + (γ + γ2)δ(h)

)]
,

where we used (2.12) and (2.13) for the last estimate. Since γ was arbitrary, we are allowed
to take γ ≥ 2 c/τ . Then, due to δ(h) → 0 for h ↓ 0, there is an h3 such that (γ+ γ2)δ(h) < 1,
h ≤ h3, giving in turn that d(Gh(vh), K) < 0 for all h ≤ h3. Consequently, we have Gh(vh) ∈
K and vh ∈ Uh ∩ C ∩Br(u

∗) for all h ≤ h0 := min(h1, h2, h3). �

Since vh is a feasible point for (PGh,r), Assumption A6 implies

Remark 2.5. If h > 0 is small enough, then there is at least one global solution of (PGh,r),
and naturally also for (PGh).

In all what follows, let us consider an arbitrary global optimum of (PGh,r), denoted by u∗h,r.
Due to u∗h,r ∈ Br(u

∗), the sequence {u∗h,r}, h ↓ 0, is uniformly bounded in H. The reflexivity of
H then gives the existence of subsequence converging weakly in H to a weak limit ũ ∈ U∩C∩
Br(u

∗). Everything what follows is also valid for any other weakly converging subsequence.
Thus, a known argument yields that w.l.o.g. u∗h,r ⇀ ũ as h ↓ 0.

Lemma 2.6. The weak limit ũ of {u∗h,r} is feasible for (PG).

Proof. First, since C is convex and closed, and thus weakly closed, we have ũ ∈ C. Fur-
thermore, Assumption A2 ensures that u∗h,r ⇀ ũ in H implies G(u∗h,r) → G(ũ) in Y , and
consequently

G(u∗h,r) → G(ũ) in Y as h ↓ 0.

Thus, for h ↓ 0, one finds

‖Gh(u
∗
h,r)−G(ũ)‖Y ≤ ‖G(u∗h,r)−G(ũ)‖Y + ‖Gh(u

∗
h,r)−G(u∗h,r)‖Y

≤ ‖G(u∗h,r)−G(ũ)‖Y + δ(h) ‖u∗h,r‖H → 0,

where we used (2.7) and the uniform boundedness of {u∗h,r} in H because of u∗h,r ∈ Br(u
∗).

Because of Gh(u
∗
h,r) ∈ K for all h > 0, this implies G(ũ) ∈ K, since K is assumed to be closed

(cf. Assumption A1). �

Lemma 2.7. The sequence {u∗h,r} converges strongly in H to u∗ as h ↓ 0.
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Proof. Applying again Assumption A2, the same arguments as in the proof of Lemma 2.6
yield

‖Sh(u
∗
h,r)− S(ũ)‖V ≤ ‖S(u∗h,r)− S(ũ)‖V + ‖Sh(u

∗
h,r)− S(u∗h,r)‖V

≤ ‖S(u∗h,r)− S(ũ)‖V + δ(h) ‖u∗h,r‖H → 0,
(2.14)

Moreover, the optimality of u∗h,r clearly guarantees the existence of a constant c such that,
together with (2.1) in Assumption A1, c ≤ fh(u

∗
h,r) ≤ c. Hence, the continuity of ϕ from V

to R (cf. Assumption A1), allows to continue with

lim inf
h↓0

fh(u
∗
h,r) ≥ lim

h↓0
ϕ(Sh(u

∗
h,r)) + lim inf

h↓0

α

2
‖u∗h,r‖2

H

≥ ϕ(S(ũ)) +
α

2
‖ũ‖2

H = f(ũ)
(2.15)

thanks to the weakly lower semicontinuity of ‖ . ‖H . Furthermore, the feasibility of vh for
(PGh,r) by Lemma 2.4 and the global optimality of u∗h,r for (PGh,r) give

fh(u
∗
h,r) ≤ fh(vh) ∀ h ≤ h0.

Hence, (2.8), i.e. vh → u∗ in H, implies lim suph↓0 fh(u
∗
h,r) ≤ f(u∗). On the other hand, since

Br(u
∗) is clearly closed and convex, we have ũ ∈ Br(u

∗) so that ‖ũ − u∗‖H ≤ r < ε. Hence,
the local optimality of u∗ and the feasibility of ũ by Lemma 2.6 guarantee

f(u∗) ≤ f(ũ) ≤ lim inf
h↓0

fh(u
∗
h,r) ≤ lim sup

h↓0
fh(u

∗
h,r) ≤ f(u∗). (2.16)

Since u∗ is the unique local optimum, this implies ũ = u∗, and thus weak convergence of
{u∗h,r} to u∗ by Lemma 2.6. It remains to verify the strong convergence. To this end, we use
fh(u

∗
h,r) → f(u∗), which follows from (2.16). The definition of fh yields

‖u∗h,r‖2
H =

2

α

(
fh(u

∗
h,r)− ϕ(Sh(u

∗
h,r))

)
. (2.17)

Due to (2.14), the right hand side (2.17) converges to the value at u∗. Thus, we have

lim
h↓0

‖u∗h,r‖2
H =

2

α

(
f(u∗)− ϕ(S u∗)

)
= ‖u∗‖2

H ,

and consequently ‖u∗h,r‖H → ‖u∗‖H . Together with the weak convergence of {u∗h,r}, this norm
convergence yields strong convergence, i.e. u∗h,r → u∗. �

Thus, we have shown that, for every unique local solution u∗, a sequence of global solutions
of (PGh,r) exists that converge strongly to u∗. It remains to verify that global solutions of
(PGh,r) represent local solutions of (PGh), which is stated by the following theorem that
represents our main result:

Theorem 2.8. Let u∗ be a unique locally optimal solution according to Definition 2.1 and
suppose that Assumptions A1–A6 hold at u∗. Then, there exists a sequence of local optimal
solutions to (PGh), denoted by {u∗h}, that converges strongly in H to u∗, i.e.

u∗h → u∗ as h ↓ 0.

Proof. Take an arbitrary uh ∈ Uh ∩ C with Gh(uh) ∈ K and ‖uh − u∗h,r‖H < r/2. Then,
Lemma 2.7 yields that, for sufficiently small h,

‖uh − u∗‖H ≤ ‖uh − u∗h,r‖H + ‖u∗h,r − u∗‖H <
r

2
+
r

2
= r,
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giving in turn uh ∈ Br(u
∗), i.e. uh is feasible for (PGh,r). Since uh was chosen arbitrary, the

(global) optimality of u∗h,r for (PGh,r) then ensures

fh(uh) ≥ fh(u
∗
h,r) ∀uh ∈ Uh ∩ C with Gh(uh) ∈ K, ‖uh − u∗h,r‖H < r/2,

which is equivalent to local optimality according to Definition 2.3. Thus, there is at least one
sequence of local solutions of (PGh) that coincides with {u∗h,r} for sufficiently small h and
therefore converges to u∗. �

Remark 2.9. The purely state-constrained case without further control-constraints is also
covered by the above theory. In this case, we have C = H and the uniform boundedness of
{u∗h,r} in H, needed for the proofs of Lemma 2.6 and 2.7, then follows by a standard argument

from the optimality of u∗h,r and the Tikhonov regularization term α/2 ‖u‖2
H within the objective

functional.

Remark 2.10. It is straight forward to see that the presented theory also applies to pertur-
bations that satisfy

‖G(u)−Gh(u)‖Y ≤ δ(h) and ‖S(u)− Sh(u)‖V ≤ δ(h)

for all u ∈ C with δ(h) independent of u instead of (2.7).

Now suppose that (PG) admits unique (globally) optimal solution, and the same holds for
(PGh) for every h. Then Theorem 2.8 immediately implies:

Corollary 2.11. If (PG) and (PGh) admit a unique global optimum, then Assumptions A1–
A6 ensure the strong convergence in H of the solutions of (PGh) to the solution of (PG) as
h ↓ 0.

