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Abstract

In this paper, we study a class of singularly perturbed reaction-diffusion
systems, which exhibit under certain conditions slowly varying multi-pulse so-
lutions. This class contains among others the Gray-Scott and several versions
of the Gierer-Meinhardt model. We first use a classical singular perturbation
approach for the stationary problem and determine in this way a manifold of
quasi-stationary IN-pulse solutions. Then, in the context of the time-dependent
problem, we derive an equation for the leading order approximation of the
slow motion along this manifold. We apply this technique to study 1-pulse
and 2-pulse solutions for classical and modified Gierer-Meinhardt system. In
particular, we are able to treat different types of boundary conditions, calcu-
late folds of the slow manifold, leading to slow-fast motion, and to identify
symmetry breaking singularities in the manifold of 2-pulse solutions.

1 Introduction

Reaction diffusion systems show already in one space dimension a large variety of in-
teresting spatio-temporal dynamics. Particularly, pulse solutions play an important
role in many biochemical and biological systems [13, 10|. Whereas the existence,
stability, and motion of a single pulse is in many cases well understood, the situa-
tion of several interacting pulses is much more difficult to analyze. The basic idea
to study pulse interaction is the following: As soon as the distance between the
pulses is sufficiently large compared to the pulse width, one can describe each pulse
locally by a single-pulse solution and then study their interaction in a perturbative
way. In cases where the system between the pulses is close to a homogeneous stable
stationary state, the pulses interact only via their exponentially decaying tails and
hence the pulse motion is exponentially slow with respect to the pulse distance. This
phenomenon is usually called weak interaction, see [15, 18|.

In contrast to that, Doelman and Kaper introduced the notion of semistrong in-
teraction (see |3| and references there) for interacting pulses where the background
between the pulses is non-homogeneous and far from equilibrium. Like many pat-
tern formation phenomena, semistrong interaction requires the existence of variables
with different diffusion lengths. This may lead to solutions, where in between the
pulses the system is not close to equilibrium, but shows spatial fluctuations which
are governed by the long-ranging diffusion. At the same time, the pulses can be
short, because they are governed by another variable with short diffusion length.



As a general model for semistrong pulse interaction, covering several specific models,
such as classical and modified Gierer-Meinhardt, Gray-Scott, and others, Doelman
and Kaper suggested in [3] the following class of systems:

EU; = Uy — EpU + f(U)V?
Vi = V=V +g(U)V?

We consider positive solutions U and V', for which the functions f and g, as well
as the parameters p and € should be positive. As usual, € is assumed to be small.
The spatial variable x is from the interval I, which may be bounded or unbounded.
Different types of boundary conditions will be specified later. For convenience, we
rescale x here by € and obtain after replacing €2 by € the system

Vi = Ve =V +g(U)V2

In this way, € reflects the ratio of the different diffusion lengths. In the scale of the
short diffusion length £ = z /e, the system for u(&,t) = U(e€,t), v(&,t) = V (g€, t) is

Uy = gizuff — pu+ %f(u)vz (2)

v = vge — v+ glu)o?
Based on the two differently scaled versions (1) and (2), our approach will be some-
what different from that in |3]. In analogy to classical Fenichel theory for singular
perturbed systems of ordinary differential equations, we describe in section 2 the set
of interacting pulse solutions as a manifold, where the motion vanishes in leading or-
der. In section 3, the slow motion along the manifold is obtained from the next order
terms at these quasi-stationary solutions. Finally, in section 4 the general results are
used to study manifolds of pulses for the specific nonlinearities from the classical and
the modified Gierer-Meinhardt system. In this way, we can explicitely calculate the
manifolds of interacting pulse solutions for these systems. In particular, we identify
points of normal non-hyperbolicity leading to different scenarios of changes in the
stability along the branches of the manifolds. We also demonstrate the existence
of non-symmetric two-pulse solutions, which, however, turn out to be not stable.
The question of stability or normal hyperbolicity of the obtained manifolds is not
addressed analytically in this paper. Instead, we use numerical simulation to give
evidence for the dynamical stability at certain parts of the analytically obtained
slow-motion manifolds, and to verify the validity of our asymptotic approximation
of the slow motion. An analytical study of the spectral problem, which could supply
a rigorous proof for normal hyperbolicity and the persistence of the slow manifolds
is beyond the scope of the present paper and will be the subject of future investiga-
tions.

