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AbstratThe paper introdues and disusses di�erent estimation methods for multi index mod-els where the indies are parametri and the link funtion is nonparametri. More spe-i�, the here introdued methods follow the idea of Hristahe et al. (2001), modifyand try to improve it. Moreover, they onstitute alternatives to the so alled MAVE-based methods (Xia et al, 2002). We onentrate on an intuitive presentation of whateah proedure is doing to the data and its implementation. All methods onsideredhere we have made freely available in R. We onlude with a omparative simulationstudy based on the provided pakage EDR.1 IntrodutionDimensionality ontinues to be a hallenging problem in nonparametri estimation andtesting. Many di�erent methods have been proposed to irumvent the so alled urse ofdimensionality. In nonparametri estimation one ould distinguish basially between twodi�erent approahes. One is the data explorative method searhing for a strutural adapta-tion. The alternative is exploring strutural restritions motivated from model theory. Theseond one refers to additional knowledge available in the spei� ontext, e.g. eonomis,mediine, biology, physis, et. whih might impose separability onditions like additivityor similar knowledge of struture.In this artile we onentrate on the �rst approah. We suppose to have data (Yi,Xi),
i = 1, . . . , n, whih are generated by a model of the form

Yi = f(Xi) + εi = g(θT
1 Xi, θ

T
2 Xi, · · · , θT

MXi) + εi = g(ΘXi) + εi , (1)where Yi are salar response variables, Xi are d-dimensional explanatory variables, εi arerandom errors and f(·), respetively g(·), are unknown funtions f : IRd → IR, g : IRM →
IR with M ≤ d.In other words, Θ is a linear (orthogonal) mapping from the high-dimensional spae IRdonto IRM . For identi�ation we impose that Θ Θ⊤ = IM , where IM is the M ×M identitymatrix. Note that in our estimation proedures this restrition is neither neessary norwanted. Moreover, the length of vetor θj haraterizes the variability of the funtion ffrom (1) in that diretion. Therefore, g is homogeneous, i.e. has the same smoothness inall M diretions, what simpli�es the hoie of smoothing parameters.IfM = d then we are bak in the fully nonparametri ase. In pratie, however, model (1)explains most of the variation of Y for rather smallM (atually, forM = 1, 2 sometimes 3).Relations as in (1) are referred to as multi-index regression models. All the information1



about f(x) is onentrated in a (low-dimensional) projetion Θx. The aim is to reahdimension redution for the regression problem, and to desribe the index spae I = Im Θ⊤whih is also referred to as the e�etive dimension spae, see e.g. [8℄, [9℄ and [3℄.Many di�erent methods have been proposed to address the problem of adaptive dimensionredution. We do not intend to give a omprehensive overview but refer only to somereent ontributions and referenes therein. An interesting new approah has been intro-dued in [13℄. They �rst span the mean entral subspae by the Fourier transform of thedensity weighted gradient of f . This way they avoid the di�ult estimation of f and itsderivative(s). A partiularly interesting ontribution of their work is that afterwards, theysueed to desribe the whole entral subspae. This is done by the means of the meanentral subspaes of all possible transformations of response Y . This paper also ontainsa good review of existing methods inluding reent advanes like the ontour regressionproedure of [7℄, and inverse regression with a minimum disrepany approah, see [4℄.Our methods ome losest to the following ontributions. [5℄, [11℄ and [12℄ proposed algo-rithms for estimating the index spae for a given e�etive dimension M , whih allows tobypass this urse of dimensionality problem using the strutural adaptation approah.All methods disussed here onsist of three main steps. The �rst is to estimate the d ×
d matrix Υ of squared averaged derivatives ( 1

n

∑n
i=1 ∇f(Xi) ∇f⊤(Xi)) by an iterativeproedure. This proedure does not rely on the unknown e�etive dimension M . In theseond step theM -dimensional index spae is estimated for a givenM . Finally we estimatethe link funtion to obtain a omplete desription of the model.All proedures introdued and ompared here are made available as a pakage (EDR) ofthe R-Statistial System [10℄.The rest of the paper is organized as follows. In the next setion we explain the basiideas underlying all estimation proedures onsidered here. In Setion 3.1 we desribe �rstthe original [5℄ estimation method based on these ideas, inluding a desription of ourimplementation and a disussion of the hoie of (initial) parameters. We then proposea modi�ation that leads to improved numerial results. Finally, we present a proedurethat involves an additional penalization for diretions outside a presumed lower dimen-sional spae. This again improves results in our numerial study. We try to provide fullyautomati proedures in the sense that in ase of doubts, reasonable defaults for the param-eters are available. In Setion 4 we ompare the numerial performane of the introduedmethods.2 Basi Ideas2.1 Estimating the Generalized Priniple ComponentsReall that we onsider the model