Clearly, if G and S are linear operators and ϕ is convex, then, due to α > 0, (PG) is of course
strictly convex giving in turn that it admits a unique (globally) optimal solution u∗. Taking
into account that Gh and Sh arise from discretizations of G and S or possible perturbations
of given data (cf. Section 3), it is natural to assume that Gh and Sh are linear as well. Hence,
also (PGh) admits a unique optimal solution u∗h and consequently:

Corollary 2.12. Assume that, in addition to Assumption A1, G, Gh, S, and Sh are linear
operators and ϕ is a convex functional. Moreover, G and S are continuous as operators from
U∗ to Y and V , respectively, and un ⇀ u in H implies Gun → Gu in Y and the same
holds for S such that Assumption A2 is fulfilled. Furthermore, suppose that Assumption A5
is satisfied and that there is a point û ∈ U ∩ C with G û ∈ intK (which implies Assumption
A4 in the linear case). Then, the sequence of unique solutions of (PGh) converges strongly to
the solution of (PG) as h ↓ 0.

3. Specific settings

In the subsequent, we present some examples for optimal control problems covered by (PG).
Afore let us consider the following general semi-linear PDE

−∆ y(x) + %(x) y(x) + d(x, y(x)) = f(x) a.e. in Ω

∂ny(x) + b(x, y(x)) = g(x) a.e. on Γ.
(3.1)

In all what follows, the dependency on x is frequently neglected such that we write %, d(y),
and b(y) instead of %(x), d(x, y(x)), and b(x, y(x)). For the discussion of this equation, we
rely on the following conditions on the quantities in (3.1).
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Assumption A7. The domain Ω ⊂ Rn, n ≤ 3, is a bounded Lipschitz domain. The function
% ∈ L∞(Ω) is non-negative and greater than zero on a set of positive measure. For a fixed
y, the functions d(x, y) : Ω × R → R and b(x, y) : Γ × R → R are measurable w.r.t. x in
Ω and Γ, respectively. Furthermore, they are supposed to be twice continuously differentiable
and monotone increasing w.r.t. y for almost all x in Ω and Γ. Moreover, it holds

|d(x, 0)|+ |dy(x, 0)|+ |dyy(x, 0)| ≤ K

|dyy(x, y2)− dyy(x, y1)| ≤ L(M)|y2 − y1|
(3.2)

for almost all x ∈ Ω and all y1, y2 ∈ [−M,M ], and b fulfills an analogous condition.

The discussion of (3.1) is well known and standard (see for instance Casas et al. [9] or Casas
and Mateos [8]). However, for convenience of the reader, we add some details on the underlying
analysis in Appendix 5.1 at the end of this paper. Based on these results, the control-to-state
operator is introduced, which maps f and g to y and is denoted by G : Lq(Ω) × Ls(Γ) →
W 1,σ′(Ω) with q > n/2, s > n − 1, and σ′ > n. Notice that the assumptions on d and b can
be weakened, see e.g. [9] for details. Nevertheless, to keep the discussion concise, we do not
consider the case as general as possible here.

3.1. Elliptic problems with distributed control. We start with the following semi-linear
elliptic problem where the control acts in the domain Ω:

(Pd)



minimize J(y, u) :=

∫
Ω

ψ(x, y(x)) dx+
α

2

∫
Ω

u(x)2 dx

subject to −∆ y + % y + d(y) = u in Ω

∂ny + b(y) = 0 on Γ

and ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω

Assumption A8. In addition to Assumption A7, the function ψ(x, y) : Ω × R → R is
measurable w.r.t. x for every fixed y ∈ R. Moreover, it is continuously differentiable for
a.a. x ∈ Ω and satisfies a condition analogous to (3.2), i.e.

|ψ(x, 0)|+ |ψy(x, 0)| ≤ K, |ψy(x, y2)− ψy(x, y1)| ≤ L(M)|y2 − y1|

for almost all x ∈ Ω and all y1, y2 ∈ [−M,M ]. Furthermore, ya and yb are functions in C(Ω̄)
satisfying ya(x) < yb(x) for all x ∈ Ω̄. The bounds ua and ub are real numbers with ub ≥ ua.
Finally, α is a positive real number.

To cope with the theory of Section 2, we set

H = L2(Ω), U = W 1,σ(Ω), Y = C(Ω̄), V = W = L∞(Ω) (3.3)

with σ < n/(n − 1). Notice that W 1,σ(Ω)
d
↪→ L2(Ω) since 2 > n/2 for n = 2, 3. Moreover,

corresponding to the general framework, the operator G is defined by G(u) = Ec G(u, 0),
where Ec denotes the embedding operator from W 1,σ′(Ω) to Y = C(Ω̄) and G is the solution
operator to (3.1) defined above. In addition, we set S(u) = E∞ G(u, 0), where E∞ denotes the
embedding operator from W 1,σ′(Ω) in L∞(Ω). Hence, thanks to Theorems 5.3 and 5.5 and
Lemma 5.6 (see Appendix 5.1), the conditions for G and S in Assumption A2 are fulfilled.
Moreover, due to our assumptions on ψ, a known argument implies that ϕ( . ) =

∫
Ω
ψ(x, . ) dx

is continuously Fréchet-differentiable from L∞(Ω) to R so that it satisfies the conditions in
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Assumption A1. In addition, it is easy to see that the hypothesis on ψ in Assumption A8
also yield (2.1). With regard to the state-constraint in (Pd), we set

K = {y ∈ C(Ω̄) | ya(x) ≤ y(x) ≤ yb(x) ∀x ∈ Ω̄} (3.4)

such that K is closed, convex, and, due to ya(x) < yb(x) for all x, also non-empty with
non-empty interior. Thus, there is some hope that the linearized Slater-condition in Assump-
tion A4 can be fulfilled. Moreover, the set C is given by C = {u ∈ L2(Ω) |ua ≤ u(x) ≤
ub a.e. in Ω} and thus, closed an convex. Furthermore, the operator Pc of Assumption A3
takes the form

Pc(v)(x) =

ua, v(x) < ua

v(x), v(x) ∈ [ua, ub]
ub, v(x) > ub.

To see that Assumption A3 is fulfilled, we define Ωi := {x ∈ Ω | v(x) ∈ [ua, ub]}, Ωa := {x ∈
Ω | v(x) < ua}, and Ωb := {x ∈ Ω | v(x) > ub}. Then, we obtain

‖Pc(v)‖W 1,σ(Ω) =
(
‖v‖σ

W 1,σ(Ωi)
+ ‖ua‖σ

W 1,σ(Ωa) + ‖ub‖σ
W 1,σ(Ωb)

)1/σ

≤
(
‖v‖σ

W 1,σ(Ω) + ‖ua‖σ
W 1,σ(Ω) + ‖ub‖σ

W 1,σ(Ω)

)1/σ
,

(3.5)

such that Pc indeed maps W 1,σ(Ω) to W 1,σ(Ω). Consequently, Assumptions A1, A2, and A3
are fulfilled and, if in addition the linearized Slater condition in Assumption A4 holds true,
then (Pd) fits into the setting of (PG). However, since the unknown local optimal solution
is contained in the Slater condition, it is in general not possible to verify Assumption A4 a
priori. Nevertheless, as known from first-order theory, it is satisfied in many cases.

