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Abstra
tIn this paper, we study a 
lass of singularly perturbed rea
tion-di�usionsystems, whi
h exhibit under 
ertain 
onditions slowly varying multi-pulse so-lutions. This 
lass 
ontains among others the Gray-S
ott and several versionsof the Gierer-Meinhardt model. We �rst use a 
lassi
al singular perturbationapproa
h for the stationary problem and determine in this way a manifold ofquasi-stationary N -pulse solutions. Then, in the 
ontext of the time-dependentproblem, we derive an equation for the leading order approximation of theslow motion along this manifold. We apply this te
hnique to study 1-pulseand 2-pulse solutions for 
lassi
al and modi�ed Gierer-Meinhardt system. Inparti
ular, we are able to treat di�erent types of boundary 
onditions, 
al
u-late folds of the slow manifold, leading to slow-fast motion, and to identifysymmetry breaking singularities in the manifold of 2-pulse solutions.1 Introdu
tionRea
tion di�usion systems show already in one spa
e dimension a large variety of in-teresting spatio-temporal dynami
s. Parti
ularly, pulse solutions play an importantrole in many bio
hemi
al and biologi
al systems [13, 10℄. Whereas the existen
e,stability, and motion of a single pulse is in many 
ases well understood, the situa-tion of several intera
ting pulses is mu
h more di�
ult to analyze. The basi
 ideato study pulse intera
tion is the following: As soon as the distan
e between thepulses is su�
iently large 
ompared to the pulse width, one 
an des
ribe ea
h pulselo
ally by a single-pulse solution and then study their intera
tion in a perturbativeway. In 
ases where the system between the pulses is 
lose to a homogeneous stablestationary state, the pulses intera
t only via their exponentially de
aying tails andhen
e the pulse motion is exponentially slow with respe
t to the pulse distan
e. Thisphenomenon is usually 
alled weak intera
tion, see [15, 18℄.In 
ontrast to that, Doelman and Kaper introdu
ed the notion of semistrong in-tera
tion (see [3℄ and referen
es there) for intera
ting pulses where the ba
kgroundbetween the pulses is non-homogeneous and far from equilibrium. Like many pat-tern formation phenomena, semistrong intera
tion requires the existen
e of variableswith di�erent di�usion lengths. This may lead to solutions, where in between thepulses the system is not 
lose to equilibrium, but shows spatial �u
tuations whi
hare governed by the long-ranging di�usion. At the same time, the pulses 
an beshort, be
ause they are governed by another variable with short di�usion length.1



As a general model for semistrong pulse intera
tion, 
overing several spe
i�
 models,su
h as 
lassi
al and modi�ed Gierer-Meinhardt, Gray-S
ott, and others, Doelmanand Kaper suggested in [3℄ the following 
lass of systems:
ǫ2Ut = Uxx − ǫ2µU + f(U)V 2

Vt = ǫ2Vxx − V + g(U)V 2We 
onsider positive solutions U and V , for whi
h the fun
tions f and g, as wellas the parameters µ and ǫ should be positive. As usual, ǫ is assumed to be small.The spatial variable x is from the interval I, whi
h may be bounded or unbounded.Di�erent types of boundary 
onditions will be spe
i�ed later. For 
onvenien
e, weres
ale x here by ǫ and obtain after repla
ing ǫ2 by ε the system
Ut = Uxx − µU + 1

ε
f(U)V 2

Vt = ε2Vxx − V + g(U)V 2.
(1)In this way, ε re�e
ts the ratio of the di�erent di�usion lengths. In the s
ale of theshort di�usion length ξ = x/ε, the system for u(ξ, t) = U(εξ, t), v(ξ, t) = V (εξ, t) is