2 Construction of quasi-stationary /N-pulse solutions

The stationary problem for is a singularly perturbed system of ordinary differential
equations and, choosing the fine spatial scale from (2), it can be written in the
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following form:

ug = €p (3)
pe = epu— f(u)v? (4)
ve = ¢ (5)
g = v—glup® (6)

It is well known for such systems that solutions may consist of fast and slow parts.
In this section, we will first solve all these slow and fast parts separately and then
derive consistency conditions, which allow us to glue them to leading-order solutions,
which are quasi-stationary N-pulse solutions. These quasi-stationary solutions will
give rise to a slow-motion manifold for the original PDE. Hence they will not solve
the stationary problem in second approximation, and it is not an issue, whether
there are true solutions to the stationary problem near these approximating quasi-
stationary solutions.

We apply now the standard procedure of singular perturbation theory. We distin-
guish the fast alias small scale subsystem

ug = 0 (7)
pe = —f(u)? (8)
ve = ¢ (9)
g = v—g(u)? (10)

obtained by putting ¢ = 0 in equations (3)—(6), and the slow alias large scale sub-
System

U, = P (11)

P, = uU (12)

0= Q (13)

0=V, (14)

obtained by rescaling back to = and putting then ¢ = 0. Note that in principle (14)

should be
0=V -g(U)V~

We are here only interested in the branch corresponding to V' = 0, which allows to
cancel the term 1 f(U)V? in (12), being O(e) after substituting V = O(e).

The fast subsystem (7) (10) can be solved explicitely by
uwé) = a (15)

pE) = b+t s’gé((‘;)) tanh (g) (tanh2 (g) - 3) (16)
v(€) = %@ (1—tanh2 (g)) (17)

e =y (§) (1 (£)) "
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These solutions perform a single pulse in v and depend parametrically on a and b.
Note that these solutions satisfy ¢(0) = 0, i.e. we have chosen from the family of
spatial translates those pulses which are centered at zero. Their behavior at infinity
is given by

Jim (v(€)) = lim (g(€)) =0 (19)
and 3f(a)
SEIBOO(Z?(@) =bF Wv (20)

which implies in particular that the pulse in v is accompanied by a step-like profile

in p with step-size géggg independent of b (see also equation 2.16 in [3]).

A general solution of the slow system (11) (14) is given by

(r) = ccosh(y/px)+ dsinh (\/px) (21)
(r) = /p(csinh (y/ux) + dcosh (y/ux)) (22)
V() = 0 (23)
() = 0 (24)

depending on the two parameters ¢ and d.

We compose now a quasistationary N-pulse by gluing together solutions from the
fast and slow subsystem. First, we choose pulse positions ry,...,ry € I in the large
spatial scale. In the vicinity of r;, the quasistationary N-pulse will be given by
u;(&55 a5, b5), pi (&5 a5, b5), v5(&53 a5, b5), ¢;(&55 a5, b5), being a solution (15) (18) with
fixed parameters a = a; and b = b;, and the space variable

_ T

gj = . (25)

€

In the intervals between the pulse positions
I := [rj,rj4]

we use solutions U (z;; ¢, d;), Pj(2j;¢5,dy), Vi(zsicy,d;), Qj(wy; ¢, d;) given by (21)-
(24) for fixed ¢ = ¢j,d = d;, and the space variable

Tj =T —Ty. (26)

For convenience, we denote the left and right boundary of the whole domain I by rg
and ry.y 1, respectively. In this way we get also the two intervals I at the left and
Iy at the right boundary, which can be treated in same manner as the others. In
the case of periodic boundary conditions, the intervals Iy and Iy coincide modulo
L by choosing r¢ := ry — L and ry.1 := r; + L, where L is the length of the whole
domain /.