Analogously, one can verify that problem (Pd) with homogeneous Dirichlet boundary condi-
tions is also covered by (PG), i.e. (Pd) with the following state equation

−∆ y + % y + d(y) = u in Ω

y = 0 on Γ.
(3.6)

In this case, an analogon to Lemma 5.1 in Appendix 5.1 follows again from Gröger [21] for
n = 2 and from Jerison and Kenig [24] in the three dimensional case. Moreover, it is straight
forward to see that the analysis for (3.1), i.e. in particular Theorem 5.3 and Lemma 5.6
(cf. Appendix 5.1), can be transfered to this case. The corresponding solution operator of
(3.6) is again denoted by G : u 7→ y. Now, in view of the homogeneous Dirichlet boundary
conditions, it is meaningful to require the state constraints on a subset of Ω, i.e. ya(x) ≤
y(x) ≤ yb(x) a.e. in D ⊂ Ω. Here, we choose the same setting as above except

Y = C(D̄), G = χD Ec G : L2(Ω) → C(D̄),

where χD denotes the restriction operator onD. It is straight forward to see that this modified
problem is also of class (PG). Finally we observe that, due to L2(Ω) ↪→ W 1,σ(Ω)∗ and Remark
2.9, the purely state-constrained case, where ua = −∞ and ub = ∞, is also covered by (PG).
Now, we turn to possible perturbations of (Pd) fulfilling the conditions in Assumption A5.

Semi-discrete approach. First let us consider the case where we do not discretize the control
explicitely, i.e. we set Uh ≡ U = L2(Ω) so that (2.8) is trivially satisfies. It remains to verify
the conditions on the discretization of G and S in Assumptions A5 and A6. To simplify the
argumentation concerning the finite element discretization we pose
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Assumption A9. The Ω is convex domain with polygonal (n = 2) or polyhedral (n = 3)
boundary. Moreover, there is a family of regular triangulations {Th} of Ω with mesh size h
that satisfies

⋃
T∈Th

T̄ = Ω̄.

We note that slight modifications of the subsequent argumentation also apply to the more
general case of domains Ω with boundary Γ of class C1,1.

States y are discretized by

yh ∈ Yh := {y ∈ C(Ω̄) | y|T ∈ Pl ∀ T ∈ Th} for some l ∈ N,

where Pk(T ) denotes the set of all polynomials on T of order less or equal k. Then, the
discrete state yh ∈ Yh associated to u ∈ L2(Ω) solves∫

Ω

(∇yh · ∇vh + % yh vh + d(yh)vh) dx+

∫
Γ

b(yh)vh ds =

∫
Ω

u vh dx ∀ vh ∈ Yh. (3.7)

Notice that we do not consider discretizations of the nonlinearities d and b in this context.
Based on the results of Appendix 5, the conditions in Assumption A5 can easily be verified
for the case l = 1, i.e. for linear finite elements. Theorem 5.7 and Lemma 5.4 imply

‖G(u)−Gh(u)‖C(Ω̄) = c h2−n/2 ‖u‖L2(Ω)

‖S(u)− Sh(u)‖L∞(Ω) = c h2−n/2 ‖u‖L2(Ω)

(3.8)

which gives in turn (2.7) in view of our settings in (3.3). Here, G(u) = Ec G(u, 0), as defined
above, and Gh denotes its FE-discretization, i.e. the solution operator of (3.7) with range in
C(Ω̄). Moreover, Sh is defined analogously. Clearly, higher order methods, i.e. l > 1, can be
discussed analogously. Consequently, Assumption A5 is fulfilled.

Furthermore, Assumption A6 can be verified by Lemma 5.8, which is demonstrated in the
following. To that end, let a sequence {un} ⊂ L2(Ω) be given and assume that un ⇀ u in
L2(Ω). Then, if Sh is considered as operator with range in L2(Ω), Lemma 5.8 implies for
every h > 0 that Sh(un) → Sh(u) in L2(Ω) as n → ∞. Moreover, in view of (3.8) and the
weak convergence of {un}, the sequence Sh(un) is uniformly bounded in L∞(Ω) for all h > 0.
Therefore, due to the assumptions on ψ in A8 we have

un ⇀ u in L2(Ω) ⇒ ψ(Sh(un)) → ψ(Sh(u)) ∈ L2(Ω) as n→∞

for every h > 0. Hence, condition (2.9) in Assumption A6 is verified. To show (2.10),
also consider Gh with range in L2(Ω), such that Gh(un) → Gh(u) in L2(Ω) by Lemma 5.8.
Moreover, assume that Gh(un) ∈ K for all n ∈ N, where K as defined in (3.4) is seen as
a subset of L2(Ω). Since K is closed, we have Gh(u) ∈ K ⊂ L2(Ω), and since Gh(u) is
continuous, also Gh(u) ∈ K according to the original definition of K in (3.4). Consequently
also Assumption A6 is fulfilled and thus, Theorem 2.8 implies that each local optimum can
be approximated by a semi-discrete solution. For the linear-quadratic counterpart of (Pd),
this was already proven by Deckelnick and Hinze in [14, 15], who also established an order of
convergence of 2− n/2− ε if linear finite elements are used.

Full finite element (FE) discretization. In contrast to the semi-discrete approach, the control
is now also discretized by

uh ∈ U (0)
h := {u ∈ L2(Ω) | u|T = const. ∀ T ∈ Th}

or uh ∈ U (k)
h := {u ∈ C(Ω̄) | u|T ∈ Pk ∀ T ∈ Th} for some k = 1, 2, ...



13

Clearly, the finite element error analysis, presented in above section, is also applicable here
so that we only have to verify condition (2.8), i.e. the convergence properties of the convex
projection operator Πh as defined in (2.6). Let us first consider the case k = 0, where the
control is discretized by piecewise constant functions. It is easy to see that

Πh(u)|T =
1

|T |

∫
T

u dx ∀ T ∈ Th, (3.9)

satisfies Πh(u)(x) ∈ [ua, ub] if u(x) ∈ [ua, ub] a.e. in Ω. Moreover, based on results of Stam-
pacchia [30], it is proven in [26] that, for each ε > 0,

‖u− Πh(u)‖L2(Ω) ≤ c h2−n/2−ε ‖u‖W 1,σ(Ω)

holds. This implies (2.8) since U = W 1,σ(Ω) by construction.

Remark 3.1. Note that one can also allow for varying bounds ua, ub ∈ L∞(Ω)∩W 1,σ(Ω). In
this case, the assumptions in (2.8) can be verified using a technique introduced by Falk in [19,
Lemma 5]. However, since the arguments a rather technical, this is not considered here.

Let us further note that (2.8) may be substituted by allowing for a convex, closed set Ch in
(PGh) which depends on the parameter h and approximates the set C of (PG) sufficiently
well for h tending to zero, compare [16].

Now, we turn to the case k = 1 and introduce the Clément interpolation operator

Ĩh(u)(x) :=
N∑

i=1

(Πiu)(xi)φi(x),

where xi denotes a node of the triangulation, N is the number of nodes, and φi denotes the
usual linear finite element ansatz function, i.e. φi ∈ Uh with φi(xj) = δij. Furthermore, Πi

denotes the L2-projection on supp{φi}. Using results of Clément [12] and standard embedding
theorems, we find

‖u− Ĩh(u)‖L2(Ω) ≤ c h2−n/2−ε ‖u‖W 1,σ(Ω). (3.10)

However, Ĩh(u) need not satisfy Ĩh(u)(x) ∈ [ua, ub] a.e. in Ω even if u itself is feasible w.r.t. con-
trol constraints. Hence, we define

uh = Ih Pc(Ĩh(u)),

where Ih is the standard Lagrange interpolation operator and Pc again denotes the pointwise
projection on [ua, ub]. We continue with

‖u− uh‖L2(Ω) ≤ ‖u− Pc(Ĩh(u))‖L2(Ω) + ‖Pc(Ĩh(u))− uh‖L2(Ω). (3.11)

The latter norm is estimated by standard interpolation error estimates:

‖Pc(Ĩh(u))−uh‖L2(Ω) ≤ c h2−n/2−ε ‖Pc(Ĩh(u))‖W 1,σ(Ω)

≤ c h2−n/2−ε
(
‖ua‖W 1,σ(Ω) + ‖ub‖W 1,σ(Ω) + ‖u‖W 1,σ(Ω)