ut = 1
ε2 uξξ − µu + 1

ε
f(u)v2

vt = vξξ − v + g(u)v2.
(2)Based on the two di�erently s
aled versions (1) and (2), our approa
h will be some-what di�erent from that in [3℄. In analogy to 
lassi
al Feni
hel theory for singularperturbed systems of ordinary di�erential equations, we des
ribe in se
tion 2 the setof intera
ting pulse solutions as a manifold, where the motion vanishes in leading or-der. In se
tion 3, the slow motion along the manifold is obtained from the next orderterms at these quasi-stationary solutions. Finally, in se
tion 4 the general results areused to study manifolds of pulses for the spe
i�
 nonlinearities from the 
lassi
al andthe modi�ed Gierer-Meinhardt system. In this way, we 
an expli
itely 
al
ulate themanifolds of intera
ting pulse solutions for these systems. In parti
ular, we identifypoints of normal non-hyperboli
ity leading to di�erent s
enarios of 
hanges in thestability along the bran
hes of the manifolds. We also demonstrate the existen
eof non-symmetri
 two-pulse solutions, whi
h, however, turn out to be not stable.The question of stability or normal hyperboli
ity of the obtained manifolds is notaddressed analyti
ally in this paper. Instead, we use numeri
al simulation to giveeviden
e for the dynami
al stability at 
ertain parts of the analyti
ally obtainedslow-motion manifolds, and to verify the validity of our asymptoti
 approximationof the slow motion. An analyti
al study of the spe
tral problem, whi
h 
ould supplya rigorous proof for normal hyperboli
ity and the persisten
e of the slow manifoldsis beyond the s
ope of the present paper and will be the subje
t of future investiga-tions.2 Constru
tion of quasi-stationary N-pulse solutionsThe stationary problem for is a singularly perturbed system of ordinary di�erentialequations and, 
hoosing the �ne spatial s
ale from (2), it 
an be written in the2



following form:
uξ = εp (3)
pξ = εµu − f(u)v2 (4)
vξ = q (5)
qξ = v − g(u)v2. (6)It is well known for su
h systems that solutions may 
onsist of fast and slow parts.In this se
tion, we will �rst solve all these slow and fast parts separately and thenderive 
onsisten
y 
onditions, whi
h allow us to glue them to leading-order solutions,whi
h are quasi-stationary N-pulse solutions. These quasi-stationary solutions willgive rise to a slow-motion manifold for the original PDE. Hen
e they will not solvethe stationary problem in se
ond approximation, and it is not an issue, whetherthere are true solutions to the stationary problem near these approximating quasi-stationary solutions.We apply now the standard pro
edure of singular perturbation theory. We distin-guish the fast alias small s
ale subsystem
uξ = 0 (7)
pξ = −f(u)v2 (8)
vξ = q (9)
qξ = v − g(u)v2, (10)obtained by putting ε = 0 in equations (3)�(6), and the slow alias large s
ale sub-system

Ux = P (11)
Px = µU (12)
0 = Q (13)
0 = V, (14)obtained by res
aling ba
k to x and putting then ε = 0. Note that in prin
iple (14)should be

0 = V − g(U)V 2.We are here only interested in the bran
h 
orresponding to V = 0, whi
h allows to
an
el the term 1
ε
f(U)V 2 in (12), being O(ε) after substituting V = O(ε).The fast subsystem (7)�(10) 
an be solved expli
itely by

u(ξ) ≡ a (15)
p(ξ) = b +

3f(a)

2g2(a)
tanh

(

ξ

2

) (

tanh2

(

ξ

2

)

− 3

) (16)
v(ξ) =

3

2g(a)

(

1 − tanh2

(

ξ

2

)) (17)
q(ξ) = − 3

2g(a)
tanh

(

ξ

2

)(

1 − tanh2

(

ξ

2

))

. (18)3



These solutions perform a single pulse in v and depend parametri
ally on a and b.Note that these solutions satisfy q(0) = 0, i.e. we have 
hosen from the family ofspatial translates those pulses whi
h are 
entered at zero. Their behavior at in�nityis given by
lim

ξ→±∞
(v(ξ)) = lim

ξ→±∞
(q(ξ)) = 0 (19)and

lim
ξ→±∞

(p(ξ)) = b ∓ 3f(a)

g2(a)
, (20)whi
h implies in parti
ular that the pulse in v is a

ompanied by a step-like pro�lein p with step-size 6f(a)

g2(a)
independent of b (see also equation 2.16 in [3℄).A general solution of the slow system (11)�(14) is given by