At each pulse position 7;, j = 1... N, we have to regard the following consistency
conditions to assure continuity of the composed solutions in the limit ¢ — 0:

Ui ¢on dja) = T (w853 a505)) (27)
Pii(yj-1;¢j-1,dj1) = gjlilfloo(pj(fj; aj, bj)) (28)
Uj(0;¢5,d;) = gjl_iil})o(uj(ﬁj;@j’bj)) (29)
Pi(0;¢5,d;) = fjl_i_rgo(pj(gj;aj,bj)). (30)

Here, we have used the abbreviation y; := r;;1 — r; for the length of the interval I;.
Note that corresponding consistency conditions for V' and v, as well as for () and q
hold true automatically, since they are all necessarily zero at the junctions, see (19)
and (23), (24). Inserting now the expressions for the large scale solution according
to (21), (22), and the limits of the small scale solution according to (15) and (20),
the consistency conditions read as

¢j-1cosh (v/uy;—1) + djysinh (Viy; 1) = (31)
Vi (¢jysinh (uy; 1) + djy cosh (Viuyj1)) = b + %Zj)) (32)
G = 4 (33)
. 3f(y)
\/ﬁdj - b] gg(aj) (34)

forj=1,...,N.

The composed quasistationary N-pulse has to satisfy also the boundary conditions,
which will imply additional conditions for the solution parameters. In the case of
periodic boundary conditions, we can identify the intervals Iy and Iy modulo the
length L of the domain I and get the additional equations ¢y = ¢y and dy = dy. In
the case of Neumann boundary conditions

Py(0;¢p,dp) = Py(yn;en,dn) =0

we obtain

do = v/t (e sinh (v/yn) + dn cosh (Viyn)) = 0. (35)

Analogously, Dirichlet conditions

Uo(0; o, do) = Un(ynicen,dy) =0
lead to
co = cy cosh (/pyn) + dy sinh (\/uyy) = 0. (36)

Note that also inhomogeneous or mixed-type boundary conditions can be treated
easily. In the case of an unbounded domain, i.e. ry = —oo, we cannot use (26) for



j = 0 and define z( := 1, instead. Consequently, for j = 0 equations (31) and (32)
have to be changed to

Ch = (37)

. (38)

The boundedness condition

lim (UQ(ZEO;CQ,dQ)) = lim (UN(ZL’N;CN,dN)) =0

To——00 TN —00

leads to the additional equations

Co — do, CN — —dN. (39)

In all these cases, we obtain two extra parameter constraints from the boundary
conditions. This means that in the 5N + 2-dimensional space of piecewise solu-
tions, given by the pulse parameters (a;,b;,7;);=1.. .~ and the background param-
eters (cj,d;)j=o..n, there are 4N + 2 consistency conditions. Thus we can expect
that apart from degeneracies there is a N-dimensional manifold My C R?N*2 of
consistent solution parameters, corresponding for fixed 0 < ¢ < 1 to a manifold
M5 C X of quasistationary N-pulse solutions.