)
,

(3.12)

where we used (3.5) and ‖Ĩh(u)‖W 1,σ(Ω) ≤ c ‖u‖W 1,σ(Ω) (cf. for instance Steinbach [31]). For
the estimation of the first addend in (3.11), let us define

Ωb := {x ∈ Ω | Ĩh(u)(x) > ub},
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such that we have u(x) ≤ ub = Pc(Ĩh(u))(x) < Ĩh(u)(x) a.e. in Ωb. This immediately implies
|Pc(Ĩh(u))(x)− u(x)| < |Ĩh(u)(x)− u(x)| a.e. in Ωb and consequently

‖Pc(Ĩh(u))− u‖L2(Ωb) ≤ ‖Ĩh(u)− u‖L2(Ωb). (3.13)

Together with an analogous argument for the lower bound, it follows

‖Pc(Ĩh(u))− u‖L2(Ω) ≤ ‖Ĩh(u)− u‖L2(Ω) ≤ c h2−n/2−ε ‖u‖W 1,σ(Ω),

where we used (3.10) for the last estimate. In view of (3.11) and (3.12), this gives (2.8) for
k = 1. Notice that, strictly speaking, the bounds ua and ub enter the first inequality in (2.8)
via (3.12). Nevertheless, it is easy to see that this does not influence the theory. Thanks

to U
(k)
h ⊂ U

(k+1)
h , the above arguments also guarantee (2.8) if the control is discretized with

higher order ansatz functions. Therefore, also the full discretization of (Pd) is covered by the
presented analysis giving in turn that local optima of (Pd) can be approximated by a full
finite element discretization.

Perturbation of the data. The setting in Assumption A5 also includes perturbations of the
problem data which is demonstrated in the following. To this end, we consider the following
optimal control problem with box constraints on the state and a tracking type objective
functional with desired state yd ∈ L2(Ω);

(Pex)



minimize J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to −∆ y + % y + d(y) = u in Ω

∂ny + b(y) = 0 on Γ

and y(x) ≤ yb(x) a.e. in Ω.

For the remaining quantities, we suppose the same conditions as for (Pd). Now, ϕ is defined
by ϕ(x, y(x)) = 1/2

∫
Ω
(y(x) − yd(x))

2dx and hence, the conditions in Assumption A8 are
fulfilled. Moreover, ϕ is clearly also continuous from L2(Ω) to R. Thus, we set V = L2(Ω)
whereas we choose the same spaces as in (3.3) for H, U , Y , and W . It is straight forward to
see that Assumptions A1 and A2 are still fulfilled in this setting. Now we add some noise on
the problem data, i.e. the bounds and the desired state, for instance yd + εh and yb + δh with
εh ∈ L2(Ω) and δh ∈ C(Ω̄). By setting

Sh(u)(x) = S(u)(x)− εh(x), Gh(u)(x) = G(u)(x)− δh(x), (3.14)

such a perturbation is covered by the general theory. To fulfill the conditions in Assumption
A5 (cf. Remark 2.10), we require ‖εh‖L2(Ω) → 0 and δh(x) ⇒ 0, if h ↓ 0. Notice that
Assumption A6 is automatically fulfilled due to the properties of S and G that follow from
Lemma 5.6. Thus, Theorem 2.8 yields that (Pex) is stable w.r.t. perturbation of this form in
the sense that, for every unique local solution u∗, there is a sequence of local solutions of the
perturbed problems converging strongly in L2(Ω) to u∗ if the noise level h tends to zero. A
possible choice for δh is for instance δh(x) = h cos(h−4 π x1) cos(h−4 π x2) as in the numerical
example in Section 4 below. Notice that perturbations of the desired state in the context of
state constraints were already discussed by Griesse in [20].

Lavrentiev type regularization. Next, we replace the pointwise state constraints in (Pd) by
mixed constraints of the form ya(x) ≤ hu(x) + y(x) ≤ yb(x) a.e. in Ω with some h ∈ R,
h > 0. This regularization technique was proposed in [28] to tackle (Pd) in the purely
state constrained case. It is one advantage of this regularization technique that the related
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problems (Pdh
) admit multipliers with higher regularity than those associated to problem

(Pd). Concerning linear-quadratic problems, convergence of the solutions of the regularized
problems to the solution of the original problem is shown in [28] and [27]. In the semi-linear
case, convergence of global solutions is addressed by Hintermüller et al. in [22]. However, by
setting

Gh(u)(x) = hu(x) +G(u)(x),

the general theory of Section 2 allows to analyze the convergence to local solutions. To this
end, let us choose Y = L∞(Ω). It is easy to see that that the above theory can also be carried
out with L∞(Ω) instead of C(Ω̄) since

K = {y ∈ L∞(Ω) | ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω}

admits a non-empty interior. With this setting at hand, the conditions in Assumptions A5
and A6 can easily be verified. Since there is no perturbation of S, we only have verify the
assumptions on Gh. We start with (2.10); if a sequence {un} converges weakly in L2(Ω) to u,
thenGh(un) ⇀ Gh(u) in L2(Ω) follows immediately. Consequently, since the setK, considered
as a subset of L2(Ω), is convex and closed, hence weakly closed, we have Gh(u) ∈ K so that
(2.10) and thus Assumption A6 is satisfied. Notice that, in case of unilateral state constraints,
one has to require C ⊂ L∞(Ω) to ensure Gh(u) ∈ L∞(Ω). Concerning Assumption A5, we
find

‖G(u)−Gh(u)‖L∞(Ω) ≤ h ‖u‖L∞(Ω).

Hence if C ⊂ L∞(Ω), then Theorem 2.8 and Remark 2.10, respectively, imply the existence
of a sequence of local solutions of the regularized problems that converges strongly in L2(Ω)
to a unique local solution of the original problem as h ↓ 0. Notice however that additional
control constraints are necessary to ensure the boundedness of the controls in L∞(Ω).

3.2. Elliptic problems with boundary control. Next, let us consider a problem with
boundary control in two dimensions:

(Pb)



minimize J(y, u) :=

∫
Ω

ψ(y(x)) dx+
α

2

∫
Γ

u(x)2 ds

subject to −∆ y + % y + d(y) = 0 in Ω ⊂ R2

∂ny + b(y) = u on Γ

and ya(x) ≤ y(x) ≤ yb(x) a.e. in Γ

ua ≤ u(x) ≤ ub a.e. in Γ

In all what follows, the quantities in (Pb) are assumed to fulfill the conditions in Assumption
A7 and A8. In this case, we choose

H = L2(Γ), U = W 1−1/σ,σ(Ω), Y = C(Ω̄), V = W = L∞(Ω),

where σ is as above given by σ < n/(n − 1). According to Theorem 5.3 below, there is a
unique solution of the state equation in W 1,σ′(Ω) ↪→ C(Ω̄) if u ∈ Ls(Γ), s > n− 1 = 1. Thus,
similarly to Section 3.1, we define G(u) = Ec G(0, u) and S(u) = E∞ G(0, u). Moreover, since
the trace operator is continuous from W 1,σ(Ω) to W 1−1/σ,σ(Γ), one can associate to every
u ∈ W 1−1/σ,σ(Γ)∗ an element of W 1,σ(Ω)∗, also denoted by u. Consequently, Theorem 5.5
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yields the continuous Fréchet differentiability of G and S in a neighborhood in W 1−1/σ,σ(Γ)∗

at u ∈ L2(Γ). Together with Lemma 5.6, this ensures Assumption A2. Moreover, by setting

K = {y ∈ C(Ω̄) | ya(x) ≤ y(x) ≤ yb(x) ∀x ∈ Γ}
C = {u ∈ L2(Γ) |ua ≤ u(x) ≤ ub a.e. on Γ},

we see that also Assumption A1 is satisfied. Furthermore, by similar arguments as in (3.5),
it can be seen that Assumption A3 holds. Therefore, if in addition the Slater condition in
Assumption A4 is fulfilled, also (Pb) is covered by the general setting of (PG). As in case of
(Pd), it is a priori not possible to ensure the Slater condition.