E[Y |X = x] = f(x) = g
{
θT
1 x, θ

T
2 x, . . . , θ

T
Mx
}

= g {Θx} , (2)2



where Θ = (θ1, θ2, . . . , θM )T ∈ IRM×d. Note that Θ is a linear orthogonal mapping fromthe high-dimensional spae IRd onto the spae IRM , M ≤ d, satisfying the identi�ationondition that the maximal eigenvalue of ΘΘ⊤ is equal to one. For the ease of presentationwe will assume X ∈ [−1, 1]d. As it is well known that the optimal design for nonparametriregression is the uniform one, an appropriate data transform is reommended.The model struture (2) implies that eah gradient ∇f(Xi), belongs to the index spae I,whih in turn is spanned by the vetors ∇f(Xi). Therefore, a natural basis in I an bede�ned via the single value deomposition of the matrix Υ de�ned as
Υ =

1

n

n∑

i=1

∇f(Xi)∇f⊤(Xi) = OdΛO
⊤
d (3)with an orthonormal d × d-matrix Od and a d × d-diagonal matrix Λ with dereasingeigenvalues. These matries deliver information about model (2). Let M be the rank of Υ,then the �rst M olumns of Od provide an orthonormal basis of the spae I. The diagonalelements of Λ show how fast the funtion g varies in eah diretion. This suggests to �rstestimate Υ from the data and then reover the spae I using this estimate. Moreover, thisprovides a natural ordering of the indies.Matrix Υ is a quadrati funtional of the gradient of the regression funtion f . [6℄ proposean estimation proedure based on the expansion of the gradient ∇f with respet to anorthonormal basis. Suppose that we are given a olletion {ψℓ , ℓ = 1, . . . , L} of funtions

ψℓ : IRd → IR whih satisfy
n∑

i=1

ψℓ(Xi)ψℓ′(Xi) = δℓℓ′ ,where δℓℓ = 1 and δℓℓ′ = 0 for ℓ 6= ℓ′. Now, let β∗ℓ with
β∗ℓ =

n∑

i=1

∇f(Xi)ψℓ(Xi) (4)be the ℓ-th oe�ient of ∇f with respet to the basis system {ψℓ}. Note that eah d-vetor
β∗ℓ is a linear funtional of the gradient and hene belongs to I. Thus if the dimensionof the spae spanned by β∗1 , . . . , β∗L equals M , this set of vetors ompletely haraterizesthe index spae I, and one an identify the spae I by seeking for the �rst M prinipalomponents of the set β1, . . . , βL.In order to estimate B∗(B∗)T = ΥL (B∗ being the matrix having β∗k , k = 1, . . . , L asolumns) one an �rst onstrut an estimate β̂ℓ of eah oe�ient β∗ℓ , e.g.

β̂ℓ =

n∑

i=1

∇̂f(Xi)ψℓ(Xi) (5)on the basis of a pilot estimate ∇̂f of the gradient, and then ompose the estimate
Υ̂L =

L∑

ℓ=1

β̂ℓβ̂
⊤
ℓ3



of ΥL. It is su�ient for our purposes to hoose L suh that rank(ΥL) = M .It holds ΥL ≤ Υ and sine ΥΥL = ΥLΥ, the eigenvetors of Υ are at the same time theeigenvetors of ΥL. Both matries are nonnegative and the eigenvalues of ΥL are uniformlysmaller or equal to the eigenvalues of Υ. Finally, it is lear that ΥL = Υ if L ≥ n. Forthe ase of the multi-index funtion f(x) = g(θ⊤1 x, . . . , θ
⊤
Mx), the matrix Υ is of rank M ,so that the rank ΥL is not greater than M . We suppose that the system {ψℓ} is seletedproperly and the rank of ΥL is also M . Then this matrix an be used for desribing thestruture of the original model in plae of Υ. The reason for using the matrix ΥL insteadof Υ is that the problem of estimating the quadrati funtional Υ is muh harder than theproblem of estimating the family of linear funtionals βℓ de�ning the matrix ΥL providedthat the basis funtions ψℓ are su�iently smooth. Therefore, as we always estimate Υ via