3 Slow motion on the manifold of N-pulse solutions

The position of the pulse in the small spatial scale at §; = 0 has been chosen
arbitrarily in the pulse solution (15)—(18). Indeed, with any shifted copy of theses
solutions a consistent quasi-stationary solution can be composed in the same way.
In particular, a slow motion of this small-scale pulse position is possible. We want
to determine now this slow motion. To this end, we first assume that the set of
solutions to the system (31) (34) is a N-dimensional manifold which can be locally
parameterized by the pulse positions r;...ry. Hence, the further parameters can
be considered as given functions

aj(rl...rN), bj(’l"l...’f’N), ]_SZSN

. 40
cj(ri...rn), dj(ri...rn), 0<j5<N. (40)

Then, we introduce the explicit time dependence 71 (t) ...ry(t) and assume that the
other parameters a;, b;, ¢;, d;, follow adiabatically as

a;(t) = a;(ry(t) ... (1))

etc. For a fixed choice of pulse positions ry ... 7y, the quasi-stationary profile in the
vicinity of the pulse at r; is given by

&5

ui(§;) = aj+5/ pj(n; az, bj)dn (41)
0

vi(&§5) = vi(&j;a4,b)) (42)
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with
x —r;(t)

: (13)

& =

Since we want to go back to the time dependent system (2), we have eliminated p
as an extra independent variable by incorporating it as a first order correction for
u. Inserting (41) and (42) into the v-equation of (2) and taking into account the
explicit time dependence of the pulse parameters, we obtain

vy
15)

. 0v; da; . , &
g’fj = Z “ Ly =g (aj)vjz-/o p(n; a;,b;)dn + O(?). (44)
J k=1

8%

On the right hand side we have used Taylor expansion and (9), (10) to cancel leading

order terms. Now we multiply with the derivative of the pulse g_? and integrate.
J

In this way we can isolate the small-scale pulse velocity fj This procedure can be
understood as a leading order approximation of the projection to the generator of
the shift of the pulse. Note that according to (41) the u component of the pulse is
in leading order constant. This justifies, that we neglect here the u-equation of (2),
being multiplied with a derivative of order . Note that even though the system is
not self adjoint, the shift mode coincides with its adjoint in leading order. Taking
into account that

> ov;dvy
- a—é-]a—a]dgj - Oa
we obtain from this procedure
avﬁ / > C%j 2/§j
C— ‘ . oD ) 4
f/ (aé.]) dg] g (CLJ) . aé,j’U] ; p(ma],b])dndg] ( 5)

Using partial integration, recalling the expressions for v and <a£j> from (17) and

(18), and employing known integrals for them we derive
3
: eg'(a;) [ ca;,b;))dE;
§ = — g'( J)foc: 38(1}‘(5] i, b)) dE; (46)
I (ng) dg
_2ebig'(a;)
gla;)

(47)

Taking into account equation (43), we arrive finally at

2bi (t)g'(a;(t))

i) =2 ),

(48)
which, together with the solution of the consistency conditions (40), provides the law
of motion for the pulse positions r;, ¢ = 1,..., N. Since the slow motion takes place

in the fine spatial scale &;, it is of order 2 in the large scale variable r;, which enters
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Figure 1: Pulse motion for 2-pulse solution of the modified Gierer-Meinhardt model
(49) with ¢ = 5, a = 0.2, L = 8, and Neumann boundary conditions. (a) Pulse
distance for numerical solutions of the full system with ¢ = 0.1 (grey dashed line)
and € = 0.02 (black dashed line) compared to the law of motion (48) (solid line).
(b) v-component of the full numerical solution for ¢ = 0.1 (grey-scale plot) and
pulse positions (curves) predicted by (48). (c¢) profiles at a fixed time ¢t: Dashed
line: numerical solution of the full system; solid line: ansatz-solution (15) (18) and
(21) (24).

into the consistency equations. Note that the motion of each pulse is determined
by its local pulse parameters a;, b; only. However, there is a pulse interaction, since
these parameters depend via (40) on the other pulse positions.

In Figure 1 we compare the effective pulse motion given by (48) with a numerical
solution for the full system, calculating the motion of a pair of two symmetric
interacting pulses of the modified Gierer-Meinhardt model (details of this model



will be given in the next section). Panel (a) shows the pulse distance as a function
of time. As soon as the pulses are well separated, the effective pulse motion according
to (48) (solid curve) is in good coincidence with the distance of the maxima of a
numerical solution for the full system. Already for moderately small € = 0.1 (grey
dashed line) the agreement is reasonably good and improves significantly for the
smaller value € = 0.02 (black dashed line).