U(x) = c cosh (
√

µx) + d sinh (
√

µx) (21)
P (x) =

√
µ (c sinh (

√
µx) + d cosh (

√
µx)) (22)

V (x) ≡ 0 (23)
Q(x) ≡ 0 (24)depending on the two parameters c and d.We 
ompose now a quasistationary N-pulse by gluing together solutions from thefast and slow subsystem. First, we 
hoose pulse positions r1, . . . , rN ∈ I in the largespatial s
ale. In the vi
inity of rj , the quasistationary N-pulse will be given by

uj(ξj; aj, bj), pj(ξj; aj, bj), vj(ξj; aj, bj), qj(ξj; aj, bj), being a solution (15)�(18) with�xed parameters a = aj and b = bj , and the spa
e variable
ξj :=

x − rj

ε
. (25)In the intervals between the pulse positions

Ij := [rj, rj+1]we use solutions Uj(xj ; cj , dj), Pj(xj ; cj, dj), Vj(xj ; cj, dj), Qj(xj ; cj, dj) given by (21)�(24) for �xed c = cj , d = dj, and the spa
e variable
xj := x − rj . (26)For 
onvenien
e, we denote the left and right boundary of the whole domain I by r0and rN+1, respe
tively. In this way we get also the two intervals I0 at the left and

IN at the right boundary, whi
h 
an be treated in same manner as the others. Inthe 
ase of periodi
 boundary 
onditions, the intervals I0 and IN 
oin
ide modulo
L by 
hoosing r0 := rN − L and rN+1 := r1 + L, where L is the length of the wholedomain I.

4



At ea
h pulse position rj, j = 1 . . .N , we have to regard the following 
onsisten
y
onditions to assure 
ontinuity of the 
omposed solutions in the limit ε → 0:
Uj−1(yj−1; cj−1, dj−1) = lim

ξj→−∞
(uj(ξj; aj , bj)) (27)

Pj−1(yj−1; cj−1, dj−1) = lim
ξj→−∞

(pj(ξj; aj, bj)) (28)
Uj(0; cj, dj) = lim

ξj→∞
(uj(ξj; aj , bj)) (29)

Pj(0; cj, dj) = lim
ξj→∞

(pj(ξj; aj, bj)). (30)Here, we have used the abbreviation yj := rj+1 − rj for the length of the interval Ij .Note that 
orresponding 
onsisten
y 
onditions for V and v, as well as for Q and qhold true automati
ally, sin
e they are all ne
essarily zero at the jun
tions, see (19)and (23), (24). Inserting now the expressions for the large s
ale solution a

ordingto (21), (22), and the limits of the small s
ale solution a

ording to (15) and (20),the 
onsisten
y 
onditions read as
cj−1 cosh (

√
µyj−1) + dj−1 sinh (

√
µyj−1) = aj (31)

√
µ (cj−1 sinh (

√
µyj−1) + dj−1 cosh (

√
µyj−1)) = bj +

3f(aj)

g2(aj)
(32)

cj = aj (33)
√

µdj = bj −
3f(aj)

g2(aj)
(34)for j = 1, ..., N .The 
omposed quasistationary N-pulse has to satisfy also the boundary 
onditions,whi
h will imply additional 
onditions for the solution parameters. In the 
ase ofperiodi
 boundary 
onditions, we 
an identify the intervals I0 and IN modulo thelength L of the domain I and get the additional equations c0 = cN and d0 = dN . Inthe 
ase of Neumann boundary 
onditions

P0(0; c0, d0) = PN(yN ; cN , dN) = 0we obtain
d0 =

√
µ (cN sinh (

√
µyN) + dN cosh (

√
µyN)) = 0. (35)Analogously, Diri
hlet 
onditions

U0(0; c0, d0) = UN (yN ; cN , dN) = 0lead to
c0 = cN cosh (

√
µyN) + dN sinh (

√
µyN) = 0. (36)Note that also inhomogeneous or mixed-type boundary 
onditions 
an be treatedeasily. In the 
ase of an unbounded domain, i.e. r0 = −∞, we 
annot use (26) for5



j = 0 and de�ne x0 := x1, instead. Consequently, for j = 0 equations (31) and (32)have to be 
hanged to
c0 = a1 (37)