Υ̂L, we will skip the index L in the following.As representation (2) is not unique, it is more onvenient for our purposes to work withanother one. Eah vetor β∗ℓ belongs to I and hene rank(B∗) ≤ M . If B∗ ompletelydesribes the index spae I, then we have even rank(B∗) = M . Let λ1 ≥ λ2 ≥ . . . ≥ λdbe the ordered set of eigenvalues of Υ. Sine rank(Υ) = M , only the �rst M of them arepositive and the remaining ones are equal to zero. Lemma 2.1. of [5℄ o�ers an expliitrepresentation of the model via the orthogonal deomposition of the symmetri L×L-matrix
(B∗)⊤B∗. Due to this lemma, the model (1) an always be rewritten in the form

f(x) = g
(
(B∗OM )⊤x

) (6)whih is used in the sequel. We de�ne also
R∗ = B∗OM . (7)2.2 Estimating the LinkThe proposed proedures are designed for getting the unknown struture of the model.The so far published theoretial results indiate that the struture (the unknown indexspae) an be estimated at the best possible rate n−1/2 as long as M ≤ 3, and so ourmethods do. We will see that all the proedures also deliver an estimator of the regressionfuntion f . However, this estimate is only suboptimal in rate. The optimal hoie of thebandwidth depends upon the smoothness of g. Rate optimality for the loal linear methodsis ahieved for the bandwidth of order n−1/(4+M) for the M -index ase.A natural way of improving the quality of estimating the regression funtion f (or thelink funtion g) is to perform one more estimation step. Denote by Υ̂M the best M -rankapproximation of Υ̂. I.e. if Υ̂ = O diag{µ2

1, . . . , µ
2
d}O⊤ with µ1 ≥ µ2 ≥ . . . ≥ µd, thende�ne also RM = OM diag{µ1, . . . , µM} where OM is the blok of the �rst M olumns of

O.We an now infer on target funtion f by estimating the g as a funtion of t = R⊤
Mx . A

4



loal linear estimator of g and its �rst (partial) derivatives at t = R⊤
Mx is given by

(
ĝ(t)

ĝ′)(t)

)
= arginf

ai,θi

n∑

j=1

(
Yj − ai − θ⊤i zj

)2
K
(
|zj |2/b2

)

=




n∑

j=1

(
1
zj

)(
1
zj

)⊤

K
(
|zj |2/b2

)



−1
n∑

j=1

(
1
zj

)
YjK

(
|zj |2/b2

)with zj = t − tj. The bandwidth b an be seleted by a data-driven seletor like rossvalidation. Estimation of g for M ≤ 2 an be performed e.g. using the pakage sm for theR Statistial System [10℄, see [1℄ or [2℄.3 The Estimation ProeduresWe onsider three methods, the proedure published in [5℄ [HJPS℄, inluding a slight mod-i�ation of this method [mod-HJPS℄ that leads to signi�ant improvements in the perfor-mane, and a new method that aims to yield further adaptation to the given dimension
M [Penalized method℄.3.1 The HJPS proedureWe onsider the following iterative strutural adaptation approah. We start with theestimates ∇̂f obtained by a fully nonparametri loal linear �t and some bandwidth h1.We then alulate β̂ℓ =

∑n
i=1 ∇̂f(Xi)ψl(Xi), ℓ = 1, . . . , L. Although this estimate isvery rough, it ontains some information about the struture of the funtion f and, inpartiular, about the mapping Θ. All vetors β̂ℓ, up to the estimation error, belong to theindex spae I. This information an be used for produing another, more areful estimateof the gradient funtion and hene, of the vetors β∗ℓ . More preisely, let B̂1 be the matrixomposed from the vetors β̂ℓ, ℓ = 1, . . . , L. We de�ne the gradient estimate ∇̂f (2)

(Xi) at
Xi by a loal linear �t
(
f̂ (2)(Xi)

∇̂f (2)
(Xi)

)
= arginf

c∈IR, b∈IRd

n∑

j=1

[
Yj − c− b⊤(Xj −Xi)