4 Interacting pulse solutions of the Gierer-Meinhardt
system

We apply now the general results from the preceeding sections to study manifolds
of interacting pulse solutions for a specific system. As an example, we have chosen
the well known Gierer-Meinhardt system [10] with a modification introduced in [3].
Specifying the nonlinearities
1

fU):=1, g(U) == i +a (49)
in our general system (1), we obtain for a = 0 the classical Gierer-Meinhardt system,
and for o > 0 the modified version from |3].

4.1 1-pulse solutions

As a warm up, we begin with solutions having a single pulse that interacts with the
boundary under Neumann boundary conditions. From the six consistency condi-
tions, given by (31)-(34) with j = 1 and (35), the pulse parameters co, ¢1, do, d; can
be easily eliminated, and we remain with

ar/p(tanh(y/pry) + tanh(/u(L — 1)) = (50)
ar/p(tanh(y/pry) — tanh(y /(L — 1)) = 2b;. (51)

Inserting the Gierer-Meinhardt nonlinearities (49) with @ = 0, equation (50) has
the solution

6a; = \/p(tanh(y/mry) + tanh(y/a(L — 1)),

and the pulse motion from (48) is given by

iy = *(tanh(y/i(L — 7)) — tanh(y/pr)). (52)

This implies that on the one-dimensional manifold of quasi-stationary 1-pulse solu-
tions there is a unique globally stable equilibrium with the pulse at r = L/2.

For a > 0, equation (50) reads

6CL1

Troay Vi(tanh(y/pry) + tanh(y/zi(L — 71))).
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Figure 2. Left panel: Fold line and existence region (grey) for 1-pulse solutions
(L = 2, u = b); right panel: stable and unstable (dashed) branches for a = 0.375.
Arrows and thin lines indicate slow motion and fast drop-off at the fold

This equation is quadratic in a; and has two real solutions, if

Vpa(tanh(y/pry) + tanh(y/u(L — 7)) < ;
The shaded region in Figure 2 shows the pulse positions in the domain [0, L] for
L = 2 where two branches of 1-pulse solutions coexist. When (53) holds with
equality, these two branches meet in a fold, which is represented by the black line
in figure 2. Above this line (white region) no 1-pulse solution exists. The height of
the fold-point is given by

(53)

1
o
Our numerical simulations of the full system indicate, that the the branch with
a1 < ap is stable. The pulse motion is now given by

P ap(tanh®(\/a(L — ri)) — tanh®(\ /) (54)

L=
3£ /9 — 6ay/u(tanh(\/piry) + tanh(y/i(L — 1))

(compare (52)), showing that the stationary pulse at 7 = L/2, as long as it exists,
is still globally stable within the stable branch of the slow manifold. For

o/l tanh (/L /2) > z (55)

the pulse at 71 = L/2 does no longer exist, but a pulse located close to the boundary
still moves towards the middle of the domain until it reaches the fold. There, the
solution drops off the slow manifold and diverges in a fast motion towards infinity
(see in the lower panel of Figure 2).

a; = ap =

4.2 2-pulse solutions

To keep calculations simple, we will first investigate the case of an unbounded do-
main. The ten consistency conditions (31) (34) for j = 1,2, and (37), (39) can be
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simplified to

a — 2L iy 30)

<1 \/ﬁ92(a1)) Viig*(az) (56)
0y @)\ ey _ 3f(@)

< 2 \/ﬁg2(a2)) Vg (ar) (57)

Note that for a; = ay these equations coincide both with (50) after inserting there
L = oco. Indeed, a symmetric 2-pulse can be seen as an 1-pulse on the positive half-
axis with a Neumann boundary condition at zero. In this way, existence and motion
of symmetric 2-pulses are given by corresponding expressions from the previous
section. The branch of symmetric solutions can be parameterized by

1 1
r9—1r1 = ———=1n @(——I—QQ—I—aal)—l).
Vi 3 \a

For 3
Oé\/ﬁ < Z
there are two symmetric 2-pulse solutions for each pulse distance (compare (55).