√
µd0 = b1 +

3f(a1)

g2(a1)
. (38)The boundedness 
ondition

lim
x0→−∞

(U0(x0; c0, d0)) = lim
xN→∞

(UN(xN ; cN , dN)) = 0leads to the additional equations
c0 = d0, cN = −dN . (39)In all these 
ases, we obtain two extra parameter 
onstraints from the boundary
onditions. This means that in the 5N + 2-dimensional spa
e of pie
ewise solu-tions, given by the pulse parameters (aj, bj , rj)j=1...N and the ba
kground param-eters (cj, dj)j=0...N , there are 4N + 2 
onsisten
y 
onditions. Thus we 
an expe
tthat apart from degenera
ies there is a N-dimensional manifold MN ⊂ R

5N+2 of
onsistent solution parameters, 
orresponding for �xed 0 < ε ≪ 1 to a manifold
Mε

N ⊂ X of quasistationary N-pulse solutions.3 Slow motion on the manifold of N-pulse solutionsThe position of the pulse in the small spatial s
ale at ξj = 0 has been 
hosenarbitrarily in the pulse solution (15)�(18). Indeed, with any shifted 
opy of thesessolutions a 
onsistent quasi-stationary solution 
an be 
omposed in the same way.In parti
ular, a slow motion of this small-s
ale pulse position is possible. We wantto determine now this slow motion. To this end, we �rst assume that the set ofsolutions to the system (31)�(34) is a N-dimensional manifold whi
h 
an be lo
allyparameterized by the pulse positions r1 . . . rN . Hen
e, the further parameters 
anbe 
onsidered as given fun
tions
aj(r1 . . . rN), bj(r1 . . . rN ), 1 ≤ i ≤ N
cj(r1 . . . rN), dj(r1 . . . rN), 0 ≤ j ≤ N.

(40)Then, we introdu
e the expli
it time dependen
e r1(t) . . . rN(t) and assume that theother parameters aj, bj , cj, dj, follow adiabati
ally as
aj(t) = aj(r1(t) . . . rN(t))et
. For a �xed 
hoi
e of pulse positions r1 . . . rN , the quasi-stationary pro�le in thevi
inity of the pulse at rj is given by

uj(ξj) = aj + ε

∫ ξj

0

pj(η; aj, bj)dη (41)
vj(ξj) ≡ vj(ξj; aj, bj) (42)6



with
ξj =

x − rj(t)

ε
. (43)Sin
e we want to go ba
k to the time dependent system (2), we have eliminated pas an extra independent variable by in
orporating it as a �rst order 
orre
tion for

u. Inserting (41) and (42) into the v-equation of (2) and taking into a

ount theexpli
it time dependen
e of the pulse parameters, we obtain
∂vj

∂ξj

ξ̇j +
∂vj

∂aj

N
∑

k=1

∂aj

∂rk

ṙk = εg′(aj)v
2
j

∫ ξj

0

p(η; aj, bj)dη + O(ε2). (44)On the right hand side we have used Taylor expansion and (9), (10) to 
an
el leadingorder terms. Now we multiply with the derivative of the pulse ∂vj

∂ξj
and integrate.In this way we 
an isolate the small-s
ale pulse velo
ity ξ̇j. This pro
edure 
an beunderstood as a leading order approximation of the proje
tion to the generator ofthe shift of the pulse. Note that a

ording to (41) the u 
omponent of the pulse isin leading order 
onstant. This justi�es, that we negle
t here the u-equation of (2),being multiplied with a derivative of order ε. Note that even though the system isnot self adjoint, the shift mode 
oin
ides with its adjoint in leading order. Takinginto a

ount that

∫ ∞

−∞

∂vj

∂ξj

∂vj

∂aj

dξj = 0,we obtain from this pro
edure
ξ̇j

∫ ∞

−∞

(

∂vj

∂ξj

)2

dξj = εg′(aj)