]2
K

( |S2Xij |2
h2

2

)

=





n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
( |S2Xij |2

h2
2

)




−1
n∑

j=1

Yj

(
1
Xij

)
K
( |S2Xij |2

h2
2

)
,with Xij = Xi −Xj. Smoothing is performed restriting positive weights to the ellipsoid

{x : |S2(x − Xi)| ≤ h2}, with S2 = (I + ρ−2
2 B̂1B̂⊤

1 )−1/2 for some ρ2 < 1 and h2 > h1.In other words, we shrink the original isotropi support of the kernel in all diretions β̂ℓ(ρ2 < 1) and streth them in all orthogonal diretions. This leads to estimates
β̂

(2)
ℓ =

1

n

n∑

i=1

∇̂f (2)
(Xi)ψℓ(Xi)5



of β∗ℓ produing the matrix B̂2. We ontinue this way eah time ompressing the averagingwindows in the diretion of the urrent estimate B̂k and expanding them in orthogonaldiretions.The results presented in [5℄ show that this proedure allows to estimate the index spae Iat the rate n−1/2 provided that M < 4.The proedure involves input parameters h1 and ρmin < ρ1, suh that ρ dereases geomet-rially from ρ1 to ρmin by a fator cρ and h inreases geometrially by a fator ch duringiterations. The hoie of these parameters as well as the set of basis funtions {ψℓ} will bedisussed later.To guarantee onvergene of the proedure some loal regularity of the design is required.Otherwise the gradient estimates ould have a very large standard deviation whih maydeteriorate the quality of the index estimates. This problem an be avoided by weightingeah element of the sum in the expression for β̂(k)
ℓ with some oe�ients that express thedegree of loal regularity of the design.We now provide the algorithm in losed form.

• Step 1. Initialization: speify parameters ρ1, ρmin , cρ , h1 , ch, Cw and the set offuntions {ψℓ}; De�ne w as the square root of the minimal eigenvalue of the matrix
V with

V =
1

EK(ζ⊤ζ)
E

(
1
ζ

)(
1
ζ

)⊤

K(ζT ζ)where ζ is random and uniformly distributed over the ball B1 = {x ∈ IRd : |x| ≤ 1}:
w2 = λmin

(
V
); set k = 1, B̂0 = 0 ;

• Step 2. Compute Υ̂(k) = B̂(k−1)B̂⊤

(k−1). If ‖Υ̂(k)‖ > 1, then normalize it by itsmaximal eigenvalue: Υ̂(k) := Υ̂(k)/‖Υ̂(k)‖∞; Set Sk =
(
I + ρ−2

k Υ̂(k)
)1/2;

• Step 3. For every i = 1, . . . , n, ompute the matrix Vk(Xi) with
Vk(Xi) =

n∑

j=1

(
1

Wij,k

)(
1

Wij,k

)⊤

K
(
W⊤

ij,kWij,k

)where Wij,k = h−1
k Sk(Xj −Xi) and de�ne wi by w2

i = λmin (Vk(Xi)) /λmax (Vk(Xi));
• Step 4. If the ondition

1

n

n∑

i=1

wi ≥ Cwwis not ful�lled, then inrease hk by the fator ch, that is, hk := chhk and derease ρk(if k > 1) by ch. Repeat from Step 3.
6



• Step 5. For every i = 1, . . . , n, ompute ∇̂f (k)
(Xi):

(
f̂ (k)(Xi)

∇̂f (k)
(Xi)

)
=





n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
( |SkXij|2

h2
k

)




−1
n∑

j=1

Yj

(
1
Xij

)
K
( |SkXij |2

h2
k

)
;

• Step 6. For every ℓ = 1, . . . , L, ompute the vetor β̂(k)
ℓ

β̂
(k)
ℓ =

(
n∑

i=1

wi

)−1 n∑

i=1

∇̂f (k)
(Xi)ψℓ(Xi)wiwith the previously obtained wi's. Compose the matrix B̂k with olumns β̂(k)

ℓ , ℓ =

1, . . . , L.
• Step 7. Set ρk+1 = cρρk, and hk+1 = chhk. If ρk+1 ≥ ρmin, then set k = k + 1 andontinue with Step 2.In the following, we denote by kn the number of iterations. We set B̂ = B̂kn