Notice that Theorem 5.3 does not yield continuous solutions for u ∈ L2(Γ) in case of n = 3.
Moreover, W 1−1/σ,σ(Γ) is not embedded in L2(Γ) for n = 3. This already indicates that
boundary control in three dimensions causes some trouble and is not covered by the above
theory. We will add some comments on this complex of questions in a section below.

Discretization of problem (Pb). As for (Pd), we suppose Assumption A9, i.e. in particular Ω
is convex and possesses a polygonal boundary. Then, Lemma 5.4 and Theorem 5.7 yield

‖G(u)−Gh(u)‖C(Ω̄) = c h1/2 ‖u‖L2(Γ) , ‖S(u)− Sh(u)‖L∞(Ω) = c h1/2 ‖u‖L2(Γ),

where, as above, Gh and Sh denote the finite element approximations of G and S. Thus,
(2.7) is guaranteed. Moreover, based on Lemma 5.8, the conditions in Assumption A6 can
be verified analogously to the case with distributed control in Section 3.1. Hence, Theorem
2.8 already implies convergence in the semi-discrete case. As above, concerning the full
discretization, (2.8) has to be verified. To this end, let us define ET := T̄ ∩ Γ ∀ T ∈ Th and
Eh := {ET |T ∈ Th}. According to Assumption A9, the triangulations of Ω exactly fit the
boundary such that Eh = Γ. Now, assume first that the control is discretized by constant
ansatz functions, i.e.

uh ∈ Uh := {u ∈ L2(Γ) |u|E = const. ∀E ∈ Eh}.

Analogously to (3.9) we define

Πh(u)|E =
1

|E|

∫
E

u ds ∀ E ∈ Eh. (3.15)

Moreover, in view of σ < n/(n − 1) = 2, embedding theorems yield W 1−1/σ,σ(Γ) ↪→ H t(Γ)
with t < (3− n)/2 = 1/2. Thus, from (3.15) and [12, Lemma 1], it follows that

‖u− Πh(u)‖L2(E) ≤ c diam(E)t ‖u‖Ht(E).

Notice in this context that Ω is polygonally bounded by Assumption 5.4 so that standard
interpolation error estimates are applicable. Consequently, thanks to Γ = Eh and diam(E) ∼
h,

‖u− Πh(u)‖2
L2(Γ) ≤ c h2t ‖u‖2

Ht(Ω)

such that (2.8) in Assumption A5 is fulfilled. If linear and continuous ansatz functions are
used for the discretization of the control, similar arguments as in case of distributed control
can be applied (in particular (3.11) and (3.13)). In this case, the Clément interpolation
operator is defined by

Ĩh(u)(x) :=
∑
xi∈Γ

(Πiu)(xi)φi(x), x ∈ Γ,
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where Πi is the L2-projection on supp(φi) ∩ Γ. Standard interpolation error estimates then
imply

‖u− uh‖L2(Γ) ≤ c ht ‖u‖Ht(Γ) ≤ c h1/2−ε ‖u‖W 1−1/s,/s(Γ)

(cf. for instance [6]). Hence (2.8) is also fulfilled if higher order ansatz functions are used.
In summary, we see that, in the case n = 2, a standard discretization of (Pb) also fits into
the setting of the above theory and therefore, Theorem 2.8 implies that local optima can
be approximated by common discrete schemes. Nevertheless, the situation changes in three
dimensions, as we will see in the following.

Some remarks on boundary control in three dimensions. Let us restrict on the linear-quadratic
case, i.e. (Pb) with b = d ≡ 0, % ≡ 1, and ψ(x, . ) = 1/2 | . − yd(x)|2 with a given function
yd ∈ L2(Ω). As already mentioned above, a control in L2(Γ) is not sufficient to guarantee
continuity of the solution to the state equation, even in the linear case (cf. Lemma 5.1).
However, if additional control constraints guarantee u ∈ L∞(Γ), then continuous solutions are
obtained. Nevertheless, the analysis of Section 2 is not applicable and has to be modified by
introducing a new control space Ls(Γ) with sufficiently large s > n− 1 = 2, that is embedded
in W 1−1/σ,σ(Γ)∗. It is straight forward, but rather technical to see that the arguments of
Section 2 can be adapted to this case by using Ls(Γ) instead of L2(Γ). To be more precise,
the theory in Section 5.1 yields that Assumptions A1 and A2 hold with Ls(Γ) instead of
H = L2(Γ). Notice that s = ∞ is not allowed, since the proof of Lemma 2.6 exploits that
Ls(Γ) is reflexive. While Assumption A6 can be verified by arguments analogously to those
of Section 3.1, the crucial part is now Assumption A5 which in general is hard to guarantee.
As we will see in the following one has to require strong conditions on the setting to ensure
this assumption. Instead of (2.7) and (2.8), we now have to require

‖G(u)−Gh(u)‖C(Ω̄) ≤ δ(h) ‖u‖Ls(Γ) , ‖S(u)− Sh(u)‖L2(Ω) ≤ δ(h) ‖u‖Ls(Γ) (3.16)

‖Πh(u)− u‖W 1−1/σ,σ(Γ)∗ ≤ c δ(h) ‖u‖Ls(Γ) , ‖Πh(u)− u‖Ls(Γ) → 0 as h ↓ 0 (3.17)

for all u ∈ C. With these conditions at hand, the proofs of Lemma 2.4–2.7 can easily be
modified such that Theorem 2.8 also holds in this case. Note in this context that G is twice
continuously Fréchet-differentiable from W 1−1/σ,σ(Γ)∗ to C(Ω̄) around u ∈ Ls(Γ) as already
demonstrated for n = 2. In case of perturbations of the data of the form (3.14), conditions
(3.16) and (3.17) are clearly satisfied. However, if discretizations of the control problem are
considered the situation becomes more difficult. Subsequently, we state the assumptions that
are needed to treat the semi-discrete as well as the fully discrete approach. As above, let us
first turn to semi-discretization, where just (3.16) has to be verified. To this end, assume that
the boundary of Ω is smooth. Then, for every finite p, the state equation admits a unique
solution in W 1,p(Ω) for every right hand side f in W 1,p′(Ω)∗, p′ = p/(p− 1), and there holds

‖y‖W 1,p(Ω) ≤ c ‖f‖W 1,p′ (Ω)∗

(cf. for instance [1, Theorem 15.3’]). By the trace theorem, v ∈ W 1,p′(Ω) implies τ v ∈ Lr(Γ)
with r = (n− 1)p/((n− 1)p− n) = 2p/(2p− 3) such that r tends to 1 if p→∞. Therefore,
u ∈ Ls(Γ) is an element of W 1,p′(Ω)∗ if s ≥ r′ = (n−1)p/n = 2p/3. Consequently, since u ∈ C
implies its boundedness in L∞(Γ), we have y ∈ W 1,p(Ω) for all p < ∞. Moreover, assume
that the triangulation of Ω is curvilinear and exactly fits the boundary. Then, as shown by
Deckelnick and Hinze in [14], there is an extension of a result of Schatz [29, Theorerm 2.1]
which states

‖y − yh‖L∞(Ω) ≤ c | log h| ‖y − Ihy‖L∞(Ω),
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where yh denotes the approximation of y with piecewise linear continuous finite elements and
Ih denotes the associated Lagrange interpolation operator. Now, interpolation error estimates
for curved domains (cf. Bernardi [5]) give

‖y − yh‖L∞(Ω) ≤ c h1−n/p−ε ‖y‖W 1,p(Ω) ≤ c h1−n/p−ε ‖u‖Ls(Γ)

with s ≥ (n−1)p/n = 2p/3 according to the above considerations. Hence, if we choose s large
enough, i.e. s > n− 1 = 2, it follows that 1− n/p− ε = 1− 3/p− ε > 0 giving in turn (3.16)
with δ(h) = h1−3/p−ε. Thus, Theorem 2.8 remains valid in the semi-discrete case. Notice
however that, with regard to the proof of Lemma 2.7, only strong convergence in L2(Γ), and
not in Ls(Γ), is obtained in this way.