∫ ∞

−∞

∂vj

∂ξj

v2
j

∫ ξj

0

p(η; aj, bj)dηdξj. (45)Using partial integration, re
alling the expressions for v3
j and (

∂vj

∂ξj

)2 from (17) and(18), and employing known integrals for them we derive
ξ̇j = −

εg′(aj)
∫ ∞
−∞

v3

j

3
(p(ξj; aj , bj))dξj

∫ ∞
−∞

(

∂vj

∂ξj

)2

dξj

(46)
= −2εbjg

′(aj)

g(aj)
. (47)Taking into a

ount equation (43), we arrive �nally at

ṙj(t) = 2ε2 bj(t)g
′(aj(t))

g(aj(t)),
(48)whi
h, together with the solution of the 
onsisten
y 
onditions (40), provides the lawof motion for the pulse positions rj , i = 1, . . . , N . Sin
e the slow motion takes pla
ein the �ne spatial s
ale ξj, it is of order ε2 in the large s
ale variable rj, whi
h enters7
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Figure 1: Pulse motion for 2-pulse solution of the modi�ed Gierer-Meinhardt model(49) with µ = 5, α = 0.2, L = 8, and Neumann boundary 
onditions. (a) Pulsedistan
e for numeri
al solutions of the full system with ǫ = 0.1 (grey dashed line)and ǫ = 0.02 (bla
k dashed line) 
ompared to the law of motion (48) (solid line).(b) v-
omponent of the full numeri
al solution for ǫ = 0.1 (grey-s
ale plot) andpulse positions (
urves) predi
ted by (48). (
) pro�les at a �xed time t: Dashedline: numeri
al solution of the full system; solid line: ansatz-solution (15)�(18) and(21)�(24).into the 
onsisten
y equations. Note that the motion of ea
h pulse is determinedby its lo
al pulse parameters aj , bj only. However, there is a pulse intera
tion, sin
ethese parameters depend via (40) on the other pulse positions.In Figure 1 we 
ompare the e�e
tive pulse motion given by (48) with a numeri
alsolution for the full system, 
al
ulating the motion of a pair of two symmetri
intera
ting pulses of the modi�ed Gierer-Meinhardt model (details of this model8



will be given in the next se
tion). Panel (a) shows the pulse distan
e as a fun
tionof time. As soon as the pulses are well separated, the e�e
tive pulse motion a

ordingto (48) (solid 
urve) is in good 
oin
iden
e with the distan
e of the maxima of anumeri
al solution for the full system. Already for moderately small ε = 0.1 (greydashed line) the agreement is reasonably good and improves signi�
antly for thesmaller value ε = 0.02 (bla
k dashed line).4 Intera
ting pulse solutions of the Gierer-MeinhardtsystemWe apply now the general results from the pre
eeding se
tions to study manifoldsof intera
ting pulse solutions for a spe
i�
 system. As an example, we have 
hosenthe well known Gierer-Meinhardt system [10℄ with a modi�
ation introdu
ed in [3℄.Spe
ifying the nonlinearities
f(U) := 1, g(U) :=

1

U
+ α (49)in our general system (1), we obtain for α = 0 the 
lassi
al Gierer-Meinhardt system,and for α > 0 the modi�ed version from [3℄.4.1 1-pulse solutionsAs a warm up, we begin with solutions having a single pulse that intera
ts with theboundary under Neumann boundary 
onditions. From the six 
onsisten
y 
ondi-tions, given by (31)-(34) with j = 1 and (35), the pulse parameters c0, c1, d0, d1 
anbe easily eliminated, and we remain with

a1
√

µ(tanh(
√

µr1) + tanh(
√

µ(L − r1))) =
6f(a1)

g2(a1)
(50)

a1
√

µ(tanh(
√

µr1) − tanh(
√

µ(L − r1))) = 2b1. (51)Inserting the Gierer-Meinhardt nonlinearities (49) with α = 0, equation (50) hasthe solution
6a1 =