, and ρkn
hkn

=

(ρh)kn
.3.1.1 A Modi�ation: mod-HJPSA orretion in Step 3 of the algorithm seems to signi�antly improve its numerial behav-ior. Preisely we replae the de�nition of Vk(Xi) by

Vk(Xi) =

n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
(
W⊤

ij,kWij,k

)whih resembles the weighting sheme of the loal linear estimate used in Step 5.3.2 An Alternative: the Penalized AlgorithmThe algorithm HJPS/mod-HJPS used the idea of strutural adaptation to reate a sequeneof inreasingly eentri ellipsoids that allowed to estimate an M -dimensional e�etivedimension redution spae by the spae spanned by the prinipal axis orresponding tothe M largest eigenvalues of the ellipsoid. Eentriity of the ellipsoids de�ned by Sk isonly driven by inhomogeneities within the data and is usually small if M ≈ d or if thestrutural information is weak.If we know the dimensionM of the EDR and thatM << d we an exploit this informationeven more. To do this we introdue a basis optimization inside the estimation proedure.Reall that HJPS suggests to take a very large set of basis funtions {ψℓ}. As mentionedin [5℄, the ideal hoie of this family is given by orthogonalization of the set of partialderivatives ∇f1, . . . ,∇fd of the target funtion f . Sine the gradient ∇f(x) belongs, for all
x, to theM -dimensional index spae, we would, in ase of full knowledge on the EDR, need7



only M basis funtions. We an again use strutural adaptation to utilize the availablestrutural information for approahing this ideal hoie of basis funtions. We de�ne newbasis funtions as linear ombinations of the original ones. Under this restrition, theoptimal hoie is given by projeting the gradient ∇f onto the subspae in IRn generatedby the ψℓ. This projetion is desribed via the singular value deomposition of the d × Lmatrix ∇f · Ψ = B, or, equivalently, by the eigenvalue deomposition of the L× L matrix
(B)⊤B. This matrix is of rank M and it maps the whole spae IRL into a M -dimensionalsubspae denoted as Ĩ. Let us denote this projetor on Ĩ by Π∗. The produt Ψ̃ = ΨΠ∗de�nes a system of basis funtions whih e�etively ontains onlyM nontrivial elements. If
Π̂∗ is an estimate of the projetor Π∗, then the produt ΨΠ̂∗ is the data-driven ounterpartof the �ideal� Ψ̃. The use of suh a basis system is equivalent to multiplying the matrix
B̂ = ∇̂f · Ψ by Π̂∗, i.e. using the matrix ∇̂f · Ψ · Π̃.A penalization using exatly M nontrivial basis element may be to restritive, espeiallyif the information about the true EDR is weak. We therefore allow to perform the penal-ization within a spae of spaned by m, (M ≤ m << d) linear ombinations.To onlude, in our proedure we �rst de�ne Π̂∗ in the kth iteration by

Π2
k = ρ2

kIL×L + M̂k−1 (8)with the projetor M̂k = UmU
T
m, where Um ∈ IRL×m onsists of the �rst m Eigenvetorsof (B̂kΠk)

T B̂kΠk. Then, we replae B̂kB̂T
k in HJPS, mod-HJPS by B̂kΠkΠ

T
k B̂T

k . Note alsothat Πk = ΠT
k .Finally, we normalize the projetor giving

Υ̂(k) =
B̂kΠ

2
kB̂T

k

‖B̂kΠ
2
kB̂T

k ‖∞
. (9)This yields a numerially stable algorithm.We now present the desription of the estimation method. The main part of the estimationproedure is the iterative strutural adaptive algorithm. As a result, some estimates of thevetors {βℓ} and matrix Υ are obtained. Afterwards, the index spae, the link funtion gand the regression funtion f are onstruted on the base of these estimates.3.2.1 Estimating the βℓ's for given mAs before, for eah iteration k we redue the parameter hk, and ρk geometrially. Theinitial values (k = 1) of these parameters orrespond to the situation with no struturalinformation about the model (see Step 1), the �nal values orrespond to the situation withalmost full information and an be seleted in a data driven way.De�ne Uh(x) as the number of the design points Xi in the ball of the radius h and theenter at x. Then the algorithm reads as follows:

• Step 1. Initialization: Initialize the parameters ρ1 = 1.0, cρ = e−1/6, ch =
√
cρ, the8



bandwidth h1 and de�ne the set of basis funtions {ψℓ} as in (HJPS). Set k = 1,
M̂(0) = IL×L and Υ̂(0) = 0d×d.