If full discretization is applied, then, in addition, (3.17) has to be verified. Concerning the
first condition in (3.17), we benefit from the fact that uniform convergence of the projection
operator is only needed w.r.t. the W 1−1/σ,σ(Γ)∗-norm. Let us restrict to piecewise constant
ansatz function for the control, where u ∈ C immediately implies Πh(u) ∈ C with Πh defined
in (3.15). Using orthogonality properties of the projection operator, we obtain

‖Πh(u)− u‖W 1−1/σ,σ(Γ)∗ = sup
v 6=0

|
∫

Γ
(Πh(u)− u)v ds|
‖v‖W 1−1/σ,σ(Γ)

= sup
v 6=0

|
∫

Γ
(Πh(u)− u)(Πh(v)− v) ds|

‖v‖W 1−1/σ,σ(Γ)

≤ ‖Πh(u)− u‖Lσ′ (Γ) sup
v 6=0

‖Πh(v)− v‖Lσ(Γ)

‖v‖W 1−1/σ,σ(Γ)

.

(3.18)

Now, interpolation error estimates on curved domains (cf. again [5]) yield

‖Πh(v)− v‖Lσ(Γ) ≤ c h1−1/σ ‖v‖W 1−1/σ,σ(Γ). (3.19)

Moreover, Douglas et al. showed in [18] that the projection operator is stable w.r.t. Lp-norms,
1 ≤ p ≤ ∞, such that

‖Πh(u)− u‖Lσ′ (Γ) ≤ c ‖u‖Lσ′ (Γ) ≤ c ‖u‖Ls(Γ)

provided that s > σ′ = σ/(σ − 1) > n = 3. Together with (3.18) and (3.19), this implies
the first condition in (3.17). A verification of the second condition in (3.17) is still an open
question. Neither the additional regularity of an optimal solution nor a density argument
yields the desired convergence.

4. Numerical example

For the numerical verification of the above theory, we consider problem (Pex) with Ω = (0, 1)2,
% ≡ 1, d = b ≡ 0, and yb ≡ 1, i.e.

(P1)



minimize J(y, u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to −∆ y + y = u in Ω

∂ny = 0 on Γ

and y(x) ≤ 1 a.e. in Ω.

Moreover, yd is a given function in L2(Ω) that satisfies yd(x) > 1 + 1/α a.e. in Ω. According
to Casas [7] and Alibert and Raymond [2], the necessary and sufficient conditions for (P1)
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read
−∆ y∗ + y∗ = u∗ in Ω

∂n y
∗ = 0 on Γ

−∆ p∗ + p∗ = y∗ − yd + µ|Ω in Ω

∂n p
∗ = µ|Γ on Γ

αu∗(x) + p∗(x) = 0 a.e. in Ω∫
Ω̄

(y∗(x)− 1) dµ(x) = 0∫
Ω̄

y(x) dµ(x) ≥ 0 ∀ y ∈ C+(Ω̄) , y∗(x) ≤ 1 ∀ x ∈ Ω̄.


(4.1)

with C(Ω̄)+ := {y ∈ C(Ω̄) | y(x) ≥ 0 ∀x ∈ Ω̄}. Moreover, µ is an element of C(Ω̄)∗, i.e. a
regular Borel measure, and µ|Ω and µ|Γ denote its restrictions to Ω and Γ, respectively. It is
easy to verify that this optimality system is satisfied by

u∗ = y∗ ≡ 1 , p∗ ≡ − 1

α
, µ = yd −

1

α
− 1.

Note that µ is a proper function here and that µ > 0 since yd > 1 + 1/α. Moreover, we
observe that the state constraint is active everywhere in Ω̄. Now, let us consider the control-
to-state operator with range in L2(Ω) and denote this operator by S. Note that S is clearly
linear in case of (P1). The inequality constraint then implies S u∗ = 1 as equation for u∗,
which is clearly an ill-posed equation due to the compactness of S : L2(Ω) → L2(Ω) and
therefore unstable w.r.t. a certain class of perturbations. For instance, a similar equation
with a perturbation of small amplitude and high frequency on the right-hand side, i.e.

S u = 1 + δλ with δλ(x) := λ cos(λ−4 π x1) cos(λ−4 π x2), λ > 0, (4.2)

admits the solution

uλ(x) =
(
2π2 λ−7 + λ

)
cos(λ−4 π x1) cos(λ−4 π x2),

such that ‖uλ − u∗‖L2(Ω) = ‖uλ − 1‖L2(Ω) →∞ for λ→ 0. On the other hand, we impose the
same perturbation on the state constraint in (P1), i.e.

y(x) ≤ 1 + δλ(x) a.e. in Ω. (4.3)

In view of Remark 2.10 and the considerations in Section 3.1, (P1) is naturally covered by
the general theory. Thus, since (P1) is in addition a linear-quadratic problem, Corollary 2.12
implies that the unique solutions of the perturbed problems converge strongly in L2(Ω) to
the unique solution of (P1) if λ ↓ 0. Hence, in contrast to (4.2), (P1) is stable w.r.t. the afore
mentioned perturbation. To numerically confirm this assertion, we solve (P1) with (4.3) as
inequality constraint as well as (4.2) using a full discretization with linear ansatz functions
for the state and the control. Hence, the discretization fits into the setting of Section 3.1.
The discrete version of state equation then is equivalent to (3.7) with % ≡ 1 and d = b ≡ 0
and can be written in the form

(K +M) yh = M uh,

where K and M denote the stiffness and the mass matrix associated to linear finite elements,
while yh and uh are the vectors associated to the discrete versions of state and control. Notice
that, strictly speaking, we have two perturbations in this context: the first one arising from
the discretization with mesh size h, and a second perturbation induced by the function δλ
with associated parameter λ. However, as demonstrated in Section 3.1, both perturbations
fulfill the conditions in Assumption A5. In order to illustrate the effects of the ill-posedness
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on the numerical treatment of (4.2), we compute the solution of the discrete version of (4.2)
given by

fh = M−1(K +M) (1 + δλ,h) (4.4)

where δλ,h denotes the vector of values of δλ at the nodes of the triangulation. The numerical
results for different mesh sizes and λ = 10−5 are shown in Figure 4.1 and 4.2. Although the
discretization clearly has a smoothing property, we observe that the numerical solutions are
indeed fairly irregular and that this behavior is even worsened by a decrease of h.
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Figure 4.1. Solution fh of
(4.4) for h = 0.01 and λ =
10−5.

Figure 4.2. Solution fh of
(4.4) for h = 0.005 and λ =
10−5.
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Figure 4.3. Optimal con-
trol for h = 0.01, λ = 10−5,
and α = 10−3.

Figure 4.4. Optimal con-
trol for h = 0.005, λ = 10−5,
and α = 10−3.

On the other hand, we investigate the perturbed optimal control problem, i.e. problem (P1)
with an inequality constraint of the form (4.3) instead of y(x) ≤ 1 a.e. in Ω. The associated
discrete optimal control problem were solved by a primal-dual active set strategy (see for
instance Bergounioux, Ito, and Kunisch [3] or Bergounioux and Kunisch [4]). Figures 4.3 and
4.4 show the discrete optimal solutions. In accordance with the theory (cf. Corollary 2.12),
the optimal solutions appear stable with respect to perturbations of the form (4.3), which
is also demonstrated by the fact that the solution does not become irregular if the mesh
size is decreased. This is also confirmed by Table 4.1 showing the L2-errors of control and
state for different values of α. Note that the results with respect to the control are improved
by increasing the Tikhonov parameter α. In summary, we obtain that state constrained
optimal control problems in general behave stable (and well) with respect to a wide class of
perturbations.
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Table 4.1. L2-norms of the error for the control and the state for different
values of h and α at λ = 10−5.