√
µ(tanh(

√
µr1) + tanh(

√
µ(L − r1))),and the pulse motion from (48) is given by

ṙ1 = ε2(tanh(
√

µ(L − r1)) − tanh(
√

µr1)). (52)This implies that on the one-dimensional manifold of quasi-stationary 1-pulse solu-tions there is a unique globally stable equilibrium with the pulse at r1 = L/2.For α > 0, equation (50) reads
6a1

(1 + αa1)2
=

√
µ(tanh(

√
µr1) + tanh(

√
µ(L − r1))).9
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Figure 2: Left panel: Fold line and existen
e region (grey) for 1-pulse solutions(L = 2, µ = 5); right panel: stable and unstable (dashed) bran
hes for α = 0.375.Arrows and thin lines indi
ate slow motion and fast drop-o� at the foldThis equation is quadrati
 in a1 and has two real solutions, if
√

µα(tanh(
√

µr1) + tanh(
√

µ(L − r1))) ≤
3

2
. (53)The shaded region in Figure 2 shows the pulse positions in the domain [0, L] for

L = 2 where two bran
hes of 1-pulse solutions 
oexist. When (53) holds withequality, these two bran
hes meet in a fold, whi
h is represented by the bla
k linein �gure 2. Above this line (white region) no 1-pulse solution exists. The height ofthe fold-point is given by
a1 = aF =

1

α
.Our numeri
al simulations of the full system indi
ate, that the the bran
h with

a1 < aF is stable. The pulse motion is now given by
ṙ1 = ε2 αµ(tanh2(

√
µ(L − r1)) − tanh2(

√
µr1))

3 ±
√

9 − 6α
√

µ(tanh(
√

µr1) + tanh(
√

µ(L − r1)))
(54)(
ompare (52)), showing that the stationary pulse at r1 = L/2, as long as it exists,is still globally stable within the stable bran
h of the slow manifold. For

α
√

µ tanh(
√

µL/2) >
3

4
(55)the pulse at r1 = L/2 does no longer exist, but a pulse lo
ated 
lose to the boundarystill moves towards the middle of the domain until it rea
hes the fold. There, thesolution drops o� the slow manifold and diverges in a fast motion towards in�nity(see in the lower panel of Figure 2).4.2 2-pulse solutionsTo keep 
al
ulations simple, we will �rst investigate the 
ase of an unbounded do-main. The ten 
onsisten
y 
onditions (31)�(34) for j = 1, 2, and (37), (39) 
an be10



simpli�ed to
(

a1 −
3f(a1)√
µg2(a1)

)

e
√

µ(r2−r1) =
3f(a2)√
µg2(a2)

(56)
(

a2 −
3f(a2)√
µg2(a2)

)

e
√

µ(r2−r1) =
3f(a1)√
µg2(a1)

(57)Note that for a1 = a2 these equations 
oin
ide both with (50) after inserting there
L = ∞. Indeed, a symmetri
 2-pulse 
an be seen as an 1-pulse on the positive half-axis with a Neumann boundary 
ondition at zero. In this way, existen
e and motionof symmetri
 2-pulses are given by 
orresponding expressions from the previousse
tion. The bran
h of symmetri
 solutions 
an be parameterized by

r2 − r1 = − 1
√

µ
ln

(√
µ

3

(

1

a1
+ 2α + αa1

)

− 1

)

.For
α
√

µ <
3

4there are two symmetri
 2-pulse solutions for ea
h pulse distan
e (
ompare (55).This 
ondition already has been derived in [3℄ (eq. 5.3). For larger values of α
√

µthe two bran
hes meet in a fold with
a1 = aF =

1

α
,and there is a maximal pulse distan
e given by

r2 − r1 = yF = − 1
√

µ
ln

(

4α
√

µ

3
− 1

)

.Now we look for non-symmetri
 2-pulse solutions.To this end, we eliminate the pulsedistan
e r2 − r1 from the equations (56) and (57) and obtain
G(a1) = G(a2)with

G(a) :=

(

a − 3f(a)
√

µg2(a)