• Step 2. Compute
S2

k = ρ2
kI + Υ̂k−1, Π2

k = ρ2
kI + M̂k−1,

• Step 3. For every i = 1, . . . , n, ompute the matrix
V(k)(Xi) =

n∑

j=1

(
1
Xij

)(
1
Xij

)⊤

K
( |SkXij |2

h2
k

)
. (10)and de�ne wi by w2

i = λmin (Vk(Xi)) /λmax (Vk(Xi))

• Step 4. If the ondition
1

n

n∑

i=1

wi ≥ Cwwis not ful�lled, then inrease hk by the fator ch, that is, hk := chhk and derease ρk(if k > 1) by ch. Repeat from Step 3.
• Step 5. For every i = 1, . . . , n ompute:

(
f̂ (k)(Xi)

∇̂f (k)
(Xi)

)
= {Vk(Xi)}−1

n∑

j=1

Yj

(
1
Xij

)
K
( |SkXij |2

h2
k

)

• Step 6. Compute the vetors β̂(k)
ℓ = (

∑n
i=1w

(k)
i )−1

∑n
i=1w

(k)
i ∇̂f(Xi)ψℓ(Xi), ℓ =

1, . . . , L with (w
(k)
i )2 := λmin(Vk(Xi))/λmax(Vk(Xi)), and ompose the d×L matrix

B̂(k) with olumns β̂(k)
1 , . . . , β̂

(k)
L ;

• Step 7. Perform a singular value deomposition of the matrix
B̂kΠk =

d∑

i=1

µiuiv
T
iwith single values µi and orresponding vetors ui, vi. Then update

Υ̂k =
B̂kΠ

2
kB̂T

k

‖B̂kΠ
2
kB̂T

k ‖∞
= µ−2

1

d∑

i=1

µ2
iuiu

T
i and M̂k =

m∑

i=1

viv
T
i

• Step 8. If ρk ≤ ρ1n
−1/3, stop. Else, set ρk+1 = cρρk, hk+1 = chhk, inrease k by one,

k := k + 1, and ontinue with Step 2;Again, for the given m, the estimator ÎM of the index spae I is spanned by the �rst mprinipal omponents of the matrix B̂kn
B̂T

kn
. 9



3.3 Choie of parametersIt is obvious that the quality of estimation by the proposed methods depends on the rule forhanging the parameters h and ρ, and, in partiular, on their values at the initial and �naliteration. The values ρk derease from ρ1 to ρmin while the hk inrease during iterationfrom h1 to hmax. The value h1 is to be seleted in suh a way that for the majority of points
Xi, the estimate ∇̂f(Xi) is well de�ned. A neessary (and usually su�ient) ondition isthat every ball {x : |x −Xi| ≤ h1} ontains at least d + 1 design points. The estimate of
βl is restrited to use only suh points by the de�nition of wi in Step 3 of HJPS and step4 of the penalized algorithm. Step 4 of the algorithms guarantees that a su�ient numberof design points with positive weights exists.The proposed rule leads to kn ≈ 6 log(ρ1/ρmin) ≈ 2 log n iterations and provides that
hkn

≈ C0. Note also that assuming the struture of the matrix B̂(k−1)B̂⊤

(k−1) to follow thestruture of the target matrix Υ∗, neighborhood Ek(Xi) is strethed at eah iteration stepby fator ch in all diretions and is shrunk by fator cρ in diretions of the M -dimensionalindex spae I. Therefore, the Lebesgue measure of every suh neighborhood is hangedeah time by the fator e d

2(4∨d)
−

m

6 whih is larger or equal to 1 for all M ≤ 3 and d > M .Under the assumption of a random design with a positive density, this would lead to aninrease of the mean number of design points inside eah Ek(Xi).Theoretial results, see e.g. [5℄ suggest that kn ≥ ln(n). Our simulation studies suggestthat kn = 2 ln(n) is a good hoie. This explains why we set cρ = e−1/6 in step 1 for given
ρmin = ρ1n

−1/3. Certainly, a di�erent ombination (cρ, ρmin) would also be possible. Froma theoretial point of view we need n−1/3 ≤ ρmin