α = 10−3 α = 1.0

h = 0.01 h = 0.005 h = 0.01 h = 0.005

‖uh − 1‖ 6.7662e-2 5.6003e-2 8.5650e-4 5.5843e-4

‖yh − 1‖ 4.5969e-5 6.7580e-6 9.1490e-6 9.6483e-6

5. Appendix

As mentioned before, this section is concerned with the analysis of the general PDE in (3.1)
and its finite element discretization. All results are standard such that we only sketch the
associated proofs.

5.1. Regularity results for a general class of semi-linear PDEs. Recall (3.1), given by

−∆ y(x) + %(x) y(x) + d(x, y(x)) = f(x) a.e. in Ω

∂ny(x) + b(x, y(x)) = g(x) a.e. on Γ,

which will be discussed in detail in the subsequent. All results concerning this equation, stated
in this section, are well known and standard. A detailed discussion of a similar equation can
for instance be found in [2]. However, for convenience of the reader, let us shortly sketch the
main arguments.

The crucial part of the theory, presented in Section 2, is that the set, defined by state con-
straints, has to exhibit a nonempty interior according to Slater condition in Assumption A4.
This requires to consider the pointwise state constraints in L∞(Ω) or C(Ω̄). Here, we choose
C(Ω̄) such that one has to verify the existence of solutions to (3.1) in the space of continuous
functions. To this end, let us consider the following linear PDE

−∆ y + % y = f in Ω

∂ny = g on Γ.
(5.1)

The continuity of the solutions to this equation is ensured by the following lemma on maximal
elliptic regularity. The corresponding proof in the two dimensional case can be found in Gröger
[21], while Zanger proved the result in [32] for three dimensions.

Lemma 5.1. Let Ω be a bounded Lipschitz domain. Then there is a p < n/(n− 1) such that,
for f, g ∈ W 1,σ(Ω)∗, p ≤ σ ≤ n/(n − 1), (5.1) admits a unique solution in W 1,σ′(Ω) with
1/σ + 1/σ′ = 1. Moreover, the solution depends continuously on f and g.

Corollary 5.2. Due to the embedding W 1,σ′(Ω) ↪→ C(Ω̄) for σ′ > n, the solution of (5.1) is
continuous.

Based on this, we are now in the position to prove the following

Theorem 5.3. Assume that (f, g) ∈ Lq(Ω) × Ls(Γ), q > n/2, s > n − 1. Then, under
Assumption A7, there exists a unique solution to (3.1) in W 1,σ′(Ω), σ′ > n, which is therefore
continuous.
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Proof. The proof follows standard arguments (cf. for instance Casas [7] or Alibert and Ray-
mond [2]). First, one considers an auxiliary problem with truncated nonlinearities, e.g.

dk(y) :=

d(k), y > k
d(y), −k ≤ y ≤ k
d(−k), y < −k

with an arbitrary, but fixed k > 0. Using Bowder and Minty’s theorem for monotone operators
and a truncation technique in the spirit of Stampaccia, one proves existence of solutions in
H1(Ω) ∩ L∞(Ω) and an estimate of the form

‖y‖L∞(Ω) ≤ c∞
(
‖f‖Lq(Ω) + ‖g‖Ls(Γ) + 1

)
(5.2)

with a constant c∞ independent of k. Hence, by choosing k > c∞ (‖f‖Lq(Ω) + ‖g‖Ls(Γ) + 1),
we obtain a unique solution of the original problem in H1(Ω) ∩ L∞(Ω). Now, consider the
auxiliary problem

−∆ y + % y = f̃ in Ω

∂ny = g̃ on Γ,
(5.3)

with f̃ = f − d(y) and g̃ = g − b(y). For σ < n/(n − 1), embedding theorems yield that

W 1,σ(Ω)
d
↪→ Lq′(Ω) if q′ < n/(n − 2) and hence Lq(Ω) ↪→ W 1,σ(Ω)∗ for q > n/2. More-

over, the trace operator is clearly continuous from W 1,σ(Ω) to W 1−1/σ,σ(Γ) such that, due to

W 1−1/σ,σ(Γ)
d
↪→ Ls′(Γ), s′ < (n − 1)/(n − 2), one obtains Ls(Γ) ↪→ W 1,σ(Ω)∗ for s > n − 1.

Moreover, due to y ∈ L∞(Ω) and τy ∈ L∞(Γ) and Assumption A7, standard arguments im-
ply d(y) ∈ Lq(Ω) and b(y) ∈ Ls(Γ) such that d(y) and b(y) also define elements of W 1,σ(Ω)∗.
Hence, Lemma 5.1 together with a classical boot strapping argument gives the assertion. �

In view of the above theorem, we now introduce the solution operator associated to (3.1),
denoted by G : (f, g) 7→ y, with G : Lq(Ω)× Ls(Γ) → W 1,σ′(Ω). A similar boot strapping ar-
gument, based on results of Dauge [13] and Jerison and Kenig [23], also proves the subsequent
Lemma, that states the additional regularity of the solution in case of polygonal boundaries
(see also Casas et al. [9]):

Lemma 5.4. Assume that Assumption A7 holds and Ω is a convex domain with polygonal
boundary. If g = 0, then, for every f ∈ L2(Ω), there is a unique solution of (3.1) in H2(Ω),
and there exists a constant c > 0 such that there holds

‖y‖H2(Ω) ≤ c ‖f‖L2(Ω)

Furthermore, if n = 2, then (3.1) admits a unique solution in H3/2(Ω) for every (f, g) ∈
L2(Ω)× L2(Γ) and there holds

‖y‖H3/2(Ω) ≤ c
(
‖f‖L2(Ω) + ‖g‖L2(Γ)

)
with a constant c > 0.

The analysis of (3.1) is completed by the following two results:

Theorem 5.5. Suppose that Assumption A7 is satisfied. Then, for every (f, g) ∈ Lq(Ω) ×
Ls(Γ) with q and s as defined in Theorem 5.3, there is a neighborhood U(f, g) ⊂ W 1,σ(Ω)∗,
σ < n/(n−1), around (f, g), where G can be extended to an operator with domain in W 1,σ(Ω)∗,
also denoted by G. Furthermore, G : W 1,σ(Ω)∗ → W 1,σ′(Ω) is twice continuously Fréchet-
differentiable in U(f, g).
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Proof. The proof follows standard arguments. We start with the linearized version of (3.1),
given by

−∆ η + % η + d′(y)η = h1 in Ω

∂nyη + b′(y)η = h2 on Γ,
(5.4)

where y = G(f, g) ∈ C(Ω̄) such that d′(y) ∈ L∞(Ω) and b′(y) ∈ L∞(Γ) by Assumption
A7. Hence, the monotonicity of d and b implies that the bilinear form associated to the left
hand side of (5.4) is bounded and coercive giving in turn the unique existence of solutions in
H1(Ω) for every h1, h2 ∈ H1(Ω)∗. Next suppose h1, h2 ∈ W 1,σ(Ω)∗ ⊂ H1(Ω)∗ and consider an

auxiliary equation analogous to (5.3) with f̃ = h1−d′(y)η and g̃ = h2− b′(y)η. Clearly, f̃ and
g̃ define elements of W 1,σ(Ω)∗ such that Lemma 5.1 gives η ∈ W 1,σ′(Ω) ↪→ C(Ω̄). Since the
Nemyzki operators associated to d and b are continuously Fréchet-differentiable in L∞(Ω) and
L∞(Γ), respectively, the assertion is then an immediate consequence of the implicit function
theorem. �

Lemma 5.6. Let {fn} and {gn} be sequences converging weakly in Lq(Ω), q > n/2, and
Ls(Γ), s > n− 1, to f and g, respectively, as n→∞. Then, under Assumption A7 it follows