)

f(a)

g2(a)
.For symmetri
 2-pulse solutions, this equation is trivially satis�ed. Non-symmetri
solutions arise, if the fun
tion G is not monotone. Inserting the nonlinearities (49),di�erentiating, and 
al
ulating the dis
riminant of the resulting third order polyno-mial, one 
an �nd that non-monotoni
ity appears for the modi�ed Gierer-Meinhardtsystem with

α
√

µ ≤ 33
√

33 − 177

16
. (58)Remarkably, the bifur
ation is again governed by the produ
t α

√
µ.11



Figure 3: Manifolds of symmetri
 (solid lines) and asymmetri
 (dashed lines) 2-pulse solutions for the modi�ed Gierer-Meinhardt system with µ = 5 and di�erentvalues of α (unbounded domain). Stability (bold) has been dete
ted by numeri
alsimulation of the full system. Arrows indi
ate the dire
tion of stable slow motion,given by equation (48).At this point we invoke a numeri
al solution of the 
onsisten
y equations (56) and(57). Using 
ontinuation methods, we obtain the manifolds depi
ted in Figure 3. Wehave �xed µ = 5 and display the manifolds of 2-pulse solutions for di�erent valuesof α. For α = 0.5 inequality (58) does not hold true and there is only the foldedbran
h of symmetri
 solutions. As a 1-pulse solution on the positive half-axis witha Neumann boundary 
ondition at zero, the lower part of this bran
h is stable. As asymmetri
 2-pulse, however, it turns out to be unstable with respe
t to symmetry-breaking perturbations. For α = 0.35 inequality (58) is satis�ed and a small bubbleof non-symmetri
 2-pulse solutions has appeared. At the same time the symmetri
bran
h in the interior has be
ome stable. For further de
reasing values of α, thestable part in
reases until for α = 3
4
√

µ
the fold of the symmetri
 bran
h disappears toin�nity. At the same time the asymmetri
 bran
h be
omes unbounded an separates12
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Figure 4: Panels (I)�(VI): 
on�gurations of manifolds of 2-pulse solutions for dif-ferent 
hoi
es of L and α (periodi
 boundary 
onditions). Large �gure: Bifur
ationdiagram, indi
ating transitions between these 
on�gurations at singularities of dif-ferent types. Grey area: existen
e of stable 2-pulse solutionsinto two 
omponents. Panels (d) and (e) show the situation short before and afterthis transition. The arrows depi
t the dire
tion of the drift of the stable two-pulsesolutions given by (48).Note that the stable parts of the manifolds loose their stability here in a symmetry-breaking pit
hfork, where a bran
h of symmetri
 solutions is 
rossed by a bran
h ofasymmetri
 solutions. The fold, whi
h was the reason for the loss of stability of the1-pulse, o

urs here at an already unstable part of the slow manifold. Anyhow, thefold points (there appear also several on the asymmetri
 bran
h) should 
orrespondto points of normal non-hyperboli
ity, where a persisten
e of the slow manifold 
an13



not be expe
ted. The symmetry-breaking pit
hfork explains also the asymmetri
blow-up, whi
h was observed numeri
ally in [3℄. Figure 3 shows that for the value
α = 0.342 used in [3℄ the fold and the pit
hfork are so 
lose that by numeri
alsimulation they are hardly to distinguish. This is however only a 
oin
iden
e, whi
hdoes not hold true for other values of α.Finally, we investigate the 
ase of periodi
 boundary 
onditions. Here, the length
L of the interval enters as a further parameter. Again, there are ten 
onsisten
y
onditions from (31)�(34) for j = 1, 2 and from the boundary 
onditions. They 
anbe simpli�ed to

a1(sinh (
√

µ(L − x)) + sinh (
√

µx)) − a2 sinh (
√

µL) + 2
3f(a2)√
µg2(a2)

= 0 (59)
a2(sinh (

√
µ(L − x)) + sinh (

√
µx)) − a1 sinh (

√
µL) + 2

3f(a1)√
µg2(a1)