This condition already has been derived in [3] (eq. 5.3). For larger values of a/p
the two branches meet in a fold with
1

) =ar = —,
(6%

and there is a maximal pulse distance given by

4
7’2—7“1=yF=—L1n< a\/ﬁ—l).
Vit 73

Now we look for non-symmetric 2-pulse solutions.To this end, we eliminate the pulse
distance ry — r; from the equations (56) and (57) and obtain

G(al) = G(ag)

(3@ \ f@
= (o= i)

For symmetric 2-pulse solutions, this equation is trivially satisfied. Non-symmetric
solutions arise, if the function G is not monotone. Inserting the nonlinearities (49),
differentiating, and calculating the discriminant of the resulting third order polyno-
mial, one can find that non-monotonicity appears for the modified Gierer-Meinhardt
system with

with

33v33 — 177
%ﬂ§—1%¢—< (58)

Remarkably, the bifurcation is again governed by the product a,/p.
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Figure 3: Manifolds of symmetric (solid lines) and asymmetric (dashed lines) 2-
pulse solutions for the modified Gierer-Meinhardt system with ¢ = 5 and different
values of o (unbounded domain). Stability (bold) has been detected by numerical
simulation of the full system. Arrows indicate the direction of stable slow motion,
given by equation (48).

At this point we invoke a numerical solution of the consistency equations (56) and
(57). Using continuation methods, we obtain the manifolds depicted in Figure 3. We
have fixed g = 5 and display the manifolds of 2-pulse solutions for different values
of a. For @ = 0.5 inequality (58) does not hold true and there is only the folded
branch of symmetric solutions. As a 1-pulse solution on the positive half-axis with
a Neumann boundary condition at zero, the lower part of this branch is stable. As a
symmetric 2-pulse, however, it turns out to be unstable with respect to symmetry-
breaking perturbations. For a = 0.35 inequality (58) is satisfied and a small bubble
of non-symmetric 2-pulse solutions has appeared. At the same time the symmetric
branch in the interior has become stable. For further decreasing values of «, the
stable part increases until for o« = —- the fold of the symmetric branch disappears to

/e
infinity. At the same time the asymmetric branch becomes unbounded an separates
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Figure 4: Panels (I)-(VI): configurations of manifolds of 2-pulse solutions for dif-
ferent choices of L and « (periodic boundary conditions). Large figure: Bifurcation
diagram, indicating transitions between these configurations at singularities of dif-
ferent types. Grey area: existence of stable 2-pulse solutions

into two components. Panels (d) and (e) show the situation short before and after

this transition. The arrows depict the direction of the drift of the stable two-pulse
solutions given by (48).

Note that the stable parts of the manifolds loose their stability here in a symmetry-
breaking pitchfork, where a branch of symmetric solutions is crossed by a branch of
asymmetric solutions. The fold, which was the reason for the loss of stability of the
1-pulse, occurs here at an already unstable part of the slow manifold. Anyhow, the
fold points (there appear also several on the asymmetric branch) should correspond
to points of normal non-hyperbolicity, where a persistence of the slow manifold can
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not be expected. The symmetry-breaking pitchfork explains also the asymmetric
blow-up, which was observed numerically in [3]. Figure 3 shows that for the value
a = 0.342 used in [3] the fold and the pitchfork are so close that by numerical
simulation they are hardly to distinguish. This is however only a coincidence, which
does not hold true for other values of a.