ρ1
≤ n−2/5 and thus e−1/6 = 0.84648 ≥

cρ ≥ 0.81873 = e−1/5. To our experiene, taking e.g. cρ = e−1/5 or e−1/6 does not make asigni�ant di�erene in pratie.For the ase with M ≤ 3, we propose the following rule of thumb
ρ1 = 1, ρmin = n−1/3, cρ = e−1/6,

h1 = C0n
−

1
4∨d , Cw = 1

6∨log(n) ch = e
1

2(4∨d) ,
(11)where C0 is to be de�ned depending on the design.Remark: We designed all proedures suh that they an be used as fully automati (dataadaptive) proedures. However, that requires that all omponents of X have approximatelythe same sale. Standardization of the explanatory variables may therefore be neessary.Additional tuning may be possible by modifying the initial values ρ1 and h1.4 Numerial PerformaneWe now present the results of a small simulation study. We illustrate and ompare theproperties of the proposed proedures in two situations haraterized by a one and two-10



dimensional EDR, respetively.Example 4.1 We onsider a single index model (M = 1)
Yi = XT

i θ sin(
√

5XT
i θ) + ǫi , i =, 1, . . . , n (12)with θ = (1, 2, 0, . . . , 0)/

√
5 and Xi uniformely distributed in [−1, 1]d. The errors ǫi aregenerated from a Gaussian distribution with standard deviation 0.3.
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Figure 1: MAE estimated from 1000 simulations for Example 4.1 with M = 111



Example 4.2 The seond example is a multi-index model with a M = 2-dimensional EDR
Yi = XT

i θ1 sin(
√

5XT
i θ2) +XT

i θ2 sin(
√

(5)XT
i θ1) + ǫi , i = 1, . . . , n (13)with θ1 = (1, 2, 0, . . . , 0)/

√
5, θ2 = (−2, 1, 2, 0, . . . , 0)/3. Again the Xi are uniformelydistributed in [−1, 1]d and the errors ǫi are Gaussian with standard deviation 0.3.
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Figure 2: Loss1 estimated from 1000 simulations for Example 4.1 with M = 1
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Simulations of size 1000 were performed speifying di�erent values for dimension d (d =

10, 20, 40) and sample size n (n = 10d and n = 20d). The initial bandwidth h1 was spei�edas h1 = .85
√
d(d/n ∗∏d

j IQR(X.j))
1/d, with IQR(X.j) denoting the Inter-Quartile-Rangeof the jth explanatory variable.
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Figure 3: MAE estimated from 1000 simulations for Example 4.2 with M = 2.For the Penalized algorithm we have, as an additional parameter, to speify the rank mof matrix M̂k that determines the penalization of the basis. Within the simulations we13
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Figure 4: Loss1 estimated from 1000 simulations for Example 4.2 with M = 2.ompare the HJPS and the modi�ed HJPS algorithms with the penalized proedure using
m = M , m = M + 1 and additionally, in ase of Example 4.2, m = M + 2. Estimation ofthe link funtion is performed using the pakage sm from the R Statistial System [10℄.
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We have alulated two di�erent performane measures for eah simulation, the averageabsolute error MAE
1

n

n∑

i=1

|g(x) − ĝ(x)|and the distane [loss1℄ between the real projetion and the estimated one of x through
R∗, respetively R̂m

∥∥R∗
{
I −RT

M (RMRT
M )−1RM

}∥∥
2
/ ‖R∗‖2 with ‖A‖2 = tr(AAT ), (14)where I is the identity. The results are summarized as box-plots. Figures 1 and 2 providethe MAE and the loss 14 for all onsidered situations in ase of Example 4.1. Figures 3and 4 ontain the orresponding information for Example 4.2.In general we observe a signi�ant improvement by using the modi�ed version of HJPS inomparison to the original proposal. Further, the penalized algorithm seems to outperformthe modi�ed HJPS algorithm if the dimension m is hosen to be slightly larger then theusually unknown true dimension M of the EDR. In situations where d is large or n/d issmall hoosing m = M leads to over-penalization and loss of information within the adap-tation proess. In situations where n/d is large the penalized method seems to outperformHJPS for all onsidered hoies of m.As a onlusion our simulations suggest to use the penalized algorithm with m = M + 1if the true dimension M of the EDR an be guessed and the modi�ed HJPS proedure inother ases.
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