= 0. (60)By numeri
al 
ontinuation methods, we obtain the manifolds of symmetri
 andasymmetri
 2-pulse solutions, depending on the 
hosen values of L and α. Panels(I)-(VI) show di�erent 
on�gurations: In (I) and (VI) there are no stable 2-pulsesolutions. In (II) and (III), there is a stable stationary symmetri
 2-pulse to whi
hthe other stable 2-pulses 
onverge. In (IV) and (V), the stable 2-pulses move into apit
hfork instability, as des
ribed above. The pi
ture is 
ompleted by a bifur
ationdiagram in the parameters L and α, indi
ating singularities that lead to transitionsbetween the 
on�gurations (I)�(VI): The solid lines are degenerate pit
hforks, atwhi
h bubbles of asymmetri
 solutions merge or emerge at a symmetri
 solution.The dashed line 
orresponds to a bran
h-swit
hing of the symmetri
 solutions andthe dashed-dotted line to the emergen
e of the se
ond asymmetri
 bran
h. Notethat for L → ∞ the s
enarios (VI), (IV), (III), and (II) 
orrespond pre
isely to thediagrams (a), (b), (e), and (f) of the �gure 3 for the unbounded domain.5 Con
lusionsWe present here an systemati
 approa
h to the problem of semistrong intera
tion,based on 
lassi
al 
on
epts of singular perturbation theory. It 
an be applied toa variety of problems with intera
ting steep fronts or pulses and a varying ba
k-ground between them. A similar approa
h has been applied to the intera
tion ofopti
al pulses in mode-lo
ked semi
ondu
tor lasers [14℄. The singular perturbationapproa
h 
omes in two stages. First, we are looking for quasi-stationary solutionsof the original problem, whi
h �nally will 
onstitute a slow-motion manifold. In
ontrast to ODEs, where the stationary problem is just an algebrai
 equation whoseleading order solutions supply immediately a leading order approximation of theslow manifold, the stationary problem is here a singularly perturbed ODE in thespatial variable. Solutions to this equation may 
onsist of slow and fast parts. Sin
ethe evolution takes pla
e in the spatial variable of the original system, these 
or-respond to small s
ale parts, whi
h are in fa
t the fronts or pulses, and large s
ale14



parts, whi
h are the ba
kground between the pulses. In order to obtain a leadingorder approximation for the solutions, it is su�
ient to solve the fast and slow sub-problems separately and then 
ompose them to a global approximating solution.Solutions to the slow and fast subproblem appear usually in families depending ona �nite number of parameters, su
h as e.g. pulse positions or pulse heights. Gluingthe pie
ewise slow and fast solutions together indu
es nonlinear 
onstraints betweenthese parameters. The full set set of leading order solutions is then found as thesolution manifold to the system of 
onstraints in the spa
e of parameters of all thesubproblems. For the spe
i�
 stru
ture of the systems introdu
ed in [3℄ and pre-sented here the subproblems 
an be solved analyti
ally and hen
e the 
onstraints
an be written as simple algebrai
 expressions, allowing for a detailed qualitativeinvestigation of the resulting manifolds. Using numeri
al path-following te
hniquesalready at an earlier stage, it would also be possible to treat more 
ompli
atedproblems in a similar manner.In a se
ond step, we have used higher order terms to determine the slow motion alongthe manifolds of quasi-stationary solutions. This is based on the assumption thatthe manifolds are normally hyperboli
 and hen
e persist for ε > 0. This assumptionshould of 
ourse be veri�ed in a rigorous way. Our investigations show that normalhyperboli
ity breaks down as soon as the manifold is not parametrized by the pulsepositions. In this way we were able not only to des
ribe the semistrong intera
tion,but also the breakdown of this regime in two di�erent s
enarios.In the derivation of the equation (48) for the slow motion of the intera
ting pulses,we dis
over the strange fa
t that the motion does not take pla
e in the next order,but is only of order ε2. This is related to the fa
t that the small s
ale pulse problem(5), (6) is reversible and hen
e has a generi
 homo
lini
 solution. At that point one
ould introdu
e pulse velo
ities of order one in the small spatial s
ale as additionalsolution parameters, whi
h in general have not to be identi
ally zero as in thisparti
ular 
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