G(fn, gn) → G(f, g) in W 1,σ′(Ω), n→∞. (5.5)

Proof. As in the other proofs of this section, the arguments are standard and can for instance
be found in [10]. For convenience of the reader, we recall the basic ideas. Clearly, the
weak convergence of {fn} and {gn} imply their uniform boundedness giving in turn that
{G(fn, gn)} is uniformly bounded C(Ω̄). Hence, with yn := G(fn, gn), {d(yn)} and {g(yn)}
converges weakly in Lq(Ω) and Ls(Γ) to some zd and zb, respectively. Now, let us again

consider the auxiliary equation (5.3) with f̃n = fn − d(yn) and g̃n = gn − b(yn). Due to

the weak convergence of f̃n in Lq(Ω) and the compact embedding of Lq(Ω) in W 1,σ(Ω)∗,

f̃n converge strongly in W 1,σ(Ω)∗ to f − zd. Together with an analogous argument for g̃n,
the continuity of the solution operator of (5.1), this implies yn → y := G(f − zd, g − zb) in
W 1,σ′(Ω) ↪→ C(Ω̄). Consequently, we have d(yn) → d(y) in Lq(Ω) and b(yn) → b(y) in Ls(Γ),
which implies that y is the solution associated to (f, g). �

5.2. Finite element error estimates for a general class of semi-linear PDEs. Con-
cerning the numerical analysis of a finite element approximation of (3.1), we follow the lines
of Casas and Mateos [8]. Although they consider a slightly different PDE, the arguments
are the same. Nevertheless, for convenience of the reader, the underlying analysis is shortly
sketched in the following. Let a regular triangulation Th of the domain Ω be given and recall
the linear finite element space

Yh := {v ∈ C(Ω̄) | v|T ∈ P1 ∀ T ∈ Th}

and the discrete version of (3.1), given by

a[yh, vh] +

∫
Ω

d(yh)vh dx+

∫
Γ

b(yh)vh ds =

∫
Ω

f vh dx+

∫
Γ

g vh ds (5.6)

for all vh ∈ Yh. Here, the bilinear form a : H1(Ω)×H1(Ω) → R is defined by

a[y, v] =

∫
Ω

(∇y · ∇v + % y v) dx, y, v ∈ H1(Ω),

which is clearly bounded and coercive due to our assumptions on %.
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Theorem 5.7. Suppose that (3.1) admits a unique solution in y ∈ H t(Ω), t > n/2. Then the
following estimate holds true

‖y − yh‖L∞(Ω) ≤ c ht−n/2 ‖y‖Ht(Ω)

with a constant c independent of h.

Proof. Again, as in case of Section 5.1, we first consider an auxiliary problem with truncated
nonlinearities, i.e. for instance

dk(y) :=

d(k), y > k
d(y), −k ≤ y ≤ k
d(−k), −k < y

with an arbitrary, but fixed k > 0. Clearly, thanks to our assumptions on d and b, dk and bk
are monotone increasing and globally Lipschitz continuous, which implies

‖dk(y1)− dk(y2)‖L2(Ω) ≤ Ld(k) ‖y1 − y2‖L2(Ω) ∀ y1, y2 ∈ L2(Ω)

‖bk(y1)− bk(y2)‖L2(Γ) ≤ Lb(k) ‖y1 − y2‖L2(Γ) ∀ y1, y2 ∈ L2(Γ),

where Ld and Lb are the Lipschitz constants of dk and bk. Let us denote the associated

solutions by y(k) and y
(k)
h . Notice that y(k) is clearly as regular as y, i.e. in particular y(k) ∈

C(Ω̄) due to t > n/2. Subtracting (5.6) with truncated nonlinearities from the variational
formulation of (3.1) yields

a[y(k) − y
(k)
h , vh] +

∫
Ω

(
dk(y

(k))− dk(y
(k)
h )

)
vh dx+

∫
Γ

(
bk(y

(k))− bk(y
(k)
h )

)
vh ds

= 0 ∀ vh ∈ Yh,

which corresponds to the well known Galerkin orthogonality in the linear case. Using this
Galerkin orthogonality together with the coercivity of a and the monotonicity and Lipschitz
continuity of dk and bk, standard standard interpolation error estimates give

‖y(k) − y
(k)
h ‖H1(Ω) ≤ c(k)ht−1 ‖y(k)‖Ht(Ω)

Notice that c(k) depends on k via the Lipschitz constants of dk and bk. The associated L2-
estimate is then obtained by a modification of the well known Aubin-Nitsche Lemma (cf. Casas
and Mateos [8]):

‖y(k) − y
(k)
h ‖L2(Ω) ≤ c(k)ht ‖y(k)‖Ht(Ω).

Using interpolation error estimates and inverse estimates, it follows

‖y(k) − y
(k)
h ‖C(Ω̄) ≤ ‖Ihy(k) − y

(k)
h ‖L∞(Ω) + ‖y(k) − Ihy

(k)‖L∞(Ω)

≤ c h−n/2 ‖Ihy(k) − y
(k)
h ‖L2(Ω) + c ht−n/2 ‖y(k)‖Ht(Ω)

≤ c h−n/2
(
‖Ihy(k) − y(k)‖L2(Ω) + ‖y(k) − y

(k)
h ‖L2(Ω)

)
+ c ht−n/2 ‖y(k)‖Ht(Ω)

≤ c(k)ht−n/2 ‖y(k)‖Ht(Ω),

where Ih denotes the standard interpolation operator on Yh. Now choose k = ‖y‖C(Ω̄) +1 such

that dk(y) = d(y) and bk(y) = b(y) and therefore y(k) = y. Then the above error estimate

ensures the existence of an h0 such that ‖y(k)
h ‖C(Ω̄) ≤ k for all h ≤ h0 and consequently
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dk(y
(k)
h ) = d(y

(k)
h ) and bk(y

(k)
h ) = b(y

(k)
h ) such that y

(k)
h solves the discrete equation with the

original nonlinearities d and b. �

Lemma 5.8. Let {(fn, gn)} ⊂ L2(Ω) × L2(Γ) be a sequence converging weakly to (f, g) ⊂
L2(Ω)× L2(Γ) and denote the associated solutions of (5.6) by yh(fn, gn) and yh(f, g), respec-
tively. Then, for every h > 0, yh(fn, gn) converges strongly in L2(Ω) to yh(f, g), i.e.

(fn, gn) ⇀ (f, g) in L2(Ω)× L2(Γ) ⇒ yh(fn, gn) → yh(f, g) in L2(Ω) as n→∞.

Proof. We recall that for (f, g) ⊂ L2(Ω) × L2(Γ) and y ∈ H1(Ω) we have
∫
Ω

fgdx +
∫
Γ

gyds

= 〈f + γ∗g, y〉, where 〈 . , . 〉 denotes the dual pairing between H1(Ω)∗ and H1(Ω) and γ∗

denotes the dual of the trace operator γ : H1(Ω) → H1/2(Γ). Forming the difference of (5.6)
for yh(fn, gn) and yh(f, g) with test function vh = yh(f, g)− yh(fn, gn) yields

a[yh(fn, gn)−yh(f, g), yh(fn, gn)− yh(f, g)]

+

∫
Ω

[
d(yh(fn, gn))− d(yh(f, g))

][
yh(fn, gn)− yh(f, g)

]
dx

+

∫
Γ

[
b(yh(fn, gn))− b(yh(f, g))

][
yh(fn, gn)− yh(f, g)

]
ds

= 〈f − fn + γ∗(g − gn) , yh(fn, gn)− yh(f, g)〉,

Hence, together with the monotonicity of the non-linearities, the coercivity of a[ . , . ] imme-
diately implies that yh is continuous from H1(Ω)∗ to H1(Ω). The assertion then follows from
the compactness of the embedding L2(Ω) ↪→ H1(Ω)∗. �
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