Finally, we investigate the case of periodic boundary conditions. Here, the length
L of the interval enters as a further parameter. Again, there are ten consistency
conditions from (31)-(34) for j = 1,2 and from the boundary conditions. They can
be simplified to

' - sin x)) — azsin 3f(ar) =
on(sinh (L ) +sinh (i) = amsinh (VL) + 2208 0 (59)
as(sinh (/p(L — x)) + sinh (y/pz)) — aq sinh (/L) + QM = 0. (60)

Vig*(ar)

By numerical continuation methods, we obtain the manifolds of symmetric and
asymmetric 2-pulse solutions, depending on the chosen values of L and «. Panels
(I)-(VI) show different configurations: In (I) and (VI) there are no stable 2-pulse
solutions. In (IT) and (IIT), there is a stable stationary symmetric 2-pulse to which
the other stable 2-pulses converge. In (IV) and (V), the stable 2-pulses move into a
pitchfork instability, as described above. The picture is completed by a bifurcation
diagram in the parameters L and «, indicating singularities that lead to transitions
between the configurations (I)-(VI): The solid lines are degenerate pitchforks, at
which bubbles of asymmetric solutions merge or emerge at a symmetric solution.
The dashed line corresponds to a branch-switching of the symmetric solutions and
the dashed-dotted line to the emergence of the second asymmetric branch. Note
that for L — oo the scenarios (VI), (IV), (III), and (II) correspond precisely to the
diagrams (a), (b), (e), and (f) of the figure 3 for the unbounded domain.

5 Conclusions

We present here an systematic approach to the problem of semistrong interaction,
based on classical concepts of singular perturbation theory. It can be applied to
a variety of problems with interacting steep fronts or pulses and a varying back-
ground between them. A similar approach has been applied to the interaction of
optical pulses in mode-locked semiconductor lasers |14|. The singular perturbation
approach comes in two stages. First, we are looking for quasi-stationary solutions
of the original problem, which finally will constitute a slow-motion manifold. In
contrast to ODEs, where the stationary problem is just an algebraic equation whose
leading order solutions supply immediately a leading order approximation of the
slow manifold, the stationary problem is here a singularly perturbed ODE in the
spatial variable. Solutions to this equation may consist of slow and fast parts. Since
the evolution takes place in the spatial variable of the original system, these cor-
respond to small scale parts, which are in fact the fronts or pulses, and large scale
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parts, which are the background between the pulses. In order to obtain a leading
order approximation for the solutions, it is sufficient to solve the fast and slow sub-
problems separately and then compose them to a global approximating solution.
Solutions to the slow and fast subproblem appear usually in families depending on
a finite number of parameters, such as e.g. pulse positions or pulse heights. Gluing
the piecewise slow and fast solutions together induces nonlinear constraints between
these parameters. The full set set of leading order solutions is then found as the
solution manifold to the system of constraints in the space of parameters of all the
subproblems. For the specific structure of the systems introduced in [3| and pre-
sented here the subproblems can be solved analytically and hence the constraints
can be written as simple algebraic expressions, allowing for a detailed qualitative
investigation of the resulting manifolds. Using numerical path-following techniques
already at an earlier stage, it would also be possible to treat more complicated
problems in a similar manner.

In a second step, we have used higher order terms to determine the slow motion along
the manifolds of quasi-stationary solutions. This is based on the assumption that
the manifolds are normally hyperbolic and hence persist for € > 0. This assumption
should of course be verified in a rigorous way. Our investigations show that normal
hyperbolicity breaks down as soon as the manifold is not parametrized by the pulse
positions. In this way we were able not only to describe the semistrong interaction,
but also the breakdown of this regime in two different scenarios.

In the derivation of the equation (48) for the slow motion of the interacting pulses,
we discover the strange fact that the motion does not take place in the next order,
but is only of order £2. This is related to the fact that the small scale pulse problem
(5), (6) is reversible and hence has a generic homoclinic solution. At that point one
could introduce pulse velocities of order one in the small spatial scale as additional
solution parameters, which in general have not to be identically zero as in this
particular case.
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